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Abstract. This paper describes a decentralized peer-to-peer model for building a Web crawler. Most of
the current systems use a centralized client-server model, in which the crawl is done by one or more
tightly coupled machines, but the distribution of the crawling jobs and the collection of crawled results
are managed in a centralized system using a centralized URL repository. Centralized solutions are known
to have problems like link congestion, being a single point of failure, and expensive administration. It
requires both horizontal and vertical scalability solutions to manage Network File Systems (NFS) and
load balancing DNS and HTTP requests.
In this paper, we present an architecture of a completely distributed and decentralized Peer-to-Peer (P2P)
crawler called Apoidea, which is self-managing and uses geographical proximity of the web resources to
the peers for a better and faster crawl. We use Distributed Hash Table (DHT) based protocols to perform
the critical URL-duplicate and content-duplicate tests.

1 Introduction

Search engine technology has played a very important role in the growth of the WWW. Ability to
reach desired content amidst huge amounts of data has made businesses more efficient and pro-
ductive. An important component of this technology is the process of crawling. It refers to the
process of traversing the WWW by following hyperlinks and storing downloaded pages. Most of
the currently available web crawling systems [5, 10] have envisioned the system as being run by
a single organization. The architecture of such a system is based on a central server model, which
determines which URLs to crawl next and which web pages to store and which to dump (in case, a
similar page is already available in the database by maybe, crawling a mirror site).

Such a system requires organizations to employ extremely resourceful machines and various ex-
perienced administrators to manage the process. For example, Mercator [10] used a machine with
2 GB of RAM and 118 GB of local disk. Google [5] also utilizes a special hardware configura-
tion and centralized management of tens and thousands of machines to crawl the web. Along with
higher costs, an important problem arises because of the congestion of the link joining the crawling
processes with the central server, where all the data is kept.

With the emergence of successful applications like Gnutella [9], Kazaa [11], and Freenet [7],
peer-to-peer technology has received significant visibility over the past few years. Peer-to-peer
(P2P) systems are massively distributed computing systems in which peers (nodes) communicate
directly with one another to distribute tasks or exchange information or accomplish tasks. P2P
computing has a number of attractive properties. First, it requires no additional hardware, and the
computing resources grow with clients. Second, it is self-organizing, incurring no additional ad-
ministrative costs due to scaling. Third but not the least, it is fault-tolerant by design. P2P systems
differ from each other in terms of how they exchange data or distribute tasks, and how they locate
information (lookup service) across the overlay network.
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In this paper we present a peer to peer approach to crawl the web. Apoidea1 is a fully decentral-
ized P2P system with no central authority, much like the family of bees it derives its name from. All
the bees (peers) work independently without any commanding authority to decide further crawling
and the data is kept distributed across the network. The task of crawling is divided amongst the
peers and we use DHT based distributed lookup and information-exchange protocols to exchange
vital information between the peers. Also, we use bloom filters [3] to store the list of URLs already
crawled by a peer. This makes the memory requirements at each peer very reasonable and easily
available at normal PCs of today.

The option of distributing the task of crawling across the internet also provides us of an oppor-
tunity to exploit geographical proximity of crawlers to the domains they are crawling. Our initial
results indicate that using such a feature can significantly speed up the crawling process. Also hav-
ing a decentralized system makes it possible to crawl the web with minimal or no supervision and
using well studied replication mechanisms, such a design is inherently more fault tolerant.

Please note that in this paper, we focus only on the crawling of the WWW. We do not present
any mechanisms for indexing and providing a complete search engine. These mechanisms have
been well studied and can be used on top of our design architecture.

The main advantages of Apoidea are as follows:

– Efficient: Apoidea utilizes peers geographically closer to the web resources to crawl. This can
lead to significant speed improvements and greater efficiency. It also serves as an automatic load
balancing mechanism for DNS servers and local proxy servers.

– Fully Decentralized: Apoidea is completely decentralized. This prevents any link congestion
that might occur because of the communications with a central server. The peers perform their
jobs independently and exchange information whenever they need to.

– Low Cost: Apoidea is a self-managing system. It means there is no need of manual adminis-
tration. The system automatically handles the dynamics of P2P systems - the entry and exit of
peers. Also the resource requirements at every peer are very reasonable.

– Greater Reach: With the increase in the number of peers in the system, we can potentially
reach a much greater part of the WWW as opposed to what conventional systems can do.

– Scalability: Apoidea has been constructed with an aim of scalability in mind and we envision
the system to work efficiently with huge WWW growth rates.

– Fault Tolerance: Since Apoidea takes into consideration entry and exit of peers, the system, by
design, is more fault tolerant than the ones available today, which have a single point of failure.

