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ABSTRACT

This paper presents PRIVACYGRID — a framework for sup-
porting anonymous location-based queries in mobile infor-
mation delivery systems. The PrivAcYGRID framework of-
fers three unique capabilities. First, it provides a location
privacy protection preference profile model, called location
P3P, which allows mobile users to explicitly define their pre-
ferred location privacy requirements in terms of both loca-
tion hiding measures (e.g., location k-anonymity and loca-
tion [-diversity) and location service quality measures (e.g.,
maximum spatial resolution and maximum temporal resolu-
tion). Second, it provides fast and effective location cloaking
algorithms for location k-anonymity and location [-diversity
in a mobile environment. We develop dynamic bottom-
up and top-down grid cloaking algorithms with the goal of
achieving high anonymization success rate and efficiency in
terms of both time complexity and maintenance cost. A
hybrid approach that carefully combines the strengths of
both bottom-up and top-down cloaking approaches to fur-
ther reduce the average anonymization time is also devel-
oped. Last but not the least, PRIVACYGRID incorporates
temporal cloaking into the location cloaking process to fur-
ther increase the success rate of location anonymization.
We also discuss PRIVACYGRID mechanisms for supporting
anonymous location queries. Experimental evaluation shows
that the PRIvACYGRID approach can provide close to op-
timal location k-anonymity as defined by per user location
P3P without introducing significant performance penalties.

Categories and Subject Descriptors

H.2.7 [Database Management|: Database Administra-
tion—=Security, integrity, and protection; H.2.8 [Database
Management|: Database Applications—Spatial databases
and GIS

General Terms

Algorithms, Experimentation, Performance, Security
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1. INTRODUCTION

With rapid advances in mobile communication technolo-
gies and continued price reduction of location tracking dev-
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ices, location-based services (LBSs) are widely recognized
as an important feature of the future computing environ-
ment [8]. Though LBSs provide many new opportunities,
the ability to locate mobile users also presents new threats
— the intrusion of location privacy |7, 12]. According to [7],
location privacy is defined as the ability to prevent unau-
thorized parties from learning one’s current or past location.
Location privacy threats refer to the risk that an adversary
can obtain unauthorized access to raw location data, derived
or computed location information by locating a transmitting
device, hijacking the location transmission channel and iden-
tifying the subject using the device [13]. For example, loca-
tion information can be used to spam users with unwanted
advertisements or to learn about users’ medical conditions,
unpopular political or religious views. Inferences can be
drawn from visits to clinics, doctor’s offices, entertainment
clubs or political events. Public location information can
lead to physical harm, such as stalking or domestic abuse.

Several approaches have been proposed for protecting the
location privacy of a user. We classify these techniques
into three categories: (1) Location protection through user-
defined or system-supplied privacy policies; (2) Location
protection through anonymous usage of information; and
(3) Location protection through pseudonymity of user iden-
tities, which uses an internal pseudonym rather than the
user’s actual identity. For those LBSs that require true user
identity, strong security mechanisms such as location au-
thentication and authorization have to be enforced in con-
junction with their location privacy policy. In this paper, we
concentrate on the class of location-based applications that
accept pseudonyms and present the PRIVACYGRID frame-
work for performing personalized anonymization of location
information through customizable location k-anonymity and
location [-diversity, thus enabling anonymous location-based
queries in mobile information delivery systems.

Perfect privacy is clearly impossible as long as communi-
cation takes place. An important question here is how much
privacy protection is necessary? Moreover, users often have
varying privacy needs in different contexts. In PRIVACY-
GRID, we propose to use location k-anonymity and location
[-diversity as two quantitative metrics to model the loca-
tion privacy requirements of a mobile user. In the context
of LBSs and mobile users, location k-anonymity refers to
k-anonymous usage of location information. A user is con-
sidered location k-anonymous if and only if the location in-
formation sent from the mobile user to a LBS is indistin-
guishable from the location information of at least k — 1
other users. Location [-diversity is introduced to strengthen
the privacy protection of location k-anonymity in situations
where location information shared by the k users is sensi-
tive. Increasing [ value to two or higher significantly reduces



the probability of linking a static location or a symbolic ad-
dress (such as church, restaurant, doctor’s office) to a mobile
user. Location perturbation is an effective technique for im-
plementing personalized location k-anonymity and location
[-diversity. Cloaking methods typically perturb the location
information by reducing its resolution in terms of time and
space, referred to as spatial cloaking and temporal cloaking
respectively [12].

