
A Distributed Approach to Node Clustering in Decentralized

Peer-to-Peer Networks

Lakshmish Ramaswamy, Bu
�
gra Gedik and Ling Liu

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332�
laks, bgedik, lingliu � @cc.gatech.edu

Abstract

Connectivity-based node clustering has wide-ranging applications in decentralized peer-to-peer
(P2P) networks such as P2P file sharing systems, mobile ad-hoc networks, P2P sensor networks, and
so forth. This paper describes a Connectivity-based Distributed Node Clustering scheme (CDC). This
scheme presents a scalable and an efficient solution for discovering connectivity-based clusters in peer
networks. In contrast to centralized graph clustering algorithms, the CDC scheme is completely decen-
tralized and it only assumes the knowledge of neighbor nodes, instead of requiring a global knowledge
of the network (graph) to be available. An important feature of the CDC scheme is its ability to cluster
the entire network automatically or to discover clusters around a given set of nodes. To cope with the
typical dynamics of P2P networks, we provide mechanisms to allow new nodes to be incorporated into
appropriate existing clusters and to gracefully handle the departure of nodes in the clusters. These mech-
anisms enable the CDC scheme to be extensible and adaptable in the sense that the clustering structure
of the network adjusts automatically as nodes join or leave the system. We provide detailed experi-
mental evaluations of the CDC scheme, addressing its effectiveness in discovering good quality clusters
and handling the node dynamics. We further study the types of topologies that can benefit best from
the connectivity based distributed clustering algorithms like CDC. Our experiments show that utilizing
message-based connectivity structure can considerably reduce the messaging cost and provide better
utilization of resources, which in turn improves the quality of service of the applications executing over
decentralized peer-to-peer networks.

Index Terms: Distributed node clustering, Connectivity based graph clustering, Peer-to-peer net-
works, Decentralized network management.

1 Introduction

In recent years the field of distributed data management systems has witnessed a paradigm shift from the

traditional client-server model to the peer-to-peer (P2P) computing model. While file-sharing applications

1



like Gnutella [17] and Kazaa [21] were the harbingers of this change, various other systems like mobile

ad-hoc networks and P2P sensor networks have adopted this model of computation and communication.

Although these systems appear to be disparate, all of them share some distinct characteristics:

� Network and data management are completely decentralized.

� Individual nodes have limited knowledge about the structure of the network.

� Networks are highly dynamic with frequent entry and exit of nodes.

In this paper we use the term peer-to-peer systems in a generic sense to refer to any system that pos-

sesses these characteristics. Although, the P2P distributed computing paradigm alleviates the scalability

problem that has dogged client-server systems and enables a lot of interesting and useful applications, it

also raises key research challenges that need to be addressed by the community, such as: (1) Scalable

techniques for data discovery and peer look-up; and (2) Efficient mechanisms for communication among

nodes in the network. The strategies adopted by most of the present systems to address these challenges

are costly in terms of the number of messages required.

It is our contention that the absence of any knowledge of the network structure is proving to be a

stumbling block in utilizing the full capabilities of P2P networks. We believe that every such network

exhibits some unique structural properties and discovering these network structures is crucial to efficient

data discovery, node look-up, and communication.

Connectivity-based node clustering is one such interesting and important network structure that can

be utilized in various ways to improve the quality of service of applications running on these networks.

Informally, a connectivity-based node clustering (hereafter referred to as node clustering) can be defined

as a partition of network nodes into one or more groups based on their connectivity. We provide a formal

definition of a node cluster in Section 2. For now we shall assume that two nodes that are highly connected

are placed in the same cluster.

To illustrate the utility of node clustering, consider a P2P file sharing system like Gnutella [17] or

Freenet [15]. Let us examine how node cluster information can be utilized to design intelligent file repli-

cation schemes in P2P file sharing systems. The problem here is to reduce the number of replicas of files,

while ensuring that average file download latency does not increase significantly. Some systems replicate

a file at each node the file passes through. Other systems replicate a file only at those nodes which down-

loaded the file. A simple scheme that uses cluster information would limit the number of replicas in each

cluster to some small value. A discussion on the various other applications of node clusters in different

P2P systems is provided in Section 6.4.

2



Although some researchers have applied clustering information to address certain key problems [8, 22]

in decentralized P2P networks, very few of them have studied the problem of discovering and maintaining

node clusters in P2P systems. There has been considerable research in the algorithm community addressing

the problem of clustering nodes in directed and undirected graphs. Although P2P systems are essentially

undirected graphs, most existing graph clustering algorithms assume that the entire graph information is

available in one central location. Unfortunately, none of the P2P networks maintain their complete and

up-to-date connectivity information. Therefore the need is to design schemes that can cluster the nodes

of a network in a completely distributed and decentralized manner. Further, as P2P networks are highly

dynamic, efficient schemes are needed to incorporate newly entering nodes into the cluster structure and

gracefully handle the exit of existing nodes in the network.

With these problems in mind, this paper presents a Connectivity-based Decentralized Node Clustering

scheme (CDC), a scalable and an efficient solution for discovering connectivity based clusters in peer

networks. Among the research questions addressed are:

1. Can we develop accurate and efficient algorithms and protocols to cluster the network of nodes

in a completely distributed fashion? In other words, can we discover node clusters without ever

constructing a complete view of the network?

2. How accurate can such distributed node clustering schemes be, when compared with centralized

clustering algorithms?

3. If the nodes are allowed to arbitrarily enter and leave the system, what mechanisms can be adopted to

handle such node dynamics, without having to re-cluster the whole network every time a node exits

or enters the system?

4. How accurate and beneficial are these mechanisms when compared with the option of re-clustering

the network on the entrance and the exit of each node?

In contrast to centralized graph clustering algorithms, the CDC scheme only requires local knowledge

about neighboring nodes. An important strength of the CDC scheme is its ability to cluster the entire

network automatically, or to discover clusters around a given set of nodes. Another strength of the CDC

scheme is the mechanisms to handle dynamics of nodes without resorting to re-clustering at each entry

and exit. Our experimental results indicate that these schemes are not only efficient but also maintain high

quality clusters. These mechanisms enable the CDC scheme to be extensible and adaptable in the sense

that the clustering structure of the network may alter according to nodes joining or departing the system.

A detailed experimental evaluation of the CDC scheme is provided, showing the effectiveness of the CDC

3



scheme in discovering good quality clusters and handling the node dynamics. We have further studied the

topologies that can benefit best from the connectivity-based distributed clustering algorithms like CDC.

2 Definitions and Terminologies

The connectivity structure of every P2P network can be represented by an undirected graph with nodes

of the P2P network forming the vertices and connections between nodes being the edges of the graph.

Henceforth we use the terms graph and network interchangeably. Similarly, the terms node and vertex are

used equivalently, and so are the terms edges and connections.

Let �����
	���
�� be an undirected graph, where 	�����	�����	�����	�������������	 �"! is the set of nodes and 
��
�#
$����
%�&�'
%���(�������'
*)+! is the set of edges in the graph G. The number of edges incident upon a node in graph

� is termed as its degree. Two nodes 	 , and 	.- are termed neighbors if there is an edge 
0/1�2�3	4,5��	.-6�
connecting them in the graph. Two nodes 	7, and 	8- in the graph are said to be connected if there exists

a series of consecutive edges �#
9�6��
%�(��
%�(����������
*):! such that 
$� is incident upon the vertex 	 , and 
�; is

incident upon the vertex 	<- . The series of edges leading from 	 , to 	8- is called a path from vertex 	�, to 	8- .
The length of a path = is the number of edges in the path. A graph � is said to be a connected graph if and

only if (iff) for any two vertices 	 , and 	.- in � , there exists at least one path connecting them.

A dissimilarity function > on the vertices of a graph � is a symmetric function mapping 	�?@	 toA1B8C
, where

A1B8C
is the set of positive real numbers and >7�EDF�'G<�H�I>7�JG7�KDL� . Further the function satisfies the

condition that >7�JG7�KDL�$�NM iff GO�ND . Equivalently, a similarity function P can be defined on the vertices

of a graph as a symmetric function from 	N?Q	 to
A*B8C

, such that P.�EG �'DR�"�TS iff DU�VG . The similarity

and dissimilarity functions may be appropriately defined according to the semantics of the graph under

consideration and the application at hand.

The general problem of clustering on a set of data points is to partition the data point set into natural

groups [20]. Intuitively, a natural grouping of data points can be thought of as a grouping based on the

similarity measure between points in a group. Two points > � and >.� belong to the same cluster if the

similarity between them is high. Otherwise, the two are assigned to different clusters.

The Euclidean distance is the predominantly used similarity function for clustering data points in Eu-

clidean spaces. However, similarity functions can be defined in a host of meaningful ways for clustering the

nodes in a graph. Two of the most popular similarity functions have been the number of K-paths between

the vertices and the reach probability from one vertex to another in the graph.

A clustering WYX of a graph �Z�V�3	[��
\� is a collection of sets �#W]X3����W]X^�&����������W]X`_a! , satisfying the follow-

ing three conditions: (1) each W]Xb/ is a non-empty subset of vertices ( cLW]Xb/J��W]X^/edf	 ) and g /ih�_/ihR� W]X^/[�j	 .

(2) Any two nodes in WYX`/ , kmlnXolnp , are similar. (3) Any two nodes belonging to two different sets, say

4



WYX�/ and W]X�q , are dissimilar. Each WYX`/ in W]X is termed as a cluster. A clustering = is termed as a disjoint

clustering if the clusters are pair-wise disjoint. That is WYXb/srtWYX�q@�vu4�wcH�
W]X^/J��W]X�qo�yxzWYX .
For the graph clustering problem, the similarity can be defined in host of meaningful ways. Each of

these definitions leads to different natural clusters and have different applications. However there are some

properties that most useful clustering schemes share.

� In a graph � , for any two nodes 	 , and 	.- which belong to the same cluster W]Xb/ , there exists at least

one path in � such that all intermediate vertices along that path lie in W]XJ/ .
� For a graph � , any two vertices lying in the same cluster tend to have a large number of paths

connecting them.

� A random walk [24] on the graph � tends to visit most of the nodes in a cluster multiple times before

it leaves the cluster.

Based on these properties of a good clustering, a number of graph clustering algorithms have been pro-

posed. The two most popular schemes are the K-path clustering algorithm and the MCL algorithm [35].

Like most existing graph clustering algorithms, both of them assume that global information about the en-

tire graph (i.e., the number of vertices, the number of edges, and their connectivity) is available in one

central location. Unfortunately, most P2P systems promote decentralized network management, where

each node knows only its neighbors and has no explicit knowledge of other nodes in the system. The chal-

lenge here is not only how we can find clusters under decentralized management, but also how accurate

and efficient such algorithms are in finding good clusters.