The rest of the paper is organized as follows:
Section-2 describes the basics of crawler design and a look at DHT based distributed lookup
protocols and bloom filters. Section-3 describes the complete architecture and working details of
Apoidea. In Section-4, we present our initial results and observations of the performance of the sys-
tem. In Section-5, we discuss how Apoidea could be used to build a World Wide Web search engine.
In Section-6, we discuss the work related to this paper. Finally, Section-7, contains our conclusions
and future directions of research.

2 System Design: The Basics

In this section, we briefly describe general design requirements for a web crawler. Then we will talk
about the work done in the area of DHT based P2P systems and bloom filters and how we intend to

1 Apoidea is a family of bees which does not have any queen bee



3

use them in our architecture. Later, in Section-3 we concretely explain how the whole system is put
in place and its workflow details.

2.1 Design Considerations

In this section, we describe the basic design components of any crawler and specifically the im-
portant design principles that have to be taken into consideration for distributed and decentralized
crawlers.

A typical web crawler consists of three primary components:

– Downloader: This component reads a list of URLs and makes HTTP requests to get those web
pages.

– URL Extractor: This component is responsible for extracting URLs from a downloaded web
page. It then puts the URL in the to-be-crawled list.

– Duplicate Tester: This component is responsible for checking for URL and content duplicates.

For the crawl, it also maintains the following data structures:

– Crawl-Jobs: It is the list of URLs to be crawled.
– Seen-URLs: It is a list of URLs that have already been crawled.
– Seen-Content: It is a list of fingerprints (hash signature/checksum) of pages that have been

crawled.

The downloader picks up URLs from the Crawl-Jobs data structure and downloads the page. It is
checked for a content duplication. If it turns out to be a duplicate, it is thrown away. If it is a new
page, its fingerprint is added to the Seen-Content data structure. The URL Extractor component
then processes this page to extract more URLs and normalizes them. The URLs are then checked
for possible duplicates and if found new, are added to the Crawl-Jobs list. Along with it, they
are also added to the Seen-URLs list. Both the duplicate tests have been proved to be important.
Encountering a duplicate URL is extremely common, due to popularity of content and a website
having common headers and footers for all its web pages. Duplicate pages occur due to mirror sites
and also when there are symbolic links at a web server, for example, both home.html and index.html
point to the same page on many web servers. In Mercator’s [10] experiments, around 8.5% of the
pages were duplicates.

For a distributed crawler, decisions have to made for selecting which crawler gets to crawl a
particular URL. This can be as simple as just picking up URLs from Crawl-Jobs sequentially and
giving it to the crawlers in the round robin fashion or can be based on a complicated policy. For
example, Google [5] uses various machines in a round robin manner and the Internet Archive [6]
crawler distributes them based on domains being crawled.

However, designing a decentralized crawler has many new challenges.

1. Division of Labor: This issue is much more important in a decentralized crawler than its cen-
tralized counterpart. We would like the distributed crawlers to crawl distinct portions of the
web at all times. Also there are potential optimizations based on geographical distribution of
the crawlers across the globe. In Section-3, we describe how we exploit the global presence of
the peers in the Apoidea system.
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2. Duplicate Checking: Even assuming each peer crawling a distinct part of the web, they will still
encounter duplicate URLs and duplicate content. Since there is no single repository of Seen-
URLs and Seen-Content data structures, the peers have to communicate between each other
and decide on the newness of a URL or a page. And it is extremely important to keep these
communication costs to a minimum since we can potentially have thousands of peers across the
globe crawling the web at a very fast speed. We use DHT based protocols, which achieves these
lookups in ���������	��
 time, where � is the total number of peers.

It is important to notice that the above two components are not entirely disconnected from each
other. Having a good division of labor scheme can potentially save us on the duplicate decision
making part.

2.2 Crawling the Web Using a Peer to Peer Network

In the recent past, most of the research on P2P systems was targeted at improving the performance
of search. This led to the emergence of a class of P2P systems that include Chord [17], CAN [13],
Pastry [14] and Tapestry [2]. These techniques are fundamentally based on distributed hash tables,
but slightly differ in algorithmic and implementation details. All of them store the mapping between
a particular ���� and its �������� is a distributed manner across the network, rather than storing them
at a single location like a conventional hash table. This is achieved by maintaining a small routing
table at each node. Further more, given a ���� , these techniques guarantee the location of its ��������
in a bounded number of hops within the network. To achieve this, each peer is given an identifier
and is made responsible for a certain set of keys. This assignment is typically done by normalizing
the key and the peer identifier to a common space (like hashing them using the same hash function)
and having policies like numerical closeness or contiguous regions between two node identifiers, to
identify the regions which each peer will be responsible for.

