
CS 4510 Automata and Complexity January 22nd 2024

Lecture 4: The Pumping Lemma

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

1 The Limitation of DFAs

We previously mentioned that we have some intuition on the limitations of DFAs. Although
they seem quite powerful, there are languages which have no DFA to decide them. The goal
of today is to prove that.

Consider the language {anbn | n ∈ N}. A DFA has a finite amount of states, and is only
able to read the string left to right. It cannot do any pre or post processing. It cannot read
symbols it has previously. As it reads left to right, it somehow is tasked with memorizing an
arbitrarily large amount of information, the number of a’s, in order to match them to the
number of b’s. Note how different this is than (ab)∗, or a∗b∗, which can be computed using
only a finite number of states. A DFA of say, 20 states may correctly decide if a string has
the form a20b20, but this DFA must fail on a string of a large enough size, say a10000b10000.

2 The Pumping Lemma

Suppose we have a DFA, D, made up of p states. Consider a word, w, such that |w| = p.
When we simulate D on input w, consider the sequence of states visited when deciding if
D accepts or rejects w.

qistart qj qk
x

y

z

By the Pigeonhole Principle, some state (qj above) appears twice in this sequence, and
our computation path through the DFA must contain a cycle. Note each letter of our word
takes not one state, but one transition. If a DFA has three states, then all states could
be visited by two transitions, a word of length two, including the start state. If we have
p states, and compute on a word of length ≥ p, then some state is visited twice in our
computation path.

⋆ Pigeonhole Principle1: if you have p+ 1 pigeons and p pigeonholes, there must be at
least 1 pigeonhole with greater than 1 pigeons in it

1The PP is often mis-stated, even in papers. It says nothing about randomness or distribution. Simply
that if you assign m pigeons to n pigeonholes with m > n, then there must exist a pigeonhole with more
than two pigeons. It doesn’t say where the pigeonhole is or how many pigeonholes have more than one
pigeon or how many pigeons are in the hole. All m pigeons could be crowded into the one hole even.

4: The Pumping Lemma-1

We may not know where this loop is or how long it is, but we know that it must exist by
the Pigeonhole Principle. Given the fact that a DFA has only finitely many states, but
is tasked with computing on arbitrarily long strings, we may choose a string long enough
such that the computation path has a repeated state by the pigeonhole principle, and thus
a cycle. Then the following claim is true.

If xyz ∈ L, then ∀i ∈ N, xyiz ∈ L

If a string is long enough, we say that it can be pumped. If an infinite language is regular,
than it can be pumped. You should think of i here as the number of times you may traverse
the loop. Traversing it one time is the original string xyz. You may also traverse it zero
times, so xyz ∈ L =⇒ xz ∈ L. You may traverse it twice, so xyz ∈ L =⇒ xyyz ∈ L, and
so on. If a language is regular, than it can be pumped.

If a language is regular, then it can be pumped. Note that we have not found a perfect
characterization when a language is regular or not. But we have found a technique to prove
that a language is not regular. If a language cannot be pumped, then it is not regular. If a
language can be pumped, that does not imply it is regular.

There do exist some (rare) languages which are pumpable but not regular.
Let us derive the exact conditions to apply the pumping lemma. Suppose we want to

prove that a language L is not regular. First, suppose that our language is regular, with a
DFA to decide it. Then choose some string s ∈ L with |s| ≥ p. This is so we may have our
pigeonhole principle criterion, and the sequence of states visited during the computation of
s contains a repeated state, and thus a repeated cycle, a pumpable substring. We don’t
know where this substring of y in s = xyz is, so consider all possible cases to break up s
into s = xyz. We may condition each case of breaking the string up with the following two
conditions. First, is that |xy| ≤ p. This guarantees that our pigeonhole collision occurs at
the last state visited during the computation of the prefix xy. Basically, this enforces that
y is what we say it is. Second, we may require that |y| > 0. We would like to force ourselves
to pump something non empty. You may always trivially pump the empty string, but this

4: The Pumping Lemma-2

will not help us to reach a contradiction. Then for each case, choose an i ̸= 1 and show
that xyiz ̸∈ L. Since there is no way to pump this string s ∈ L, then we can conclude that
L was not pumpable, and thus, must not be regular.

3 Formula

The pumping lemma has many moving pieces and can be tricky to apply. There are exis-
tential and universal quantifications through out. Of the proof techniques available to you,
it certainly is the most cumbersome. I suggest you use this formula exactly. Suppose that
L is the language we want to prove is not regular.

1. Assume to the contrary, L is regular with pumping length p

2. Choose some s ∈ L such that |s| ≥ p

3. For all cases s = xyz such that |xy| ≤ p and |y| > 0

4. Choose i ̸= 1 and demonstrate that xyiz ̸∈ L

5. Conclude that L cannot be pumped, which means L is not regular

Lets go through the importance of each step.

