
CS 4510 Automata and Complexity Jan 29th 2024

Lecture 5: Context-Free Grammars

Lecturer: Abrahim Ladha Scribe(s): Rishabh Singhal

1 Background

Automata So far we have only looked at automata. These are usually tasked with Decision or
Recognition. It’s a fairly mechanical model, a decision procedure. You look at the
input scanning left to right and do something. This corresponds well to your previous
intuition on programming. Let D be an automata.

– Given w ∈ Σ∗, is w ∈ L(D)? This is not that hard, you simply run the automata
on the input.

– Characterizing all of L(D)? This can be much harder for an automata. If I give
you a DFA or NFA and ask you to describe exactly the strings it accepts and
rejects, this is not as easy.

Grammars In contrast, a grammar is tasked with Production or Generation. A grammar
will non-deterministically produce only the correct strings, like a flower blooming. It
does not go left to right, but from inside out. It doesn’t start with an input to look
at, it starts with nothing. Defined with the rules we give it, it will produce a string
according to those rules.

– Given w ∈ Σ∗, is w ∈ L(G)? This is surprisingly non-trivial

– Characterizing all of L(G)? This is surprisingly easier.

2 Formal Definition of Context-Free Grammar

We represent a context-free grammar (CFG) as a four tuple (V,Σ, R, S) such that:

V Non-Terminals or Variables. These are always capitalized like {S,A,B, ...}

Σ Terminals or our alphabet. These are always lower-case like {a, b, c,}

R Productions or Rules. Each are of them will be of form V → (V ∪Σ)∗. The left-hand
side of the production will always be a single non-terminal and the right-hand side
will be a string of terminals and non-terminals.

S ∈ V is our designated start non-terminal.

5: Context-Free Grammars-1

2.1 Computation

How does a grammar produce a string? For A ∈ V,w ∈ (V ∪ Σ)∗, with production of the
form A → w, we apply a production as a substring replacement of a “working string” like
xAz =⇒ xwz, for x, z ∈ (V ∪Σ)∗. When we write wi =⇒ wi+1 we mean that wi “yields”
wi+1 after application of one production. If S =⇒ w1 =⇒ w2 =⇒ w3... =⇒ w with
w ∈ Σ∗ we say that w ∈ L(G) and may write S

∗
=⇒ w. We stop applying productions

only when there are no more non-terminals in the working string.
For a context-free grammar G, we characterize the set of strings in L(G) as those and

only those produced non-deterministically starting from S. Observe that a production halts
when there are no more non-terminals in the working string. We say that a language L is
context-free if there exists a context-free grammar G such that L = L(G). We call these
CFLs. Note that a CFG takes no input, and only produces exactly and only the correct
strings. This is why we say a grammar produces a string, but an automata decides or
accepts a string.

3 Examples

Like a state diagram, you can give all parts of the CFG by just giving the set of productions.
It implicitly gives the terminals and non-terminals, and we always denote S as the start
non-terminal.

3.1 {anbn | n ∈ N}

We write {S → aSb, S → ε} or just {S → aSb | ε}. If we have two or more productions with
the same beginning non-terminal, we may use “|” as a shorthand to “or” those productions
together. This grammar still has two distinct productions. Let us say we want to produce
a3b3 the process we follow is

S =⇒ aSb =⇒ a(aSb)b =⇒ aaSbb =⇒ aaaSbbb =⇒ aaabbb =⇒ a3b3

We repeatedly apply the first production, and terminate when we have no more non-
terminals in our working string. This occurs when we apply the second rule, S → ε.
Notice that it has to produce exactly the strings of the form anbn. Also notice how the
nondeterminism decides what string is produced is determined by the order of the sequence
of rules you apply. This was our canonical example of a non-regular language, the first one
we used for pumping. This should convince you atleast, that the languages produced by
context-free grammars, L (CFG), is not equal to the regular languages. Later we will show
it is a strict super set.