For example, in the context of a file sharing application, the key can be a file name and the
identifier can be the IP address of the peer. All the available peers’ IP addresses are hashed using
a hash function and each of them store a small routing table (for example, for Chord the routing
table has only � entries for an � bit hash function) to locate other peers. Now, to locate a partic-
ular file, its filename is hashed using the same hash function and depending upon the policy, the
peer responsible for that file is obtained. This operation of locating the appropriate peer is called a
����������� .

A typical DHT-based P2P system will provide the following guarantees:

– A lookup operation for any key � is guaranteed to succeed if and only if the data corresponding
to key � is present in the system.

– A lookup operation is guaranteed to terminate within a small and finite number of hops.
– The key identifier space is uniformly (statistically) divided among all currently active peers.
– The system is capable of handling dynamic peer joins and leaves.

Apoidea uses a protocol similar to that of Chord [17], because of its simplicity in implemen-
tation. In Apoidea, we have two kinds of keys - URLs and Page Content. The term - a peer is
responsible for a particular URL, means that the URL has to be crawled by that particular peer and
for the page content, it means that the peer has information whether that page content has already
been downloaded (probably by crawling a mirror site) or not.

Now, a URL lookup can be done as follows. First, we hash the domain name of the URL. The
protocol performs a lookup on this value and returns the IP address of the peer responsible for this
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URL. Note that this choice will result in a single domain being crawled by only one peer in the
system. It was designed in this manner, since now a peer can use the Connection-Alive parameter
of the HTTP protocol and use a single TCP/IP socket while downloading multiple pages from a
particular domain. This significantly fastens the crawl, because we save on the costs of establishing
a TCP/IP connection with the domain, for every URL crawled, which would have been the case if
we had just hashed the complete URL and done a lookup on it.

The page-content is used as a key when we intend to check for duplicate downloaded pages. For
this, the page-content is hashed and a lookup is initiated to get the peer responsible for this page-
content. Note that, the page could (and in most case, would) have been downloaded by another peer
(since that is based on the lookup of the URL’s domain name). The peer responsible for this page
content only maintains the information and does not store the entire page.

Also, because of the P2P nature, the protocol must handle dynamic peer join and leave opera-
tions. Whenever a new peer joins the system, it is assigned responsibility for a certain portion of the
key space. In the context of a web crawler, the new peer is assigned those domains that hash onto
it. The peers that were currently responsible for those domains are required to send information
about the list of URLs already crawled in those domains to the newly entering node. A very similar
technique is used to redistribute the page signature information.

When a Peer P wants to leave the network, it sends all URL and page content information
currently assigned to it to other nodes. However, if the Peer P were to fail, then it would not be
able to send any information to other peers; that is the information about the keys held by Peer P
would be temporarily lost. This problem is circumvented by replicating information. Every domain�

is mapped to multiple keys ( ����� �����	�	�	�
� ��� ) which are in turn handled by distinct peers. However
only the peer responsible for key � � (primary replica) is responsible for crawling the domain

�
. The

peers responsible for the secondary replicas (keys ���� �����	�	�	��� ��� ) would simply store information as
to which URLs in domain

�
have been already crawled or not. However, if the peer responsible for

the primary replica crashes, the information held by it could be recovered using one of its secondary
replicas. For the sake of simplicity, we will consider only having one key for each domain in the
rest of the paper.

2.3 Managing Duplicate URLs using Bloom Filters

Bloom filters provide an elegant technique for representing a set of key elements ����������� �����	�	�	��� �����
to support membership queries. The main idea is to allocate a vector of � bits, initially set to 0
and choose � independent hash functions ���	�������	�	�	������� with range ������ ��	�	�	�!� �#"$ !� . For any key
�&%'� , the bit positions � � � � 
(��� � � � 
(�	�	�	�
����� � � 
 is set to one. Note that a particular bit location
may be set to one by more than one key. Now, a membership check is performed as follows. Given
a key � , we check for bits at positions �)��� � 
(������� � 
(�	�	�	�
����� � � 
 in vector � . If any of them is zero,
then certainly ��*%'� . Otherwise, we assume that the given key �$%$� although our conclusion
could be wrong with a certain probability. This is called a false positive .

The salient feature of the Bloom Filters is in the fact that one can trade off space ( � ) with
the probability of a false positive. It has been shown in [3] that using �+� ���),.- �/*�� independent
hash functions, one can reduce the probability of false positive to �0��132� �4�5 
76 8 . We can achieve a
probability of false positive as low as 0.001 for �)�95 independent hash functions and �/*��/�: 	� .

