
CS 4510 Automata and Complexity Feburary 14th 2024

Lecture 9: Turing Machines

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

Turing machines are so interesting, every lecture for the remainder of the course will be
about Turing machines. I want this or that interesting sub-topic to be its own lecture, so that
leaves us with nothing for today except definitions and programming. Recall the limitations
of a PDA. You pop something out the stack, its gone into the ether, forever. What if we
could iterate over our memory structure in a non destructive way. Our motivation is then
to just give a DFA a tape.

1 Definitions

A Turing machine is a tuple: (Q,Σ,Γ, δ, q0, qa, qr) where:

• Q : finite set of states

• Σ : finite input alphabet

• Γ : finite tape alphabet

– ∈ Γ, this is the symbol for a blank space on the tape1

– ̸∈ Σ

– Σ ⊊ Γ

• δ : Q× Γ→ Q× Γ× {L,R} is our (deterministic) transition function.

• q0 ∈ Q : denoted start state

• qa, qr ∈ Q : denoted accept and reject states

1For latex, you may use either textvisiblespace or sqcup

9: Turing Machines-1



There is an immediate difference between the different machines we have seen so far. The
Turing machine as defined does not have a separate part for it to read the input. A Turing
Machine is initialized with w1w2...wn on the leftmost cells of the tape, and the tapehead on
w1. All other cells initialize to .

w1 w2 . . . wn →∞

q0

The Turing machine also need not be forced to accept when it has fully read the input.
Instead of accepting/rejecting being determined by whatever the last state you land in, the
states qa, qr are more like instructions than states. Upon entering them, all computation is
halted and there are no more outgoing transitions. Turing machines may even get stuck in
infinite loops. If the machine attempts to move left past the first cell, then it will simply
be reset back to the first cell. By convention, we usually let Γ = Σ ∪ { }.

1.1 Configurations

A configuration of a Turing machine is a string encoding of an instantaneous description, or
snapshot, of a Turing machine. We say a configuration C yields C ′ if C ′ follows C after one
step of the transition function.. We write this as C ⊢ C ′. Note that since the machine is
deterministic, given the transition function and currenct configuration C, there can only be
one next configuration C ′. The entire description of the Turing machine at some moment
is just the contents of the tape, the current state, and the position of the tape head. We
encode these together as one string as follows.

Consider the position below

← a b c d →

qi

If δ(qi, c) = (qj , c
′,R), then abqicd ⊢ abc′qjd

← a b c′ d →

qj

If δ(qi, c) = (qj , c
′,L), then abqicd ⊢ aqjbc

′d

← a b c′ d →

qj

9: Turing Machines-2



⋆ NOTE: ⊢ means yields

Notice that for sequential configurations, only a small local portion of the configuration is
changed. The initial configuration of any Turing machine is always q0w1 . . . wn. We may
define the accepting and rejecting configurations appropriately, if they contain the accept
or reject state. We say a Turing machine accepts w1 . . . wn if there exists a sequence of
configurations C0, C1, C2..., Ck

C0 = q0w1 . . . wn

Ci ⊢ Ci+1

Ck is accepting

1.2 Create a Turing Machine for {w#w | w ∈ Σ∗}

Lets give a Turing machine to decide this language. Before we start drawing states, lets
consider a way to decide this language from a high level, pseudocode perspective. The idea
is we check if it is of the correct form letter by letter, one at a time, resetting ourselves for
each correctly. Then if all the letters are the same, we accept.