3 CDC Scheme for Graph Clustering

In contrast to centralized graph clustering algorithms, the problem of distributed clustering assumes that

each node has a limited view of the entire network. In this section we present our scheme for distributed

node clustering, termed as the Connectivity-based Decentralized Node Clustering scheme (CDC). First, we

first formalize the distributed node clustering problem and then discuss the CDC approach.

Let �{� �
	��'
\� be an un-weighted, undirected graph. Each node 	7, in this graph is mapped to an

autonomous and independent computing element W]
0, . Further each of these computing elements knows

only its neighbors. In other words, the node W]
*, has the knowledge of the existence of another node WY
y-
iff WY
1, and W]
|- are neighbors in the graph � . This condition has important connotations. First, it implies

that we do not have a centralized global view of the graph � . Second, it also means that each node can

communicate only with its immediate neighbors. If a node ever wants to reach another node that is not

its neighbor, then it would have to route the message through one of its neighbors. The problem is how

5



to discover reasonable node clusters in the graph � in a completely distributed fashion, i.e. without ever

constructing a global view of the graph.

The problem setting described above reflects the scenario in real-world systems like P2P file sharing

systems, P2P sensor networks and ad-hoc mobile networks. For example, in the Gnutella network [17],

each peer maintains a live TCP connection with a few other peers, which are called its neighbors. The

knowledge of each peer about the network is limited only to its immediate neighbors.

The central idea in the CDC scheme is to simulate flow in the network in a distributed and scalable

fashion. Clustering a graph through flow simulation is based on the following intuition. Let us think of the

graph as a network of mutually intersecting roads. The roads are the edges of the graph and the intersection

of two or more roads are the nodes of the graph. Suppose a large number of people who do not know

the structure of the roads start out from a node 	7, in the road graph, which we call the originator node.

Let each person carry a weight }~, along with him. As these persons are not aware of the structure of the

roads, they choose any of the roads starting out from the node 	R, and travel along the road to reach another

intersection. Whenever they reach an intersection, they drop some of the weight they are carrying at the

intersection. Then they choose another road at random and continue to travel along that road to execute the

same cycle till they are tired of walking or the weight they carry becomes negligible. Now if one were to

aerially observe the roads and the intersections, he would observe two facts:

� If the graph structure has a densely connected graph structure around the originator node, then a

high percentage of people can be observed in the nodes (intersections) and edges (roads) that lie in

the dense region (i.e. cluster) around the originator. The nodes and edges that are not in the dense

structure would have relatively few people in them.

� Nodes that lie inside the cluster would have accumulated a higher weight when compared with the

nodes that are remotely approachable from the originator.

These observations lead us to the central idea of the algorithm. If there are a few originators in the

graph from where people would start their random walk, the nodes would acquire weight from different

originators. The idea then is that each node would join a cluster from whose originator it received the

maximum weight. However if a node did not receive enough weight from any node, then it decides to be

an outlier (a node that does not belong to any cluster).

In a distributed P2P network, peer nodes are analogous to intersections, and connections between peers

represent roads. People moving about are simulated by messages that are circulated in the network. Each

message has a predefined Time-to-Live ( �"�*� for short). Each message executes only �%�*� hops, after

which it expires and is discarded.

6



1/4

1/4

1/4 1/4

1/31/3

1/
3

1/4

1/4

1/4

1/4

3:    1/4

3:    1/4

3:     1/4

3:     1/4

11:    1/3

11:   1/3

11:    1/37:     1/4

7:     1/4

7:     1/4

7:     1/4

1/12

1/16

1/
12

1/16
1/16

1/1
2

1/1
61/1

6

1/9

1/1
2

1/12

3:    0.6937

3:    0.6924
7:     0.1345

7:     0.0755
11:   0.0069

3:    0.7254
7:     0.1727

11:    0.0440

3:    0.7185
7:     0.4219

11:    0.0122

3:     0.1580
7:     0.1745

11:    0.2072

3:     0.0668
7:    0.6957
11:   0.0891

3:     0.0391
7:    0.6836
11:    0.2106

3:     0.0378
7:    0.6263
11:    0.0503

3:     0.0330
7:     0.0734

11:    0.9371
3:     0.0052
7:     0.0391

11:   0.8513

3:     0.0091
7:     0.1589

11:   0.9279

1st Step 2nd Step

Final using TTL=4

1

0

2

3

4

5

6

7 8

9

10

11

12

13

1

0

2

3

4

5

6

7 8

9

10

11

12

13

1

0

2

3

4

5

6

7 8

9

10

11

12

13

3:     0.6552
7:      0.1606

11:     0.0069

3:     0.1606
7:     0.5443
11:    0.0521

3:     0.0052
7:     0.0391

11:   0.6044

Figure 1: CDC Illustration

3.1 CDC Algorithms

In this section we concretize the algorithms of the CDC scheme and provide their pseudo-code. The

algorithm starts out by initiating messages from a set of nodes that are the originators of the clustering

algorithm. The set of originators is represented by �f�j�#���'�����������������$_a! . These originator nodes initiate

the process of message circulation by sending out messages to all neighbor nodes. Each cluster message is

a tuple consisting of the following five fields:

� Originator ID (OID): A field uniquely identifying the originator node

� Message ID (MID): A field distinguishing each message from all other messages from the same originator.

� Message Weight (MWeight): The weight carried by the message

� Source ID (SourceID): A field indicating the most recent node the message visited

� Time to Live (TTL): The maximum number of hops this message can be re-circulated

The algorithm for the originator selection itself is completely distributed and is explained in detail in

Section 3.2. For now we assume that we have been provided with a set of originators.

The �[�#D �������8� , the �v�<� and the �Y�8� fields in the message tuple are self explanatory. The weight

function that we use estimates the probability of reaching any node from originator nodes. An originator

node ��/ initializes message weight as ��P(�7����}n���E�4���1� ����E�����3�������i  . The TTL field may be set to a small

integer value. The only constraint is that all originator nodes should use the same TTL value.

Each node 	�, maintains a set of values, represented as �0�&�w¡.XE}Z���E���4���
	7,5�'��/�� . This value indicates the

sum of the weights from all the messages that originated at �]/ and reached 	�, . On receiving a message

7



��P(� , the recipient 	�, updates the �*�&�w¡8XE}n���
����� function corresponding to the message originator. Then

the node 	�, checks whether the �"�0� of the message is greater than M . If so, 	R, forwards the message to all

its neighbors. Before the re-circulation, the recipient updates the ��}n���
����� and the �"�*� . The message

weight is divided by the degree of 	 , and the �"�*� is decremented by 1. Node 	 , halts the message

circulation if �"�*� is M or ��}n���E�4��� becomes insignificantly low.

Each node may receive multiple messages from several different nodes. A node calculates the

�*�¢�w¡.XE}n���
����� function for each of the originators from which it received messages. After a node has

received the last message, it waits for some time to ensure that there are no more messages to be processed.

Then the node joins the cluster led by the originator, for which the value of �*�¢�w¡.XE}n���
����� is the maximum.

To join a particular cluster, the node sends a message to the originator informing the originator of its de-

cision and its node-ID. If all �*�¢�w¡.XE}n���
����� values lie below a predefined threshold, then the node remains

an outlier. We note that a node that has already joined a cluster or has decided to remain an outlier may

discover at a later point in time that it has accumulated higher weight from the messages from a different

originator. In this case, if the node already belongs to a cluster, it informs the current cluster’s originator

about its decision to quit its cluster. It sends a message to the new cluster’s originator notifying its decision

to join its cluster.

Algorithm 1: Algorithm Executed by Message Originator
� �

Create a New Message )$£ �)$£ ��¤ ��¥w��¦z���
, )$£ ��¤ )$§ � , �w¨�©&¦ ª«.¬^­
®J¬`¬
¯±°#²�³)$£ ��¤ ´¢µ3¶���·J�3¥w�]¦U� �

, )$£ ��¤ ¸.¸<¹e¦O¥�º , © ,�»w/ ¸8¸<¹)$£ ��¤ ) ¥w�\¦ Current System Time ¼ A unique value ½
for Each node ¾�¿ÁÀ �ÃÂ �K���<��  do

Send )$£ � to ¾�¿
end for

Now we provide an example to illustrate the functioning

of the CDC algorithm. In Figure 1 we have a graph of 14

nodes, labeled from M to k&Ä . A casual glance at the graph in-

dicates that there are three different clusters in the graph. We

illustrate how the algorithm works when the process is initi-

ated by three originator nodes �#Ä���Å8��kÁkÆ! . The figure illustrates

�*�¢�w¡.XE}n���
����� acquired by each node at different steps of the algorithm execution. The arrows in the dia-

gram denote the messages flowing through the system. The weight carried by each message is indicated

next to the arrow. The last diagram shows the �*�&�w¡.X
}n���E�4��� each node has gained due to the three orig-

inators after 4 hops. Each node joins the cluster from which it has gained the maximum �*�&�w¡8XE}n���
�����
leading to three clusters marked in the diagram. However, for node Ç , the �*�&�w¡.X
}n���E�4���ÈP received from all

originator nodes are less than the threshold and hence it becomes an outlier.

In this discussion we have omitted some subtle issues which are necessary for the correct execution of

the scheme. We provide the pseudo-code for the CDC scheme in Algorithms 1 and 2. These algorithms

are self-explanatory. However, we want to discuss an important issue regarding the weight function we are

using in the algorithm. If a node 	 , in the graph receives É messages whose �"�*�Ê�n� from originator �]/ ,
then the quantity, Ë )$£ ��¤ ¸.¸�¹ h ¨6Ì )$£ ��¤ ��¥w� h � � �
��P(�7����}n���E�4���È� indicates the probability of being in node 	7, ,

8



if one were to start from node �9/ and perform a random walk of exactly �J�8ÍR�
���3¡8X`�"�*�ÏÎÊ��ÐÑk¢� steps.

Though we have used a particular weight function in our scheme, a class of different graph clustering

algorithms can be obtained by altering the ways in which the message weight is initialized by the originators

and how they are modified by the message’s recipients. For example if the scheme adopts a constant weight

function wherein each message weight is always set to k , we obtain the distributed K-path algorithm.

