
CS 4510 Automata and Complexity 3/27/2024

Lecture 19: In and around NP

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

This lecture could also be titled “The Cook-Levin Theorem and Ladner’s Theorem”.

1 Reductions

What’s the point of intractability and NP-completeness?1 Suppose you are given a task,
and asked to produce an algorithm for some problem, but you can’t. So, you then try to
prove the problem is intractable or unsolvable. This is pretty hard to do in practice, but it
can happen. More likely, you can prove the problem was NP-complete. That elevates it to
a special club: a class of problems all as hard as each other. A fast algorithm for one would
imply a fast algorithm for all, and that P = NP. There are thousands of such problems
across many domains.

Definition 1.1. We say for two languages A,B ⊆ Σ∗ that A is polytime reducible to B
(A ≤p B) if there is a function, f , which is computable (i.e. halts on all inputs) in polytime
with

w ∈ A ⇐⇒ f(w) ∈ B

If A ≤p B, A lower bounds B and B upper bounds A. It is analogous to many-one
reductions (≤m), which are computable at all, while these are required to be computable in
polytime. ≤m can be used to prove problems are as solvable/unsolvable as each other, while
≤p can be used to prove problems are as easy or hard as each other. Note immediately that
if A ≤p B and B ∈ P then A ∈ P.

2 NP-completeness

We say language B is NP-complete if B ∈ NP and ∀L ∈ NP that L ≤p B. You may also
prove a language to be NP-complete much easier by using the transitivity of the ≤p relation.
Choose some known NP-complete language, A, and prove B ∈ NP and A ≤p B. Cook and
Levin proved (independently) for us that SAT is NP-complete, which means ∀L ∈ NP, L ≤p

SAT.

By the web of reductions, we have thousands of other NP-complete problems.

Circuit-SAT
↗

ALL of NP → SAT → 3-SAT Clique etc
↘ ↗

Independent Set

1see the attached drawings of Garey and Johnson

19: In and around NP-1

↘
Vertex Cover

This chain can go on and on, and contains cycles.2 These reductions only work if there is
known NP-complete problem, which we are going to prove. A reduction is just a tranforma-
tion from one language to another which preserves correctness. The Cook-Levin Theorem
proves for every language in NP, there is a reduction to SAT. We will do it generically, for
any language in NP.

3 SAT

Recall the definition of SAT:

• Variable: one of x1, x2, . . . , xl

• Literal: one of x1, x2, . . . , xl, ¬x1, ¬x2, . . . , ¬xl. A variable or its negation.

• Clause: an OR of literals, such as (x1 ∨ ¬x2 ∨ x3)

• CNF Formula: an AND of clauses, such as (x1 ∨ x2) ∧ (¬x3 ∨ x1)

• Assignment: a selection of x1, x2, . . . , xl ∈ {0, 1}. We say an assignment is satisfying
if when you plug in x1, x2, . . . , xl into a CNF formula that ϕ = 1.

SAT = {⟨ϕ⟩ | ϕ is a satisfiable CNF}

SAT is the language of all satisfiable formulas. CNFs are surprisingly expressive. Usually in
real-world constraint problems, you have a set of constraints and must satisfy all of them,
but there may be more than one way to satisfy each. For example,

(x1 ∨ ¬y1) ∧ (¬x1 ∨ y1) ∧ . . . ∧ (xn ∨ ¬yn) ∧ (¬xn ∨ yn)

is true if and only if x1 = y1, . . . , xn = yn. x = x1 . . . xn and y = y1 . . . yn ⇒ x = y. This
formula is satisfiable if and only if x = y. This is a CNF for string equality.

4 Cook-Levin Theorem

Theorem 1 (Cook-Levin Theorem). SAT is NP-complete

Proof. Obviously SAT ∈ NP since there is a verifier, V (ϕ, c), that checks if c is a satisfying
assignment to ϕ in polytime.

We want to prove that ∀L ∈ NP, L ≤p SAT. Let L ∈ NP. Then there exists a nonde-
terministic polytime machine, N , such that N accepts w ⇐⇒ w ∈ L. We give a reduction
f(w) = Φ such that Φ is satisfiable only when N accepts w. This will allow us to conclude

2I hope you recall some of these reductions from the unit in your algorithms course. You should have
done many reductions, but all were conditional on the assumption that SAT was NP-complete. Here, we
finally prove it.

19: In and around NP-2

w ∈ L ⇐⇒ Φ ∈ SAT . The reduction essentially outputs a formula to simulate N on w
and it only be satifiable if N accepted w.

