
Contents

Contents 1

0 Preliminiaries 1
0.1 Exercises . 2

1 Regular Languages 3
1.1 Deterministic Finite Automata . 4
1.2 The Generalization of Nondeterminism . 13
1.3 Regular Expressions . 24
1.4 Nonregular Languages . 32

2 Context-Free Languages 39
2.1 Context-Free Grammars . 40

1

Preliminiaries

Formal Language Theory

The entire subject is formalized upon the notation used in formal language theory.

Definition 0.1 (Alphabet). An alphabet is a finite non-empty set of distinct symbols or glyphs
or characters.

We most commonly will denote an alphabet with Σ. Some common alphabets can include
{a, b}, {1}, {0, 1}, {a, . . . , z, A . . . , Z}. Let Σ = {a, b} and consider the cartesian product

Σ2 = Σ× Σ = {(a, a), (a, b), (b, a), (b, b)}

Its elements are conventionally represented in tuple form, such as (a, a). Here, we will drop the
cumbersome paranthesi and commas and let Σ2 = {aa, ab, ba, bb}. These elements are called strings,
or words.

Definition 0.2 (String, word). A string or word is a finite sequence of letters from some alphabet.
The length of the string is the number of symbols it contains.

Generalizing the previous example, Σn is all possible strings of length n. The set Σ0 is defined
as Σ0 = {ε}, where ε is a special string of length zero called the empty string, ε = “”. It is different
from the empty set ∅. It is analogous to the difference between an array of no elements, and a
string of no length. They are of different types. For n a natural number, we define

wn = ww ... w︸ ︷︷ ︸
n

the word w concatenated with itself n times, with w0 = ε. For example, a(bc)3d = abcbcbcd which
is distinct from ab3c3d = abbbcccd.

We define

Σ∗ =
∞⋃
i=0

Σi

which is the set of all strings.

Definition 0.3 (Language). A language L ⊆ Σ∗ is any set of words over some alphabet.

Here are some examples of languages

• L = {aa, bb, abab, aaa, b}

• L = {w ∈ Σ∗ | w begins with a}

• L = {w ∈ Σ∗ | #a(w) is even}

• L = {an | n is even}

• L = {w ∈ Σ∗ | #a(w) ≡ 3, 4 (mod 7)}

1

Chapter 0. Preliminiaries 0.1. EXERCISES

• L = {w ∈ Σ∗ | w is an encoding of a prime number}

Its important you understand which way “the infiniteness” of an infinite language can go. There
are no infinite length strings, each string must eventually terminate and have a specific length. But
an infinite language has infinitely many words, and the length of words can be increasing, but each
word is itself finite. It is analogous to how the natural numbers, N = {0, 1, 2, ...} is infinite, yet
each number itself may be written with only finitely many digits.

Automata

An automata is a hypothetical model of a computer. We may study the limitations of certain
automata, or contrast them to one another. We do not really care about the automata themselves,
but what they can tell us about the kinds of problems they can solve.

We need the ability to first discuss what it means to solve a problem, and here we borrow tools
from formal language theory. A decision problem a partition of Σ∗ into the “good” and the “bad”;
A language, and its complement. We give an automata a word, and it will either accept the string
or reject it. We say that an automata M decides a language L if:

M on input w accepts ⇐⇒ w ∈ L

M on input w rejects ⇐⇒ w /∈ L

We are concerned with what kinds of automata can decide what kinds of languages. There are two
perspectives. First fix the machine, and note that each machine must define some language. Every
machine has some behavior. Next is to fix the language and consider all possible machines which
may decide it correctly. We are more concerned with the second perspective than the first.

Definition 0.4 (Decision Problem). A Decision problem is a computational problem which can
be phrased as a yes or no question.

Phrasing everything as decision problems simplifies the mechanics immensely, and lets us fully
use the power of set theory. A decision problem can easily be formalized in set theory, since for
any set, a word is either in the set, or not in the set. This is a binary relationship. Consider the
language {w ∈ Σ∗ | w is an encoding of a prime number} A machine to decide this language would
take on input a word and simply have to accept or reject. We could then remark that this kind of
automata would have the power of understanding prime numbers. A more cumbersome way would
be to try to use search problems, which could be phrased like on input n, output the nth prime. If
such a machine could perform such a task, we could remark that it too could comprehend prime
numbers. But there is a diversity of ways different machines could output the nth prime number.
By restricting the output of automata to be a simple boolean, we only need to ensure they have
two small wired lights. This will help us compare and contrast them effectively.

0.1 Exercises

1. Prove that a language is infinite if and only if it has no longest string.

2. Find a bijection from Σ∗ to N.

3. Let x, z, y ∈ Σ∗ with x, z not empty. Prove that xy = yz if and only if there exists strings
u, v and a natural number n such that x = uv, y = vu with y = (uv)nu = u(vu)n

4. For any word w, denote wR as the reversal of w. Prove that if x, y ∈ Σ∗ then (xy)R = yRxR.

2

Regular Languages

3

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

1.1 Deterministic Finite Automata

Many systems and processes can be represented as a finite collection of modes, steps or “states of
mind”. Lets consider an example. My rabbit has exactly two braincells, and they have to take
turns. The first braincell, she uses when she eats, and the second braincell, she uses when she sleeps.
We may represent these two states of mind as two labelled nodes. We may then define transitions
between those states of mind as outgoing arrows, on which a transition is acted upon sensory input.
There is either food, or no food. She will sense food, wake up, and continue eating until there is
none. We could represent the relationship between her states of mind with the following state
diagram.

Many complex systems could be primitively modeled this way. Even processes which are as-
sumed continuous can be arbitrarily discretized, such as the phases of the moon, the water cycle,
the economy, and limbic system. Our first automata is motivated by this simple design.

Definition 1.1. A Deterministic Finite Automata (DFA) is a 5-tuple (Q,Σ, δ, q0, F):

• Q = {q0, . . . , qk} is a non-empty finite set of states.

• Σ is the non-empty finite alphabet, usually Σ = {a, b} or {0, 1}
• δ : Q × Σ → Q is the transition function. It is a well-defined finite function. Every state
symbol pair in the input has a single output.

• q0 ∈ Q is the designated start state. We have to start somewhere.

• F ⊆ Q is the set of acceptance, or final states. If a state is not accepting, we may say it is
rejecting.

Let w = w1...wn be a word. We say that D accepts w if there exists a sequence of states s0, ..., sn
such that:

• s0 = q0

• For 0 ≤ i ≤ n− 1 that si+1 = δ(si, wi+1)

• sn ∈ F

We say that D rejects w if D does not accept w. The language decided by D is the set of strings
that it accepts, and it denoted as L(D).

4

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

State Diagrams

Working with the formal definition can be a bit cumbersome as we shall see. We prefer to use state
diagrams, which are a kind of graphical programming language, similar to that given in the bunny
example.

• The states, Q, will be denoted by circles with internal labels.

qi

• The transition function, δ, will be denoted as arrows such that δ(qi, a) = qj would be drawn
as

qi qj

a

Note that a transition may return to the same state, and we denote this as a self loop. If
there are two transitions of the form δ(qi, a) = qj and δ(qi, b) = qj , we use only one arrow
with a label “a, b”.

• The transition function is correct when each state has exactly |Σ| outgoing transitions, one
per symbol. For example, if Σ = {a, b}, then every state should have two outgoing arrows.
One for a, and one for b. Either or both could perhaps be returning to same state.

qi

...

...

a

b

• The start state will be denoted with a small arrow from nowhere. It conventionally is labelled
as q0.

q0

• The accepting states will be labelled with a double circle, and rejecting states as exactly those
without.

5

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

q0 q1

The start state is allowed to be accepting.

Lets do several examples. One could draw DFAs and consider the languages that they decide.
Instead, we enumerate several languages and consider the possible DFAs that decide them.

Example 1.1. L1 = {w ∈ Σ∗ | w begins with a}

q0

q1

q2

a

b

a,b

a,b

This diagram clearly communicates all five parts of the tuple, but if we were to state it using the
formal definition, it would look like

• Q = {q0, q1, q2}

• Σ = {a, b}

• The start state is q0.

• The transition function δ can be encoded as the following table:

Q Σ Q

q0 a q1
q0 b q2
q1 a q1
q1 b q1
q2 a q2
q2 b q2

• F = {q1}

6

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

The state diagram communicates all five parts more effectively, but know we may delegate to
the formal tuple definition during proofs.

Consider a computation of this DFA on any word. It branches to two different states on the
first letter. Once you enter states q1 or q2, you may not leave. Once you enter either of these two
purgatories, the rest of the letters of the word are ignored. We denote q1 as the good purgatory by
making it a final state, and q2 as the bad purgatory by making it a rejecting state.

Example 1.2. L2 = {w ∈ Σ∗ | #a(w) is even}

q0 q1

a

a

b

b

Here we have transitions to keep track modulo two the number of a’s we have seen. Any computation
of ε on a DFA will end on the start state. Therefore, a DFA accepts the empty string if and only
if its start state is also an accepting state. Each state has a self loop upon seeing a b, which means
they are ignored. What if we wanted to reject whenever we saw any b’s, and not ignore them?

Example 1.3. L = {(aa)n | n ∈ N}

q0 q1

q2

a

a

b
b

a,b

Now as soon as we see a b, we immediately enter purgatory and can never leave.

Example 1.4. L = {w ∈ Σ∗ | #a(w) ≡ 3, 4 (mod 7)}

7

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

q0 q1 q2 q3 q4 q5 q6
a a a a a a

a

b b b b b b b

There is nothing too special about the number two. We may generalize the previous example to
keep track of residues modulo any other number. Create one state per equivalence class, and simply
transition between them on seeing an a, and ignore all b’s. Going from one state to the next means
you have seen an additional a. Going around the clock means you have seen a seven times.

Example 1.5. L = {w ∈ Σ∗ | w ends with b}

q0 q1

b

a

a

b

The DFA does not have any ability to rewind its input, jump around, or do any pre or post
processing. It halts exactly when it runs out of symbols to read, but it doesn’t know when that will
happen. Like death, it must be vigilant and prepared for it at any moment. In this DFA, if we see
a b, we transition to an accept state, prepared for the end, but if we see an a, we must transition
away.