3.2 THP Originator Determination Scheme

Algorithm 2: Algorithm Executed by Node ¾�¿ on Receiving )$£ �¼ Check whether I have received messages from )$£ ��¤ ��¥w� ½
if I have seen messages from )$£ ��¤ � ¥w� before then¼ Check if the

¹ »È£ © )$£ �È¥�Ò'��� �   h�h$)$£ ��¤ ) ¥w� ½
if
¹ »K£ © )$£ �w¥w�a�����i  h�h�)$£ ��¤ ) ¥È� then¸<µ3© »w/Ó§ � , �w¨�©`� ¾�¿JÔ ���� �¦Õ¸<µ3© »w/i§ � , �È¨�©`� ¾�¿JÔ ���� �Ö )$£ ��¤ )$§ � , �w¨�©

else¸<µ3© »w/Ó§ � , �w¨�©`� ¾�¿JÔ � �  �¦ )$£ ��¤ )$§ � , �È¨�©¹ »K£ © )$£ �w¥w�a���<�� �¦ )$£ ��¤ ) ¥È�
end if

else¼ This is the first message from
� � ½¸<µ3© »È/Ó§ � , �w¨�©`� ¾�¿bÔ �<�� �¦Õ¸<µ3© »w/Ó§ � , �w¨�©`� ¾�¿JÔ ���� (Ö )$£ ��¤ )$§ � , �w¨�©¹ »È£ © )$£ �È¥w�a������ #¦ )$£ ��¤ ) ¥w�

end if
if
¸�µ
© »È/Ó§ � , �w¨�©`� ¾�¿bÔ � �  s× )�»�Ø6§ � , �w¨�© then)�»wØ6§ � , �È¨�©¢¦Ù¸<µ3© »w/i§ � , �È¨�©`� ¾�Ú�Ô � �  )�»wØ6§ � , �È¨�©Û¥w�\¦ )$£ ��¤ ��¥w�

end if
if )$£ ��¤ ¸.¸�¹1× C and ÜÃÝ ­wÞ Üàß ¬ ¿ ­5á�â«.¬^­3®J¬`¬E¯±ã�ä^³ × )0, º § � , �w¨�© then

Create a New Message � �
å )$£ �� �Eå )$£ ��¤ ��¥w��¦ )$£ ��¤ ��¥w� , � �Eå )$£ ��¤ ´¢µ3¶���·J�3¥w�9¦ ¾�¿� �Eå )$£ ��¤ )$§ � , �w¨�©(¦ ÜÃÝ ­�Þ Üàß ¬ ¿ ­3á�â«.¬^­
®E¬^¬
¯±ã�ä^³� �Eå )$£ ��¤ ¸.¸<¹e¦Q� )$£ ��¤ ¸.¸<¹eæ �   , � �Eå )$£ ��¤ ) ¥w�]¦ )$£ ��¤ ) ¥w�
for Each node ¾�¿sÀ �aÂ �È������  do

Send )$£ � to ¾�¿
end for

end if
Wait for §9»w, ©�¸ ,iq � in anticipation of other messages
if )�»wØ6§ � , �w¨�©Æ× § � , �w¨�©�¸<¨���� £ ¨6µ / Ò then

Join the cluster led by )�»wØ6§ � , �w¨�©Û¥w�
else

Remain an outlier
end if

The choice of originators is critical to the per-

formance of the CDC scheme discussed in the

previous section. We discuss an example that elu-

cidates the significance of selecting “good” orig-

inator nodes. We consider the same graph, which

we used to illustrate the CDC algorithm. The di-

agrams in Figure 2 show four different scenar-

ios, indicating the clusters we obtain when we

start with four different sets of originators. In

each scenario, the originators are indicated by the

shaded nodes.

Scenario 1 is the best clustering we can obtain

for the graph. In this case we have three clusters

and a single outlier. The clustering in Scenario

2, though not ideal, is again a good clustering.

In this scenario the single outlier in the scenario

joins the cluster led by node k&M , leaving three

clusters and no outliers. The clusters we obtain

in the other two scenarios are unintuitive and are in no way close to the ideal clustering in Scenario 1.

Though we have used the same �%�*� , the same weight function and the same number of originators, we

obtain different clusters that not only vary in number but also in their quality. This example demonstrates

the importance of selecting good originators.

We briefly discuss the properties a good originator set should possess.

Property 1: First, the set of originators should be spread out in all regions of the graph.

If some regions in the graph do not have any originators, then nodes in these unrepresented regions

do not receive enough messages and hence do not acquire sufficient weight from any originator. Hence

9



these nodes either get associated with a cluster where they do not really belong or they choose to remain as

outliers, both of which result in bad clusters. This is exactly what is happening in Scenario 3 of Figure 2.

Here we see all three originators ��ç<��Ç<��è8! are neighbors and are concentrated in one single region. The

effect of this is that the nodes �.k&M<��kÁkÁ��k&ç<��k&Ä<! remain as outliers.

1

0

2
3

4

5

6

7 8

9

10

11

12

13

Scenario 1 Scenario 3

Scenario 2 Scenario 41

0

2
3

4

5

6

7 8

9

10

11

12

13

1

0

2
3

4

5

6

7 8

9

10

11

12

13

1

0

2
3

4

5

6

7 8

9

10

11

12

13

Figure 2: Importance of Good Originators

Although, the above condition is necessary for

good clusters, it is not sufficient. Scenario 4 in Fig-

ure 2 is a testimony to this fact. Here we see the

originators �#M<��Ç<��é<! are spread out in all the regions

of the graph. But still the clusters obtained are not

good. Clearly the set of originators needs to pos-

sess some more important properties.

In any graph, it is not desirable to have origi-

nators that accumulate more weight from messages

that originated at some other node than the mes-

sages initiated by it. If such were to be the case, then the originator itself would “defect” to a cluster

initiated by some other originator. This again would result in the formation of bad clusters. This observa-

tion leads us to the second essential property of good originators:

Property 2: A node 	 / is considered to be a good originator if it acquires more weight due to mes-

sages initiated by it than the weight acquired by messages initiated by any other originator. i.e.

�*�¢�w¡.XE}n���
�������3	�/J��	 /��yêë�*�&�w¡8XE}n���
�������3	�/J��	4,J�6��c�	�,Fx~	 .

Although the second property is logical, the crucial question is how do we determine whether a node

satisfies this criterion? This property demands that we know �0�&�w¡.XE}Z���E���4� for each pair of vertices. Fur-

ther, the �*�¢�w¡.XE}n���
����� function cannot be determined until we actually execute the CDC scheme.

We adopt an approximation technique to solve this problem which we call the Two Hop Return

Probability technique. In this technique we determine the probability of returning to a node 	�/ in

the graph in two hops, if we were to perform a random walk on the graph starting at 	�/ . This

is calculated as �%ì0��íO��î =9�Æ�#ï#�3	 /Û�v� Ë ¾�¿JÀ �aÂ �È� ¾ �Û  � ����E�w�5�3�w� ¾ �� 
ðÁ���
�����3��� ¾�¿   � . A higher �*ì0��íÙ��î =9����ï#�3	 /��
indicates that the node 	 / has a higher chance of satisfying the condition �0�&�w¡.XE}Z���E���4���
	R/E��	 /��ñê
�*�¢�w¡.XE}n���
�������3	�/E��	�,`�6�wc�	4,òxN	 , and hence has a lesser chance of “defecting” into another cluster. As

this scheme relies upon the two hop return probability, we term it as the Two-Hop-Probability scheme or

THP scheme for short. In Figure 2, originator sets ��ç<�'è���k&M<! and �#Ä���ó���k&ç8! satisfy both criteria and lead to

good quality clusters.

10



The THP scheme performs two tests. First, it checks whether the node has already received any clus-

tering messages from other nodes in its vicinity. If so, it means that there are other nodes in its vicinity

that have already chosen to be originators, and hence, the node opts not to become an originator. Other-

wise, the node obtains the degree of each of its neighbors and computes the Two Hop Return Probability

( �%ì��#íO��î =9�Æ�#ï ). If the Two Hop Return Probability is higher than a pre-defined threshold then the node

chooses to be an originator. Otherwise, the node will not become an originator. The pseudo-code for

the THP scheme is provided in Algorithm 3. The two configurable parameters for this algorithm are the

	]�3�6�
ÍL�
��ô factor and the �%ì0��íO��î4�0�4�Æ�¢P¢���#XE> factor. The THP algorithm is completely distributed. The

number of messages circulated in this phase is also very small. Each node which has not received a mes-

sage from an originator in its vicinity has to just get the degree of its neighbors. Hence this scheme is very

efficient in terms of messaging cost.

Algorithm 3: Determine whether node ¾ � is an Originator
Wait for random time in anticipation of cluster messages from other origina-
tors
Check if ¾ � received any cluster message with ) ´�õR¤ ¸.¸<¹ ×¥�º , © ,�»È/ ¸.¸�¹eæ ¾ , · , º , ©�ö
if ¾�¿ received message with ) ´#õR¤ ¸8¸<¹ B ¥�º , © ,�»È/ ¸.¸�¹Fæ ¾ , · , º , ©�ö then¼ There is an originator in the vicinity ½¾ � not an originator. Do not initialize messages
else¼ No originators in the vicinity, Compute TwoHopProb ½¸8å4µ�÷Ãµ ;�ø ��µ Â � ¾ �� �¦zù ã�äbú�û8ü�®5¯±ã�²�³ � ªý «8¬�­3®J¬`¬
¯þãw²i³ ý5ÿ¢ý «.¬^­
®J¬`¬
¯±ã�ä�³ ý  

if
¸8å�µ�÷aµ ;�ø ��µ Â � ¾ �� ��y¸8å4µ�÷Ãµ ; ¸<¨��5� £ ¨�µ / Ò then¼ ¸<å�µ�÷aµ ;�� �
©�¶��5º ø ��µ Âb»wÂ`,�/±, ©�ö too low ½¾ � not a originator. Do not initialize messages

else¾ � is an originator. Initialize Messages
end if

end if

The configurable parameters of the CDC algo-

rithm and the THP originator determination mecha-

nism can be used to tune the algorithm such that the

resulting clusters obey certain constraints that may

be required by some applications. For example,

the performance of an application may be affected

by the number of outlier-nodes in the network,

in which case the parameter }n���E�4�����0�4�Æ�¢P¢���#XE>
of the CDC algorithm can be tuned for optimal

performance of the application. Increasing the

}n���
���������4���¢P¢� �#XJ> parameter leads to an increase

in the number of outliers, and vice-versa. Similarly, the parameters 	Y�3�6�
ÍL�
��ô and �%ì��#íO��î4�0�4�Æ�¢P¢����XJ> of

the THP mechanism can be used to control the number of clusters produced by our scheme. Increasing the

values of these parameters reduces the number of discovered clusters, and vice-versa.