In this paper, we present the PRIVACYGRID approach
to support anonymous location-based queries in mobile in-
formation delivery systems. The design of PRrRIivACYGRID
provides a unified and yet effective location anonymization
framework for all types of location queries so that mobile
users can enjoy the convenience of LBSs without revealing
their exact location information. We make three unique
contributions in this paper. First, we provide a location pri-
vacy preference profile model, called location P3P, which al-
lows mobile users to explicitly define their preferred location
privacy requirements in terms of both location hiding mea-
sures (i.e., location k-anonymity and location [-diversity)
and location QoS measures (i.e., maximum spatial reso-
lution and maximum temporal resolution). Our location
P3P model supports personalized and continuously chang-
ing privacy needs of a diverse user base. Second, we de-
velop fast and effective cloaking algorithms for providing
location k-anonymity and location [-diversity while main-
taining the utility of LBSs. Concretely, our dynamic ez-
pansion technique for bottom-up grid cloaking and dynamic
reduction technique for top-down grid cloaking provide high
anonymization success rate and yet are efficient in terms of
both time complexity and maintenance costs. We also pro-
pose a hybrid approach that combines the bottom-up and
top-down search of location cloaking regions to further lower
the average anonymization time. Last but not the least, we
incorporate temporal cloaking functionality into the PRIva-
cYGRID location perturbation process. Deferred processing
of location anonymization requests within the temporal de-
lay constraint further enhances the anonymization success
rate while maintaining the desired quality of service (QoS).
Our discussion on the new capabilities required for process-
ing anonymous location queries exhibits the benefits of using
small cloaking regions for anonymous query processing. The
PRIvACYGRID approach is evaluated through extensive ex-
perimentation, thus verifying that PRIVACYGRID location
cloaking algorithms can provide close to optimal location
anonymity as defined by per user location P3P without in-
troducing significant performance penalties.

2. RELATED WORK

The k-anonymity approach to privacy protection was first
developed for protecting published medical data [19]. k-
anonymity guarantees the inability of the adversary to dis-
tinguish an individual record from at least k—1 other records.
[6, 15] provide solutions for optimal k-anonymization. Per-
sonalization of privacy requirements has attracted attention
recently [10, 20]. Other related work includes anonymization
of high dimensional relations [4] and extending the concept
of k-anonymization via [-diversity [17], t-closeness [16] and
m-invariance [21].

The concept of location k-anonymity was introduced in [12]
where k is set to be uniform for all users. The concept of
personalized location k-anonymity with customizable QoS
specifications, first introduced in [10], is adopted by sev-
eral others [18, 11]. Most popular solutions for location
privacy [12, 10, 18] have adopted the trusted third party
anonymization model, which has been successfully deployed
in other areas such as Web browsing [1]. Two representa-

tive approaches to personalized location anonymization are
the CliqueCloak algorithm introduced in [10] and the Casper
system [18]. The CliqueCloak algorithm relies on the ability
to locate a clique in a graph to perform location cloaking,
which is expensive and shows poor performance for large k.
The Casper approach performs the location anonymization
using the quadtree-based pyramid data structure, allowing
fast cloaking. However, due to the coarse resolution of the
pyramid structure and lack of mechanisms to ensure QoS
and constrain the size of the cloaking region, the cloaking
areas in Casper are much larger than necessary, leading to
poor QoS perceived by the users. Our experiments show
that the PRivACYGRID approach outperforms Casper and
other existing location anonymization approaches in terms
of efficiency and effectiveness, producing cloaking regions
that meet both location privacy and location service quality
requirements.