Consider the computation history for N on w. We encode the computation history of the
machine into a formula, so that the only satisfying assignment is the accepting computation
history of the machine, which can only exist if N accepts w. The idea is conceptually simple
but has many of little details. Since L ∈ NP, N is at most polytime, say nt, and is then
also polyspace, say ns. Take the sequence of configurations of an accepting computation
history C0, C1, . . . and line them up in a table like so

q0 1 1 1
0 q0 1 1
0 0 q0 1
0 0 0 q0
0 0 0 qa

Note: There are nt rows and ns + 2ish columns

The dimension of the tableau is time by space = nt × ns, making it polynomial sized.
We encoe the table into a CNF. We will create a CNF formula, Φ, to loop over the table
and check its correctness. We can say such a table exists and is correct if exactly and only
four conditions are met. We simulate each of the four conditions with a CNF.

Φ = Φcell ∧ Φstart ∧ Φmove ∧ Φaccept

• Φcell = 1 ⇐⇒ exactly one symbol is in each cell of the table

• Φstart = 1 ⇐⇒ first row is the initial configuration

• Φmove = 1 ⇐⇒ the i+ 1th row is a valid configuration following the application of δ
of N to the ith row.

• Φaccept = 1 ⇐⇒ there is an accepting configuration in the table

Let xi,j,s be the variables with 1 ≤ i ≤ nt, 1 ≤ j ≤ ns, s ∈ Q ∪ Γ ∪ {#} where

xi,j,s = 1 ⇐⇒ cell[i, j] = s

xi,j,s means symbol s is in cell [i, j]. Let C = Q ∪ Γ ∪ {#}.

• Φcell = 1 ⇐⇒ exactly one symbol is in each cell of the table. For example, we want
a relationship like xi,j,a = 1 =⇒ xi,j,b = 0. We can do this by ANDing clauses which
make sure atleast one symbol is on for each cell, and no more than one is on for each
cell. This ensures each element of the table has exactly one symbol.

Φcell =
∧

1≤i≤nt

1≤j≤ns

[(∨
s∈C

xi,j,s

)∧(∧
s,t∈C
s ̸=t

(xi,j,s ∨ xi,j,t)
)]

19: In and around NP-3

∧
1≤i≤nt

1≤j≤ns

: double for loop over the entire two dimensional table

∨
s∈C

: guarantees at least one symbol is in each cell

∧
s,t∈C
s ̸=t

: guarantees no more than one symbol is in each cell

We are essentially using the syntax of SAT to write a program to check correctness of
our table. Its not essential to understand how this “programming language” works.
Its more important to understand that this was even possible.

• Φstart = 1 ⇐⇒ first row is the initial configuration of N on w with appropriate
space.

Φstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ . . . ∧ x1,n+2,wn ∧ x1,n+3, ∧ . . . ∧ x1,ns−1, ∧ x1,ns,#

To satisfy Φstart, the corresponding table must have the first row of our desired con-
figuration

• Φaccept = 1 ⇐⇒ there is an accepting configuration in the table

Φaccept =
∨

1≤i≤nt

1≤j≤ns

xi,j,qa

Loop over the entire table to make sure qa symbol exists somewhere

• Φmove = 1 ⇐⇒ the i+ 1th row is the Ci+1th configuration, following the ith row

Φmove is the hardest one. We want it to enforce that each row follows the preceding
one by only legal moves according to the transition function δ of N . With the first
initial configuration enforced, we want Φmove to enforce row two is the second config-
uration and so on. The way Φmove will work is check every 2× 3 window of the table
and determine if it’s a legal 2× 3 window. For example, for transitions like

qi qj
b→ c,L a qi b

qj a c

this is a legal window. There are other legal 2× 3 windows like

a b c

a b c

a a qi
a a b

a b

a qj

19: In and around NP-4

Using the transition function, you may enumerate all possible legal windows, and
there are only finitely many of them. For this table, I have dotted a few windows near
the head. If the whole table is legal, the windows near the head are the only ones
which aren’t copy windows. Convince yourself that the i + 1th row follows from the
ith row if and only if every 2× 3 window is legal. These are equivalent conditions.

Φmove =
∧

1≤i≤nt

1≤j≤ns

[the (i, j) window is legal]

By legal, we mean according to δ of N .