A couple of subtle issues have to be addressed in order to complete the discussion of the distributed

clustering algorithms. The first issue is when and how does the clustering process start? As we discuss

in the next section, the graph has to be re-clustered when a substantial number of nodes enter or exit the

system, in order to maintain high quality clusters. The clustering process may be initiated by any one of

several ways. The first method would be to re-cluster the graph at regular intervals of time. When a node

enters the network, the bootstrapping process informs the node of the time interval between successive re-

clusterings. At the end of an interval, each node waits for a small, random time to see whether it receives

any clustering messages from its neighboring node. If at the end of this small, random wait it has not

11



still received any clustering messages, it initiates the THP mechanism. In the second method, any of the

originators, on observing that a substantial number of nodes belonging to its cluster exit the system or

a considerable number of new nodes enter its cluster, may flood the network with a clustering-initiation

message. In order to avoid very frequent re-clustering of the network, the system specifies a minimum

re-clustering interval. In the third method, the system can have a special bootstrapping node that initiates

the clustering process. In this case, the originators which want network re-clustering send their requests

to the bootstrapping node. When the fraction of nodes requesting re-clustering exceeds a preset threshold,

the bootstrap node floods the network with cluster-initiation message. Each of the methods has its pros and

cons. The first method is a good choice since it is easy to implement and has minimal message overhead.

We think that this method in conjunction with mechanisms for handling node dynamics (discussed in the

next section) would be sufficient to maintain good quality clusters between successive re-clusterings.

The second issue that needs to be addressed is regarding where the clustering information is maintained

and how it is used in message-routing schemes. The originator node of every cluster maintains a list of

its neighboring clusters that contains information such as the neighboring cluster’s originator-ID, shortest

path to that cluster, etc. This information can be obtained by border nodes (nodes in a cluster that have

a direct link to neighboring clusters). The originator nodes use this to devise efficient communication

strategies to improve performance of the system. The exact manner in which this information is employed

in designing efficient communication mechanisms is dependent upon the P2P system at hand. For example,

the super peers in Kazaa or the new Gnutella protocol maintain similar information about a small subset of

ordinary peers. As a result, the CDC originator determination mechanism can be used to guide the selection

of super peers in super-peer-based P2P networks such as Kazaa and the new Gnutella. Furthermore, in

CDC an originator replicates all the information it maintains regarding the neighboring clusters and the

nodes belonging to its cluster at its immediate neighbor nodes. This information replication provides fault

tolerance in case the originator exits the network or fails.

4 Handling Dynamics of Nodes

Nodes in most P2P networks are dynamic and may enter and exit the system at arbitrary times. One of

the challenges we had listed was whether we could design efficient and effective algorithms to handle this

dynamism without re-clustering the graph on the entry and exit of each node. The need for efficient schemes

for this problem is evident when we consider the messaging cost of the CDC scheme and the highly

dynamic nature of some P2P networks. In this section we provide effective solutions to this problem. The

solutions are based on heuristics, which are easy to compute and which make use of only local information.

12



4.1 Node Entry Mechanism

Problem Statement: Suppose we have a graph ��� �3	[��
\� , which is already clustered. Let the clusters

be represented as WYXH�j�#WYXE����W]X^������������W]X`_à! . Now a new incoming node 	R� Ö � has to be incorporated into

this cluster structure. The information available in the incoming node 	�� Ö � is limited to its neighbors

(represented as
� ï����3	7� Ö � )) in � . This node has to be added on to one of the existing clusters or has to be

made an outlier.

The solution we provide is based on obtaining an approximate value for the �*�¢�w¡.XE}n���
����� function

used in the CDC algorithm. Our scheme calculates how much the incoming node 	�� Ö � is “attracted” to

each of the exiting clusters. The node joins the cluster which attracts it the most. If there is no such cluster,

then it chooses to be an outlier. The attraction of 	L� Ö � to various clusters is calculated as follows. For

each node 	8-Qx � ï��4�
	7� Ö �K� the Neighbor-Attraction function is defined as
� ï����*������¡.�����3�#Í ¾ û�� ª �3	.-��ò�

����
�����
�w� ¾wÚ   . This indicates how much 	R� Ö � towards 	8- . Now the attraction of 	R� Ö � towards a cluster WYX^/ is

the total of the Neighbor-Attraction values of all its neighbors which belong to WYXE/ , which is represented as

WYXbDRP(�	�*������¡.�����3�#ÍH�
W]X^/`�[�IË ¾�¿`À�
 / � Ì ¾�¿`À �ÃÂ �K� ¾ û�� ª   � ï��
�%�����Æ¡.�����5�¢Í ¾ û�� ª �3	4,J� .
The algorithm works as follows. The node 	L� Ö � obtains two sets of information from each of its

neighbors, namely the degree of the node and the cluster to which it belongs. Then the node 	F� Ö � calculates

the W]XbDRP��	�%�����Æ¡.�����5�¢Í value for all clusters which contain at least one neighbor of 	�� Ö � . The node joins

that cluster which attracts it the most, provided its W]XbDRP��	�%�����Æ¡.�����5�¢Í is higher than a preset threshold.

Otherwise 	7� Ö � remains as an outlier.

We note that one or more neighbors of the node 	L� Ö � might themselves be in the process of entering

the network, in which case they would not be associated with any cluster, or, they might be in the process

of exiting the network. In these scenarios, such neighbors do not return a valid cluster-ID when probed by

	7� Ö � (for example they might return ÎYk as their cluster-ID). The node 	�� Ö � ignores all those neighbors

which returned invalid cluster-IDs when it calculates the WYXbDRP(�	�*������¡8�����5�¢Í values for various clusters.

4.2 Node Exit Mechanism

Problem Statement: Suppose we have a graph � �T�
	���
�� with
�

nodes and � edges, which is already

clustered. Let the clusters be represented as W]Xa�V�#W]X3����W]X^������������W]X`_à! . Now a node 	�� in this cluster exits

the network, which is noticed by only the neighbors of 	�� . The problem is to update the cluster structure

to reflect this node’s exit.

Our scheme to handle node exit is again completely distributed and localized. As the exit of any node is

recognized only by its neighbors, they execute the algorithm to update the cluster. The crux of the algorithm

can be captured as follows. Suppose 	�� and 	�� Ö � are neighbors in the graph � , and the node the node 	��

13



exits the graph. If 	�� Ö � belongs to a different cluster than 	�� , then it performs no action other than updating

its connectivity information. On the other hand, if 	�� Ö � and 	�� belong to the same cluster, then we adopt

the same strategy as adding a new node. The node 	�� Ö � acts as though it has just entered the system and

calculates the WYXbDRP(�	�*������¡8�����5�¢Í parameter between itself and various existing clusters. It joins that cluster

to which it has the maximum attraction. In other words, on calculating the new WYXbDRP(�	�*������¡.�����3�#Í values, if

the node 	�� Ö � discovers that it is attracted to another cluster more than the one it currently belongs to, then

it “defects” to that cluster. The pseudo-code of the scheme is provided in Algorithm 4.

Algorithm 4: Algorithm executed by the node ¾�� � ª , a neighbor of a node ¾��
that exited the system

if 
 / ¶ £ ©Û�E��¥w�a� ¾ �  ��h 
 / ¶ £ ©Û�E��¥w�a� ¾ � � ª   then
Nothing needs to be done.

else
 ¶��5� 
 / ¶ £ ©Û¥w�\¦ 
 / ¶ £ ©Û�
��¥w�a� ¾ � � ª  
Obtain 
 / ¶ £ ©Û�E��¥w� and

���E�w�5�3�
of each of its neighbors
 ¶��5� 
 / ¶ £ ©��<©�©�� » ·b© , µ3ºH¦ù ã ä ú����w®J®�� � � Ý â��E« ��ã ä ú'û<ü�®5¯±ã	!#"%$
³ ª«.¬^­
®E¬^¬
¯±ã�ä^³�aÂ � 
 / ¶ £ ©Û�E��¥�Ò ¦'& ã�äJú'û<ü�®5¯±ã !#"%$ ³ 
 / ¶ £ ©Û�
�5¥È�a� ¾�¿  )�»wØ �8©�©�� » ·J© , µ3º�¦ C

for Each 
 / Ú�À �aÂ � 
 / ¶ £ ©Û�E��¥�Ò do
 / ¶ £ ©��8©�©�� » ·J© , µ3º�� 
 / Ú  �¦ ù ã�äbú(� � ) ��ã�ä`ú'û<ü�®�¯þã+* "%$ ³ ª«8¬^­
®J¬`¬
¯±ã�ä�³
if 
 / ¶ £ ©��<©�©�� » ·b© , µ3º#� 
 / Ú   B )�»�Ø �<©�©�� » ·b© , µ3º then)�»�Ø �<©�©�� » ·b© , µ3º�¦ 
 / ¶ £ ©��8©�©�� » ·b© , µ
º�� 
 / Ú  )�»�Ø 
 / ¶ £ ©Û¥È��¦ 
 / Ú
end if

end for
if )�»�Ø �<©�©�� » ·b© , µ3º B 
 ¶6�3� 
 / ¶ £ ©Û�
�,�8©�©�� » ·b© , µ
º then

Defect to )�»�Ø 
 / ¶ £ ©Û¥w�
else

Remain in the same cluster.
end if

end if

We observe special cases might occur when a

node exits the network while its neighbor is still in

the process of entering the network, or when two

nodes exit the network simultaneously. In the first

case, suppose the node 	�� Ö � is still in the process

of determining its cluster, when it detects the exit

of 	�� . Then the entering node 	�� Ö � re-computes

the W]XbDRP��	�%�����Æ¡.�����5�¢Í values towards various clus-

ters ignoring 	�� , and joins the cluster with the max-

imum WYXbDRP(�	�*������¡8�����5�¢Í . In case of simultaneous

node exits, suppose the node 	�� Ö � detects that two

or more of its neighbors exit the network simulta-

neously. Then 	�� Ö � performs the cluster-attraction

test if at least one of the exiting nodes belonged to

its cluster.

The exit of an originator needs special handling as it contains the cluster and the routing information.

As any other node, the originator either informs its immediate neighbors before it exits the system or just

fails in which case the failure is again detected by its neighbors. The neighbors of the originator adopt

a leader election strategy to elect a new originator. A simple yet effective strategy would be to elect the

neighbor with the highest number of in-cluster edges as the new originator. This node stays in the cluster

and informs all other nodes in the cluster that it would be the new originator of the cluster.

These two algorithms are only approximations to the CDC scheme. As we see in the experiments, the

clustering degrades if a large percentage of nodes join or leave the network. Hence the network has to be

re-clustered periodically. These schemes are designed to handle node-dynamics between re-clusterings.

Frequency of re-clustering is specific to the needs of the P2P network and the node dynamics. The tradeoff

is between the accuracy of clustering and the clustering message load on the network.

14



5 Extending the CDC Scheme for Weighted Graphs

The algorithms we have discussed above for distributed node clustering and handling entry and exit of

nodes assumed that the graph was un-weighted. Therefore the clustering was purely based on the connec-

tivity of the nodes in the P2P network. However, performance of some P2P applications may be optimized

by considering the weights of the edges when clustering the nodes of the underlying network. In this

section we briefly explain how the CDC scheme can be extended for weighted networks.