Example 1.6. L = {w ∈ Σ∗ | w has atleast two a’s and atleast two b’s}

8

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

q0 q1 q2

q3 q4 q5

q6 q7 q8

a a

a a

a a

b

b

b

b

b

b

a

a

b b a,b

To each state, we may correspond a semantic meaning. Here, there are several paths to the accept
state. It has been drawn in such a way that the columns keep track of the number of a’s you have
seen, and the rows keep track of the number of b’s. In fact, the unique paths to the accept state
correspond to in which order you saw your required two a’s and two b’s. The fact that the shortest
path to the accept state is of length four can also tell us that the shortest strings in this language
must be of length four.

Programming Advice

A DFA is essentially a very limited kind of finite space program. There are only finitely many
things it can keep track of at once, and it can also only interact with its input in a “read once only”
way. When designing DFAs, it is helpful to think that each state has assigned to it a semantic
meaning, and that a state can only be reached by certain strings which satisfy certain properties.
For example, suppose we have a portion of a DFA which looks like the following.

q0 q1 q2

a a

You know you may only enter q1 upon seeing an a. You know you may only enter q2 not only upon
seeing an a, but seeing an a from q1, which you could only enter upon seeing an a. So q2 may
be entered only upon seeing aa. Each state corresponds this way like a line of code. You know a
certain line of code may be hit by the control flow only if certain conditions are met. Our portion
of a DFA could correspond to a portion of a program as:

if w[i] == ’a’:

if w[i+1] == ’a’:

*

You know the ∗ line will only be executed if certain conditions are met. Analogously, q2 can only
be entered by a string if a prefix of it meets certain conditions. It is helpful to think about each

9

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

state of a DFA as a line of code of some limited program, and the transitions between the states
analogous to how the control flow moves between lines of code.

Regular Languages

What kinds of languages can DFAs decide? We don’t yet know the problems they are capable of
solving or not solving. We say a language is regular if and only if it is decided by a DFA.

Definition 1.2. We write the class of languages decidable by a DFA as L (DFA). The language
L ∈ L (DFA) if and only if there exists a DFA to decide L. These are called the regular languages.

Note that a word is a finite sequence of symbols, a language is a (possibily infinite) set of words,
and a class is a (possibily infinite) set of languages. A class is a set of sets of strings. We want to
study the regular languages, and the only way for us to do so is by studying DFAs. What properties
to the regular languages have?

Theorem 1.1. If L ∈ L (DFA), then L ∈ L (DFA). The regular languages are closed under
complement.

A DFA is a machine to tell you exactly what strings to accept, but by doing so, it also tells you
exactly what strings to reject.

Proof. Let L be a regular language, then there exists a DFA (Q,Σ, q0, δ, F) to decide L. Consider
the DFA (Q,Σ, q0, δ, Q \F). It is identical to the first DFA, except that every previously accepting
state is now rejecting, and every previously rejecting state is now accepting. If w ∈ L then the first
DFA will accept w, so the second DFA will reject w. If w ̸∈ L, then the first DFA will reject w, so
the second DFA will accept w. Therefore, the second DFA will except exactly and only the strings
not in L, which is the complement L. Since the second DFA is one which decides L, then L has a
DFA to decide it, and is therefore, regular.

Often times, the core idea of such proofs are a construction of an automata of some sort.
For some complex constructions, a proof of correctness could be done by induction on the length
of the input. The correctness of the automata is often obvious, and such a wordy proof is often
unnecessary. Analogously, many primitive algorithms also have omitted proofs of correctness, when
the algorithm is simple enough that it is obvious. We don’t really understand theorems until we
understand their proofs, but computation is such a natural, human cognitive process, an example
is almost as instructive.

Suppose we wanted to create a DFA for the language

{w ∈ Σ∗ | w does not contain the substring aba}

Rather than try to find some kind of positive characterization of strings with this property, lets
just check if the string does contain aba as a substring. We reject those strings, and then accept
everything else.

q0 q1 q2 q3

a b aa

b

a,bb a

10

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

Theorem 1.2. Let L1, L2 ∈ L (DFA). Then L1 ∩ L2 ∈ L (DFA). The regular languages are
closed under intersection.

We may use one DFA to simulate two other DFAs simultaneously, and have our DFA accept if
and only if the two DFAs it is simulating accept. Consider how DFAs are analogous to a very
limited kind of program. Among its other limitations, it only uses constant memory. We may
combine two constant memory programs into one (bigger) constant memory program. This is the
intuition. Each state of our new DFA will correspond to a pair of possible states in two different
DFAs. Computation on our DFA will correspond to computation on two other DFAs in parallel.
We shall make our DFA accept exactly when the two DFAs it is simulating accept. For simplicity,
suppose they have the same fixed input alphabet.

Proof. Let L1 be decided by DFA (Q1,Σ, q
1
0, δ1, F1) and L2 be decided by DFA (Q2,Σ, q

2
0, δ2, F2).

We program a DFA called the cartesian product DFA (Q,Σ, q0, δ, F) to decide L1 ∩ L2 as follows:

1. Q = Q1 ×Q2

2. Σ is the same

3. δ : (Q1 ×Q2)× Σ → (Q1 ×Q2) such that

δ((qi, qj), a) = (δ1(qi, a), δ2(qj , a))

for qi ∈ Q1 and qj ∈ Q2. The first DFA is simulated in the first coordinate, and the second
DFA in the second coordinate.

4. q0 = (q10, q
2
0)

5. F = F1 × F2

Let L1, L2 ∈ L (DFA). Then there exists DFAs D1, D2 to decide L1, L2. Let w ∈ L1 ∩ L2, then
w ∈ L1 and w ∈ L2. Then the computation of D1 on w ends at some accepting state qi, and
the computation of D2 on w ends at some accepting state qj . Consider our cartesian product
construction. The computation of D on w will end on state (qi, qj), which by our construction, is
accepting. Thus D accepts w. Similarly, if w ̸∈ L1 ∩ L2, then the cartesian product DFA will not
reach an accept state on w, and it will reject it. This DFA accepts exactly the strings in L1 ∩ L2.
Since L1 ∩ L2 has a DFA to decide it, it is regular, and we see that L1 ∩ L2 ∈ L (DFA).

To demonstrate this construction, Lets proceed with an example.

L1 = {w ∈ Σ∗ | w ends with a b}
L2 = {w ∈ Σ∗ | #b(w) is even}

Lets make two DFAs for these languages.

q0 q1

b

a

a

b

q2 q3

b

b
a

a

11

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

Out cartesian product DFA then looks like the following:

(q0, q2) (q0, q3)

(q1, q2) (q1, q3)

b

b
a

b

a

b

a a

We may assign meaning to the states. State (q1, q2) means being in state q1 in the first DFA and
state q2 in the second DFA simultaneously. You may only end on state q1 if your string ends with
b, and you may only end on state q2 if you have seen an even number of b’s at that point. So
strings which end on state (q1, q2) are those which both end with b and have seen an even number
of b’s. If a string lands on state (q0, q2), then it has an even number of b’s but ends with an a. If a
string lands on state (q1, q3), then it ends with a b but has an odd number of b’s. If a string lands
on (q0, q3), then it has an odd number of b’s and doesn’t end with a b.

Notice that the transitions keep track of how the two DFAs would compute upon the word, and
the accepting states keep track of how the two DFAs would accept or reject. If a string lands on
states (q0, q2) or (q1, q3), then it is accepted by one DFA but not the other. What if you wanted
the simulator DFA to accept if either DFA accepted, but not necessarily both?

Theorem 1.3. Let L1, L2 ∈ L (DFA). Then L1 ∪ L2 ∈ L (DFA). The regular languages are
closed under union.

Proof. Simply modify the construction from the previous proof, where the only difference is that
the final states are constructed as

F = {(qi, qj) | qi ∈ F1 or qj ∈ F2} = (Q1 × F2) ∪ (F1 ×Q2)

Then our cartesian product DFA would accept if any of its two simulated two DFA accepted, and
it would reject if both DFAs rejected.

In the previous example, our accepting states would then be F = {(q0, q2), (q1, q2), (q1, q3)}.

12

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

1.2 The Generalization of Nondeterminism

We noted that DFAs are weak. Let’s try to generalize them. Recall that a DFA can be represented
as a tuple (Q,Σ, δ, q0, F). Given this definition, we wish to modify it to hopefully extend its power.
The only useful thing we can extend is the way in which states interact with each other; the
transition function δ. The rest of the device is static. We extend δ in the following three ways:

The first generalization we make is that of implicit rejection. We allow transitions to be unde-
fined, and it is understood that undefined transitions implicitly reject. As an example, recall the
following DFA which decides the language {w ∈ Σ∗ | w begins with a}.

q0

q1

q2

a

b

a,b

a,b

With implicit rejection, we could represent equivalently as

q0 q1
a

a,b

If we are at q0 and we see b we would reject. This can be helpful for programming. Consider how
well-defined a DFA is. Its like it has every edge case covered with all that try-catch nonsense.
Implicit rejection allows us to lazily construct only the parts that we care about. Then “undefined
behavior” results in immediate rejection. We can have an “if” without having to have a matching
“else”. We require the self loop on q1, otherwise, this would implicitly reject all strings which are
length two or more. Note that when we perform a complement of the accept states in a DFA that
decides a language L, we get the complement of the language. The same does not hold here due
to implicit rejection.

The second generalization we make is that of nondeterminism. We allow transitions of more
than one of the same type. This means that you can have multiple outgoing transitions with the
same input. For example:

13

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

q0

q1

q2

a

a

Consider the computation on a word beginning with an a. Which state are you in? q1? q2?
You are in both! We define a nondeterministic computation to accept if there exists an accepting
computation. For all possible states you could end up in, if at least one of them is accepting, then
the NFA accepts the string. An NFA rejects a string if it doesn’t accept, and this happens if for
all computations, none are accepting. We shall expand on nondeterminism soon.