In contrast to the trusted third party anonymizer model,
a couple of research projects, with Prive [11] being the most
representative one, attempt to remove the trusted third party
anonymizer by relying on a decentralized cooperative peer
to peer model and the existence of a trusted centralized cer-
tification server. The main technical challenge handled in
this work involves dynamic formation of nearby peer groups
that can perform location anonymization for each other. In
fact, the PRIVACYGRID approach can be easily adapted to
such settings to perform the actual location cloaking among
selected peer groups. Another thread of efforts is to perform
location obfuscation at the mobile clients by introducing
random noises or utilizing nearby landmarks [14, 9], assum-
ing mobile clients have sufficient computation and communi-
cation resources to participate in both location anonymiza-
tion and anonymous query processing tasks.

3. PRIVACYGRID: AN OVERVIEW

We assume that the LBS system powered by PRIVACY-
GRID consists of mobile users, a wireless network, location
anonymization servers and LBS servers. Mobile users com-
municate with the LBS servers via one or more PRIVACY-
GRID location anonymization servers by establishing an au-
thenticated and encrypted connection to the anonymization
server. Each location anonymization server connects to a
number of base stations, tracks the location updates of the
mobile users in the range of those base stations and per-
forms location anonymization for both location queries and
location updates from these mobile users. Each location
anonymization server has access to all publicly available data
which can be used for ensuring location [-diversity for user
requests.

3.1 System Architecture

The PrIVACYGRID system promotes a three-tier archi-
tecture for supporting anonymous information delivery in
a mobile environment, as shown in Figure 1. The top tier
is the location P3P user profile model that captures users’
personalized location privacy requirements. The middle tier
comprises of the location perturbation service typically pro-
vided by a trusted third party location server, specialized in
location tracking and anonymization service. The third tier
is dedicated to the transformation of raw location queries
to anonymous location queries, enabling the processing of
cloaked location queries at the individual LBS providers.
Each participating LBS provider will need to provide anony-
mous query processing support and cooperate with the loca-
tion anonymizer to provide the desired location privacy pro-
tection for consumers. In the PRivAcYGRID development,
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Figure 1: System Architecture

we consider the anonymous query processing component as
an integral part of the solution.

Our location P3P model allows mobile users to specify
what, when, how and with whom their location information
can be shared. In addition to the standard P3P specifica-
tion [2], we add four location privacy specific measures, two
for location hiding constraints and two for QoS constraints.
The first measure is location k-anonymity, which allows a
mobile user to control her state of being unidentifiable from
a set of k — 1 other users. The second measure is loca-
tion [-diversity, which allows the mobile user to control her
state of being unidentifiable from a set of [ different physical
locations (such as churches, clinics, business offices). This
measure can be seen as a companion measure of location
k-anonymity and is particularly useful in reducing the risk
of unwanted location inference when there are k£ or more
distinct users at a single physical location (such as a clinic
or a political gathering). The third measure is mazimum
spatial resolution, which allows the mobile user to control
the spatial resolution reduction within an acceptable QoS
specific range. It can be changed or adjusted according to
the type of location service, the time of day, month or year,
and on a per message level. Similarly, the fourth measure is
maximum temporal resolution, which controls the temporal
delay acceptable for maintaining the desired QoS.

The location anonymization component anonymizes the
location information from mobile users, by performing spa-
tial and temporal cloaking, based on their P3P profiles be-

fore passing the location information to the actual LBS providers

(path 2 in Figure 1). The detailed location cloaking algo-
rithm design will be discussed in subsequent sections.

The query anonymizer component is responsible for trans-
forming each raw location query into two components: (1)
an anonymized location query by replacing the exact loca-
tion of the mobile user with the location cloaking box pro-
duced by the location anonymization module; and (2) the
filtering condition that will prune the candidate set of query
results to produce the exact result to the original raw query
posed by the mobile user. For those LBSs that offer loca-
tion dependent services over public locations, such as restau-
rants, gas stations, offices and so forth, only anonymized lo-
cation queries are passed from the location anonymizer to
the respective LBS provider. Mobile users who allow their
movements to be tracked by certain LBSs may use their lo-
cation P3P to specify how they want their location updates
to be cloaked and to which LBS servers their location up-
dates can be provided.