Before explaining extensions to the algorithms, we discuss an important issue regarding the edge-

weights in graphs, as they can have a profound impact on the resulting clusters. The weights associated

with the edges in the network may represent a wide variety of parameters such as the distance between the

nodes, the bandwidth of the link, the latency of the link, etc. While in some cases the weight quantifies

the similarity between the nodes, in others the edge-weight represents the dissimilarity of the nodes. For

example, while the distance or the link-latency quantifies the dissimilarity, the link-bandwidth can be con-

strued as an approximate measure of the node similarity. Without loss of generality, in this discussion we

assume that the weight of each edge quantifies the similarity between its end-vertices. If the edge-weight

}z, corresponds to a dissimilarity measure, then �§ ¿ can be used as the corresponding similarity measure.

We now have �n� �
	��'
+��}Z� as a weighted graph, where } is a symmetric similarity function from 	 ?Y	
to
A1B8C

such that }f�3	�,3��	8-6�.-ëM if the edge �3	�,3��	8-6� exists in the graph � , and }f�3	 ,
��	.-6�e�vM otherwise. We

assume that the weight }f�3	�,5��	.-6� , of an edge �
	 ,3��	.-�� , can be estimated by the end vertices and is available

at 	4, and 	8- .
We now discuss how each algorithm of the CDC scheme can be extended to weighted graphs. The

structural outline of these algorithms remains essentially the same, even when extended to weighted graphs.

However, the Message-weight ( ��P(�R�i��}n���
����� ), the Two hop return probability ( �%ì��#íO��î =9�Æ�#ï ) and the

Neighbor attraction (
� ï����*������¡.�����3�#Í ) functions have to be adopted for weighted graphs.

Extending the Basic CDC Algorithm

Recall that in the CDC algorithm, the originator �9/ initializes the message weight of the message

as ��P(�R�i��}n���
����� � ����E�w�5�3�w�����i  and sends the message to each of it neighboring nodes. For weighted

graphs, this is modified to reflect the edge weight as follows: The message weight carried by a mes-

sage sent to a neighboring node 	7, depends on the weight of the link between 	7, and ��/ and is ini-

tialized as ��P(� ¾�¿ �i��}n���
�����U� § ����� Ô ¾�¿  ù ã Ú ú'û<ü�®�¯þ° � ³ § ��� � Ô ¾�Ú   . Similarly the recipient of a message ��P(� ¾�¿ , say

node 	�, , takes into account the edge weights when initializing new messages. The message-weight

of the new message being sent to a neighboring node 	/� is initialized as
� ��ì$��P(� ¾ � �i��}n���
�����Ñ�

��P(� ¾�¿ �i��}n���
�����]? § � ¾�¿bÔ ¾ �  ù ã Ú ú�û8ü�®5¯±ã ¿ ³ § � ¾�¿JÔ ¾�Ú   . We note here that the above suggested modification scales the

15



message weight in proportion to the weight of the link between the sender and the recipient of the message.

Extending the THP Originator Selection Scheme

In the case of the THP originator determination scheme, the two hop return probability should be

scaled to reflect the weights of the links in the network. Accordingly we propose the following for-

mula to calculate the two hop return probability: �%ì0��íO��î =9�Æ�#ï#�3	R/Û�*� Ë ¾�¿bÀ �aÂ �K� ¾ �   � § � ¾ � Ô ¾�¿  ù ã Ú ú'û<ü�®�¯þã � ³ § � ¾ � Ô ¾�Ú   ?§ � ¾�¿`Ô ¾ �  ù ã á ú�û8ü�®5¯±ã ¿ ³ § � ¾�¿JÔ ¾ á   �z� Ë ¾�¿`À �ÃÂ �K� ¾ �Û  � § � ¾ � Ô ¾�¿  10ù ã Ú ú�û8ü�®5¯±ã � ³ § � ¾ � Ô ¾wÚ  
ðÁù ã á ú'û<ü�®5¯±ã ¿ ³ § � ¾�¿`Ô ¾ á   � . The THP scheme itself re-

mains unchanged except using the formula to compute the two hop return probability.

Extending the Mechanisms to Handle Node Entry and Exit

As we discussed in section 4, in our scheme, a node entering the network, say 	�� Ö � , calculates the

affinity towards various clusters ( W]XbDLP(�	�%�����Æ¡.�����5�¢Í ) by computing the sum of the attractions towards its

neighbors (
� ï����*������¡.�����3�#Í ) belonging to those clusters. In order to adopt the node entry mechanism to

the weighted networks, we modify the neighbor-attraction function so that the link-weights are taken into

account. The neighbor-attraction function between the entering node 	�� Ö � and its neighboring node 	<- is

now calculated as
� ï����*������¡.�����3�#Í ¾ û�� ª �
	8-6��� § � ¾ û�� ª Ô ¾�Ú  ù ã � ú�û8ü�®5¯±ã û�� ª ³ § � ¾ û�� ª Ô ¾2�   . The entering node 	7� Ö � computes

the WYXbDRP(�	�*������¡.�����3�#Í values towards the existing clusters by summing the
� ï����*������¡8�����5�¢Í values for the

neighbor nodes belonging to those clusters and joins the cluster with the maximum W]XJDRP(�	�*������¡.�����3�#Í value.

When a node exits the system, the neighbors detect its exit and each node belonging to the same cluster

as the exiting node acts as though it just entered the system. It computes WYXbDRP(�	�*������¡8�����5�¢Í parameter

between itself and various clusters using the new function for
� ï��
�%�����Æ¡.�����5�¢Í and defects to another cluster

if it discovers that it is attracted to that cluster more than its current cluster.

This section discussed how the CDC scheme can be easily extended to cluster nodes in weighted graphs.

In the rest of the paper we restrict our discussion to un-weighted networks.

6 Experiments and Results

This section reports the experimental evaluation of the proposed schemes. We begin by discussing the

metric used for measuring graph clustering accuracy.

6.1 Accuracy Measure for Graph Clustering

Measuring the accuracy of a given clustering on a graph is in general a tricky task. This is primarily

because, unlike data points in Euclidean spaces, the distance measure for graphs can be defined in many

different meaningful ways. Hence, it is possible to obtain different accuracy measures based on the different

similarity/dissimilarity measures. In this paper we use an intuitive performance measure proposed by [36]

termed as the Scaled Coverage Measure.

16



The motivating idea behind this performance measure is that an optimal clustering of a given graph

minimizes both the number of inter-cluster edges and the number of non-neighbor vertices in each cluster.

Let �Z�T�3	[��
�� be a graph and let WYXF� �#W]X
����W]X^������������W]X`_à! be a given clustering on the graph. Let us

consider any node 	�, .
� Let

� ï����3	�,J� denote the set of neighbors of 	7, .
� Let WYXbDRP(���3	4,b� denote the set of all nodes that belong to the same cluster as that of vertex 	L, , i.e.

W]XJDRP(���3	4,J�[� WYX^/ iff 	4,axOWYX^/ .
� False Positive Set is defined as the set of all nodes, which are not neighbors of 	L, , but are included

in the same cluster as 	 , , i.e. 3Y¡.XEP&�&=Y��P��
���3G8�.�
	�,���W]XE�[� ��	8-�4 	8-0xOWYXbDRP(���3	4,J�65Ù	.-87x � ï��4�
	�,E��! .
� False Negative Set is the set of all neighbors of 	7, but are excluded from W]XbDLP(���
	 ,b� , i.e.

3]¡8XEP&� � �(�<¡Á���3G8�.�
	�,��'WYXE�[� ��	�� 4 	��$x � ï��4�
	�,J�65Ù	��97xOWYXbDRP(���3	4,J��! .
Then define Scaled Coverage Measure of the 	7, in � with respect to the clustering W as:

´#· »w/ 
 µ#:�� ¾�¿JÔ;
 /   h]� æ=<?> »w/i£ � ø µ £J, © , :w�w� ¾�¿bÔ;
 /   < Ö <?> »w/i£ � � �E� » © , :w��� ¾�¿EÔ@
 /   << �aÂ �K� ¾�¿  �A 
 / ¶ £ ©`� ¾�¿   < (1)

Some of the salient features of the Scaled Coverage Measure are:

� It assumes a value of kÁ�iM at best and M��ÓM at worst.

� It “punishes” a clustering for both false positives and false negatives.

� A node in a sparse region of the graph is penalized more for false positives and false negatives than

a node in a dense region.

The accuracy of a clustering W over a graph � is defined as the average of the Scaled Coverage Measure

of all of its nodes.


 / ¶ £ ©���·J·b¶6� » ·bö���õ Ô1
 /   h ù ã�äbú'ã ´#· »w/ 
 µ#:�� ¾�¿EÔ@
 /  
< ¾ < (2)

We use this measure in our experiments to quantify the clustering quality and compare different clusters.

The highest clustering accuracy achievable for any graph � is called its optimal clustering accuracy.

The optimal clustering accuracy for any graph depends upon its structure. It evaluates to 1 for graphs which

contain only fully connected components, with no edges across the components. For all other graphs the

optimal clustering accuracy is strictly less than k .

17



6.2 Experimental Data Sets

For our experimental evaluation, we have used three datasets, which we now briefly describe.

Live Gnutella Data: This dataset was captured by taking a snapshot of the Gnutella P2P network on

Jan 06 2003. The total number of nodes in the snapshot was 1043, which we estimate to form k&M�B of the

complete network. However, in Gnutella there are two types of nodes, namely normal nodes and super

nodes. A normal node can be connected only to super nodes. On the other hand a super node can have one

or more neighbors, which may be either normal nodes or other super nodes. It is these super nodes that

play a crucial role in search and message broadcasts. So we would like to discover cluster information on

these super nodes. Therefore, we eliminate all the single-neighbor nodes and retain only the super nodes.

Power Law Topology: We use power law distribution to generate graphs that resemble P2P data

sharing networks in their topological structure. Studies in the past few years on the topology of the In-

ternet [14], and more recently on P2P data sharing networks [30] have revealed that the topology of such

networks closely follows what is well known as a power law distribution. For our experiments we have

used power law topology graphs with 100, 200, 500, 1000, 2500, 5000 and 10,000 nodes.

Parameter Gnutella Power Range
Data Graphs Graphs

Total Nodes 184 5000 5000
Total Edges 307 11446 27083
Average Degree 3.34 4.57 10.83
Maximum Degree 38 623 25
Minimum Degree 2 1 1
Variance in Degree 18.89 212.53 11.08

Table 1: Parameter Values for Various
Topology Graphs

Range Topology: The range topology models the connec-

tivity relationship in wireless/sensor networks. In wireless net-

works two computing units have knowledge of the existence of

the other, only if they fall in each other’s radio range. Range

topology graphs model this phenomenon. A range graph is gen-

erated as follows. We consider a square area of unit dimension.

Nodes are randomly thrown at this unit square. Each node represents a wireless unit, and has a range-

distance associated with it. Two nodes are connected by an edge if they fall in each other’s range-distance.

