
CS 4510 Automata and Complexity 4/03/2024

Lecture 20: In and around PSPACE

Lecturer: Abrahim Ladha Scribe(s): Rahul

So far, we proved a few theorems in and around NP. We proved the Cook-Levin theorem,
that SAT was NP-complete. We also proved Ladner’s theorem, that if P ̸= NP then there
exists languages not in P,in NP and not NP-complete. Today’s lecture will be on space, that
“other” resource. Space is a very different resource than time. After an algorithm finishes
running, you get the space back. You can never get the time back. This makes space both
a less interesting and more interesting resource to study since it uses techniques and tricks
which would not work for time. They are less applicable, but interesting in their own right.
For example, performing super-exponential search to use one less unit of space.

1 Space as a Resource

Recall TIME(f(n)), SPACE(f(n)) are the classes of languages decidable in f(n) time or
space, respectively. We prove the following containment chain:

Theorem 1.
TIME(f(n)) ⊆ SPACE(f(n)) ⊆ TIME(2O(f(n)))

Proof. Consider a language decidable in f(n) time. There exists a Turing machine which
takes f(n) steps to decide this language on inputs of length n. At each step, it may use at
most one new cell of the tape. So a machine which uses f(n) time can use no more than
f(n) space. The first containment then follows.

We show a stronger result to prove the second containment.

SPACE(f(n)) ⊆ NSPACE(f(n)) ⊆ TIME(2O(f(n)))

The first containment follows from the generalization of non-determinism. We can now
show the second containment in a creative way. Given a language decidable by a non-
deterministic Turing Machine in f(n) space, we want to show this language is decidable
deterministically in 2O(f(n)) time. We will do so by graph search! For some specific N,w,
let the configuration graph G be a directed graph such that each node corresponds to a
configuration of N on w. Note that if N runs in f(n) space, then this graph is not infinite.
There exists a bound of the possible number of vertices. Also notice that since as defined,
N must halt on all inputs, this graph does not contain a cycle, it is a rooted tre.

20: In and around PSPACE-1

Note that we do not count the input as a part of the space used. In some models, the input
is on a separate read-only tape. Since our machine N is non-deterministic, our graph may
have a arity greater than one. We may assume it has arity no more than two. In order to
show NSPACE(f(n)) ⊆ TIME(2O(f(n))) we give a deterministic algorithm which simulates
N on w in time 2O(f(n)). First using N,w build the configuration graph. Then we perform
BFS from the start configuration Co to an accepting one Ca. BFS is linear time in the
size of input. This graph has worst case 2O(f(n)) nodes, as that is the number of possible
configurations of an f(n) space machine. It also takes that long to build the graph, so we
see this is a 2O(f(n)) deterministic algorithm so NSPACE(f(n)) ⊆ TIME(2O(f(n))).

2 Savitch’s Theorem

Our main result today:

Theorem 2 (Savitch). For f(n) ≥ log n, NSPACE(f(n)) ⊆ SPACE(f2(n))

Let us first interpret this result. We somehow are able to “de-nondeterminisfy” a com-
plexity class with only polynomial overhead in the resource used. Could such a technique
apply to P vs NP? Probably not, or someone would have found it by now. So although
we only get polynomial space cost, we can infer we probably will get a super-polynomial,
maybe exponential time cost. Our deterministic algorithm may only use f2(n) space, but
it should probably use 2f(n) time to perform this simulation.

A second immediate remark is that since polynomials are closed under multiplication,
we see NPSPACE = PSPACE. The study of space, already looks very different than the
study of time. This should be an analogous problem to P vs NP. Unlike that problem, this
result is unexpected, and we have been able to solve it. Nondeterminism does not have a
strong effect on space complexity.

Proof. Let N be nondeterministic Turing machine which uses f(n) space. We give a de-
terministic simulator M which uses no more than f2(n) space. Rather than some naive
simulation strategy, we are going to simulate using divide and conquer! If C0 is the start
configuration, Ca is the accept configuration1, and C is some other, intermediary configu-
ration, notice that

Co

∗
⊢ Ca in t steps iff Co

∗
⊢ C in t/2 steps and C

∗
⊢ Ca in t/2 for some t

.

This will be our divide and conquer recurrence. We brute force search for some C and
perform our recurrence in this way. Importantly, our recursive calls are run sequentially
and reuse space.