In the context of a web crawler, we can use a bloom filter to maintain the information about
a URL having been crawled or not. All the URLs that have already been crawled form the set � .
Now, to test a URL for its newness, we hash it to a value � and then check for membership of � in
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� . This will indicate whether that URL has already been crawled or not. Assuming that the WWW
contains about 4 billion pages and setting �/*��/�: 	� the size of our bloom filter would be � - , ��� -� 	�
bits or 5GB. Note that any practical implementation of the bloom filters would like to maintain the
entire filter in its main memory. Hence, it is infeasible to hold the entire bloom filter required for the
scale of the WWW in a single machine. In our design we divide the URLs in WWW amongst many
cooperating peers. Assuming that we have only a 1000 cooperating peers in different geographical
locations then each of these peers would have to handle about 4 million web pages, which would
in turn require a bloom filter of size 5MB. Given today’s technology, each peer can easily afford to
maintain this 5MB bloom filter in its main memory.

3 System Architecture

Apoidea consists of a number of peers all across the WWW. As explained in the previous section,
each peer is responsible for a certain portion of the web. In this section we first describe how we
perform the division of labor and how the duplicate checking is done in Apoidea. Then we briefly
describe the peer-to-peer (P2P) architecture of Apoidea, especially the membership formation and
the network formation of peers, and the single peer architecture in Apoidea, including how each
peer participates in the Apoidea web crawling and performs the assigned crawling jobs.

– Division of Labor: As we have already discussed in Section-2, we use a DHT-based system
for distributing the WWW space among all peers in the network. A Peer P is responsible for
all URLs whose domain name hashes onto it. In Apoidea, we do it using the contiguous region
policy, which will be clearer from the example shown in Figure-1. Assume that there are three
peers in the system - Peer A, B and C. Their IPs are hashed onto an � bit space and hence, will
be located at three points in the modulo � ring. Then, various domain names are also hashed
onto this space and they will also occupy such slots. The Peer A is made responsible for the
space between Peer C and itself. Peer B is responsible for space between Peer A and itself and
Peer C with the rest. From the figure, Peer A is responsible for the domain www.cc.gatech.edu.
Therefore Peer A will be the only peer crawling all the URLs in that domain. If any other peer
gets URLs belonging to that domain, it batches them and periodically send them to Peer A.
However, such a random assignment of URLs to peers does not exploit the geographical prox-
imity information. In order to ensure that a domain is crawled by a peer � ����� �� to the domain,
we relax the tight mapping of a domain to a peer as follows. Every Peer P maintains a list of
leaf peers that are close to Peer P in the identifier space. In the context of the Chord protocol, a
Peer P maintains pointers to � *�, successor peers and � *�, predecessor peers on its identifier ring.
Now, when a Peer P is assigned to domain

�
, it picks the leaf peer closest to domain

�
and

forwards the batch of URLs to it for crawling.

– Duplicate Checking: Let us assume that Peer P is responsible for domain
�

and that Peer � a
leaf peer of Peer P is actually crawling domain

�
. When any peer encounters a URL in domain�

, it sends the URL to Peer P since it is responsible for domain
�

. Now, Peer P batches a
collection of URLs in domain

�
and forwards them to Peer � . Recall that Peer � maintains

a bloom filter which indicates as to whether a URL is already crawled or not. Hence, Peer �
checks if a given URL is already crawled or not. If the URL were indeed already crawled then
it is simply dropped, else it is added to the Crawl-Jobs list.
In order to check page duplication, we hash the page contents onto the identifier space and
hence distribute them amongst the various peers in the network. Figure-2 shows an example of
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it. The page content of
www.cc.gatech.edu/research is hashed onto the ring and Peer C is responsible for it. Note that
the page would have been crawled by Peer A because the domain www.cc.gatech.edu hashed
onto it. When Peer A encounters that page, it needs to check whether that page is a duplicate
or not. So it looks up for the hash of page content and finds out Peer C is responsible for it.
Now Peer A can batch all such requests and periodically query Peer C about the newness. Peer
C can then batch the replies back. It also modifies its local Seen-Content list to note the new
pages that have been downloaded by Peer A. Note that the delay in getting the information
about the duplicity of a page is not performance-effecting since always, there is a significant
delay in downloading a particular page and processing that page. This is because the downloads
typically happen at a much faster rate than the processing and as a result the processing has a
significant lag from the download.