Table 1 lists some of the important properties of all the three kinds of datasets.

6.3 Experimental Results

In this section we provide a brief description of each experiment and the results obtained. We begin by

studying the accuracy of the CDC scheme.

Cluster Accuracy of CDC Scheme

Our first experiment is aimed towards demonstrating the effectiveness of the CDC scheme we have pro-
posed. In order to do so, we compare the accuracy of the CDC scheme with the Centralized MCL Clus-

tering and the Distributed K-Path Clustering schemes. We use the public domain software developed by

Dongen [35] for obtaining clusters in the centralized MCL scheme.

18



The MCL graph clustering software requires us to set a configurable parameter, which controls the

clustering granularity. This parameter can take on values from kÁ��ç to Ç . When the parameter is set to lower

values, the algorithm yields fewer number of large clusters and vice versa. We have obtained clusters by

setting it to various values from 1.2 to 5. We measure the accuracy of the clusters obtained, and use the

highest value as our benchmark.

In this experiment we want to test the accuracy of the clusters yielded by the bare CDC algorithm.

Hence we turn off the THP originator determination mechanism. Instead, we randomly select originators.

In the experiments we report we randomly select k¢Ç�B of the total nodes in the graph. These nodes act as

the originators, initiating the messages. As the originator selection is random, we have performed each

experiment k&MÆM times and we report the average of the accuracy values obtained.

Figures 3 and 4 indicate the clustering accuracy of CDC scheme, the centralized clustering scheme

and the Distributed K-path clustering scheme on range and power topology graphs respectively. The CDC

scheme performs better than the K-path clustering scheme for all graph sizes. For a range graph with 500

nodes, the CDC scheme yields an accuracy value of 0.462, whereas distributed K-path gives 0.413, which

is an improvement of almost k¢ç�B . For a graph with 10,000 nodes the improvement is around kÁkCB .

However the centralized MCL scheme performs better than the CDC scheme. The centralized MCL

scheme beats the CDC scheme by almost k�DEB and k&M��iÇ�B for range graphs with 500 and 10,000 nodes

respectively. These results show that the CDC scheme can yield clustering results comparable to the cen-

tralized scheme, thus demonstrating the reasonableness of the CDC approach.

THP Originator Mechanism Accuracy
In this set of experiments we demonstrate the effectiveness of THP originator selection mechanism.

Figures 5 and 6 indicate the clustering accuracy of the Two-Hop Probability originator determination

scheme and compare it with the clustering accuracy of the CDC scheme with random originator selec-

tion and centralized MCL scheme on range and power topology graphs respectively. The results show that

THP originator determination scheme improves the clustering accuracy of the CDC scheme considerably.

For example, on a range graph of 1000 nodes, the THP originator mechanism yields a mean accuracy

value 0.574 as against 0.457 given by the CDC scheme with random originators, which amounts to an

improvement of over çÁÇ�B .

However, the CDC scheme coupled with the THP originator selection mechanism does not always

perform better than the centralized clustering scheme. For example on a random graph of 200 nodes and

4800 edges, our scheme yields a clustering accuracy value of 0.1422 whereas the MCL scheme gives an

19



100 200 500 1000 2500 5000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Distributed Clustering Accuracy (Range Topology)

Number of Nodes

C
lu

st
er

in
g 

A
cc

ur
ac

y

CDC Scheme
Distributed K−Path
Centralized Clustering

Figure 3: Accuracy of CDC scheme on Range
Graphs

100 200 500 1000 2500 5000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Distributed Clustering Accuracy (Power Topology)

Number of Nodes

C
lu

st
er

in
g 

A
cc

ur
ac

y

CDC Scheme
Distributed K−Path
Centralized Clustering

Figure 4: Accuracy of CDC scheme on Power
Graphs

100 200 500 1000 2500 5000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
THP Originator Mechanism (Range Topology)

Number of Nodes

C
lu

st
er

in
g 

A
cc

ur
ac

y

Random Originators
Centralized Clustering
THP Originators

Figure 5: Accuracy of THP scheme on Range
Graphs

100 200 500 1000 2500 5000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
THP Originator Mechanism (Power Topology)

Number of Nodes

C
lu

st
er

in
g 

A
cc

ur
ac

y

Random Originators
Centralized Clustering
THP Originators

Figure 6: Accuracy of THP scheme on Power
Graphs

100 200 500 1000 2500 5000 10000

10

20

50

100

200

500

1000

2000
Number of Clusters Discovered by CDC

Number of Nodes in the Graph

N
um

be
r 

of
 C

lu
st

er
s 

D
is

co
ve

re
d

CDC Scheme − Range Topology
Centralized Scheme − Range Topology
CDC Scheme − Power Topology
Centralized Scheme − Power Topology

Figure 7: Number of Clusters Discovered in
Range and Power Graphs

10 32 55 77 99
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Clustering Accuracy at Various Node Degrees

Average Node Degree

C
lu

st
er

in
g 

A
cc

ur
ac

y

CDC Scheme with THP Mechanism
Centralized Clustering

Figure 8: Effect of Node Degree on Accuracy

10 32 55 77 99
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
Number of Clusters at Different Node Degrees

Average Node Degree

N
um

be
r 

of
 C

lu
st

er
s

CDC Scheme with THP Mechanism
Centralized Clustering

Figure 9: Effect of Node Degree on Number of
Clusters

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Clustering Accuracy at Various TTL (Range Topology)

Message TTL

C
lu

st
er

in
g 

A
cc

ur
ac

y

200 Nodes
500 Nodes
1000 Nodes

Figure 10: Accuracy at Various TTL for Range
Graphs

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Clustering Accuracy at Various TTL (Power Topology)

Message TTL

C
lu

st
er

in
g 

A
cc

ur
ac

y
200 Nodes
500 Nodes
1000 Nodes

Figure 11: Accuracy at Various TTL for Power
Graphs

accuracy value of 0.2355. Another important point to be noted here is that our scheme performs well,

irrespective of the number of nodes in the graph. In other words it does not deteriorate for graphs with

Network Topology Mean Coeff. of Maximum Minimum
Variation Value Value

Range Topology 616.63 0.009 632 602
Power Toplogy 620.96 0.006 629 604

Random Toplogy 640.79 0.012 669 630

Table 2: Statistics Indicating Stability of THP
Mechanism

higher number of nodes.

In the next experiment we demonstrate the stability

of the THP originator selection mechanism in choosing

approximately same number of originators upon multi-

ple executions. Table 2 shows the statistics on the number of originators selected by the THP mechanism

on power, range and random topology graphs of 5000 nodes, when it is executed 500 times. We see that

20



in all three cases the variation in number of originators is confined to a narrow range. The number of

originators discovered in each execution lies within a small range around the mean value. For instance,

the maximum width of this range is 39 for random graphs. Also, the coefficient of variation (ratio of stan-

dard deviation to the mean) of the number of originators is very low. These results show that the THP

mechanism indeed selects a stable number of peers as originators.

Figure 7 shows the number of clusters discovered by the CDC scheme coupled with the THP originator

selection mechanism and the MCL scheme for range and power graphs with nodes ranging from 100 to

10,000. Both X and Y axes are on the log scale. We note that for range graphs the number of clusters

discovered by the CDC algorithm has been consistently higher than the number of clusters discovered by

MCL, whereas for power graphs the numbers of clusters discovered by both schemes are close to each

other. As both the CDC scheme and the MCL scheme are aimed at clustering the nodes of the network

based on their connectivity, their performance depends upon the density of the connections (edges) in the

network. In order to study the relationship between the density of connections and the accuracy of clusters,

we evaluated the two schemes for a range graph of 100 nodes. In this set of experiments we varied the

number of edges in the network (or in other words the average degree of the nodes in the graph).

Figure 8 indicates the clustering accuracy of the CDC and the MCL schemes when the average degree

of the nodes varied from 10 to 99 (for a graph of 100 nodes the maximum node degree is 99, when the

graph becomes strongly connected). When the average node degree is 10, the CDC scheme coupled with

the THP originator mechanism yields an accuracy value of 0.6367, whereas the MCL scheme gives an

accuracy value of 0.5753. As the average node degree increases, we observed a fall in the clustering

accuracy of both schemes. The fall in the accuracy value of our scheme is steeper than that of the MCL

scheme. When the average node degree is 55, the MCL scheme overtakes the CDC scheme and yields a

slightly better accuracy value. From then on this trend continues. When the average node degree reaches 99

(i.e. when the graph becomes fully connected), both schemes group all the nodes into a single cluster giving

accuracy value of 1.00. We did not expect the CDC scheme to perform better than the centralized graph

clustering approach. We feel that this behavior is due to the approximations employed in the centralized

MCL algorithm and the advanced originator selection scheme employed in the THP mechanism.

Figure 9 indicates the number of clusters in the graph detected by the CDC and the MCL algorithms

for a graph of 100 nodes, when the average node degree varied from 10 to 99. We see the number of

clusters detected by the CDC scheme is always higher than the number of clusters detected by the MCL

algorithm. The numbers of detected clusters in both schemes falls with increasing average node degree for

21



3

4

5

9

10 11
0

1 2

6

7

8

Performance Metric: 0.732

0 1 2 3 4 5 6

Performance Metric: 0.666

10
1

0
11

4

5

6

7

8

9

2

3

Performance Metric: 0.672

9

10

8
0

1

4

5

7

2

6

3

Performance Metric: 0.726

Test case I

Test case II

Power Topology (Gnutella like)

Ranged Topology (Ad-hoc network like)

Initiator node determined 

by THP scheme

Cluster discovered 

by CDC algorithm

Figure 12: Illustration of CDC Scheme on Various Example Graphs

both schemes. The MCL algorithm discovers the entire graph as a single cluster when the average node

degree is greater than 77. The CDC algorithm, on the other hand, detects 2 clusters on the graph with

average node degree 77 and a single cluster for a graph with average node degree 99.

Parameter Value
Total Nodes 184
Centralized Clustering Accuracy 0.246
CDC Scheme with Random Originators 0.158
CDC Scheme with THP Originators 0.257
Number of Cluster (CDC Scheme) 21
Number of Outliers (CDC Scheme) 6

Table 3: CDC Scheme performance on
Gnutella

Table 3 shows the results of the CDC scheme on actual Gnutella

data. It can be observed that the results are very similar to those

of the power topology graphs. The clustering accuracy value is in

general low for graphs that are similar to power topology graphs.

In this case we see that the CDC scheme yields a slightly higher

accuracy value than the centralized scheme.

Figure 12 provides illustrations of the CDC scheme on various example graphs indicating the origina-

tors and the clusters discovered. In short, these experiments demonstrated that a seemingly simple mech-

anism for originator selection can improve the clustering accuracy of the CDC scheme by large amounts

making the scheme perform similar to, or in some cases, better than the centralized MCL algorithm.