1.2.1 Pseudocode

M on input w:

1. mark and remember symbol, keep track in states

2. loop right until #

3. loop past any marked marked

4. if next unmarked is what was first seen:

(a) mark

5. loop left until #

6. loop past any unmarked

7. reset to first unmarked (repeat from step 1)

9: Turing Machines-3



8. if no symbols besides x before hash remain:

(a) if no symbols besides x after hash remain:

i. accept

9. reject

1.2.2 State Diagram

We can attempt to give a state diagram for this language. We will omit qr, as it gets
too messy. Undefined transitions in this diagram, you should understand to mean implicit
rejection. We encode the transitions to be of the form read,write→ move. One transition
performs all three operations. You read the symbol under the tape head, then conditionally
write, move the tape head left or right one cell, and change states.

q0start

qa

a→ x,R

b→ x,R

#→ #,R

a→ a,R

b→ b,R
#→ #,R

x→ x,R

a→ x,L

x→ x,L
#→ #,L

a→ a,L

b→ b,L

x→ x,R

a→ a,R

b→ b,R
#→ #,R

x→ x,R

b→ x,L

x→ x,R

→ ,R

Note how we have two branches from q0, if we mark a or b. We use the states of the machine
to keep track of this single symbol we have seen. We may use the states to keep track of
finitely many things, like registers. We may also keep track of other things on the arbitrarily
large tape. Although this example only used the same space as the input, the machine may
use as much tape as it wants.

9: Turing Machines-4



2 Computation

Unlike previous models, Turing machines do more than just decide languages. They can
also compute! A function f : Σ∗ → Σ∗ is Turing-Computable (or just computable) if
there exists a Turing Machine on all inputs w halts with only f(w) on its tape. Instead of
an accepting and rejecting state, we simply have a halt state qh. Lets give several Turing
machines to compute some common functions.

2.1 f : Bit Flips

q0start qh

0→ 1,R

1→ 0,R

→ ,L

Example: Configurations for input 101

− q0101

− 0q001

− 01q01

− 010q0

− 01qh0

We halted in four steps. Note that when we transition to the halting state, it doesn’t
really matter whether we move left or right. It doesn’t matter where the tape head is when
we halt, the resulting output is 010.

2.2 Turing Machines do NOT have to halt

q0start

a→ a,R

b→ a,R

→ a,R

The Turing Machine that writes a in every
cell forever. Regardless of what it sees on
its tape, its forever will march right, never
stopping. It computes no function, but the

2.3 Successor Function: S(x) = x+ 1

2.3.1 Unary Succession

q0start qh

1→ 1,R

→ 1,L

We begin with 1x on the tape Halt with 1x+1.
The idea is we just loop to the end and toss
a stick onto the pile.

2.3.2 Binary succession

9: Turing Machines-5



q0start

qh

0→ 0,R

1→ 1,R

→ ,L

1→ 0,L

0→ 1,R

For simplicity suppose the input is always
given with a leading zero. We begin on the
left on the input, so first we move all the
way to the right. When adding 1 in binary,
we loop from the right zeroing out all 1s until
we find the first 0 and make it a 1.

2.4 Addition of Two Numbers

q0start qh

1→ 1,R

#→ 1,R

1→ 1,R
→ ,L

1→ ,L

add(x, y) = x+ y. Lets begin with 1x#1y on
the tape. We want to halt with 1x+y on the
tape. The simplest idea is to replace the #
with a 1 and remove the last 1 at the end. It
would be challenging, but convince yourself
you could give a Turing machine for addition
in binary.

9: Turing Machines-6



3 Decidability vs Recognizability

Recall, a function f : Σ∗ → Σ∗ is Turing-Computable (or computable) if there exists
a Turing Machine for all inputs w, which when initialized with w on the tape, halts with
f(w) on its tape.

Additionally, a language, L, is Turing-Decidable (or just decidable or recursive) if there
exists a Turing Machine, M , such that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects w

Notice that for every input, a decide always halts. A language, L, is Turing-Recognizable
(or just recognizable or recursively-enumerable) if there exists a Turing Machine, M , such
that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects w or gets stuck in a loop

We allow a recognizer to loop on some inputs. If the answer is supposed to be yes, it must
always halt and accept. If the answer is suppose to be no, then it may halt and reject,
or loop. It is clear to see that every decidable language is also recognizable, but is every
recognizable language also decidable? We shall see.

9: Turing Machines-7