Φmove =
∧

1≤i≤nt

1≤j≤ns

[
∨

a1,...,a6
is legal

(xi,j−1,a1 ∧ . . . ∧ xi+1,j+1,a6)]

∧
1≤i≤nt

1≤j≤ns

: double for-loop over two dimensional table, checking all 2× 3 windows

∨
a1,...,a6
is legal

(xi,j−1,a1 ∧ . . . ∧ xi+1,j+1,a6): checks if window i, j is legal

We finish by construction of

Φ = Φcell ∧ Φstart ∧ Φmove ∧ Φaccept

Note: Φ is satisfiable only if:

1. Each cell of the table contains exactly one symbol

2. The first row is a start configuration

3. The (i+ 1)th row is the Ci+1th configuration following the ith row as the Cth
i configu-

ration

4. One of the configurations is accepting

19: In and around NP-5

So Φ is satisfiable only if an accepting computations history of N on w exists, which can
only happen if there is a computation of N on w so w ∈ L ⇐⇒ Φ ∈ SAT

Now we argue that this reduction takes polytime to compute. Note that for a polynomial
sized table, each of the subformulas also took polynomial time to construct so the compu-
tation to build Φ takes polytime. We construct Φ by just a few for-loops. We observe L ≤p

SAT. Since SAT ∈ NP and ∀L ∈ NP, L ≤p SAT, we conclude SAT is NP-complete.

4.1 Importance of this Finding

First, consider how the simplicity of the proof relied on the simplicity of the Turing machine.
Surely it could be done for a different computational model, but the proof would also be
far more complex.

SAT is not the only language that could be proved as a genesis NP-complete prob-
lem. Sipser and CLRS both include a proof by a similar construction that CircuitSAT
is NP-complete. Levin originally proved a kind of tiling problem. Cook proved not SAT
necessarily, but something like tautologies are NP-complete. You may remark this proof
is similar to the proof that PCP was undecidable, in the sense we encoded the accepting
computation history into the language of the problem.

Now that we have proven SAT is NP-complete, we may prove many other languages
are NP-complete, not by repeating the proof, but by a simple reduction. For example, if
you prove 3SAT ∈ NP and SAT ≤p 3SAT, then since we proved ∀L ∈ NP that L ≤p SAT,
we can use transitivity. L ≤p SAT ≤p 3SAT =⇒ L ≤p 3SAT. The reduction reuses and
transforms the proof, rather than redoing it.

As a final remark on this reduction. Note if we repeated it with a polytime deterministic
verifier instead of a nondeterministic polytime machine, it would map from the witness of
the verifier to the satisfying assignment of the formula. This reduction can even be used to
map witnesses to witnesses.

The complexity of an entire class, NP, can be reduced to the complexity of this single
simply defined problem.

Theorem 2. SAT ∈ P ⇐⇒ P = NP

Proof. To prove, recall ∀L ∈ NP that L ≤p SAT. So if SAT ∈ P, then there is a polytime
algorithm for SAT. Since every L ∈ NP is polytime reducible to SAT, combining this
reduction plus the polytime algorithm for SAT is a polytime algorithm for L. So L ∈ P,
but since L is any language in NP, we see NP ⊆ P. Since we know P ⊆ NP, we conclude
P = NP. The reverse is true since we proved SAT ∈ NP, so P = NP =⇒ SAT ∈ P.

We do not believe SAT has a polytime algorithm. We don’t even believe SAT has a
quasi-polytime algorithm.

5 Ladner’s Theorem

Not all languages in NP \P are NP-complete if P ̸= NP. We will prove it shortly. Factoring
is a candidate for an NP-intermediate problem. It is (believed) not to be in P, but has

19: In and around NP-6

Figure 1: Ladner’s Theorem proves the left case and disproves the right case

sub-exponential time algorithms. The general number field sieve has a runtime for factor-
ing ∈ TIME(o((1 + ε)n)) ∀ε > 0. We believe that factoring cannot be in P, otherwise,
cryptography doesn’t exist. We say a function is quasi-polynomial if it is super polynomial,
yet subexponential. Such functions do exists, and algorithms exists with quasi-polynomial
run-time.

5.1 Exponential Time Hypothesis

The hardness of SAT can be formalized as an assumption, ETH = Exponential Time Hy-
pothesis. Essentially, ETH states SAT cannot be solved in subexponential time. It is a
stronger assumption than P ̸= NP since it implies P ̸= NP but also other things. If you
assume ETH, you are assuming SAT has no 2o(n) time algorithm. In certain proofs, if we
assume ETH instead of P ̸= NP, it will make some proofs easier.