Upon receiving anonymized location queries, the LBS pro-

viders will invoke the anonymous query processing module.
Anonymous location query processing consists of two key
steps. First, each anonymized query will be evaluated at
the LBS provider to produce the set of candidate results.
Second, the candidate set of query answers will need to be
filtered to get exact results. There are a couple of alter-
native ways of performing the filtering step for anonymous
query processing. For example, one can choose to have the
location anonymizer as the middleman between mobile users
and individual LBS providers such that the filtering task is
carried out at the location anonymizer and the exact query
result is generated and returned to the mobile user through
the location anonymizer (path 3A in Figure 1). This ap-
proach adds additional load and bottleneck to the location
anonymizer. Alternatively, filtering can be performed at the
mobile client. In this case, for each location query received
by the location anonymizer, the anonymized query will be
passed to the LBS provider, and the filter condition will
be returned to the mobile user who issued the query. The
LBS provider will pass the candidate set of answers to be
filtered at the client (path 3B in Figure 1). Filtering at the
client will introduce additional communication and process-
ing overhead. Thus it is critical to develop techniques that
can minimize the amount of processing to be performed at
the mobile client side. We will dedicate Section 6 for dis-
cussing issues related to processing of anonymous location
queries.

3.2 Location Privacy Requirements

In PrivacYGRID the following requirements are consid-

ered essential for supporting anonymous location queries.
Personalized user privacy profile: We provide two mea-
sures for mobile users to specify their location privacy re-
quirements: location k-anonymity and location [-diversity.
The former allows a mobile user to control her state of being
not identifiable from a set of k& — 1 other users. The latter
allows a mobile user to control her state of being traceable
to a set of at least [ distinct public locations, which are typ-
ically referred to as symbolic addresses. Location [-diversity
is particularly useful in reducing the risks of unauthorized
location inference when there are k or more distinct users at
a single physical location (such as a clinic or a church). A
mobile user may change her privacy preference level (k and
[ values) as often as required or on a per message basis.
QoS guarantees: In order to provide effective location
cloaking, PRIVACYGRID provides two QoS measures which
allow a mobile user to specify critical QoS constraints. The
first QoS measure is the maximum spatial resolution, indi-
cating the amount of spatial inaccuracy the user is willing to
tolerate to maintain acceptable QoS. The second QoS mea-
sure is the maximum temporal resolution, ensuring that the
delay introduced for cloaking a request message should be
within an acceptable time interval. By utilizing these two
quality metrics, PRIVACYGRID aims at devising cloaking al-
gorithms that will find the smallest possible cloaking region
meeting desired privacy levels for each location anonymiza-
tion request.
Dynamic tradeoff between privacy and quality: In
PRrRIVACYGRID, we stress that location perturbation algo-
rithms should be capable of dynamically making trade-offs
between privacy and QoS. Unnecessarily large cloaking boxes
will lead to not only poor QoS for the mobile users but also
larger result sets to be transported from the correspond-
ing LBS provider and higher processing costs for filtering at
either the mobile client side or at the location anonymizer,
inevitably leading to larger delays for obtaining useful query
results.



Efficiency and scalability: In PrivaAcYGRID, a mobile
user can change her location P3P at any time. The cloak-
ing algorithms should be effective and scalable in the pres-
ence of changing requirements on both the number of mobile
users and the content of location P3P. At the same time, the
cloaking algorithms must be fast and capable of keeping the
perceived delays due to location anonymization to a mini-
mum.

3.3 Basic Concepts

In this section, we define the basic concepts that are re-
quired for the subsequent discussion of the PrRivAcYGRID
framework.