1Without loss of generality, we may suppose that there is a unique accepting configuration. We could
modify N so that it clears the tape and resets the tape head before accepting.

20: In and around PSPACE-2

Algorithm 1 M(N,w) Deterministic simulator of N on w

C0 = start configuration of N on w
Ca = accepting configuration of N
d = chosen such that N has no more than 2df(n) configurations
Y IELDS(C0, Ca, 2

df(n))

Algorithm 2 Y IELDS(Ci, Cj , t)

if Ci = Cj then
return true

end if
if t = 1 then

if Ci ⊢ Cj in one step by δ of N then
return true

end if
else t > 1

for configuration C of N of size f(n) do
Y IELDS(Ci, C, t/2)
Y IELDS(C,Cj , t/2)
return true if both calls return true

end for
end if
return false

It certainly is correct. M is a deterministic simulator of N , so it decides the same
language. Now onto the analysis. If N uses f(n) space, we hope to show M simulates N
in no more than f2(n) space. Space is reusable, unlike time. You may recall using the
master theorem, which counts all branches to measure the time complexity of an algorithm.
Since space is reusable, we need not do all this provided we execute the recursive calls
sequentially. The space used by such a divide and conquer algorithm is simply the recursion
depth multiplied by the size of a stack frame.

For each recursive call, a stack frame containing ⟨Ci, Cj , t⟩ is stored. Since N uses f(n)
space, we see that |Ci| = |Cj | = O(f(n)). Also notice that with t = 2df(n), the size of t in
the worst case is log t = O(f(n)), so the size of a stack frame is simply O(f(n)).

Each level of the recursion divides t in half, so the depth of our recursion tree is log t =
O(f(n)). Since each level of our recursion tree takes O(f(n)) space and our recursion has
O(f(n)) depth we observe the total space used is O(f(n)) ·O(f(n)) = O(f2(n))

There are some restrictions on f(n). First, unmentioned, is that we may assume it
is space-constructible, that M can compute f(n) within O(f(n)) space. Most obvious
functions have this property, but some crazy ones do not. Second is that f(n) ≥ log(n).
This is required as storing a configuration of N on w takes log(n2O(f(n))) = log n + f(n).
A final remark, Hartmanis came up with a similar idea but to prove a theorem about
context-free languages. Savitch was the one to notice the technique could apply to space

20: In and around PSPACE-3

complexity2.

3 PSPACE-completeness

Recall that SAT is NP-complete, a boolean formula might look like (x1 ∨ x2 ∨ x3). This is
not a boolean formula so much as it is a logical formula! We just hide the quantifiers. We
say a boolean formula is satisfiable if there exists a satisfying assignment. We could simply
quantify over the assignment, like ∃x1∃x2∃x3(x1 ∨ x2 ∨ x3).

What if we allow for universal quantifiers? Like ∀x1∀x2∃x3(x1 ∨x2 ∨x3)? This is called
TQBF: True Quantifies Boolean Formula.

TQBF = { ⟨Q1x1...Qnxn[Φ]⟩ | Φ is a true quantified boolean formula }

Turns out that as SAT is NP-Complete, TQBF PSPACE-complete. The intuition is that
since TQBF is a generalization of SAT, it should be harder than SAT.

Definition 3.1. A language B is said to be PSPACE-complete if ∀L ∈ PSPACE that L ≤p B
and B ∈ PSPACE.

It is a similar definition to NP-completeness. You may ask why do we still use the notion
of polytime reduction and not a polyspace reduction. We would like the definition we use
of transformation to be far easier than the problems themselves. The reductions should not
have any resource to do any solving, only transforming. Analogously, all problems in P are
P-complete if you consider your reduction to be the polytime one.

Theorem 3. TQBF is PSPACE-complete

Proof. First, we show TQBF ∈ PSPACE by giving a PSPACE algorithm. Consider the
formula Q1x1Q2x2...Qnxn[Φ(x1, x2, ..., xn)] where each Qi could be either ∃,∀. We give a
recursive polynomial space algorithm A to determine if it is true.

Importantly, the recursive calls are done sequentially to reuse space. The recursion depth
is the number of quantifiers, n. For each stack frame, you only need to store at most one
bit, the answer. So this algorithm is in fact linear space and we conclude TQBF ∈ PSPACE.