The third and final generalization we make is that of ε-transitions. taken “for free”. For
example:

q0 q1
ε, a

b

a, ab, abb are some strings which are accepted. But now that we allow ε-transitions, b, bb, ε are also
accepted. An accepting computation of the word bb would first take the ε transition from q0 to q1,
then take the b transition twice to remain at q1. While normally, each transition “costs” the next
letter of the input, an ε-transition costs nothing. It is important to know that the choice to take
it is not forced. A nondeterministic computation may choose not to take it. For example

q0 q1

q2

q3

q4 q5

a ε

ε

ε

ε

a

On input of ε, this NFA will end on state q0 and q2 simultaneously. On input of a, it will end on
states q1, q3, q4, q5. On input of aa, it would implicitly reject.

Formal Definition

Definition 1.3. A Nondeterminisitic Finte Automata (NFA) can be represented by a 5-tuple
(Σ, Q, q0, δ, F) where:

• Q = {q0, . . . , qk} is a non-empty finite set of states

• Σ is the non-empty finite alphabet, usually Σ = {a, b} or {0, 1}

14

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

• δ : Q× (Σ∪{ε}) → P(Q) is the transition function. It is a well-defined finite function. Every
state symbol pair in the input has a single output, as a set of states.

• q0 ∈ Q is the designated start state. We have to start somewhere.

• F ⊆ Q is the set of acceptance, or final states. If a state is not accepting, we may say it is
rejecting.

Let w = w1 ... wn be a word. We say that N accepts w if for m ≥ n, there exists there exists a
sequence x = x1 ... xm with each xi ∈ Σ ∪ {ε} such that if all ε’s were removed from x it would
simply be equal to w and a sequence of states s0, ..., sm where:

• s0 = q0

• For 0 ≤ i ≤ m− 1 that si+1 = δ(si, xi+1)

• sm ∈ F

We say that N rejects w if there does not exist such a sequence. The language decided by N is the
set of strings that it accepts.

The NFA accepts if there exists a computation paths and rejects if all computation paths are
rejecting. Contrast the transition function of the DFA with the transition function of the NFA.

DFA: δ : Q× Σ → Q

NFA: δ : Q× (Σ ∪ {ε}) → P(Q)

We allow a transition to be taken, upon reading no symbols. We model this by changing the
transition function domain from Q×Σ, to Q×(Σ∪{ε}). By having the co-domain be P(Q), the set
of all subsets of states, we can allow a state symbol pair to map to any set of states. An implicitly
rejecting transition would have the formal transition function map to the empty set ∅.

With these three new relaxations, we have defined a new kind of automata, the nondeterministic
finite automata (NFA). On input a word, there may be multiple different possible computations,
and we say an NFA accepts some string if there exists atleast one computation to an accepting
state. It does not matter how many more rejecting computations there are. Non determinism is
a biased power, in that it only needs one accepting computation to accept. But to reject, every
computation must be rejecting.

Coping with Nondeterminism

Its important to understand nondeterminism and not just have deterministic coping strategies.
Nondeterminism isn’t real. You could not build a nondeterministic computer, but it doesn’t matter.
We may still study this unrealizable machine as a purely theoretical device. The following analogies
may help in visualizing this power.

• Graph Search An NFA or DFA can just be thought of as a graph. A word computed by an
NFA or DFA can be thought of as a path in the graph. You could easily determine if a DFA
accepts a word by using the word as instructions on which path to take in the DFA, but to
determine if an NFA accepts a word, you may have to employ a graph search algorithm, such
as breadth first search or depth first search. Coming to a fork in the road, you explore down
both paths until you find an accept state. Under this view, the power of nondeterminism is

15

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

only how time is measured. The DFA on computation of a word of length n takes exactly n
steps. An NFA also takes exactly n steps, but epsilon transitions take no time, and certain
paths of the same depth are computed “in parallel”, and their time is not double counted.
You and I are deterministic. In order to determine if an NFA accepts a word, using pen and
paper, necessarily may take more than n steps.

• Lucky Coin During your computation you come to a nondeterministic transition. Imagine
you flip a lucky coin that tells you exactly which path to take. Through a purely imaginary
way, you have divine information on which path will correctly lead you to an accept state.
It is not random so much as it is omnipotent. You have faith in the coin, so you follow it.
Somehow, you have the precognition to know where the answer is.

• Alternate Timelines1 For each nondeterministic action, create multiple timelines. Each
timeline consists of the what-if for each possible choice. As long as in one timeline, you reach
an accept state, then the computation is accepting.

Examples

Lets show a few examples. We emphasize how to take advantage of nondeterminism in program-
ming.

Example 1.7. L1 = {w ∈ Σ∗ | w ends with aaaa}

q0 q1 q2 q3 q4
a a a a

a, b

Consider the computation of this machine on input a7. If you are at q0 and you read an a, you
may choose to either stay at q0 or move on to q1. This word is accepted by the NFA because it
may correctly guess exactly when it is four a’s from the end and then choose to leave q0. Another
way is to consider all possible guesses of when to go to q1 on seeing an a. If we guess too late,
we will terminate on one of q0, q1, q2, q3 and not accept. If we guess too early, we will reach q4,
but then have more input to read, and must implicitly reject since q4 has no outgoing transitions.
Most of the computations will be rejecting but it doesn’t matter, as there is atleast one accepting
computation, one correct guess.

Let the delimiter symbolize when you non deterministically guess to go from q0 to q1. There
are eight computations of a7 on this NFA.

|a a a a a a a too early, implicit rejection from q4
a |a a a a a a too early, implicit rejection from q4
a a |a a a a a too early, implicit rejection from q4
a a a |a a a a accepts
a a a a |a a a too late, rejects from q3
a a a a a |a a too late, rejects from q2
a a a a a a |a too late, rejects on q1
a a a a a a a too late, rejects on q0

1Different science fictions have different rules for how time travel works. I am going off of the episode Remedial
Chaos Theory from Community.

16

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

Nondeterminism allowed us to construct this NFA very easily. Just guess when you are four a’s
from the end and count them. Designing an NFA to accept the correct strings is usually easy, but
you need to be careful that it also rejects the incorrect strings. A string is rejected when all of its
computation paths are rejecting, and designing around this can be a bit trickier.

Example 1.8. L = {a4n+3 | n ∈ N}
Lengths of the strings in this language form an arithmetic progression.

q0

q1

q2

q3

q4 q5 q6
a

aa

a

a aa

You non deterministically n, by choosing how many times you would go around the loop. Every
time you reach q0, do you choose to go to q1 or q4? If you choose to go to q1, you must add another
four to ever have a choice to reach an accept state. If you choose q4, then you must add exactly
another three before accepting.

Example 1.9. L = {w ∈ Σ∗ | w begins with a or ends with b} We need to accept strings if they
accept any of two conditions. We will nondeterministically guess which condition to check.

q0

q1 q2

q3 q4

ε

ε

b

a, b

a, b

a

If the string begins with a, then there is a computation on the above branch which accepts. If
the string ends with b, then there is a computation on the below branch which accepts, where the
prefix of the string is nondeterministically guessed.

17

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

Comparison with DFAs

Definition 1.4. We write the class of languages decidable by a NFA as L (NFA). The language
L ∈ L (NFA) if and only if there exists a NFA to decide L.

We don’t really care about comparing automata themselves, but comparing their power. Rather
than compare NFAs and DFAs, we compare L (DFA) with L (NFA). What is the relationship
between the powers of an NFA and DFA?

Theorem 1.4. L (DFA) ⊆ L (NFA)

Every DFA is an NFA. An NFA has all these super powers, but there is no requirement to use
them. Though it may be obvious just from the generalization that is nondeterminism, for exercise,
we prove L (DFA) ⊆ L (NFA).

Proof. Let L ∈ L (DFA). Then there exists a DFA to decide L. Note that this DFA is also an NFA,
so there exists an NFA to decide L. Then L ∈ L (NFA). Since this is true for all L ∈ L (DFA),
we see that L (DFA) ⊆ L (NFA).

Do these generalizations give the NFA strictly more power? Or not?

Theorem 1.5. L (NFA) ⊆ L (DFA)

This should surprise you! We gave a normal computation device all this unrealistic unrealizable
power. Yet, this power can be simulated using realizable methods. For any NFA, we will show how
to simulate it on a DFA. This means that L (NFA) ⊆ L (DFA). Combining the aforementioned
point, we get L (DFA) = L (NFA). This is called a double set containment, and is an argument
we will use frequently. The proof strategy is as follows. We simulate an NFA on a DFA. Although
an NFA may be in many states at once, it can only be in finitely many. Although the NFA moves
nondeterministically between the states, it moves deterministically between the sets of states. This
will motivate our powerset construction. We will construct a DFA to deterministically simulate
how the NFA transitions between sets of states. For example, if we have an NFA with some large
number of states, suppose at some step of the computation, it is at a set of states t1, then after a
single step, it is in a different state of states t2, then after another step, t3.

18

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

Although the NFA is in multiple states simultaneously, we may simulate this nondeterminism by
deterministically moving between the set of states rather than the states themselves.

This is the key idea behind the simulation. To each possible set of state the NFA could be in,
we assign one state of our DFA to represent each subset of the NFA. Then the NFA going between
subsets of states can be simulated by our DFA going from just one state to another. This is called
the powerset construction. There is also a small comment on economy. NFAs can be smaller.
There exists regular languages with small NFAs but large DFAs, but they still have DFAs. The
DFA may take cost to simulate the NFA, but it can still do so sucessfully, proving that the NFA
is not more powerful. There is exponentially more subsets than elements, but that is still only a
finite amount. There is also the issue of these epsilon transitions.

Definition 1.5. Let reach : Q → P(Q) such that

reach(qi) = {qi and any state reachable from qi by ε-transitions}

For example if you suppose we had a portion of an NFA as follows

q0 q1 q2
ε ε

Then reach(q0) = {q0, q1, q2}. We now proceed to prove that L (NFA) ⊆ L (DFA)

Proof. Let L ∈ L (NFA). Then there exists an NFA N = (Σ, Q, q0, δ, F) to decide L. We construct
an equivalent DFA D = (Σ

′
, Q

′
, q0

′, δ′, F ′) so that L = L(N) = L(D).