Universe of discourse (UoD): We refer to the geograph-
ical area of interest as the universe of discourse (or map),
which is defined by U = Rect(x,y,w, h), where z is the x-
coordinate and y is the y-coordinate of the lower left corner
of a rectangular region, w is the width and h is the height of
the universe of discourse. Basically, we consider maps which
are rectangular in shape.

Grid and grid cells: In our framework, we map the uni-
verse of discourse U = Rect(x,y,w, h) onto a grid G of cells.
Each grid cell is an « x 3 rectangular area, where «, 3 are
system parameters that define the cell size of the grid G.
Formally, a grid corresponding to the universe of discourse
U can be defined as G(U, , ) = {A;; : 1 <i< M, 1 <5<
N, A;j = Rect(x +i x a,y+j x 8,0, 8), M = [w]a], N =
[h/B]}. Aij is an a X (B rectangular area representing the
grid cell that is located in the ¢th column and jth row of the
grid G.

Position to grid cell mapping: Let p = (pz,py) be the
position of a moving object in the universe of discourse
U = Rect(z,y,w,h). Let A;; denote a cell in the grid
G(U,«, ). Pmap(p) is a position to grid cell mapping, de-
fined as Pmap(p) = A

Current grid cell of a moving object: Current grid
cell of a moving object is the grid cell which contains the
current position of the moving object. If O,, is a moving
object whose current position, denoted as p, is in the Uni-
verse of Discourse U, then the current grid cell of the object
is formally defined by curr_cell(On) = Pmap(p).

User privacy preference profile: PRIVACYGRID uses a
personalized location privacy model. A user registered with
the anonymization server specifies her location privacy re-
quirements in terms of her desired user anonymity level k,
desired location diversity level [, maximum spatial resolu-
tion {ds,dy} and maximum temporal resolution d;. Each
location P3P record is of the form (objiq, LBSinfo,T€qid, k,
l,{ds,dy,d:}), where obj;q identifies the user, LBSinfo is
optional and provides the type and the identifier of the LBS
this P3P record is applied to and reg;q is used to uniquely
identify a service request posed by the user with the given
objia. We use k =1 and [ =0 or [ = 1 as the default set-
ting, neither anonymity nor diversity are considered. When
k and [ use their default settings, d.,d,,d; are set to un-
known value null.

3.4 Location Anonymization Server

In PrIivACcYGRID, each message ms received by the anony-
mizer is of the form (objiq,reqia, {x,y,t}, k1, {dz, dy,d:}).
The objiq and req;q uniquely identify a message. The coor-
dinate (z,y) and the timestamp ¢ together form the three di-
mensional spatio-temporal location point of the mobile user
who issued the message ms. The parameters {k, [, dz, dy, d: }
denote the location P3P specified by the mobile user who
issued this request. The location anonymization server will
transform the original message ms to a location perturbed

[Ea=e) [2uzby-

message my of the form (h(objid||reqia), {X : [xs,xc],Y :
[Ys,Ye], I : [ts,te]}), where h is a secure hash function, X :
[xs,xze] and Y : [ys,ye] denote the spatial cloaking box of
the message on x-axis and y-axis respectively, such that
Te— 2,0 — s < dp and ye — Y,y — ys < dy; and [ : [ts, te]
denotes the temporal cloaking interval such that t. —ts < ds.
Furthermore, there are at least kK — 1 other mobile users and
at least [ symbolic addresses located within the same spatio-
temporal cloaking box defined by (X : [zs,ze], Y : [ys, ve], I :
[ts,te]). We refer to this process as spatio-temporal cloaking
based message perturbation. We will describe the PRIvACY-
GRID spatial cloaking algorithms for finding an ideal spatial
cloaking box (X : [zs,ze],Y : [ys,ye]) that meets the k-
anonymity and [-diversity requirements in Section 4.

3.5 Evaluation Metrics

In this section, we define several metrics that will be used
to evaluate the effectiveness and efficiency of PrRivacYGRID
location cloaking algorithms. The anonymization success
rate (ASR) and relative anonymity (relative diversity) lev-
els are important measures for evaluating the effectiveness of
the cloaking algorithms. Another useful effectiveness mea-
sure is the user location distribution (ULD) with respect to
the cloaking box. It measures the strength of the location
cloaking algorithm against inference attacks that attempt to
guess the actual location of the mobile users with respect to
the center of the cloaking region. Important efficiency mea-
sures include relative spatial resolution and message pro-
cessing time.