• First, by assuming to the contrary that L is regular with pumping length p, we are
supposing that there exists a DFA of p states. When we reach a contradiction, then
no such DFA of p states can exist. Since p is general, this means that no such DFA
can exist at all. We cannot fix p. If we did a pumping lemma proof with p = 3,
this would conclude that there is no DFA of three states. It does not imply there is
no DFA at all, as there may exist a DFA with more than three states to decide the
language.

• We choose to pump some string in the language. By choosing s ∈ L, we know s brings
our assumed DFA to an accept state, like a path in a graph. By requiring |s| ≥ p, we
get to apply the pigeonhole principle, and we know that this computation contains a
repeated state. It is not uncommon for us to choose strings with length much much
larger than p. The only requirement is that its length is greater than or equal to.

• In the computation of s on our assumed DFA, we are guaranteed that there exists a
loop somewhere by chosing |s| ≥ p, but we don’t know where. So we have to consider
all possible cases of where this loop could be. We model this as considering all ways
to break up s into the three parts s = xyz subject to our two conditions on each
case. Firstly that |xy| ≤ p. This ensures that the occurance of a repeated state occurs
somewhere before the end of what we denote as y. The second condition |y| > 0
ensures that this cycle is actually occuring. Note that |y| = 0 implies y = ε and
∀iεi = ε, so xyiz = xyz ∈ L, ensuring we could never reach a contradiction.

• For each case, you only need to choose an i so that xyiz ∈ L.

• Since we took a long enough string in the language, showed it was impossible to pump,
then there cannot exist a DFA to decide L, and we must conclude that L must not
be regular.

4: The Pumping Lemma-3

4 Examples

We apply the five step formula as previously described.

4.1 L1 = {0n1n | n ∈ N}

1. Assume to the contrary, L1 is regular with pumping length p

2. Let s = 0p1p and notice that s ∈ L1 and |s| = 2p ≥ p

3. There is only 1 case since the first p characters in the string are all 0s
x = 0a, y = 0b, z = 0p−a−b1p subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Choose i = 2
xyiz = xy2z = xyyz = 0a0b0b0p−a−b1p = 0p+b1p

5. We know that b > 0, so the number of 0s does not equal the number of 1s since
p+ b > p. Thus, L1 cannot be pumped, and as a result, is not regular.

Lets annotate this proof. The language 0n1n is the canonical example of a non-regular
language. We choose s as a function of p so that |s| ≥ p is obvious. By choosing a good
s, we can ensure that we reduce the number of cases required. The number of cases is
technically a function of p, the number of ways a + b ≤ p subject to those conditions.
We group these all into one case as the contradiction is identical. Note that like s, the
substrings x, y, z also end up being a function of p. We only need to to show one i ̸= 1 gives
a contradiction, so we choose a smallest and simplest one, that i = 2.

4.2 L2 = {wwR | w ∈ Σ∗}

Note that by wR, we denote the reveral of the string w. This language, wwR then consists
of the even length palindromes.

1. Assume to the contrary, L2 is regular with pumping length p

2. Let s = 0p−1110p−1 (We are choosing a poor s on purpose)
Confirm that s ∈ L2 and |s| = 2p ≥ p

3. The first p characters in the string are different, meaning there are several cases

(a) x = 0a, y = 0b, z = 0p−1−a−b110p−1

Subject to |xy| = a+ b ≤ p and |y| = b > 0

(b) x = 0a, y = 0p−1−a1, z = 10p−1

Subject to |xy| = a+ p− 1− a+ 1 = p ≥ p and |y| = p− 1− a+ 1 > 0

4. Choose i for each case

4: The Pumping Lemma-4

(a) Choose i = 2
xy2z = xyyz = 0a0b0b0p−1−a−b110p−1 = 0p−1+b110p−1

Since b > 0, we know that p−1+ b ̸= p−1. Therefore, the two sections of 0s are
unequal. If we were to split the string in half, The pair of 1s has moved right,
past the previous midpoint so that the first half contains no 1s, and the second
half contains two 1s, implying that this is not a palindrome.

(b) Choose i = 0
xy0z = xz = 0a10p−1

Since there is only a single 1, this is not an even-length palindrome.

5. For both cases, the language could not be pumped. Therefore, L2 is not regular.

Lets annotate this proof as well. We chose a poor s on purpose, resulting in more cases.
There were two cases, whether or not xy contained a 1 or not. Had we increased the string
length so that the initial block of 0’s exceeded p, we would only have one case. For case
b, we chose i = 0. We call this “pumping down”. We could have chosen a worse s as
s = 0p0p. Note that this is a simple even length palindrome, but it is too simple. It can
be easily pumped. You want a string so that it is barely in the language, at the extremal
conditions. Any small peturbation results in it no longer being in the language. Lets do
another example with a better chosen s.

4.3 L3 = { ww | w ∈ Σ∗}

This language consists of words which are themselves concatenated twice. It is not Σ∗Σ∗,
but it contains strings like abab, abaaba, aabbaa and so on.