5.2 The proof

We prove Ladner’s Theorem: If P ̸= NP then there exists languages which:

• are not in P

• are in NP

• are not NP-complete

We are proving that if P ̸= NP then the NP-intermediate languages exist. If you could prove
these exists unconditionally, then of course you found a language in NP\P, and would prove
P ̸= NP. The original proof was clearly diagonalization simultaneously against all polytime
algorithms and all polytime reductions. Here, we do a proof by a kind of padding argument.
We will assume ETH instead of P ̸= NP to get an easier proof with the same ideas.

Theorem 3. (Weaker Ladner’s Theorem) If SAT requires exponential time then there
exists languages which are in NP-intermediate.

Proof. Assume ETH. There is no sub-exponential time algorithm for SAT, that SAT ̸∈
TIME(2o(n)). Recall that we measure the run-time of an algorithm as a function of the
input size. If we take a reasonable problem, and then just pad on a bunch of stuff, we can

19: In and around NP-7

say an algorithm is sub-exponential in the padded size, even if it wasn’t sub-exponential in
the true size. Our NP-intermediate language will simply be SAT padded SAT by a quasi
polynomial amount.

L = {⟨ϕ, 12
√

|ϕ|⟩ | ϕ ∈ SAT}

• First we show that L ∈ NP. Our witness is the assignment, same as SAT. Our verifier

V on input ⟨w, c⟩ checks if w is of the form ⟨ϕ, 12
√

|ϕ|⟩, doing some math to count the
padding. Then it checks if c is a satisfying assignment for ϕ. If it is then it accepts.
In terms of the size of the input, the verifier V takes polynomial time, so we see that
L ∈ NP

• Next we show L ̸∈ P. Suppose it was. Then there exists an algorithm, A, to decide
L in time polynomial in the size of the input. A runs in time O((n+2

√
n)k) for some

k, where n is the size of just the formula and not the padding. Note that n+ 2
√
n is

the size of the input. We give a sub-exponential time algorithm, A′, for SAT.

Algorithm 1 A′

on input ϕ

build ⟨ϕ, 12
√

|ϕ|⟩ = y
run A(y)

A′ takes O(2
√
n) to write down y, then O((n + 2

√
n)k) to run A. So A′ decides SAT

in time in O(2
√
n) + O((n + 2

√
n)k) = 2O(

√
n) = 2o(n). This sub exponential time

algorithm for SAT violates our assumption of ETH, so L ̸∈ P.

• Now we show L is not NP-complete. The proof idea is that if it was, there is a
reduction for it, such a reduction could be used to solve SAT too fast, violating
ETH. Assume to the contrary that L is NP-complete. Then there exists a polytime
computable reduction such that SAT ≤p L. This reduction function, f , works such

that f : ψ → ⟨ϕ, 12
√

|ϕ|⟩ and ψ ∈ SAT ⇐⇒ ⟨ϕ, 12
√

|ϕ|⟩ ∈ L, where ψ, ϕ may be
different. Since our f is polytime, there exists some k such that |f(ψ)| = nk. Any
polynomial time algorithm (here, a reduction) can only produce a polynomial-sized
output. It take time to write that output down. Here |ψ| = n, the size of the input.

The reduction outputs ⟨ϕ, 12
√

|ϕ|⟩. Since a poly time reduction must have a polysized
output, the only way that this output could be polynomial in terms of n if if ϕ must

be small enough such that 2
√

|ϕ| ≤ |f(ϕ′)| = nk, so

2
√

|ϕ| ≤ nk ⇒
√
|ϕ| ≤ k log n =⇒ |ϕ| ≤ (k log n)2

or that |ϕ| << n, o(n).

Since |ϕ| is much smaller than n, than |ψ|, its faster for us to brute force check
assignments of ϕ than of ψ. To see if ψ ∈ SAT, perform the polytime reduction and
try all assignments of ϕ. This will take time 2(k logn)2 = 2o(n), violating ETH.

19: In and around NP-8

Therefore, we conclude that assuming ETH implies there exists a language L such that
L ̸∈ P, L ∈ NP, but L is not NP-complete. So the class NP-intermediate exists.

Note that the difficulty of the proof changes if we have to use the assumption P ̸=
NP instead of ETH. We reached a contradiction twice using the fact that SAT had a
2o(n) time algorithm. If we had to do the full proof, we would have to show that SAT
had a polytime algorithm, and not just a sub-exponential one. This proof can even be
further strengthed to show that NP-intermediate contains a countably infinite hierarchy
with languages ..., Li, Li+1, ... such that Li ≤p Li+1 but Li+1 ̸≤p Li.

19: In and around NP-9