Anonymization Success Rate (ASR): The primary goal
of our location cloaking algorithms is to maximize the num-
ber of messages perturbed successfully while maintaining
their anonymization constraints, specified by their privacy
and QoS requirements. We define the anonymization success
rate as the fraction of messages cloaked successfully by an
algorithm with respect to the set of received anonymization
requests. Let M denote the set of anonymization requests is-
sued to the system. The set of messages that are successfully
perturbed can be computed by {m:|m: = feioak(ms), ms €
M}, where feioak(ms) denotes a PRIVACYGRID location cloak-
ing algorithm. Thus, the anonymization success rate of
Setoak(ms) is defined as follows:

ASR(fetoar (my)) = Hrmelmi=ietae (me).me €A

Relative Anonymity and Relative Diversity Levels:
This metric measures the achieved anonymity and diversity
levels for successfully cloaked messages normalized by the
anonymity level k and diversity level [ in the mobile user’s
location P3P. Intuitively, Relative Anonymity Level (RAL)
measures the ratio of anonymity achieved by the cloaking al-
gorithm to the user specified k-anonymity level, i.e., %/ and
Relative Diversity Level (RDL) provides a similar measure

for [-diversity %, where k, [l denote the user-defined values
for a message ms and k', 1’ denote the actual values obtained
for the perturbed message m(k’ > k,I’ > 1). Note that
for successful anonymization relative anonymity level can-
not go below 1. Although, the location cloaking algorithms
alm at obtaining higher anonymity for the same cloaking
area, excessive anonymity achieved at the cost of cloaking
the location to a much larger region leads to poor QoS and
costly processing of anonymous queries. Hence, the lower
the relative anonymity and relative diversity levels, the more
effective the cloaking algorithm.

Relative Spatial Resolution (RSR): This metric mea-
sures the ability of a cloaking algorithm to provide the small-
est cloaking area that meets the k-anonymity and [-diversity
requirements. Given a message ms and its perturbed version
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Figure 2: Data Structures for PRIVACYGRID

m¢, we can measure the RSR by using the minimum spatial
cloaking area as calculated by the cloaking algorithm. We
define the RSR of a cloaking algorithm over a set of per-
turbed messages 1" as follows:

2:mgs.dy-2-ms.dy

RSE = \TII th:fcloak<m5)€T \/|‘Bcl(mt>~XH‘HBcl(mt)-Y‘| ’
where (d;,d,) denote the maximal spatial resolution con-
straints for message ms and (Bei(me).X, Bei(my).Y') repre-
sent the dimensions of the cloaking box B (m:). Higher
relative spatial resolution measure implies that the cloaked
spatial region is smaller relative to the user-specified max-
imum spatial resolution area and the cloaking algorithm is
more effective.

User Location Distribution(ULD): This metric is used
to measure the level of difficulty in inferencing the location
of a user within the cloaking region shared by k users. We
determine the user location distribution within the cloaked
area by measuring the normalized distance of the actual user
position to the center of the cloaked area for each success-
fully anonymized message. A uniform user location distri-
bution implies the algorithm is more effective in terms of
robustness against aforementioned inference attacks as the
actual user location may lie anywhere within the cloaked
region.

Message Anonymization Time: This metric measures
the run-time performance of the cloaking algorithm in terms
of time complexity. Efficient cloaking implies that the cloak-
ing algorithm spends less processing time to perturb mes-
sages.

4. PRIVACYGRID SPATIAL CLOAKINGAL-

GORITHMS

In this section we introduce basic data structures and two
dynamic grid-based location cloaking algorithms: bottom-
up spatial cloaking and top-down spatial cloaking, both aim-
ing at finding the smallest spatial cloaking box given the lo-
cation of a mobile user. Ideally, this means that there exists
no smaller spatial cloaking box that satisfies both location
k-anonymity and location [-diversity requirements as well as
the maximum spatio-temporal resolution constraints defined
in the users’ location P3P.