• Q′ = P(Q) For each possible subset of the states of the NFA, we creat one state of our DFA.

• Σ′ = Σ

• q0
′ = reach(q0) If there is an ε-transition from the start state of the NFA, then the compu-

tation need not necessarily begin at q0 if this ε-transition is taken first. Then the start state
of our DFA corresponds to the set of possible states in which the computation could begin in
the NFA, which is those states reachable from q0 in the NFA.

• For S ⊆ Q any subset of states of the NFA and a ∈ Σ, we define

δ
′
(S, a) =

⋃
q∈S

reach(δ(q, a))

For S a state of the DFA, its outgoing transitions are defined to be the state corresponding
exactly and only to the set of states of the NFA which you can go to on viewing the same
symbol.

19

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

• F ′ = {S ⊆ Q | S ∩ F ̸= ∅} Recall than an NFA accepts if there exists a computation which
reaches an accept state. After computation on a word, you may be in several states at once,
but if atleast one is accepting, the machine accepts. We set the accepting states of the DFA
to be those which contain any accept state of the NFA.

Let w ∈ L, then on the computation of w, the NFA N reaches an accept state qi. Consider
D on input w. The DFA will reach a state marked as a set of states containing element qi. By
construction, this will be accepting, so D will accept w. Similarly, if w ̸∈ L, then in all computation
paths, N rejects w. Again consider D on input w. By construction, it will reach a state which is
explicitly marked as non accepting, so D rejects w. Since D accepts exactly and only the same
strings that N did, we see that L ∈ L (DFA), and thus L (NFA) ⊆ L (DFA).

Examples

To further illustrate the powerset construction, we give some examples of converting NFAs into
DFAs.

Example 1.10. Consider the language L2 = {w ∈ Σ∗ | w ends with aa}. An NFA to decide this
language could be.

q0 q1 q2
a a

a, b

By following the process in the powerset construction exactly, we get the corresponding DFA.

0 01 012

02

1221

∅

a a

b

b a

a

a
a

b
a,b

b

b

a,b

b

20

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

For simplicitly, rather than label a state as {q0, q1, q2}, we will just label it as 012. We observe that
there are unreachable states like q02 and an entire disconnected component. This process does not
guarantee to give a minimal DFA, just an equivalent one. On cleaning up these unreachable states,
we get the following DFA

0 01 012
a a

b

b ab

Each state represents a superposition of the states in the NFA. A state being unreachable in the
DFA could be interpreted to mean that its exact combination of states in the original NFA was
unachievable. You cannot be in q2 in the NFA without also being in q0 and q1.

We do an example with ε-transitions. Recall example 1.9. There are five states, so the powerset
construction should give us 25 = 32 states. Rather than compute the 32 states first, then cut
away those that are useless, we observe exactly what combinations of states are possible to be in
simultaneously.

Example 1.11. L = {w ∈ Σ∗ | w begins with a or ends with b}

q0

q1 q2

q3 q4

ε

ε

b

a, b

a, b

a

013

12 1

14
a

b

a

b

a

a, b

b

It is interesting to note that this DFA actually has less states than our original NFA. This is
because our original NFA was not the smallest one.

Lets do another example. L = {w ∈ Σ∗ | w has an a as the fourth symbol from the right.}.
We could easily constrict the NFA similar as

q0 q1 q2 q3 q4
a a, b a, b a, b

a, b

Following the powerset construction, we get the following DFA.

21

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

0
bbbb

01
bbba

012
bbaa

02
bbab

0123
baaa

023
baab

013
baba

03
babb

01234
aaaa

0234
aaab

0134
aaba

034
aabb

0124
abaa

024
abab

014
abba

04
abbb

a

b

a

b

b

a

a

b

a

b

a

b

a

b

a

b

a

b

a

ba

b

a

b

a

b

a

b

a

ba

b

Additional information has been given in this state diagram. For clarity, b transitions are shaded
differently. Each state is not only given a sequence corresponding to the subset of states (023
corresponds to {q0, q2, q3}), but also a word from Σ4. Each string corresponds to the last four seen
symbols. This is the semantic meaning we assign to each state. A DFA has a memory worse than
a goldfish, and can only keep track of where it currently is. Upon a computation of “what symbol
did I see three letters ago?”, you end up needing one state for every possible word of length four,

22

Chapter 1. Regular Languages 1.2. THE GENERALIZATION OF NONDETERMINISM

of which there are |Σ|4 = 16. This DFA is quite large and messy, and you can prove this language
cannot be equivalently decided by a smaller DFA.

23

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

1.3 Regular Expressions

What does it mean to have a name? A name is a finite description. In some sense, the study
we are undertaking is the study of what infinite objects have finite names? Every infinite regular
language is an infinite object, that has a finite name; the DFA that decides it. Regular expressions
are really a way to describe a regular language.

A regular expression is a single string which represents or describes a regular language. You
can think of regular expressions as a kind of very limited programming language. Each regular
expression is declarative of exactly what strings it wants to describe. First we define them, and
then we will prove they correspond exactly and only to the regular languages.

Definition 1.6. We say that R is a regular expression, or regex, if R is one of the following:

• ∅ - empty set

• ε - empty string

• a ∀a ∈ Σ

• R∗
i , RiRj or Ri ∪Rj where Ri, Rj are regular expressions.

Let R be a regular expression. We denote the language described by R as L(R). We inductively
define the languages described by regular expressions as follows.

• L(ε) = {ε}

• L(∅) = ∅

• L(a) = {a} ∀a ∈ Σ

Let Ri, Rj be regular expressions. Then

• L(Ri ∪Rj) = L(Ri) ∪ L(Rj)

The union of two regular expressions unions their languages. Here, there are two uses of
the “∪” symbol. The first is a literal symbol, in a syntactic sense. Ri ∪ Rj is a sequence of
characters, a string, containing the “∪” symbol. The second use is as a genuine set operation
on languages; the union of two sets of strings.

• L(RiRj) = L(Ri)L(Rj)

The concatenation of regular expressions concatenates their languages. Let Li, Lj be lan-
guages. We define the concatenation of languages as

LiLj = {xy | ∀x ∈ Li and ∀y ∈ Lj}

It is all possible pairs of concatenations, no delimiter, and no choice on which strings are
concatenated.

• L(R∗
i) = L(Ri)

∗

The star of a regular expression stars its language. Let L be a language. We define the Kleene
star of a language as zero or more concatenations of that language with itself.

L∗ =
∞⋃
k=0

Lk = {ε} ∪ Li ∪ L2
i ∪ L3

i ∪ ...

24

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

We will often conflate a regular expression R with the language it describes L(R). If a regular
expression is a name for a language, why not use it. We have a recursive, or inductive definition
for a naturally recursive or inductive object. Each regular expression is a string, but it corresponds
to a language, a (possibly infinite) set of strings.

Examples

Here are some examples of regular expressions. We often use Σ in regular expressions as a shorthand
for the regular expression (a ∪ b) or whatever the alphabet may happen to be.

1. a∗ = {an | n ∈ N} = {ε, a, aa, aaa, . . . }

2. Σ∗ = (a∪b)∗ We introduced this as the definition of all strings, it is actually a regular expres-
sion for zero or more concatenations of any of the letters of the alphabet, which corresponds
to all strings.

3. a∗ba∗ = {aibaj | i, j ∈ N} = all strings which contain exactly one b.

4. Σ∗bΣ∗ = all strings with atleast one b. There can be more than one, but not zero.

5. Σ∗abaababΣ∗ = {all strings with abaabab as a substring}

6. (ΣΣ)∗ = ((a ∪ b)(a ∪ b))∗ = ((aa ∪ ab ∪ ba ∪ bb))∗ which is all strings of even length.

7. ε(ab ∪ ba) = {ab, ba}

8. (a ∪ b)(b ∪ c) = {ab, bb, ac, bc}

9. a∗b∗ any string where every a comes before every b.

10. (ab)∗ every a is followed by a b. and vice versa.

11. ∅∗ = {ε}. By definition, ∅∗ = ∅0 ∪∅∪ ∅2 ∪ All concatenations greater than one are empty,
so this simplifies to ∅0. Here, zero strings are concatenated together. This vacuously gives us
one string of no length, thus ∅∗ = {ε}.

12. a∗∅ = ∅ Since there are no elements in the empty set, the concatenation of it with anything
is vacuously empty.

There are three perspectives on how to understand the correspondence between a regular ex-
pression and the language it describes. An automata may take input and provide output, but that
is not the case here. The first perspective of a regular expression is that it is simply the name of
the correct strings in the language. It describes the strings.

The second perspective is that the regular expression itself is some kind of string nondeterminis-
tic string, a string in “super position”. After certain non-deterministic choices are made, it is casted
down to being some deterministic string. It can only become strings in the language it describes.
For example, we argue that (a ∪ b)∗ produces all strings over Σ∗ if Σ = {a, b}. Certainly every
regular expression describes a set of strings so L((a∪ b)∗) ⊆ Σ∗ is obvious. We prove Σ∗ ⊆ (a∪ b)∗.
Each string in Σ∗ has some length, Nondeterministically guess this length, say n. Thus

(a ∪ b)∗ → (a ∪ b)n = (a ∪ b)(a ∪ b)...(a ∪ b)

You now have n nondeterministic choices to make. Each one determines a letter of our string. This
can allow us to construct every string of length n.

25

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

Regular Expressions Describe All Regular Languages

As you may suspect by their name, the languages that the regular expressions describe, are exactly
and only the regular languages. Let L (REX) be the class of languages such that L ∈ L (REX)
implies that there is a regular expression to describe L. We prove that LL (REX) if and only
if L is regular, however we have a choice to make. We have proven that NFAs are equivalent
in power to DFAs, so in proving this equivalence, we could choose to simulate with NFAs or
DFAs. We shall choose NFAs. The nondeterminism of NFAs naturally and neatly simulates the
nondeterminism of regular expressions as we shall see. We prove via a double set containment that
L (REX) = L (NFA).

