The Church-Turing Thesis
Abrahim Ladha

A Turing Machine is a tuple (Q,T',6, g0, ¢1)
e () =1{qo,-.-,qr} is a finite set of states

e ' ={0,1,._} finite tape alphabet

¢ 0:QxI'=>QxTx{L,R}

e ¢y € () designated start state

e gy € (@ is the instruction to stop

LEMMA 1. If 64(%0) s defined, then 04(t0) & {t0}a, 04(0) > 21o.
PROOF. If 64(%¢) is defined, then there is some value of ¢ such that
TA(?:(), K(t), L(t)), 0(?,0) = K(t), and GA(?:O) > 21. Hence,

\/ T4 (20, 04(%0), ¥); that is, 04(Z0) € {0} a.
Yy
LemMa 2. If {i}4 s infinite, then {t}a M S4 % 4.
PROOF. If {7p}4 is infinite, there is a number m¢ such that mo € {7} 4

and m, > 2i;. Hence, \/ T4(io, mo,). Let yo be the least such y.

Yy
(Actually, by the definition of the T-predicates there is at most one
such y.) Then T4(iy, mo, yo). Let i, = J(mq, o). Then

mo = K(J(mo, yo)) = K(to); yo = L(J (my, yo)) = L(t).
Hence, T4(io, K(lo), L(to)). Since K(t) = mo > 21y, 04(%0) is defined.

Hence, by Lemma 1, 04(%) € {i0}s. But, 04(i) & S4. Hence,
{io}a M 84 = 4.

":2(1: 2) =2,
"'2(8(93)9 2) =1,
iz(2,1) =3,

i2(2, 8(8(y))) =3,
j2(1: y) =Y,
jz(S(CU), y) =T,

For a set of recursion equations for F* consists of the recursion equations
for F together with the equations,

92(93: 1) =Ii2(f2("r: 1): 2):

g2(z, 8(y)) = (fs(z, S(y)), 92(2, %))
h2(8(2),y) ==,

ha(g2(2,9), 2) = j2(9:(, %), ¥),

fl(x) = h2(1) :Z;),

T

[N"sq]
/LL/t ? !/f Vg7 | IrE Lo)} o) N/
%.*r' //r :"«’L;U’l('jf‘ 4 O
| ; ;]’ ;Nj Mt /‘H ?F ':”".v.‘-':,'f:
}WL{(J[« f‘ YLOMY NULA }A{ Hlﬂ{‘\.‘,g

L=
fx
- f 7 L Tr
-— "4 1 ')
A { 7 Nl }

+ t . : 4 & II - 1 4
=). : 4
v “ A /:‘. A a"™
"((V"\) - 3 4| ; =, I ' 5 n\ bf “
= . | ' B . h p” a

What is the Church-Turing Thesis?

« “Algorithm” is an informal, intuitive notion of a process. A set of instructions to

complete some task.
* A Turing Machine is a formal definition of a model of computation

* The Church-Turing Thesis asserts that the Turing machine captures the intuitive
definition. That everything computable in the intuitive sense is computable by a

Turing machine. But why?

Informally speaking, an algorithm is a collection of simple instructions for car-
rying out some task. Commonplace in everyday life, algorithms sometimes are

called procedures or recipes.| |
Even though algorithms have had a long history in mathematics, the notion

of algorithm itself was not defined precisely until the twentieth century. Before
that, mathematicians had an intuitive notion of what algorithms were, and relied
upon that notion when using and describing them. But that intuitive notion was
insufficient for gaining a deeper understanding of algorithms.

[ntroduction to the Theory of

COMPUTATION

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the A-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church-Turing thesis.

JOHN E: HOPCROFT

Introduction to | e Motwan
JEFFREY D. ULLMAN

Automata Theory, "™

Languages and Computatlon

Interestingly, all the serious proposals for a model of ccﬁgut:ﬁon have the
same power; that is, they compute the same functions or recognize the same
languages. The unprovable assumption that any gencral way to compute will
allow us to compute only the partial-recursive functions (or equivalently, what
Turing machines or modern-day computers can compute) is known as Church’s
hypothesis (after the logician A. Church) or the Church-Turing thesis.

SECOND EDITION

The situation is quite analogous to that
met whenever one attempts to replace a vague concept, having a powerful
intuitive appeal, with an exact mathematical substitute. (An obvious
example is the area under a curve.) In such a case, it is, of course,
pointless to demand a mathematical proof of the equivalence of the two
concepts; the very vagueness of the intuitive concept precludes this.