3.2 {wwR | w ∈ Σ∗}

Our productions are similar. {S → aSa | bSb | ε}. This generates even length palindromes.
As we apply productions, the left and right of our primary recursive production effectively
act like write-only two stacks, mirrors of each other. This generates the string which is a
palindrome and these strings are also even in length. We can conserve the same idea, to
generate palindrome of odd length.

5: Context-Free Grammars-2

3.3 {wΣwR | w ∈ Σ∗}

We write this as {S → aSa | bSb | a | b}. We may combine ideas from the previous two
examples to show the set of all palindromes is a context-free language, with the grammar
{S → aSa | bSb | a | b | ε}. We pumped a third language, {ww | w ∈ Σ∗}. As some
foreshadowing, this language is not regular, but it is also not context free.

3.4 Σ∗

There exist many equivalent grammars for this language. These may include

• S → aSa | bSb | aSb | bSa | a | b | ε

• S → aaS | abS | baS | bbS | a | b | ε

• S → aS | bS | ε

3.5 1∗

This one is easy, {S → 1S | ε}

3.6 ∅

If a grammar produces no strings, not even ε, it is either trivial, or some how does not have
a halting condition. There are a few you could come up with, but a non-trivial grammar
for this would be {S → A,A → S}. No production of this terminates with a string of only
terminals, so it produces no strings. Similarly {S → 1S} produces no strings. Its only
production has no termination condition, and a word is only produced after it has no more
non-terminals.

3.7 Dyck Language

Consider the grammar {S → (S) | SS | ε}. This language is the set of balanced, or matching
paranthesis. It has a special name, called the Dyck language.

If you wanted to prove the Dyck langauge was non-regular, you could pump it with a
choice of string s = (p)p. We can prove it is not regular by closure. Assume to the contrary
L(G) was regular. Then by closure, so must be L(G) ∩ (∗)∗. The left side enforces that
the number of opens equals the number of closes, and the right hand side enforces that all
the opens come before all the closes. The intersection is the logical and of these, so we see
this intersection must be equal to {(n)n | n ∈ N}, our canonical non-regular language, a
contradiction. Therefore, the Dyck language is not regular.

3.8 Arithmetic Expressions

Consider the following grammar:

5: Context-Free Grammars-3

S → S + T | T
T → T × F | F
F → (S) | a

with V = {S, T, F},Σ = {(,),×,+, a}. Lets do an example of a long production to show
this grammar generates (a+ a)× a

S =⇒ T =⇒ T × F =⇒ F × F =⇒ (S)× F =⇒
(S)× a =⇒ (S + T)× a =⇒ (T + T)× a =⇒ (F + T)× a =⇒

(F + F)× a =⇒ (F + a)× a =⇒ (a+ a)× a

3.9 Propositional Calculus

Many programming languages are parsed via context-free grammars. We give a CFG for the
well formed formulas of the propositional calculus. Let our alphabet be Σ = {(,),∨,∧,¬, 1}
where 1n is a representation of the nth propositional variable. Our productions are then
S → (S ∨ S) | (S ∧ S) | ¬(S) | N and N → 1N | 1. Recall that the logical and, or, and
negation are complete for propositional logic so if we wanted to express p =⇒ q, instead
we may do (¬1 ∨ 11). We also have more paranthesis than necessary, but notice that they
are cheap, and can only help with ambiguity. This way we do not need a PEMDAS style
operator precedence rule to parse a proposition.

The previous two examples show how useful CFGs may be for programming languages.
If you can define a CFG for your programming language, you can then check if a program
has a syntax error if you can check that grammar doesn’t produce it. The previous example
will never produce a string like)11(1)¬¬(∧1).

3.10 {w#x | x contains wR as a substring }

If x contains wR as a substring, then x = Σ∗wRΣ∗, so w#x = w#(Σ∗wRΣ∗) = (w(#Σ∗)wR)Σ∗.
We first will nondeterministically produce and match w with wR, then we will produce the
rest of x. S → XY, Y → aY | bY | ε,X → aXa | bXb | #Y . This is a cool grammar, as it
shows the power of nondeterminism. You may have had to create some previous non-trivial
deterministic algorithms in order to find the longest palindromic substring or something.
You were looking for a needle in a haystack. Here through the power of nondetermin-
ism, we can come at the problem from a different direction. First place the needle, then
nondeterministically build all possible haystacks around it.