Theorem 1.6. L (REX) ⊆ L (NFA)

First we show that if a language is produced by a regular expression, then it is decided by an
NFA. To prove that L (REX) ⊆ L (NFA), we want to show that for each regular expression,
there exists an equivalent NFA. Given that regular expressions are recursively defined, it is natural
to choose to proceed by induction.

Proof. We proceed by structural induction upon the depth of the number of operations applied to
form a regular expression. We first prove our base cases. Let the number of operations applied be
zero, then the only possible regular expressions are themselves the base cases. We give NFAs for
each of them.

1. R = ∅

2. R = ε.

3. R = a ∈ Σ.

a

Next, we proceed with our inductive steps. Let Ri, Rj be regular expressions that decide regular
languages, by structural induction, we assume that there exist NFAs Ni, Nj such that L(Ni) =
L(Ri) and L(Rj) = L(Nj). We will prove R∗

i , RiRj , and Ri ∪ Rj also have NFAs to decide them.
The proofs can be done graphically.

1. R = RiRj .

26

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

We remove final states Fi and ∀f ∈ Fi, add δ(f, ε) = qj where qj is the initial state of Nj .
Consider a computation like a path through the NFA as a graph. To reach an accept state,
you must go through the first NFA, then the second.

2. Ri ∪Rj .

Let qi, qj be the start states ofNi, Nj respectively. Add new start state q and δ(q, ε) = {qi, qj}.
Here you nondeterministically choose which NFA you wish to proceed on, so it decides the
languages which reach the accepting states of either NFA, representing the union.

27

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

3. R = R∗
i .

We add new start state q′, ε-transition from q′ and all states of F to the old start state q,
mark q′ as accepting. Note we could not have just made the start state accepting, but must
add a new state. You can traverse an arbirary number of times on the internal NFA so this
corresponds to zero or more copies, which is the Kleene star operation.

This proof not only shows every regular expression decides a regular language, but it gives a
process to convert a regular expression into an NFA.

Example 1.12. Consider the following example for a(a ∪ b)∗a ∪ b(a ∪ b)∗b ∪ a ∪ b. This is the
regular expression for strings that begin and end with the same symbol.

28

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

29

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

There is in fact a third perspective on regular expressions, they are a short hand notation for
the NFA, which are described by this process.

Theorem 1.7. L (NFA) ⊆ L (REX)

Proof. Let L ∈ L (NFA). Then there exists an NFA to decide L. We construct a regular expression
to describe the strings which may traverse this NFA from the start state to an accept state. These
are of course, exactly the strings that the NFA accepts. To do so, we generalize the definition of
an NFA as follows.

Definition 1.7. A GNFA is defined as an NFA with the following generalizations:

• Rather than an element of Σ ∪ {ε}, transitions have an entire regular expression on them.

• The start state has no incoming transitions.

• The final state has no outgoing transitions.

• Every pair of states has a transition.

Taking a transition in a DFA is reading some single symbol off the front of the input. Taking a
transition of a GNFA is nondeterministically choosing some prefix of the input which satisfies the
regex on the transition. Note that every NFA can be immediately made into a GNFA by making
the following changes:

• Add a new start state with an ε-transition to the old start state.

• Add one new final state, with ε-transitions from the old final states.

• For every pair of states with no transition between them, add a transition with the regular
expression ∅.

Clearly these modifications do not change the language that is decided. First we convert our NFA
to this GNFA, then we convert this GNFA to our regular expression, proving, that every NFA has
an equivalent regular expression. In our GNFA, we proceed to eliminate states, one at a time until
two states and one transition remain. Our goal is to decrease the number of states, but increase
the complexity of the transitions. The last transition left will be our desired regular expression.
We eliminate states as follows. Suppose there are states qi, qk, qk, and we wish to eliminate state
qk.

qi qk qj
Rik

Rij

Rkk

Rkj

qi qj
(Rik(Rkk)

∗Rkj) ∪Rij

30

Chapter 1. Regular Languages 1.3. REGULAR EXPRESSIONS

We update all paths that could use the state qk with regular expresssions that describe this path,
but without the state itself. Repeated application of this process will result in a GNFA with two
states and one transition. The regular expression on this transition exactly describes the strings
that would compute on the NFA from the start state to an accept state, thus it describes exactly
the language decided by our original NFA. Since this can be done for any NFA, we see that each
regular language can be described by a regular expression.

Example 1.13. Let us do an example. We convert an NFA with three states to a GNFA with five
states to a regular expression.

The regular expression is quite long, and far from minimal. The process only guarantees to output
a correct regular expression, not a nice one. An NFA may be organized as a two-dimensional state
diagram, but a regular expression is one-dimensional. If it contains the same information, it may
necessarily be longer.

31

Chapter 1. Regular Languages 1.4. NONREGULAR LANGUAGES

1.4 Nonregular Languages

Not all languages are regular. Although DFAs and NFAs seem quite powerful, there are some
immediate limitations. Our current goal is to prove that nonregular languages exist.

Consider the language {anbn | n ∈ N}. A DFA has a finite amount of states, and is only able
to read the string left to right. It cannot read symbols it has previously. As it reads left to right, it
somehow is tasked with memorizing an arbitrarily large amount of information, the number of a’s,
in order to match them to the number of b’s. Note how this is a very different computation task
than deciding (ab)∗, or a∗b∗, which can be computed using only a finite number of states. A DFA
of say, 20 states may correctly decide if a string has the form a20b20, but this DFA must fail on a
string of a large enough size, say a100b100. We can formally prove these languages to be nonregular
by use of the pumping lemma. It follows from something relatively simple, the pigeonhole principle.

Definition 1.8 (Pigeonhole Principle). If m pigeons are assigned to n holes with m > n then some
hole must have more than one pigeon.

If a DFA accepts an infinite language, then there are strings of arbitrarily long length that it
must accept, yet it must do so only with finitely many states. The strings the DFA is tasked to
accept are much much longer than the size of the DFA itself. The pigeonhole principle will apply
to the computation on DFAs, which will show that regular languages have an interesting property.

Note each letter of our word takes not one state, but one transition. If we have p states, and
compute on a word of length ≥ p, then some state is visited twice in our computation path. We
may not know where this loop is or how long it is, but we know that it must exist by the pigeonhole
principle. The DFA is such a simple stupid device, if it accepts a long enough string, it must also
accept if you were to take that string and repeat a substring of it arbitrarily many times. The
Pumping Lemma is a formalization of this intuitive idea.

If w is long enough, some state in the compu-
tation is repeated. Then w can be partitioned
into w = xyz where y denotes a loop from some
state back to itself. We could take this loop an
arbitrary number of times. If the DFA accepts
xyz, it must also accept xz and xyyz.

The Pumping Lemma

Theorem 1.8 (The Pumping Lemma). Let L be an infinite language. If L is regular, then there
exists a number p such that for each w ∈ L with |w| ≥ p, there exists a partition of w = xyz where:

• |xy| ≤ p

• |y| > 0

• ∀i ∈ N(xyiz ∈ L)

Proof. We prove that if L is an infinite regular language, then it can be pumped. If L is regular,
then there exists a DFA D = (Q,Σ, q0, δ, F) to decide L. Let |Q| = p and let w ∈ L be any word
with length |w| = n ≥ p with w = w1w2...wn. Consider the sequence of states visited during the
computation of D on w, and let these states be enumerated as s1, s2, ..., sn+1 with δ(si, wi) = si+1

for 1 ≤ i ≤ n. Note that a word of length n takes n transitions, but visits n + 1 states, and s1 is

32

Chapter 1. Regular Languages 1.4. NONREGULAR LANGUAGES

necessarily q0. In the first p transitions, the p+ 1 states s1, ..., sp+1 are visited. By the pigeonhole
principle, in s1, ..., sp+1, there must exist a state which has been visited twice. Let the first of
these visits be si and the second of these visits be sj . Since they are distinct, i ̸= j. Consider the
partition of w = xyz into x = w1...wi−1, y = wi...wj−1, z = wj ...wn. We demonstrate these choices
of x, y, z satisfy our three conditions which require L to be pumpable.

• By the pigeonhole principle, we know a repetition must occur in the first p+1 visited states,
so j ≤ p+ 1 and since |xy| = j − 1 then |xy| ≤ p.

• Since i ̸= j, we know y is never the empty string, thus |y| > 0.

• The string x will take our DFA from q0 to our repeated state q, y will take D from q back
to q, and z will take D from q to an accept state. Upon reaching our repeated state q for
the second time, instead of continuing on with z, we may just repeat the computation of y
an arbitrary number of times before continuing on with z. Thus for each i, xyiz will take
D from q0 to qa. What is a path from the start state to an accept state if not exactly an
accepted word?

You should think of i here as the number of times you may traverse the loop. Traversing it one
time is the original string xyz. You may also traverse it zero times, so xyz ∈ L =⇒ xz ∈ L. You
may traverse it twice, so xyz ∈ L =⇒ xyyz ∈ L, and so on. The term “pumping” refers to this
property. A long enough string may have a substring of it ”pumped” into it an arbitrary number
of times. If i = 0, we refer to computing xz as “pumping down”.

The pumping lemma is not itself useful to proving that a language is regular. Instead, we take
its contrapositive: If an infinite language cannot be pumped, then it is not regular. Note that this
is not an if and only if and there do exist some nonregular languages which can be pumped.

The pumping lemma has many moving pieces and can be tricky to apply. There are alternating
existential and universal quantifications through out2. Of the proof techniques available to you, it
certainly is the most cumbersome, and is surprisingly common to make a mistake on what you can
or cannot choose. I suggest you use this proof template. Suppose that L is the language we want
to prove is not regular.

1. Assume to the contrary, L is regular with pumping length p.

2. Choose some w ∈ L such that |w| ≥ p.

3. For all cases w = xyz such that |xy| ≤ p and |y| > 0.

4. Choose any i ̸= 1 and demonstrate that xyiz ̸∈ L.

5. Conclude that L cannot be pumped, and therefore L is not regular.

Let us go through the importance of each step.