A

B

C

www.cc.gatech.edu

www.iitb.ac.in

www.unsw.edu.au

www.cc.gatech.edu/research
www.cc.gatech.edu/people
www.cc.gatech.edu/admissions

Batch A

  Batch A

Fig. 1. Division of Labor

��

��
�
��
� ��

������������������������������������������������ A

B

C

www.cc.gatech.edu

www.iitb.ac.in

www.unsw.edu.au

PageContent(www.cc.gatech.edu/research)

Page Duplication

Fig. 2. Content-duplicate checking

3.1 Apoidea Peer-to-Peer Network Formation

Peers in the Apoidea system are user machines on the Internet that execute web crawling applica-
tions. Peers act both as clients and servers in terms of their roles in performing crawling jobs. An
URL crawling job can be posted from any peer in the system. There is no scheduling node in the
system and neither does any peer have a global knowledge about the topology of the system. There
are three main mechanisms that make up the Apoidea peer to peer (P2P) system.

1. Peer Membership: The first mechanism is the overlay network membership. Peer membership
allows peers to communicate directly with one another to distribute tasks or exchange informa-
tion. A new node can join the Apoidea system by contacting an existing peer (an entry node)
in the Apoidea network. There are several bootstrapping methods to determine an entry node.
We may assume that the Apoidea service has an associated DNS domain name. It takes care
of resolving the mapping of Apoidea’s domain name to the IP address of one or more Apoidea
bootstrapping nodes. A bootstrapping node maintains a short list of Apoidea nodes that are cur-
rently alive in the system. To join Apoidea P2P Web crawling, a new node looks up the Apoidea
domain name in DNS to obtain a bootstrapping node’s IP address. The bootstrapping node ran-
domly chooses several entry nodes from the short list of nodes and supplies their IP addresses.
Upon contacting an entry node of Apoidea, the new node is integrated into the system through
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the Apoidea protocol’s initialization procedures. We will revisit the process of entry and exit of
nodes in Section-3.3.

2. Protocol: The second mechanism is the Apoidea protocol, including the partitioning of the
web crawling jobs and the lookup algorithm. In Apoidea every peer participates in the process
of crawling the Web, and any peer can post a new URL to be crawled. When a new URL is
encountered by a peer, this peer first determines which peer will be responsible for crawling
this URL. This is achieved through a lookup operation provided by the Apoidea protocol.
The Apoidea protocol is in many ways similar to Chord [17]. It specifies three important types
of peer coordination: (1) how to find peers that are best to crawl the given URL, (2) how new
nodes join the system, and (3) how Apoidea manages failures or departures of existing nodes.
A unique feature of the protocol is its ability to provide a fast distributed computation of a hash
function, mapping URL crawl jobs to nodes responsible for them.

3. Crawling: The third mechanism is the processing of URL crawling requests. Each URL crawl-
ing job is assigned to a peer with an identifier matching the domain of the URL. Based on an
identifier matching criteria, URLs are crawled at their assigned peers and cleanly migrated to
other peers in the presence of failure or peer entrance and departure.
From a user’s point of view, each peer in the P2P network is equipped with the Apoidea middle-
ware, a two-layer software system. The lower layer is the Apoidea P2P protocol layer responsi-
ble for peer-to-peer communication. The upper layer is the web crawling subsystem responsible
for crawling assigned URLs, resolving last-seen URLs to avoid duplicate crawling, and process-
ing crawled pages. Any application-specific crawling requirements can be incorporated at this
layer.

In the subsequent sections we discuss the Apoidea middleware that runs at every Apoidea peer
to describe the design of the P2P crawling subsystem in more detail. We also report some initial
experimental results obtained by evaluation of the first prototype of Apoidea P2P Web crawlers.

3.2 Single Peer Architecture

The architecture of every peer is composed of three main units:

1. Storage: This unit contains all the data structures that each peer has to maintain.
2. Workers: This unit consists of modules fetching pages from the WWW and processing them to

extract more URLs.
3. Interface: This unit forms the interface of each peer, handling communications within the

Apoidea network.

The complete architecture is shown in Figure-3.
Storage: This unit contains all the data structures maintained within each peer. These are:

– Crawl-Jobs: This is a list of URLs which are yet to be crawled by the peer. Since we batch
URLs to a peer domain-wise, we maintain it as a hashtable with domains as the keys and the
URLs belonging to that domain as the corresponding values.

– Processing-Jobs: This is a list of downloaded pages which are yet to be processed. The list is
just a Vector of pointers to the pages. After a certain number of pages, the rest are stored on
disk.