3.11 One last example

Consider {anbambn+m | n,m ∈ N}. First notice that for some n,m that anbambn+m =
anbambnbm. We have matching blocks of the same size, but we can’t pair them up as
written. We notice that letters of the same kind obviously commute, so we see anbambnbm =

5: Context-Free Grammars-4

anbambmbn = an(bambm)bn. This gives us the intuition on how we would build our grammar
as {S → aSb | bR,R → aRb | ε}. Just to work out some productions, they may look like

S
∗

=⇒ anSbn
∗

=⇒ anbRbn
∗

=⇒ anbamRbmbn
∗

=⇒ anbambmbn = anbambm+n

4 Relationship with Regular Languages

Every regular language is context-free, but not every context-free language is regular. We
can prove the containment in two ways.

4.1 By Closure

We prove that every regular language is also context free. Let L (CFG) be the languages
produced by context-free grammars. We prove L (REX) ⊊ L (CFG) by induction. Note
that the containment is strict because we know that {anbn | n ∈ N} cannot be regular by
the pumping lemma, but is context-free.

First we prove the base case. We give context-free grammars for ∅, ε, a, b

∅ S → S

ε S → ε

a S → a

b S → b

Let G1, G2 be two CFGs to produce L1 and L2 with start non-terminals S1, S2 respec-
tively. We prove that the context-free grammars are closed under union, concatenation,
and star.

L1 ∪ L2 Copy all productions, add new start state S, and a new production S → S1 | S2

L1L2 Similarly, with new production S → S1S2

5: Context-Free Grammars-5

L∗
1 Similarly add new productions S → S1S | ε

Through a similar process to converting a regular expression into an NFA, you may apply
this proof to convert a regular expression into a context-free grammar, thus concluding the
proof that every regular language is also context-free. Later we will show CFLs are not
closed under intersection or complement. This may be intuitive, if you observe the behavior
of a CFG. It only knows how to grow correct strings. Given a grammar which produces
only the right strings, it gives no idea on how to create a grammar to only produce the
wrong ones.

4.2 Regular Grammars

We say a grammar is right-regular if it only has productions of the form A → aB or A → a
or A → ε, where A,B are any non-terminals, and a is any terminal. Certainly every
right-regular grammar is also context-free, we claim that the right-regular grammars decide
exactly the regular languages. The proof of this characterization is not complicated, but
tedious1. Instead we will highlight just the part of given a DFA, how one might construct
a right-regular grammar. For a DFA of the form (Q,Σ, q0, δ, F) we construct a grammar
(V,Σ, R, S).

• For Q = {q0, ..., qk} we have non-terminals V = {Q0, ..., Qk}

• The set of terminals for our grammar is identical to the alphabet for our DFA: Σ = Σ

• For q0 the start state of our DFA, we designate our start non-terminal as Q0

• For every transition of the form δ(qi, a) = qj , we add production Qi → aQj

• For every qf ∈ Q, we add production Qf → ε

Convince yourself of its correctness. Since every regular grammar is a context-free grammar,
and there are context-free non-regular languages, this should convince you that we are
working with a strictly more powerful computational model, L (DFA) ⊊ L (CFG).

1I have a more detailed proof here https://ladha.me/files/sectionX/regulargrammars.pdf

5: Context-Free Grammars-6

https://ladha.me/files/sectionX/regulargrammars.pdf

	Background
	Formal Definition of Context-Free Grammar
	Computation

	Examples
	{anbn | n N}
	{wwR | w *}
	{wwR | w *}
	*
	1*
	
	Dyck Language
	Arithmetic Expressions
	Propositional Calculus
	{w#x | x contains wR as a substring }
	One last example

	Relationship with Regular Languages
	By Closure
	Regular Grammars