• First, by assuming to the contrary that L is regular with pumping length p, we are supposing
that there exists a DFA of p states. When we reach a contradiction, then no such DFA of p
states can exist. Since p is general, this means that no such DFA can exist at all. We cannot
fix p. If we did a pumping lemma proof with p = 5, this would conclude that there is no DFA
of five states. It does not imply there is no DFA at all, as there may exist a DFA with more
than five states to decide the language.

2∃p∀w∃x, y, z∀i(...), thats four alternating quantifiers!

33

Chapter 1. Regular Languages 1.4. NONREGULAR LANGUAGES

• We choose to pump some string in the language. By choosing w ∈ L, we know w brings
our assumed DFA to an accept state, like a path in a graph. By requiring |w| ≥ p, we meet
the criterion required by the pigeonhole principle, and can guarantee the computation visits
some state twice. It is not uncommon for us to choose strings with length much much larger
than p. The only requirement is that its length is greater than or equal to. Choosing a good
w will effect the proof greatly. A poor choice of w may make the proof very long, or even
impossible.

• In the computation of w on our assumed to the contrary to exist DFA, we are guaranteed
that there exists a loop somewhere by chosing |w| ≥ p, but we don’t know where. So we have
to consider all possible cases of where this loop could be. We model this as considering all
ways to partition w into the three parts w = xyz subject to our two conditions on each case.
Firstly that |xy| ≤ p. This ensures that the occurance of a repeated state occurs somewhere
before the end of what we denote as y. The second condition |y| > 0 ensures that this cycle
is actually occuring. Note that |y| = 0 trivially ensures we could never reach a contradiction,
since εi = ε for any i.

• For each case, you only need to choose any i ̸= 1 so that xyiz ∈ L. Most of the time i = 2
works, we will show examples where it does not.

• Since we took a long enough string in the language, showed it was impossible to pump, then
there cannot exist a DFA to decide L, and we must conclude that L must not be regular.

Let us proceed with some examples.

Example 1.14. L = {0n1n | n ∈ N} is not regular.

Proof. Assume to the contrary, L is regular with pumping length p. Let w = 0p1p and notice that
w ∈ L and |w| = 2p ≥ p. There is only one case since the first p characters in the string are all
zeroes. Let x = 0a, y = 0b, z = 0p−a−b1p subject to |xy| = a + b ≤ p and |y| = b > 0. Consider
i = 2. Then

xyiz = xy2z = xyyz = 0a0b0b0p−a−b1p = 0p+b1p

We know that b > 0, so the number of 0s does not equal the number of 1s since p+ b > p. Thus,
L cannot be pumped, and as a result, is not regular.

The language 0n1n is the canonical example of a non-regular language. We choose w so that
its length is a function of p so that |w| ≥ p is obvious. By choosing a good w, we can ensure that
we reduce the number of cases required. The number of cases is technically a function of p, the
number of ways a + b ≤ p subject to those conditions. We group these all into one case as the
contradiction is identical. Note that then the substrings x, y, z also end up being a function of p.
We only need to to show that one i ̸= 1 gives a contradiction, so we choose a smallest and simplest
one, that i = 2.

Example 1.15. L = {xxR | x ∈ Σ∗} is not regular.

Recall that xR denotes the reveral of the string x. This language, xxR then consists of the even
length palindromes. For demonstration, we choose a worse w on purpose.

Proof. Assume to the contrary, L is regular with pumping length p. Let w = 0p−1110p−1. Confirm
that w ∈ L and |w| = 2p ≥ p. The first p characters in the string are different, meaning there are
several cases:

34

Chapter 1. Regular Languages 1.4. NONREGULAR LANGUAGES

Case 1, y contains no 1s. Then let x = 0a, y = 0b, z = 0p−1−a−b110p−1 subject to |xy| = a + b ≤ p
and |y| = b > 0. Choose i = 2. Then xy2z = xyyz = 0a0b0b0p−1−a−b110p−1 = 0p−1+b110p−1.
Since b > 0, we know that p− 1+ b ̸= p− 1. Therefore, the two sections of 0s are unequal. If
b makes xyyz of odd length then we are done, so suppose xyyz is of even length. If we were
to split the string in half, the first half contains no 1s, and the second half contains two 1s,
implying that this is not a palindrome.

Case 2, y contains a single 1. Then let x = 0a, y = 0p−1−a1, z = 10p−1 subject to |xy| = p ≤ p and
|y| = p − 1 − a + 1 > 0. Let us pump down. Consider i = 0. Then xy0z = xz = 0a10p−1

Since there is only a single 1, this is never an even-length palindrome.

For both cases, the language could not be pumped. Therefore, L is not regular.

Lets annotate this proof as well. We chose a poor w on purpose, resulting in more cases. There
were two cases, whether or not xy contained a 1 or not. Had we increased the string length so that
the initial block of 0’s exceeded p, we would only have one case. For the second case, we chose
i = 0. We call this “pumping down”.

A very poor choice of w would have been w = 0p0p. Note that this is a simple even length
palindrome, but it is too simple. This specific w can be easily pumped when y is of even length,
and will not result in a contradiction. You want to choose w so that it is barely in the language,
at the extremal conditions. Any small peturbation results in it no longer being in the language.
Some choice of w do not allow you to complete the proof. Other choices of w incur a lengthy proof
of many cases. Consider the language {0n1n2n |n ∈ N}. It is not regular for similar reasons as to
{0n1n | N}, and the proof is nearly identical. A good choice of string to pump would be w = 0p1p2p.
As a bad choice, consider w = 0⌈p/3⌉1⌈p/3⌉2⌈p/3⌉. The restriction of |xy| ≤ p has nearly no effect
here, and a correct proof would involve six distinct cases.

Let us do another example with a good choice of w.

Example 1.16. L = {xx | x ∈ Σ∗} is not regular.

This language consists of words which are themselves concatenated twice. It is not Σ∗Σ∗, but
it contains strings like abab, abaaba, aabbaabb, ε and so on.

Proof. Assume to the contrary, L is regular with pumping length p. Let w = 0p10p1 and notice
that w ∈ L and |w| = 2p+ 2 ≥ p. There is only 1 case since the first p characters in the string are
all 0s, so let x = 0a, y = 0b, z = 0p−a−b10p1 subject to |xy| = a+ b ≤ p and |y| = b > 0. Consider
i = 2 so

xyiz = xy2z = xyyz = 0a0b0b0p−a−b10p1 = 0p+b10p1

If xyyz is of odd length we are done, so suppose it is of even length. Let xy2z = w1w2 with |u| = |v|.
Notice that u must end with a 0, but v must end with a 1, therefore, u ̸= v and xyyz ̸∈ L. Thus,
L cannot be pumped and is not regular.

35

Chapter 1. Regular Languages 1.4. NONREGULAR LANGUAGES

Lets do some unary examples.

Example 1.17. L = {1n2 | n ∈ N} is not regular.

Proof. Assume to the contrary, L is regular with pumping length p. Let w = 1p
2
and observe that

w ∈ L and |w| = p2 ≥ p There is only 1 case since the first p characters in the string are all 1s. Let
x = 1a, y = 1b, z = 1p

2−a−b subject to |xy| = a+ b ≤ p and |y| = b > 0. Consider i = 2.

xy2z = xyyz = 1a1b1b1p
2−a−b = 1p

2+b

Since b > 0, p2 < p2 + b, thus |1p2 | < |1p2+b|. Since a+ b ≤ p, b ≤ p, thus

p2 + b ≤ p2 + p < p2 + p+ (p+ 1) = p2 + 2p+ 1 = (p+ 1)2

Together, we see that

|1p2 | < |1p2+b| < |1(p+1)2 |

Our pumped string xy2z has length strictly between two consecutive perfect squares. Therefore,
its length is not some perfect square is not an element of L. Thus, L cannot be pumped and is not
regular.

Example 1.18. L = {1q | q is prime} is not regular.

Proof. Assume to the contrary L is regular with pumping length p. Let w = 1q where q is the
next largest prime greater than p. By this definition, w ∈ L and |w| = q > p. There is only 1
case since the first p characters in the string are all 1s. Let x = 1a, y = 1b, z = 1q−a−b subject to
|xy| = a+ b ≤ p and |y| = b > 0. Consider at i = q + 1. Then

xyq+1z = 1a1b(q+1)1q−a−b = 1q+qb = 1q(1+b)

Since b > 0, the length q(1 + b) has a prime divisor which is not one or itself, and thus it is
composite, not prime. We see that xyq+1z ̸∈ L and thus, L cannot be regular.

For this example, how did we know to choose i = q+1? We worked it out before hand, solving
for i such that b(i− 1) + q would be composite, leading to a contradiction. Each pumping lemma
proof should be done twice. Once to know the structure of the proof, and the second time formally.

Example 1.19. L = {0n1m | n ̸= m} is not regular.

Prior strategies will not work here, and we will need to be creative. We somehow need to pump
to get the number of zeros and ones to be exactly equal.

Proof. Assume to the contrary L is regular with pumping length p. Consider w = 0p1p+p!. Observe
that w ∈ L and |w| = p+ p! > p. We have one case, so let x = 0a, y = 0b, z = 0p−a−b1p+p! subject
to a + b ≤ p and b > 0. Consider i = p!/b + 1. Since a + b ≤ p, we know b ≤ p, and this implies
that i is always a natural number. Then

xyiz = xyp!/b+1z = 0a0p!/b+10p−a−b1p+p! = 0a+b(p!/b+1)+p−a−b1p+p! = 0p+p!+b−b1p+p! = 0p+p!1p+p!

which is clearly not in L, and therefore, L is not regular.

36

Chapter 1. Regular Languages 1.4. NONREGULAR LANGUAGES

Arguments via Closure

The pumping lemma is not the only way to prove a language is not regular. You may apply closure
properties of the regular languages.

Definition 1.9 (Dyck Language). Let the Dyck language be over the alphabet Σ = {(,)} which
consists of strings of valid, balanced parenthesis.