4.1 Data Structures

In PRIVACYGRID the entire UoD is divided into grid cells
of a X 3 size by superimposing a grid on top of the UoD. «
and 0 are system-controlled parameters that can be tuned
based on a number of factors, such as the cloaking speed,
granularity of cloaking boxes and average size of user-defined
maximum spatial resolutions. Figure 2 illustrates the PRri-

VACYGRID Indexz (PI) and the Cell Object Count Map (COCM)

data structures.
PRIVACYGRID Index (PI): The PI data structure allows
for fast and efficient computation of object counts belong-

ing to a particular region of the UoD. Figure 2 illustrates
the composition and construction of this grid-based object
index. The mobile object index and the still object index
share the same data structure though maintained separately.
Cell Object Count Map (COCM): In addition to the
mapping of each object to its current grid cell maintained by
P1I, we use this data structure to keep a count of the number
of mobile objects and a count of the number of static ob-
jects (symbolic addresses, such as gas stations, restaurants,
offices, and so forth) located in each grid cell. Maintaining
this data structure allows for fast computation of the total
number of mobile users and the total number of static ob-
jects located in a given spatial area. For each grid cell, the
count of static objects remains unchanged most of the time.
However, the count of mobile objects may change as mobile
users move from one cell to another.

4.2 Bottom-Up Grid Cloaking

The bottom-up grid cloaking approach starts the cloaking
process by taking the base cell containing the mobile object
from which the cloaking request has originated as the candi-
date cloaking area. It performs two checks for each message
with k or [ higher than one in order to determine whether
this candidate cloaking area meets the privacy and QoS re-
quirements to be qualified as the ideal cloaking region. The
first check is to determine if the current cell meets the user-
specified maximum spatial resolution constraints. A second
check looks up the cell object count map to determine if k-
anonymity and [-diversity requirements are met. If the sec-
ond check is successful, the candidate cloaking area will be
chosen as the cloaking region. If not, the algorithm will start
the cell expansion process to enlarge the candidate cloaking
area to neighboring cells. The cell expansion process stops
when both k-anonymity and [-diversity requirements for the
cloaked message are met.

The detailed description of the bottom-up cloaking algo-
rithm [5] is omitted here due to space constraints. The core
idea behind bottom-up cloaking is the execution of dynamic
cell expansion when the candidate cloaking region fails to
meet the location privacy and QoS constraints. Dynamic
cell expansion takes an opportunistic approach to expand
the candidate cloaking region to any of the four neighboring
set of cells.

The decision on which of the four cells to choose first is
based on the object counts; the neighboring cell(s) with the
highest object count will be chosen for expansion, generating
the new candidate cloaking box. Each candidate cloaking
box is composed of a set of adjacent cells and is encoded by
the row and column index of the these selected cells. We
maintain the selected rows and the selected columns for all
candidate cloaking boxes in order to infer the selected cells
of the final cloaking area. The current candidate cloaking
box may be expanded in any direction (North, South, East
or West) by adding the row above the uppermost selected
row (or below the lowermost selected row) or the column
to the right of the rightmost selected column (or to the left
of the leftmost selected column), thus dynamically building
the cell-based cloaking box by selecting and adding the rows
or the columns which lead to the maximum object count
collectively.

For every odd iteration, the algorithm determines whether
to add a row or a column as the cloaking area may be ex-
panded in any direction. For even iterations, the algorithm
expands the cloaking area, depending on whether a row or
column was added in the previous iteration, in order to en-
sure that no vertical or horizontal skew is introduced. For
example, if the algorithm added a row during the previous it-
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Figure 3: Bottom-Up Dynamic Expansion Example

eration, the current iteration would expand the cloaking box
by addition of an adjacent column. The cell expansion steps
are recursively repeated as long as the sum of object counts
in all cells in selected rows and columns is less than the
required k-anonymity and [-diversity levels. Upon meeting
both the privacy and the QoS requirements, the algorithm
uses the selected rows and columns to determine the grid
cells forming the final cloaking area.