Does CDC Scheme Need High TTL?
One concern which we had regarding the CDC scheme was whether we need to initialize messages with

high TTL values in order to obtain good clusters. Using messages with high TTL values has two problems

which might be detrimental to the practicality of the scheme. First, it increases the message load on the

network. Second, it increases the time required for the clusters to emerge.

In order to determine the effect of Initial-TTL on the clustering accuracy, we obtained various clusters

by setting the Initial-TTL values from 1 to 5. The Figure 10 and 11 indicate the accuracy values of range

topology and power topology graphs with 200, 500 and 1000 nodes.

The results indicate that the algorithm yields good clusters even when the TTL is set to 2. Further the

accuracy values for TTL of 5 are almost equal to the accuracy yielded by the scheme when the TTL is 2.

This demonstrates that the scheme stabilizes very fast, which is a necessity for any distributed algorithm.

22



Message Cost of CDC Scheme
Now we evaluate the CDC scheme from a message cost standpoint. In our experiments, we use the

total number of messages as an indicator of the message cost.

The number of messages needed for the CDC scheme is dependent upon the Initial TTL value employed

by the scheme. Therefore we have measured the total number of messages generated by the CDC scheme

with Initial-TTL set to various values. We compare the CDC algorithm with the scheme where each

node floods the network with messages indicating its neighbors. In this scheme each node in the network

constructs a complete view of the graph and executes a clustering algorithm for discovering the clusters.

We term this as the flooding scheme.

Number of nodes TTL = 3 TTL = 4 TTL = 5 TTL = 7
1000 130210 182097 183620 186640
5000 808302 977653 983911 994832
10000 1980340 2554640 2579986 2594492

Table 4: Total number of messages circulated at
various TTL values

Figure 13 shows the number of messages generated

by all the three schemes on range topology graphs. Both

X and Y axes are on the log scale. A couple of interesting

and important points emerge from this graph. First, the

total number of messages generated by the CDC scheme is an order of magnitude less than those generated

by the flooding approach. For example for a graph of 500 nodes, the flooding approach needs 22 times

the number of messages needed for the CDC scheme with Initial-TTL set to 4. Second, as both axes are

on log scale, the total number of messages needed for the CDC scheme increases on a linear scale with

respect to the total number of nodes in the network. Third, the rate at which the network load increases for

the CDC scheme at various Initial-TTL values decrease as TTL gets higher. It might be observed that the

CDC scheme with Initial-TTL set to 4 generates slightly higher number of messages than the CDC with

Initial-TTL set to 3. In order to further demonstrate this phenomenon, we tabulate the number of messages

generated for range graphs at various TTL values in Table 4. For a range graph of 5000 nodes, the message

cost when TTL is set to Å is just kÁ�iÅ�B more than the message cost for the same graph when TTL is set to

D . For a network of 10,000 nodes, the message cost increases by only around kÁ�iÇÆèFB when the TTLs of

the clustering messages are increased from 4 to 7. These experimental results show that even for larger

networks the rate at which message cost of the CDC scheme grows is very small at high TTL values. The

reason for this is that as a message executes more hops, the weight of the message keeps reducing rapidly

and the scheme drops the message if its weight is insignificant, even if the message’s TTL has not expired

(in our experiments a message is dropped if its weight drops below k+?ëk�M æ G ). We also note that in the

Gnutella P2P file sharing system the TTL of a query is usually set to Å . This experiment shows that not

only is the CDC scheme efficient but it also scales well, and hence, can be applied to very large networks.

23



Node Entry Accuracy
We now evaluate the performance of the mechanisms to handle the dynamics of nodes. First, we present

the experimental evaluation of the node entry mechanism.

For this experiment, we consider a pre-clustered graph, to which new nodes are added. Each entering

node knows only its neighbors and joins the cluster structure through the mechanism we have discussed

in Section 4.1. We measure the accuracy of the clustering at regular intervals in order to evaluate the

performance of the scheme. We compare this scheme with the option of re-clustering the graph each time

a node enters the pre-clustered graph.

100 200 500 1000 2500 5000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

CDC Scheme Messaging Cost

Number of Nodes

N
um

be
r 

of
 M

es
sa

ge
s

CDC: TTL = 2
CDC: TTL = 3
CDC: TTL = 4
Flooding Scheme

Figure 13: CDC Scheme Message Costs

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
CDC Node Entry Accuracy (Range Topology)

Percentage of Nodes Added

C
lu

st
er

in
g 

A
cc

ur
ac

y
Re-Clustering on Node Entry
CDC Node Entry Mechanism

Figure 14: Accuracy of Node Addition Scheme on
Range Graphs

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

0.0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1.0

Node Entry Accuracy (Power Topology)


Percentage of Nodes Added


C
lu

st
er

in
g 

A
cc

ur
ac

y


ReClustering on Node Addition

CDC Node Entry Mechanism


Figure 15: Accuracy of Node Addition Scheme on
Power Graphs

0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0.0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1.0

Node Exit Accuracy (Range Topology)


Percentage of Nodes Exited


C
lu

st
er

in
g 

A
cc

ur
ac

y


ReClustering on Node Exit

CDC Node Exit Mechanism


Figure 16: Node Exit Scheme Accuracy on Range
Graphs

0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0.0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1.0

Node Exit Accuracy (Power Topology)


Percentage of Nodes Exited


C
lu

st
er

in
g 

A
cc

ur
ac

y


ReClustering on Node Exit

CDC Node Exit Mechanism


Figure 17: Node Exit Scheme Accuracy on Power
Graphs

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Number of Nodes

N
um

be
r 

of
 M

es
sa

ge
s

Message Consumption of Broadcast for Ranged Topology

Flooding
Clustered Broadcast 1
Clustered Broadcast 2
Ideal (MST Broadcast)

Figure 18: Efficient Broadcast with Distributed
Clustering

Figures 14 and 15 show the accuracy of the node addition scheme and the accuracy of re-clustering

the graph on node addition for range and power topology graphs respectively. The X-axes in the graphs

indicate the percentage of the newly added nodes and the Y axes the clustering accuracy. We see that for a

range graph when k&MFB new nodes join the system the accuracy of our scheme is 0.578. If the graph were

to be re-clustered it yields an accuracy value of 0.635. The accuracy value shows a linear deterioration

with a small gradient until the number of nodes in the system increases to kÁ�ÓÄ times the number of nodes

in the original graph. Thereafter the descent is faster. When the graph doubles in the number of nodes,

the accuracy value falls to 0.361 as against a value of 0.586 for the re-clustering scheme. Nevertheless,

this scheme for node entry saves messaging costs by large amounts. Therefore this is a very useful and

24



an attractive scheme and yields acceptable performance unless the graph size changes very drastically, at

which point the graph has to be re-clustered.

Node Exit Accuracy
Now we evaluate the accuracy of the mechanism we have proposed to handle node exits. In these

experiments, we consider a pre-clustered graph. The nodes exit this graph in a random order. When each

node exits the graph, its neighbors detect the exit and handle the node exit as described in Section 4.2. As

in the previous case we compare our scheme with the option of re-clustering the graph at each node exit.

Figures 16 and 17 indicate the accuracy of the node exit mechanism for range and power graphs with

ÇÆMÁM nodes respectively. It can be seen that until the percentage of nodes that have exited is below çÆMFB , our

scheme performs almost equally well as that of re-clustering the graph on each node exit, after which our

scheme shows minimal degradation in clustering accuracy.

After èÁMFB of nodes exit the system, accuracy values of both schemes start to increase. This phe-

nomenon can be explained as follows. When a large percentage of nodes exit the system, the graph splits

up into clear clusters, which are connected by very few edges. Hence clustering algorithms yield higher

accuracy values. The increase in accuracy values of re-clustered graph is more pronounced than those of

our scheme.

In these experiments we have demonstrated that our mechanisms to handle the entry and exit of nodes

maintain the accuracy of the clusters even when considerable percentage of nodes join or leave the system.

6.4 Applications of CDC

Discovering connectivity-based node clusters can improve the efficiency of resource utilization in many

decentralized P2P systems. P2P file sharing networks and wireless ad-hoc networks are such potential

areas of interest that can benefit from a clustering approach [25, 26, 33, 41].

Network-wide broadcast is a useful mechanism that is frequently used to support ad-hoc routing in wire-

less networks (as in Ad Hoc On-demand Distance Vector and Zone Routing Protocol), and query lookups

in P2P file sharing networks. Simple flooding [19] is one way of performing network-wide broadcast.

Flooding based broadcast results in several duplicate messages being sent which are simply discarded.

As a result, it incurs a high messaging cost. Note that an ideal solution to the broadcast problem is to have

a spanning tree that can be used to broadcast data without any overhead. However, it is not feasible to

maintain such a tree in a dynamic network due to frequent changes required to the tree. A compromise

between messaging cost and maintenance cost is to use clustered broadcast. Although using clusters in

wireless ad-hoc networks has been proposed before [28, 37, 38], clusters suggested in these approaches are

25



limited when compared to our connectivity-based clusters.

An interesting way of performing network-wide broadcast in wireless networks is to use a version of

clustered broadcast, what we call forest broadcast. Briefly described, forest broadcast uses per cluster

trees for broadcasting data within clusters, and flooding for conveying messages between clusters. Fig-

ure 18 compares the message cost for network-wide broadcast using forest broadcast (with two different

granulations of clusters) compared to flooding and spanning tree based ideal broadcast.

7 Related Work

The problem of graph clustering has received considerable attention from researchers in algorithmic graph

theory. Several algorithms have been proposed for general graph clustering [11, 31, 32, 35]. Out of these

algorithms the two most significant ones from a practical view point have been the H -path and the MCL

clustering algorithms [13, 35].

The H -path clustering has been one of the earlier algorithms proposed for graph clustering. The sim-

ilarity function adopted in the H -path clustering is the number of paths of length H between the nodes of

the graph. Though the H -path clustering is easy to implement and produces good clusters when the graph

has distinct dense regions, its main drawback is that it acts on a global scale and tends to ignore the local

variations in the node connectivity.

The MCL algorithm introduced by [35] alleviates the above problem of the H -path clustering. The

similarity function used in the MCL algorithm is based on the network flow. The MCL algorithm views

the graph as a Markov Chain and operates on the corresponding Markov matrix, which contains one-

step transition probabilities between all pairs of vertices. The algorithm defines a non-linear operator

termed as the Inflation operator. Alternate application of the self-multiplication operator and the inflation

operator, reveals the clusters in the graph. This algorithm addresses one of the major problems of the H -path

clustering of being insensitive to the local variations in the graph connectivity.

The PageRank algorithm [27] applies the principle of random walks on a graph for ranking web docu-

ments. This scheme views the entire web as a graph with web pages forming the nodes of the graph and

the hyperlinks forming its edges.