Some strings in this language include (), ()(), ((())()), ε, ((()())())(())(), and some strings not in
this language include ((), ()(,)(, (((((.

Theorem 1.9. The Dyck language is not regular.

There is a proof via the pumping lemma, but we shall prove it with closure instead.

Proof. Assume to the contrary the Dyck language D was regular. Since the regular languages are
closed under intersection, then consider D ∩ (∗)∗. The left side enforces that the number of opens
equals the number of closes, and the right hand side enforces that all the opens come before all the
closes. The intersection contains all strings which satisfy both of these properties and therefore is
equal to {(n)n | n ∈ N}, our canonical non-regular language, a contradiction. Therefore, the Dyck
language is not regular.

37

Context-Free Languages

39

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

2.1 Context-Free Grammars

A grammar a computational model that we have not yet seen. An automata is tasked with decision.
It takes on input and produces output. The set of strings it decides is exactly the ones it accepts.
A regular expression is tasked with description, in that it is a description of a set of strings. In
contrast to these, a grammar is tasked with production or generation. It is a defined set of rules
which are capable producing a string according to those rules. It takes no input. Defined with the
rules we give it, it will produce a string according to those rules.

Definition 2.1 (Context-Free Grammar). A context-free grammar is a four tuple (V,Σ, R, S) such
that:

• V is a finite non-empty set of non-terminals or variables. These are usually represented by
capital letters such as{S,A,B,X, Y }.

• Σ is a finite non-empty set of terminals or our alphabet. These are usually represented by
lower case letters such as {a, b}.

• R is a finite set of productions or rules. Each production is of the form V → (V ∪ Σ)∗. The
left-hand side of the production will always be a single non-terminal and the right-hand side
will be a string of (possibly zero) terminals and non-terminals.

• S ∈ V is our designated start non-terminal.

We define a working string as an element of (V ∪ Σ)∗V (V ∪ Σ)∗, a string over V ∪ Σ which
contains atleast one non-terminal. If we have a working string of the form αAβ with A ∈ V and
α, β ∈ (V ∪ Σ)∗ and there exists a production of the form A → w, we may apply a production to
transform this working string into another as

αAβ =⇒ αwβ

Here, we write αAβ ⇒ αwβ to indicate the application of a single production, and say αAβ yields
αwβ. We write u

∗⇒ v to indicate the application of zero or more productions. We say a string w
is produced by a grammar if there exists a sequence of working strings w1, ..., wk such that

S =⇒ w1 =⇒ w2 =⇒ ... =⇒ wk =⇒ w

We define the language produced by a context-free grammar G, as the set of strings it can
produce L(G) = {w ∈ Σ∗ | S ∗⇒ w}. Note that since w contains no non-terminals, no more
productions can be applied. A language is context-free if there exists a context-free grammar to
produce it.

Note that a CFG takes no input, and only produces exactly and only the correct strings. This
is why we say a grammar produces a string, but an automata decides or accepts a string.

Examples

Like a state diagram for an automata, you can specify all parts of the CFG by just giving the set
of productions. It implicitly gives the terminals and non-terminals, and we always denote S as the
start non-terminal, by convention.

40

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

Example 2.1. We give a CFG to produce {anbn | n ∈ N}.

S → aSb

S → ε

If we have two or more productions with the same beginning non-terminal, we may use “|” as a
shorthand to represent these two productions more concisely.

S → aSb | ε

This grammar still has two distinct productions. Most formally, we would specify this grammar as

G = ({S}, {a, b}, {(S, aSb), (S, ε)}, S)

but this quickly becomes cumbersome. Simply giving the production is sufficient. Let us say we
want to produce aaabbb. The sequence of productions we follow is

S =⇒ aSb =⇒ a(aSb)b =⇒ aaSbb =⇒ aaaSbbb =⇒ aaabbb

We repeatedly apply the first production. Then applying the second production once will
terminate our computation, as we no longer have any non-terminals. Notice that this CFG has to
produce all strings of the form anbn. Also observe that CFGs are non-deterministic, in that you
have can have a several productions to choose from, each perhaps a different computation. With S
in our working string, there are two productions you may apply, Between the productions S → aSb
and S → ε, one is non-deterministically chosen. This corresponds to how many a’s and b’s you
wish to produce.

This was also our canonical example of a non-regular language. This should convince you
atleast, that the class languages produced by context-free grammars, L (CFG), is not equal to the
regular languages. Later we will show it is a strict super set.

Example 2.2. We give a CFG for {wwR | w ∈ Σ∗}

S → aSa | bSb | ε

This generates even length palindromes. As we apply productions, the same symbol is produced on
the right and on the left of S. We can reuse the same idea to generate palindrome of odd length.

The productions S → a | b determine our middle character.

Example 2.3. We give a CFG for {wΣwR | w ∈ Σ∗}

S → aSa | bSb | a | b

Example 2.4. There are many equivalent context-free grammars for Σ∗. We could produce the
letters one at a time.

S → aS | bS | ε

We could also pair up letters and produce them two at at time.

S → aaS | abS | baS | bbS | a | b | ε

We need not produce them left to right either. We could produce them outside in.

S → aSa | bSb | aSb | bSa | a | b | ε

41

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

Example 2.5. A CFG for 1∗ could simply be

S → 1S | ε

Example 2.6. The empty set ∅ is context-free. If a grammar produces no strings, not even ε, it
is either trivial, or some how cannot eliminate non-terminals. A trivial one could be

S → X

X → S

A more complicated but equivalent one could also be

S → 1S

Working strings of this CFG will increase in length, yet no string is produced since there is no
S → ε for termination.

S =⇒ 1S =⇒ 11S =⇒ 111S =⇒ 1111S =⇒ 11111S =⇒ ...

Example 2.7. Recall our definition of the the Dyck language, which contains strings over Σ = {(,)}
of valid balanced parantheses. This language is context-free, and can be produced by the grammar
G.

S → (S) | SS | ε

Unlike our previous examples, the correctness of this grammar is not obvious. Why does it
produce all and only balanced strings? Lets prove it.

Theorem 2.1. The grammar G defined by the productions S → (S) | SS | ε produces exactly
and only valid balanced strings of parantheses.

Proof. Let D be the Dyck language, and G be the grammar as defined previously. We prove
L(G) = D by a double set containment.

First we prove L(G) ⊆ D. Let S
∗⇒ w. We wish to prove that w is balanced. We do so by

induction on the number of productions it takes to produce w. Our base case is a single production.
The only productions that have no non-terminals on the right-hand side is the S → ε rule, and we
agree that ε is balanced. Now assume that if S

∗⇒ u in k productions then u is balanced. Suppose
S

∗⇒ w in k + 1 productions. Consider the first possible production. Since |w| = k + 1, it could
have only been one of the two productions S → SS or S → (S).

• In the first case, if the first production was of the form S → SS, then our sequence of working
strings appears as

S =⇒ SS =⇒ ... =⇒ w

Therefore, there exists u, v such that w = uv and S
∗⇒ u and S

∗⇒ v. Further, production of
both u, v take ≤ k production steps. By our induction hypothesis, they are balanced. Since
the concatenation of balanced strings is balanced, we see that so must be uv = w.

• In the second case, our first production was of the form S → (S), then our sequence of
working strings appears as

S =⇒ (S) =⇒ ... =⇒ w

Therefore, there exists u such that w = (u) and S
∗⇒ u. Since production of u takes ≤ k

derivations, by our induction hypothesis, u is balanced. Therefore, so is (u) = w.

42

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

Next we prove D ⊆ L(G). Let w ∈ D be a balanced string. We prove that S
∗⇒ w by induction

on the length of w. Our base case is |w| = 0 and indeed S ⇒ ε. Assume that if w ∈ D and

|u| < k+ 1 then S
∗⇒ u. Consider w ∈ D with |w| = k+ 1. We may assume that |w| ≥ 2. So there

exists a distinct first and last symbol. In fact, the first symbol of every balanced string is always
an open, and the last symbol is always a close. So there exists a string u with length k − 1 such
that w = (u). We have two cases.

• Our first case is if u is balanced. Since |u| = k− 1, then by our induction hypothesis, S
∗⇒ u.

Then S
∗⇒ w using the S → (S) production first as

S ⇒ (S) ⇒ ... ⇒ (u)

• In the second case, we consider if u is not balanced. The first open and last close, do not
match to each other. Since they must match to something, there exists balanced x, y such
that w = xy. Then there exists a sequence of productions of w as

S =⇒ SS ⇒ ... ⇒ xy

We may conclude this grammar produces exactly and only balanced strings.

Example 2.8. Many programming languages have their syntax specified via a CFG. We give
a CFG for the well formed formulas of the propositional calculus. A proposition has a formal
definition as follows. A term is either a propositional variable or a constant symbol t or f . All
terms are propositions. If f1, f2 are propositions, then so are (f1 ∨ f2), (f1 ∧ f2) and ¬f1. Let our
alphabet be Σ = {(,),∨,∧,¬, 1, t, f} where 1n is a representation of the nth propositional variable,
instead of p1, p2, A proposition has a natural recursive definition, so we build a CFG exactly to
that idea. Our productions are then

S → (S ∨ S) | (S ∧ S) | ¬(S) | A | B
A → 1A | 1
B → t | f

Recall that the logical and, or, and negation are complete for propositional logic. If we wanted to
express p =⇒ q, instead we may derive (¬1∨ 11). We also have more paranthesis than necessary,
but notice that they are cheap, and can only help with ambiguity. This way we do not need a
PEMDAS style operator precedence rule to parse a proposition.

Example 2.9. We give a CFG for {w#x | x contains wR as a substring }. If x contains wR

as a substring, then x = Σ∗wRΣ∗, so w#x = w#(Σ∗wRΣ∗) = (w(#Σ∗)wR)Σ∗. We first will
nondeterministically produce and match w with wR, then we will produce the rest of x.