2See this post by Lipton for some fascinating history of the theorem https://rjlipton.wpcomstaging.

com/2009/04/05/savitchs-theorem

20: In and around PSPACE-4

Algorithm 3 A(Q1x1...Qnxn[Φ(x1, ..., xn)]

if no quantifiers then
evaluate Φ and accept/reject appropriately

end if
if Q1 = ∃ then

return A(Q2x2...Qnxn[Φ(0, ..., xn)]) ∨A(Q2x2...Qnxn[Φ(1, ..., xn)])
end if
if Q1 = ∀ then

return A(Q2x2...Qnxn[Φ(0, ..., xn)]) ∧A(Q2x2...Qnxn[Φ(1, ..., xn)])
end if

Next we prove it is PSPACE-hard. Let M be a machine which uses only polynomial
space S(n). We give a quantified boolean formula Φ to simulate M on input w such that M
accepts w ⇐⇒ Φ ∈ TQBF. One first idea is to repeat the strategy used in the Cook-Levin
theorem.

Our table with only have polynomial width, but could possibly have super exponential
height. A polyspace machine may use exponential time. This formula would then be
exponentially sized meaning our reduction would not take polytime. It would take too long
for the reduction to even write the formula down. Instead, we proceed similar to Savitch’s
theorem.

We recursively define a quantified boolean formula. First suppose there exists a CNF

20: In and around PSPACE-5

formula with no quantifiers ΦC1,C2,1 which is true if and only if C1, C2 are configurations of
the PSPACE machine M and either C1 = C2 or C1 ⊢ C2 after one step of δ of M . Such a
formula exists by a similar construction in the Cook-Levin theorem, and is of size O(S2(n)).

Now we may recursively define our formula as

ΦCi,Cj ,t = ∃C[ΦCi,C,t/2 ∧ ΦC,Cj ,t/2]

Note that by “∃C”, we really mean that C is encoded into several variables and we quantify
like ∃c1∃c2.... As long as they are all the same quantifier this generalization is fine. Each
level does cut t in half, but doubles the size of the formula. The formula size is approximately
t = 2O(S(n)), too big for a polytime reduction to write down. We can make a smaller formula
by using a universal quantifier to fold the formula in half.

Note that equality and implication are not allowed in CNF form, but the formula could
obviously be rewritten into a CNF, making it harder to read. Each time we half t, we
only add a linear sized amount to our formula, so the size of the formula is (log t)S(n) =
O(S2(n)), which is a polynomial. So our reduction here can take polynomial time.

Since TQBF ∈ PSPACE and TQBF is PSPACE-hard we see that TQBF is PSPACE-
complete.

4 Puzzles and Games

Notice SAT has structure like most puzzles. A puzzle is a single-player device in which you
make a sequence of decisions to reach some goal. Intuitively, ∃x1,∃x2, ... is your sequence
of decisions. Many puzzles are NP-complete since they can encode this structure.

Notice TQBF has structure like two player games of perfect information. Consider a
TQBF with quantifiers like ∃∃∀∀∀∃∃... you can reformulate this into a TQBF with quanti-
fiers which only alternate, like ∃∀∃∀... You can turn two of the same kind of quantifier into
one as ∃x1∃x2 ≡ ∃(x1, x2). Having a TQBF with alternating quantifiers looks like a game!
It is a literal minimax. You make a choice, then for all possible moves the opponent could
make, then you make a choice, then the opponent, and so on.

20: In and around PSPACE-6

Most two player games, under appropriate restrictions and generalizations, are PSPACE-
complete. Chess, checkers, Go, tic-tac-toe and more. Some appropriate restrictions would
be that the game require perfect information (no shadowed areas of the map), be generalized
in some way3 and a polynomial bound on the depth of number of moves. Without this bound
many of these games are actually EXPTIME-complete although their proofs are less general.

Because of how we can interpret TQBF vs SAT, we can also intuitively say that games
are harder than puzzles. We may characterize PSPACE by the problem of determining who
is winning in some two-player game. There is no short certificate to convince a verifier one
person is winning over another unless NP = PSPACE, and we don’t think that’ll happen.

3Recall that chess is played on a fixed game with a fixed number of pieces. There is no way to measure
its complexity as a function of some n, as its technically a finite game. Generalized chess is proven to be
PSPACE-complete if you generalize the board size as a function of n.

20: In and around PSPACE-7