– Seen-URLs: This is a list of URLs that have already been crawled. This is used to prevent a
same URL being crawled again. We maintain it as a bloom filter.
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Crawl Jobs

Processing Jobs

Routing Table

World Wide Web

Query Reply

Page Duplication (OUT)

Send 
Query

Receive 
Reply

Page Duplication (IN)

Receive Send 
Send URLReceive URL

Downloader

Extractor

Seen URLs

Seen Content

Storage Workers

Interface
Batch

         URL (IN)       URL (OUT)

Fig. 3. System Architecture for a Single Apoidea Peer

– Seen-Content: This is a list of page signatures (hash), which have already been seen by some
peer in the network. An important point to be noted about this data structure of the peer is
that it contains the page signatures for which this peer is responsible for and not the pages it
downloads. Again, we use a bloom filter for this data structure.

– Routing Table: This is used to route the lookup queries to the right peer and it contains infor-
mation about a small number of nodes in the system [17].

The biggest complexity in this component is the choice of data structures, since the web crawler
is very extensive on resources, especially memory. The Crawl-Jobs and Processing-Jobs lists are
usually easily maintainable since there are a number of downloaders and extractors working on
them. Also the Routing-Table is a very small data structure. The main requirement is to efficiently
manage the Seen-URLs and Seen-Content data structures. These data structures increase in size
with the passage of time.

In order to maintain these data structures, we use bloom filters. Assume that the WWW has
about 4 billion web pages. From our experiments we observed that each domain has about 4K
URLs. Hence, the number of domains in the WWW would be about 1 million. Now, assuming that
1K peers participate in the crawling operation, each peer would crawl about 1K domains. For each
of the domains we maintain a bloom filter that indicates whether a particular URL in that domain
is already crawled or not. Noting the fact that these bloom filters need to hold about 4K URLs, we
chose the size of the bloom filter to be 8KB so that the probability of false positive remains below
one in a thousand (Using the formula in Section-2 and � = 8KB = 64K bits = 16 * 4K URLs).
Every peer maintains a bloom filter of size 8MB (8KB per domain * 1K domains per peer). The
peers also maintain the association between the domain name and its bloom filter in a hash table.
Observing the fact that the average length of an URL is 80B and the hash table needs to hold 1K
entries (1K domains) the size of this hash table would be about 80KB. Maintaining per domain
bloom filters is essential for handling peer joins and leaves. Recall that every peer is assigned some
domains. Hence, a newly joined node can construct its bloom filter for the domains assigned to it
by simply copying the relevant bloom filter from the peer that was previously responsible for that
domain.
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Note that by using a bloom filter we have specifically avoided storing all the seen URLs in
the memory. In fact, Mercator [10] uses this approach of storing all the URLs in the domain it is
currently crawling in its main memory. However, Mercator reports a hit rate of only 75%, which
warrants several costly disk I/O operations. Such costly disk operations might be suitable when the
peer is entirely dedicated to crawling. However, in a P2P scenario one would like to minimize those
operations that can significantly affect the normal functioning of the peer. Also using a peer to crawl
just a single domain at one time is inefficient since having a problem with that domain (say, shut
down for maintenance) will significantly reduce the throughput of the system.

Workers: This unit mainly consists two sets of threads - Downloader and Extractor.

1. Downloader: The Downloader threads pick up a domain from the Crawl-Jobs list and queries
� neighbors maintained in its neighbor list to find out the peer which can crawl that domain
fastest. This can be done in very short message exchanges with each peer measuring the round
trip time to that domain. If this peer is not the fastest peer, it can just pass on the URLs to the
fastest neighbor. Usually this happens because of the geographical proximity of the neighbor
to the domain being crawled. As our initial experiments indicate, this can be a very important
factor in the total speed of crawling the whole WWW.
The Robot Exclusion Protocol is taken into consideration before crawling any particular web-
site, so that any site which does not wish to be crawled is not crawled. As mentioned before,
each domain is assigned to a single peer. This significantly speeds up the crawl since that peer
uses the Connection-Alive feature of the HTTP protocol, in which a single open socket can be
used to download a number of pages.
After a page is downloaded, it is stored in a temporary data structure and checked for page du-
plication. If this is a new page, it is inserted into the Processing-Jobs list, else dropped.

2. Extractor: The Extractor threads pick up pages from Processing-Jobs list and extracts URLs
from that particular page. The URLs are extracted using the regular expression library of Java.
After the extraction, the URLs are normalized (changing relative URLs to exact URLs, remov-
ing extraneous extensions like “javascript:”, which cannot be handled by the crawler etc). These
URLs are then kept in a temporary data structure from where they are periodically picked and
batched to be submitted to the appropriate peers, that is, the peers who are responsible for them.
This temporary data structure is a hash table with URLs belonging to the same domain in the
same bucket.