S → XY

Y → aY | bY | ε
X → aXa | bXb | #Y

This is an interesting grammar, as it shows the power of nondeterminism. You may have had to
create some previous non-trivial deterministic algorithms in order to find the longest palindromic
substring. You were looking for a needle in a haystack. Here through the power of nondeterminism,
we can come at the problem from a different direction. First place the needle, then nondetermin-
istically build all possible haystacks around it.

43

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

Example 2.10. As our final example, consider the language over Σ = {a, b, c, d} as

{w ∈ Σ∗ | #a(w) + #b(w) = #c(w) + #d(w)}

We provide a context-free grammar for this language. One idea is that every time something on
the left hand side is produced, we ensure something on the right hand side is as well, with no
enforcment on order.

S → SaScS | SaSdS | SbScS | SbSdS | ε

Cumbersome, but technically correct. We know everytime we add something on the left, we must
add something on the right, and vice versa. But we can use nondeterminism to guess for us which
of a, b we add on the left and which of c, d we add on the right.

S → SLSRS | SRSLS | ε
L → a | b
R → c | d

Relationship with Regular Languages

TODO, drawing
Every regular language is context-free, but not every context-free language is regular. We can

prove the containment in two ways.

Theorem 2.2. Every regular language is context-free.

Proof. Let L (CFG) be the languages produced by context-free grammars. We prove

L (REX) ⊊ L (CFG)

by structural induction. First we prove our base cases. We give context-free grammars for ∅, ε, a, b.

• ∅: S → S

• ε: S → ε

• a: S → a

• b: S → b

Now assume our induction hypothesis. Let Gi, Gj be two CFGs to produce Li and Lj with
start non-terminals Si, Sj respectively. We prove that the context-free grammars are closed under
union, concatenation, and star.

1. Li ∪ Lj : Copy all productions, add new start state S, and a new productions S → Si | Sj

2. LiLj : Similarly, with new start state S add production S → SiSj

3. L∗
i : Similarly add new start state S and add productions S → SiS | ε

Since the context-free languages contain our bases cases and are closed under union, concatenation,
and star, and we know the regular languages are the smallest such class with this property, we may
conclude L (REX) ⊆ L (CFG).

44

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

Since we have given a context-free grammar for {anbn | n ∈ N} and have proven via the pumping
lemma it is not regular, we may add that the containment is strict. L (REX) ⊊ L (CFG).

Through a similar process to converting a regular expression into an NFA, you may apply
this proof to convert a regular expression into a context-free grammar, thus concluding the proof
that every regular language is also context-free. Later we will show CFLs are not closed under
intersection or complement. This may be intuitive, if you observe the behavior of a CFG. It only
knows how to grow correct strings. Given a grammar which produces only the right strings, it
gives no idea on how to create a grammar to only produce the wrong ones.

We give a second proof that every regular language is context-free. We define a new kind of
grammar to do so.

Definition 2.2 (Regular Grammar). A regular grammar is a four tuple (V,Σ, P, S) defined exactly
like a context-free grammar with the additional restriction. It may only have productions of the
form V → ΣV | Σ | ε. More specifically

A → aB

A → a

A → ε

Where A,B are any non-terminals and a is any terminal.

Clearly every regular grammar is also context-free. We claim the regular grammars are equiv-
alent to NFAs.

Theorem 2.3. The regular grammars produce exactly and only the regular languages.

Proof. Let L (RG) be the class of languages produced by regular grammars. We prove

L (RG) = L (NFA)

via double set containment. First we prove L (NFA) ⊆ L (RG) Let L ∈ L (NFA). Then there
exists an NFA N = (Q,Σ, q0, δ, F) to decide L. We construct an equivalent regular grammar
G = (V,Σ, P, S) to simulate this NFA.

• For Q = {q0, ..., qk} we have non-terminals V = {Q0, ..., Qk}

• Let the set of terminals of our grammar be the alphabet of our NFA.

• For q0 the start state of our DFA, we designate our start non-terminal as Q0

• For every transition of the form qj ∈ δ(qi, a), we add production Qi → aQj

• For every qf ∈ F , we add production Qf → ε

We argue this grammar is equivalent to our NFA. Suppose that N accepts a string w = w1...wn.
Then there exists a sequence of states traversed in our NFA during the accepting computation of
w, say s0, ..., sl. In our constructed grammar, there exists an analogous derivation of the form

Q0 =⇒ w1S1 =⇒ w1w2S2 =⇒ ... =⇒ w1...wnQf =⇒ w1...wn

and thus the grammar derives the string. If the NFA N rejects a word, then all computation paths
reject. In our grammar, all possible derivations cannot produce w1...wn since if there is a working

45

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

string of the form w1...wnQi, we explicitly do not have a Qi → ε production. Thus we see this
grammar and this automata are equivalent.

Next we prove L (RG) ⊆ L (NFA), and the construction is nearly identical. Let G =
(V,Σ, P, S) be a regular grammar. We give an NFA N = (Q,Σ, q0, δ, F) to simulate G.

• For V = {S,X1, ..., Xk} our non-terminals, form a set of states Q = {q0, ..., qk}.

• Associate q0 with our start non-terminal.

• Let the alphabet of our NFA be the set of terminals of our grammar.

• For every production of the form Xi → aXj , add to our transition function qj ∈ δ(qi, a)

• For every production of the form Xi → Xj , add to our transition function qj ∈ δ(qi, ε)

• For every production of the form Xi → ε, add qi ∈ F .

The correctness of our NFA follows from a near similar argument as before. Thus we may conclude
that the regular grammars produce exactly and only the regular languages.

Either proof should convince you that we are working with a strictly more powerful model of
computation.

Chomsky Normal Form

Given a word w and a context-free grammar G, is w ∈ L(G)? This is a surprisingly non-trivial
problem. Unlike an automata which reads the word as input and determines yes or no, a grammar
must somehow nondeterministically produce only the correct strings. There is not an obvious
way to determine that a string is produced by a context-free grammar. It is even less obvious to
determine if a string is not produced by a context-free grammar. Chomsky normal form solves this.

Definition 2.3 (Chomsky Normal Form). We say a CFG is in Chomsky Normal Form (CNF) if
it has productions only of the form:

A → BC

A → a

where the A,B,C are any non-terminals, and the a is any terminal. Additionally B,C cannot be
the start non-terminal, and the rule S → ε is present if and only if ε ∈ L(G).

Any context-free grammar in CNF is still a context-free grammar. We describe a process to
convert any grammar into Chomsky normal form.

46

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

1. Add a new start non-terminal S0 and production S0 → S. Now every production will not
have the new start non-terminal anywhere on the right-hand-side.

2. Delete and patch all A → ε productions. For example if you have productions R → uAv and
A → ε, replace them with the productions R → uAv | uv.

3. Remove all unit productions of the form A → B. For example if you have productions
A → B,B → C, replace with production A → C. These steps may need to be repeatedly
applied until the grammar does not have the property that the step is trying to remove.

4. We remove all productions whose right hand side has length three or greater. Suppose we
have a production of the form

A → u1 . . . uk

where u1, ..., uk are terminals or non-terminals. This production can equivalently be rep-
resented by a chain of productions with right hand sides of length exactly two. Add non-
terminals A1, ..., Ak−2 and the following productions.

A → u1A1

A1 → u2A2

...

Ak−3 → uk−2Ak−2

Ak−2 → uk−1uk

5. For each appearance of a terminal a ∈ Σ in the right hand side of any production, replace it
with non-terminal A and add production A → a.

Note that the second step removes productions of length zero, the third removes productions of
length one, and the fourth removes productions of length three or more. What is left is that if a
production has a non-terminal on the right hand side, it has exactly two non-terminals. Now that
we know every CFG can be put into Chomsky normal form, this restricted structure enables us to
prove certain properties.

Theorem 2.4. Let w be a word of length n such that n ≥ 1. Let G be a context-free grammar in
CNF. If G produces w, it takes exactly 2n− 1 productions.

Proof. We consider the sequence of working strings in reverse.

w1...wn
∗⇐= 1 W1...Wn

∗⇐= 2 S

• The last productions (1) goes to n terminals from n non-terminals. At each production,
exactly one non-terminal is replaced by exactly one terminal, so this takes n productions.

• For (2), to go from n non-terminals to one terminal, our start terminal, requires n − 1
productions. Every rule of a grammar in CNF takes one non-terminal, and adds exactly two,
for a net of one non-terminal.

Combined, we see that a grammar in CNF form will take exactly n+(n− 1) = 2n− 1 productions
to produce a word of length n for n ≥ 1. This is the point of CNF, the limited structure allows us
to have a guarantee for an algorithm.

47

Chapter 2. Context-Free Languages 2.1. CONTEXT-FREE GRAMMARS

We can now determine for any context-free-grammar G and w if G could produce w. Convert
your grammar to CNF, compute a list of all possible productions of exactly 2n−1 steps. The word
w is in this list if and only if w ∈ L(G).

Example 2.11. We convert a grammar into CNF. Let us consider the grammar for {anbn | n ∈ N}

S → aSb | ε

We add a new start-nonterminal S0 and a S0 → S production.

S0 → S

S → aSb | ε

Next, we patch out the S → ε rule.

S0 → S | ε
S → aSb | ab

We now patch out unit rules.

S0 → aSb | ab | ε
S → aSb | ab

Rules of length more than two are simplified by adding non-terminals.

S0 → aX | ab | ε
S → aX | ab
X → Sb

For each appearance of a terminal on the right hand side of a production, we replace it with a
non-terminal.

S0 → AX | AB | ε
S → AX | AB
X → SB

A → a

B → b

This grammar is now in Chomsky normal form. To produce aabb, let us verify it takes 2n−1 = 7
productions.

S0
1

=⇒ AX
2

=⇒ ASB
3

=⇒ AABB
4

=⇒ aABB
5

=⇒ aaBB
6

=⇒ aabB
7

=⇒ aabb

48

	Contents
	Preliminiaries
	Exercises

	Regular Languages
	Deterministic Finite Automata
	The Generalization of Nondeterminism
	Regular Expressions
	Nonregular Languages

	Context-Free Languages
	Context-Free Grammars