The key difference between our work and the ones discussed in these papers is that these are centralized

graph algorithms working on the global view of the graph, whereas our scheme is completely distributed

and does not need a complete connectivity structure. In addition, we provide mechanisms for addition and

deletion of nodes into pre-clustered networks.

Distributed node clustering has been studied in the context of wireless-mobile ad-hoc networks. Most of

26



the works related to ad-hoc networks consider node clustering as a mechanism to regulate communication

in such networks. In ad-hoc networks research, node clustering has been employed to decrease the power

consumption of nodes through the use of energy-efficient protocols for medium access control (MAC) [23,

42], data collection [3], routing [9], and mobility handling [4, 5, 6].

Most of the prior work on distributed node clustering in ad-hoc networks have focused on constructing

one-hop clusters [3, 4, 5, 6, 23]. In a one-hop cluster, each node is at most one-hop away from its cluster-

head. A few exceptions to this line of work are [2] and [9]. In [2], a heuristic-based distributed algorithm

is introduced for building clusters in which each node is at most > hops away from its clusterhead, where >
is a system parameter. The algorithm tends to create clusterings in which clusters have approximately the

same size. On the contrary, CDC creates clusters that reflect the connectivity structure of the underlying

network, and thus can have arbitrarily sized clusters. In [9], several distributed clustering algorithms are

proposed for constructing H -hop clusters. These algorithms differ from the CDC scheme in the fact that

they use the node connectivity information only for the purpose of electing clusterheads and not for the

clustering process itself. This difference has a direct impact on the clusters discovered by these algorithms.

For instance, CDC will partition the nodes within a highly connected region of the network into a small

number of large clusters, whereas the algorithms presented in [9] will form large number of small clusters.

An important concept related with decentralized node clustering is dominating sets. A dominating set

of an undirected graph �+�3	[��
\� is a subset of nodes �JIv	 , such that for every node G xz	 , either G+x~� orK DÙx~� , such that �EDF�'G<�oxz
 . In other words, every node in the graph that is not included in the dominating

set, is one hop reachable from the dominating set. Considering nodes that belong to a dominating set as

clusterheads and assigning each non-clusterhead node to its nearest clusterhead, a valid clustering of nodes

in the graph can be constructed. In many scenarios, like routing, it is advantageous to have connected

clusterheads. Pertaining to this, a subset of nodes � xI	 is called a connected dominating set if it also

forms a connected subgraph of � in addition to being a dominating set. A relaxation of the connectedness

requirement results in weakly connected dominating sets. A weakly-connected dominating set of a graph

� �
	��'
\� is a subset of nodes �JIv	 , such that � is a dominating set, and for each node G x~� , there exists

another node Dvx � which is at most 2 hops away. Unfortunately, finding minimum dominating sets as

well as connected or weakly connected dominating sets are shown to be NP-Complete problems.

However, a number of approximation algorithms have been proposed in the literature [1, 10, 12, 39].

Alzoubi et al. [1] have proposed a localized distributed algorithm for finding connected dominating sets

in a network. The algorithm has a constant approximation ratio as well as linear time and linear message

27



complexity in terms of the network size. Chen and Stojmenovic [10] describe centralized and distributed

algorithms for finding weakly connected dominating sets in a network. The distributed algorithms provide

� �EXE�&��L:� approximation, where L is the maximum degree of the network, and has � �24 	M4<?N4þ�O4þ� time and

message complexity. Dubhashi et al. [12] have proposed several localized distributed algorithms for finding

connected or weakly connected dominating sets. These algorithms execute in polylogarithmic number of

steps in terms of the network size, and provide an approximation ratio of � �
XJ�¢��L:� . Wu and Li [39] present

an algorithm to update the connected dominating set of an ad-hoc wireless network, when the network

topology changes due to entry, exit or movement of its nodes.

The above schemes although distributed, do not attempt to cluster the network based on its connectivity

structure. Hence the clusters discovered are not necessarily “good” clusters from a connectivity standpoint.

In contrast, CDC scheme is entirely based on connectivity structure of the network, and hence, leads to

high quality clusters.

In addition to the above discussed literature, the area of P2P systems in general has received con-

siderable attention from the research community in recent years. The research in P2P systems includes

characterization and modeling of the overlay network and traffic patterns in P2P systems such as [18, 30],

novel architectures, data structures and algorithms for efficient and scalable search and lookup [7, 29, 34],

comparative study of various architectures and algorithms [40] and designing new P2P applications [16].

In short, the work reported in this paper is unique and very few researchers have addressed the

connectivity-based distributed node clustering problem in such detail as we have done in this paper.

8 Conclusion

We have presented CDC Î the connectivity-based distributed node clustering scheme for accurately clus-

tering nodes in decentralized peer-to-peer networks. Our scheme is completely decentralized and does

not require a global view of the network structure. The scheme can either cluster the entire network au-

tomatically or detect clusters around a given set of nodes. In addition, we have also proposed schemes

to efficiently and effectively incorporate new nodes into an existing cluster structure and handle the exit

of nodes in the clusters. Our experiments indicate that our approach yields good clusters and effectively

handle the node dynamics.

Our work on CDC continues along several directions. First, we want to experiment with graphs of

various other topologies to study how our scheme performs. Second, we plan to design variants of the

CDC scheme to suit specific needs of different networks, like P2P networks with low bandwidth, networks

with devices which have low battery power, etc. These networks may place special constraints on the

28



clusters such as limiting the number of clusters, limiting the maximum number of nodes in any cluster, and

so forth. We believe that it is not only important, but also feasible to design variants of the CDC scheme

to meet constraints of specific overlay networks. Finally, we are interested in studying the benefits and

costs of applying the CDC node clustering scheme to various decentralized overlay networking systems

such as sensor networks, mobile ad-hoc networks, and other community-based collaborative networking

applications.

References
[1] K. M. Alzoubi, P.-J. Wan, and O. Frieder. Message-optimal connected dominating sets in mobile ad-hoc net-

works. In ACM MobiHoc, 2002.
[2] A. D. Amis, R. Prakash, D. Huynh, and T. Vuong. Max-Min D-Cluster formation in wireless ad hoc networks.

In IEEE INFOCOM, 2000.
[3] S. Bandyopadhyay and E. J. Coyle. An energy efficient hierarchical clustering algorithm for wireless sensor

networks. In IEEE INFOCOM, 2003.
[4] S. Basagni. Distributed clustering for ad hoc networks. In I-SPAN, 1999.
[5] C. Bettstetter and R. Krausser. Scenario-based stability anlysis of the distributed mobility-adaptive clustering

(DMAC) algorithm. In ACM MobiHoc, 2001.
[6] M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clustering algorithm for mobile ad hoc networks.

Journal of Cluster Computing, 5, April 2002.
[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like p2p systems scalable.

In ACM SIGCOMM, 2003.
[8] G. Chen, F. G. Nocetti, J. S. Gonzalez, and I. Stojmenovic. Connectivity based k-hop clustering in wireless

networks. In Hawaii International Conference on System Sciences, 2002.
[9] G. Chen and I. Stojmenovic. Clustering and routing in mobile wireless networks. Technical Report TR-99-05,

School of Information Technology and Engineering, University of Ottawa, June 1999.
[10] Y. Chen and A. Liestman. Approximating minimum size weakly-connected dominating sets for clustering

mobile ad-hoc networks. In ACM MobiHoc, 2002.
[11] Drineas, Frieze, Kannan, Vempala, and Vinay. Clustering in large graphs and matrices. In SODA: ACM-SIAM

Symposium on Discrete Algorithms, 1999.
[12] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast distributed algorithms for

(weakly) connected dominating sets and linear-size skeletons. In ACM SODA, 2003.
[13] J. Falkner, F. Rendl, and H. Wolkowitz. A computational study of graph partitioning. Mathematical Program-

ming, 66(2):211–239, 1994.
[14] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In ACM

SIGCOMM, 1999.
[15] Freenet home page. http://www.freenet.sourceforge.com.
[16] B. Gedik and L. Liu. PeerCQ: A decentralized and self-configuring peer-to-peer information monitoring system.

In IEEE ICDCS, 2003.
[17] Gnutella development page. http://gnutella.wego.com.
[18] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan. Measurement, modeling and

analysis of a peer-to-peer file sharing workload. In SOSP, 2003.
[19] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath. Flooding for reliable multicast in multi-hop ad hoc networks.

In Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, 1999.
[20] A. K. Jain, M. N. Murthy, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3), 1999.
[21] Kazaa home page. http://www.kazaa.com.

29



[22] P. Krishna, N. Vaidya, M. Chatterjee, and D. Pradhan. A cluster-based approach for routing in dynamic net-
works. ACM SIGCOMM Computer Communication Review, pages 49–65, April 1997.

[23] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal of Selected Areas in
Communications, 15(7), 1997.

[24] L. Lovasz. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty, 2, 1996.
[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny aggregation service for ad hoc sensor

networks. In OSDI, 2002.
[26] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting aggregate queries over ad-hoc wireless

sensor networks. In Workshop on Mobile Computing and Systems Applications, 2002.
[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the web.

Technical report, Stanford Digital Library Technologies Project, 1998.
[28] W. Peng and X. Lu. Efficient broadcast in mobile ad hoc networks using connected dominating sets. Journal of

Software, 1999.
[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In

ACM SIGCOMM, 2001.
[30] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. In International Conference on Peer-to-

peer Computing, 2001.
[31] T. Roxborough and A. Sen. Graph clustering using multiway ratio cut. In International Conference on Graph

Drawing, 1997.
[32] R. Sablowski and A. Frick. Automatic graph clustering. In International Conference on Graph Drawing, 1996.
[33] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in mobile ad hoc networks. In ACM MobiCom,

1998.
[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. In ACM SIGCOMM, 2001.
[35] S. van Dongen. A new cluster algorithm for graphs. In 281, page 42. Centrum voor Wiskunde en Informatica

(CWI), ISSN 1386-3681, 31 1998.
[36] S. van Dongen. Performance criteria for graph clustering and markov cluster experiments. Technical report,

National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, 2000.
[37] P. Wei and L. Xi-Cheng. On the reduction of broadcast redundancy in mobile ad hoc networks. In Workshop

on Mobile Ad Hoc Network Computing, 2000.
[38] B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad hoc networks. In ACM

MobiHoc, 2002.
[39] J. Wu and H. Li. A dominating-set-based routing in ad hoc wireless networks. Telecommunication Systems,

18(1-3), 2001.
[40] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems. In VLDB, 2001.
[41] Y. Yao and J. E. Gehrke. Query processing in sensor networks. In Conference on Innovative Data Systems

Research, 2003.
[42] W. Ye, J. Heidemann, and D. Estrin. An energy efficient MAC protocol for wireless sensor networks. In IEEE

INFOCOM, 2002.

30