Interface: While crawling, the peers have to communicate with each other in the following scenar-
ios:

1. Submission of URLs: Peer A may extract URLs (from a page it crawled) which Peer B is re-
sponsible for, that is, the domain of those URLs is hashed to be belonging to Peer B. Peer A
batches these URLs and periodically send the URLs to Peer B. Then Peer-B simply ignores the
URLs that is has already crawled else it adds them to its Crawl-Jobs list.

2. Checking for Page Duplication: After Peer A downloads a page, it has to check if a similar page
is already available in the network or not. It does a lookup on the page hash and contacts the
peer responsible for that hash value, say Peer B. In case Peer-B has the same page, Peer A will
drop that page, else it stores it. Also Peer B notes that such a page is available in the network
now.
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3. Protocol Requirements: Such communications are required to maintain and stabilize the net-
work. It includes periodic message exchange between neighboring peers to identify if a new
peer has joined the network or some peer has exited the network.

We use low-cost UDP messages for the exchange of this information and a set of batching threads
that periodically pick up batches of information for various peers and send the data.

3.3 Entry and Exit of Peers

In this section, we will illustrate how Apoidea handles dynamics associated with a P2P system - the
entry and exit of peers.

Entry: Like any P2P based system, there will be a few bootstrap servers; at all times, there will be at
least one which will be up and active. These servers act as entry points into the network. Whenever
a peer wants to join the Apoidea network, it will contact a bootstrap server, which will point it to a
node active in the network. Depending upon the IP address of the entering peer, the node will help it
get the routing table required to participate in the network. Also the network stabilizes recognizing
the entry of a new node. This procedure is inexpensive and can be easily accomplished using known
methods provided by Chord [17].

During this stabilization process, the node which holds a list of Seen-URLs that the new peer is
responsible for now, will send that data to the new peer. This data is just a short bloom filter for the
domains that hash onto the new peer. Similar transfer will take place for the page content. After a
peer has joined the network, it will periodically begin to get URLs of the domains it is responsible
for and it will start the crawling process.

Exit: When a Peer P needs to leave the system, its Seen-URLs and Seen-Content have to be trans-
ferred to the peer which will be responsible for it now. The new responsible peer will always be a
neighbor of Peer P on the ring space. This neighbor information is always stored at the peer as part
of the routing table. Therefore, before its exit, it can just send the Seen-URLs and Seen-Content
information to that neighbor.

In case of a peer failure, the network stabilization process corrects the routing tables of the
peers in the network. However, we would have lost the information regarding Seen-URLs and
Seen-Content. To prevent this, as mentioned in Section-2, we can maintain multiple replicas of
this information. The meagre requirements of memory due to the use of bloom filters makes it
possible for peers to act as primary as well as secondary replicas for various keys.

4 Results and Observations

We conducted experiments on geographical proximity and the scalability of Apoidea. Using a primi-
tive Java implementation of the crawler, we crawled four similar domains (in terms of their network-
ing infrastructure) from Georgia Institute of Technology: .edu domains starting form www.cmu.edu
in USA, .ac.jp domains starting from www.u-tokyo.ac.jp in Japan, .edu.au domains starting from
www.unsw.edu.au in Australia and .ac.in domains starting from www.iitb.ac.in in India. The results
from our experiment are shown in Figure-4. Clearly, the figure shows that .edu domains being geo-
graphically the closest can be crawled at about twice the speed of the geographically farther domains
like .edu.au. Given the fact that the networking infrastructure of these domains are comparable, a
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domain like www.unsw.edu.au can be crawled at about twice the speed from a geographically closer
location. This, in turn, can have a huge impact on the total speed of the web crawl.

We performed two experiments on scalability. In our first experiment, we measured the resource
requirements (CPU + Memory) on a single peer. We ran Apoidea on a Intel Pentium 550MHz
machine under two scenarios: high load (running a ns2 simulator) and low load. Note that we
intentionally chose a heavily loaded machine so as to restrict the resource utilization of Apoidea.
Figure-5 shows the performance of Apoidea in terms of the number of URLs crawled per second
with varying number of Java threads. Observe that when the machine was otherwise heavily loaded,
Apoidea’s performance does not increase with the number of threads for more than two threads
(other than the JVM’s overhead in handling more threads), since at any time most of the threads
stay in the sleep state. Also note that under high load, Apoidea’s CPU utilization was restricted
to 3% and its memory consumption was limited to only 30MB. However, under lightly loaded
conditions, the maximum rate is achieved when a peer employs six threads. Note that under lightly
loaded conditions, Apoideas CPU utilization was 30% and its memory consumption was 30MB.
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In our second experiment on Apoidea’s scalability, we increased the number of peers participat-
ing in the system. We experimented on a maximum of 16 machines on the same local area network
in Georgia Institute of Technology. Note that the peers were either heavily loaded or lightly loaded
as in described in our previous experiment. Also, each peer used two threads under heavy load and
six threads under light load so as to obtain the best performance (from Figure-5). Figure-6 shows
the performance of Apoidea with varying number of peers. Note that when only one peer was run-
ning Apoidea there is no cost of interaction between the peers. Hence, adding the first peer lowers
Apoidea’s performance. However, note that with subsequent addition of peers, the performance al-
most flattens out even for small peer population of the order of 12 or 16 irrespective of the load on
the peers.