ELEMENTS
OF THE THEORY
OF COMPUTATION

Turing machines can be imitated by grammars,
which can be imitated by g-recursive functions,
which can be imitated by Turing machines.

The only possible conclusion is that all these approaches to the idea of com-
putation are equivalent. This is Church’s Thesis, extended now to methods

quite different fmm those of the theory of automata.
oo riratimion? idavina ane aspect of computation by

Church’s Thesis

-

~ .

LambdaICalculus \

Turing Machine
Kleene-Herbrand-Godel I

Recursive Functions
“

— Semi-Thue System

—?77?

—_—

Human Mind

230 A. M. Turive [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The Direct Appeal to Intuition

First we will agree on an example of a computer, an object performing the

action of computation
We will distill the example until it is simplified but still undisagreeable
We will make small changes, not enough to change the fact it is a computer

We will argue that the composition of these modifications is still correct and

conclude

oo b bm b fe g s o

T AT
- A e et Do o oo f
R T

3 A H

R
AR
FHEHIRD:

o

i

e et lq.!....wbﬂ.bdu- e
i

TR
N %Wﬁ..%ﬁwm!
G

:
i
i

T,
e A iy

AT 7 < 2

e
e,
S
: T
: AR ﬂ.ﬁ(ﬂh
% L«Mw#n« ORI 22 RS
ABRIAE JJJ{AHU.WN«JH SR
R

22

A
SRR

e
L

i
e

I
IR

Computing is normally done by writing certain symbois on paper. We
may suppose this paperis divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper 1s
sometimes used. But such a use is always avoidable, and 1 think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on

one-dimensional paper, z.e. on a tape divided into squares.

| | I shall also
suppose that the number of symbols which may be printed is finite. If we

were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent§. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences ot
symbols in the place of single symbols. Thus an Arabic numeral such as

17 or 999999999999999 is normally treated as a single symbol.

| The
differences from our point of view between the single and compound symbols.
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

* Finite work is done in finite time, important for the development of
computational complexity

* The amount of symbols necessary for computation must be finite

Y| < o0

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ¢ state of mind >’ at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations.

| The new observed squares
must be immediately recognisable by the computer. Ithinkitisreasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

e L=B=1

* & only need take as input the current state and symbol

We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be ¢ arbitrarily close ” and will be confused.

Let us imagine the operations performed by the computer to be split up
into ‘“simple operations’’ which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes

can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in

regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
‘““observed’’ squares.

Now if these squares are marked only by single

symbols there can be only a finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This 1s a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find ¢ ... hence (applying Theorem 157767733443477) we have ... ”".
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. Ifin spite of this

* [need not only contain input symbols, but may contain additional symbols
used for computation

e [={ab,ab, }
e abaa..#tabaa...

The simple operations must therefore include:
(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(A) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a
possible change of state of mind.

« & only need output the next state, the written symbol, and a left or right move

We may now construct a machine to do the work of this computer. 1o
each state of mind of the computer corresponds an ‘“m-configuration’ of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. Inanymove the machine canchange asymbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned
squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,

that is to say the sequence computed by the computer.

Human Mind

Lambda Calculus

Turing Machine
Kleene-Herbrand-Godel

Recursive Functions

Semi-Thue System

Church’s Thesis

-

o~ N

Lambda Calculus \

Turing Machine
Kleene-Herbrand-Godel I

Recursive Functions
D —

~ Semi-Thue System

Human Mind

Church’s Thesis 3°
&

* W Human Mind

o~ N

Lambda Calculus \

Turing Machine
Kleene-Herbrand-Godel I

Recursive Functions
D —

~ Semi-Thue System

Church’s Thesis: Any reasonable, fathomable, model of computation is
equivalent to a Turing machine

Turing’s Thesis: The Turing machine is equivalent in power to the human mind

Church-Turing Thesis: The definition of algorithm is independent of any specific
formalism

Applications

Well specified pseudocode can always be implemented
The Universal Turing Machine exists U(“M","w") = M(“w")

Any results about the formal model (Turing machine) implicate the intuitive
notion (algorithm)

Nonexistence of a Turing machine for some task implies the existence of a
problem unsolvable by humans