1. Assume to the contrary, L3 is regular with pumping length p

2. Let s = 0p10p1 and notice that s ∈ L3 and |s| = 2p+ 2 ≥ p

3. There is only 1 case since the first p characters in the string are all 0s
x = 0a, y = 0b, z = 0p−a−b10p1
Subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Choose i = 2
xy2z = xyyz = 0a0b0b0p−a−b10p1 = 0p+b10p1
Take the right-most p+2 characters in xy2z. This string, which we’ll call w2 = 10p1.
Now, there are two cases for the leftmost string, w1 = 0p+b.

(a) If b = 1, xy2z is not even length, and therefore not in L3

(b) If b > 1, the midpoint of xy2z = w1w2 is in the first block of 0s. We can tell that
w1 ̸= w2, and therefore, xy2z is not in L3

5. Both cases end with the pumped string not being in L3. Thus, L3 cannot be pumped
and is not regular.

Lets do a unary example.

4: The Pumping Lemma-5

4.4 L5 = {1n2 | n ∈ N}

1. Assume to the contrary, L5 is regular with pumping length p

2. Let s = 1p
2
and observe that s ∈ L5 and |s| = p2 ≥ p

3. There is only 1 case since the first p characters in the string are all 1s
x = 1a, y = 1b, z = 1p

2−a−b

Subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Look at i = 2
xy2z = xyyz = 1a1b1b1p

2−a−b = 1p
2+b

Since b > 0, p2 + b > p2

Since a+ b ≤ p, b ≤ p
Thus p2 + b ≤ p2 + p < p2 + p+ (p+ 1) = p2 + 2p+ 1 = (p+ 1)2

By the first and third lines, we know |1p2 | < |1p2+b| < |1(p+1)2 |

5. By the last line, we can see that xy2z falls between two adjacent strings in L5. There-
fore, its length is not some perfect square and is not in L5. Thus, L5 cannot be
pumped and is not regular.

5 Advanced Examples

Here are some interesting problems which require a slightly more difficult application of the
pumping lemma

5.1 L6 = {1q | q is prime}

1. Assume to the contrary, L6 is regular with pumping length p

2. Let s = 1q where q is the next largest prime greater than p. By this definition, s ∈ L
and |s| = q > p.

3. There is only 1 case since the first p characters in the string are all 1s
x = 1a, y = 1b, z = 1q−a−b

Subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Consider at i = q + 1
xyq+1z = 1a1b(q+1)1q−a−b = 1q+qb

Since b > 0, q + qb = q(1 + b)

5. Since q(1 + b) is a product of two numbers, it is composite, and not a prime, so we
see that xyq+1z ̸∈ L6 and thus, it cannot be regular.

4: The Pumping Lemma-6

For this example, how did I know to choose i = q + 1? I worked it out before hand,
solving for i which would lead to a contradiction. Each pumping lemma proof should be
done twice. Once to know the structure of the proof, and the second time formally.

5.2 L = {0a110a21...10ak | i ̸= j =⇒ ai ̸= aj}

Essentially, this is a language made up of k blocks of zeroes, each delimited by a 1. No two
blocks have the same number of zeroes. There can be any number of blocks.

1. Assume to the contrary, L6 is regular with pumping length p

2. Let s = 0p10p−110p−21...1011. Each block has sequentially decreasing length, and
there is one block per value from p, p− 1, ...2, 1, 0. Note that s ∈ L and |s| > p

3. There is only 1 case since the first p characters in the string are all 0s
x = 0a, y = 0b, z = 0p−a−b1...11
Subject to |xy| = a+ b ≤ p and |y| = b > 0

4. Consider i = 0, we will pump down.
xy0z = xz = 0p−b10p−11....11

Since a+ b ≤ p then b ≤ p. And since b > 0 we know that 0 < p− b < p

5. So xz = 0p−b10p−11....11 has two duplicate blocks by the pigeonhole principle, and
xz ̸∈ L6 so we know L6 cannot be regular.

4: The Pumping Lemma-7

6 A note on choosing a bad s

Consider the language {0n1n2n | n ∈ N}. It is not regular for similar reasons to anbn.
When choosing an s, you want to eliminate the number of possible cases, not just so you
have a shorter cleaner proof, but so you will be less likely to make a mistake. A good
choice of s is s = 0p1p2p, there is only one case. What happens if we chose a bad s like
s = 0⌊p/3⌋+11⌊p/3⌋+12⌊p/3⌋+1? We would actually end up with six possible messy cases. Note
that your proof would be incorrect if you miss enumeration of a case.

By choosing a larger s so that the first block of 0s is length p instead of length ⌊p/3⌋ + 1,
we can use the condition |xy| ≤ p to eliminate the cases 2− 6 where y may contain symbols
other than 0.

4: The Pumping Lemma-8