In the near future, we propose to study the performance of Apoidea in the presence of a large
peer population, possibly across multiple geographical locations. This will require volunteers from
all over the world to run Apoidea. Second, we would like to measure the crawl refreshing speed; that
is, having crawled the entire WWW once, we want to measure the speed at which the WWW can
be crawled only for updates during the second and subsequent crawls. Third, we want to perform
experiments on the reliability of the system and see the impact dynamic peer failures and replication
can have on the overall network.
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5 Application: A World Wide Web Search Engine

Several papers have proposed architectures to build scalable distributed indexes for keyword search
over P2P networks [12, 8]. Their designs are layered over distributed hash table based P2P systems
like Chord [17]. [12], inspired by the ranking system used by Google, exploits statistics about popu-
lar documents and hosts in building distributed inverted indexes and answers a query by computing
a join over the indexes matching the query keywords. On the other hand, [8] builds a distributed
inverted index keyed on all combinations of multiple keywords. Thus [8] avoids the overheads of
computing joins thereby saving on the network bandwidth at the cost of storage space (Note that
the total storage space required grows exponentially with the set size of keyword combination used
to build the inverted index).

Apoidea in conjunction with these distributed indexing architectures can be used to implement
a search engine for the World Wide Web. We envision a distributed search engine wherein both
Apoidea and distributed indexing architectures like [12, 8] co-exist on any node in the P2P network.
Apoidea crawls the World Wide Web and extracts relevant keywords from web pages. The indexing
architecture builds a distributed inverted index and evaluates keyword-based search queries. Note
that both Apoidea and the distributed indexing system can share a common underlying lookup
protocol layer based on DHT-based P2P systems. Further, one can package the Apoidea and the
distributed indexing scheme as a screen saver (like SETI@home [15]) so that the search engine on
each node uses its idle CPU cycles and network bandwidth.

6 Related Work

Most of the research in the area of web crawlers has been based on centralized architectures. While
[5, 10, 6] were a single machine architectures, [16] presents the design of a distributed crawler.
The common feature of all those architectures being a centralized location storing all the critical
data structures and a central manager controlling various crawler components. Such an architecture
is complicated and requires high maintenance. Since the controlling organization will be using a
single link with the internet, it requires a very high bandwidth connection. In addition, it requires
complicated load balancing for HTTP and DNS requests.

The P2P decentralized solutions, in addition to not suffering from above mentioned issues has
other potential benefits as well. Having an autonomous solution prevents costly administration re-
quirements and is more fault tolerant. Also it has the immense potential to exploit geographical
proximity of various peers to the web resources. There have been a few attempts at developing
P2P decentralized versions of crawlers. Boldi et al [4] looked at the fault tolerance properties of
such crawlers, showing that such an architecture will be more fault tolerant. [18] also attempted to
provide a loosely connected P2P design. However, both of those works did not provide a concrete
mechanism of assigning jobs to various peers and load balancing between them.

We would also like to mention the work done in the area of distributed P2P lookup protocols.
There are several P2P protocols proposed so far [2, 13, 14, 17]. Apoidea P2P web crawler is built
on top of Chord [17]. Most of the routed query based P2P protocols are motivated by file sharing
applications. However, none of them are really suitable for file sharing applications due to the
problems in providing flexible mappings from file name search phrases to file identifiers. (One
such insufficient mapping is provided in [1]). It is interesting to see that web crawling can benefit
from a P2P approach, being an extremely suitable application domain for routed query based P2P
protocols.
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7 Conclusions and Future Work

In this paper, we have presented a decentralized P2P architecture for a web crawler. We have de-
scribed the complete design and structure of the system. We show how optimizations based on
geographical proximity of peers to the web resources can significantly better the crawling perfor-
mance and results. We have also presented a sample mapping scheme that achieves this goal. Also,
through our initial experiments we have shown the nice scalability of our architecture.

For the future, we would like to run the system in a wide scenario and test its properties. On the
research side, we would like to enhance the URL mapping scheme in a way that implicitly handles
geographical proximity. Also, security is a key problem when using an autonomous collection of
peers. We intend to explore issues preventing malicious behavior in the network.
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