Figure 3 presents a walkthrough of the bottom-up dy-
namic expansion by example. In this example, we assume
the user-defined k value is 20 and [ value is 3. The cloaking
request originates from the shaded cell with the mobile ob-
ject count (number at top-left in each cell in Figure 3) of 6
and the still object count (number at bottom-right in each
cell in Figure 3) of 1. It is located at the second row and
the second column in the grid. We encode this candidate
cloaking region by assigning the value of 2 to both select-
edRows and selectedCols respectively. Clearly, this cell fails
to meet both the k-anonymity and the [-diversity require-
ments. The algorithm starts the dynamic cell expansion
process from the current cell. All neighboring cells of the
shaded cell are considered. Given that the first row to the
north increments the mobile object count to 12, the highest
among all four neighboring cells, it is chosen to be the first
cell for expansion. We add the row number 1 into the select-
edRows to encode the new candidate cloaking region. Even
though the total still object count in this candidate cloak-
ing box is 3, satisfying the [-diversity requirement, the total
mobile object count of 12 does not meet the user-specified
k-anonymity requirement of 20. Thus the algorithm starts
the next iteration of cell expansion. In this iteration, we
choose one of the two neighboring columns of the candidate
area to expand. We first consider the column to the left
(first column in grid), which is not sufficient to meet the
privacy requirements. Then we consider the column to the
right (the third column in grid) which provides a cloaking
area with the object count of k’=21, sufficient to meet the k-
anonymity requirement. Thus the algorithm terminates and
returns selectedRows = {1,2} and selectedCols = {2, 3}.

In fact, there are two ways in which cell expansion can be
performed: (1) static cell expansion based on a pre-defined
pattern, such as the quadtree-based grid expansion [18] or
(2) dynamic cell expansion that opportunistically determines
appropriate neighboring cells to expand the candidate cloak-
ing region at run time. It is interesting to note that the
static expansion approach promotes static cloaking following
a pre-defined structure. For example, the pyramid approach
in [18] uses the quadtree-based pyramid structure and some
steps may expand the cloaking area to a pre-defined parent
cell along the pyramid hierarchy, quadrupling the cloaked
area, limiting the ability of the algorithm to explore all op-
tions of varying granularity. Though such a static cloaking
approach is simple and fast, it suffers from a number of weak-
nesses. For example, pyramid cloaking expands the cloaking

Figure 4: Pyramid Expansion Example

area to two or four times of the current size at each iteration,
leading to a much bigger cloaking area and a much higher
anonymity level than required, which hurts the QoS pro-
vided to the user and results in low anonymization success
rate. In contrast to the static cloaking approach that selects
the cloaking area using a pre-built cell composition struc-
ture, the dynamic expansion approach opportunistically ex-
pands the cloaking area, enabling the algorithm to quickly
locate an ideal cloaking area that meets privacy and QoS
requirements. Figure 4 shows pyramid expansion cloaking
for the same example used in Figure 3. Clearly, pyramid ex-
pansion results in a much larger cloaking area with a much
higher anonymity level than required. In contrast, the cloak-
ing area produced by the dynamic bottom-up approach is
much smaller as shown in Figure 3.

4.3 Top-Down Grid Cloaking

In some scenarios, a top-down cloaking approach performs
anonymization faster compared to the bottom-up approach.
For example, high k-anonymity and low maximal spatial
resolution constraints may help the system quickly locate
appropriate cloaking areas by using a top-down dynamic
reduction approach as explained below. In PRIVACYGRID,
we design the top-down dynamic grid cloaking algorithm by
utilizing the user-specified maximum spatial resolution. We
first find the largest grid cell region within the user-specified
maximum spatial resolution area, and encode the candidate
cloaking area by a set of selected Rows and selectedCols in a
similar manner as is done in the bottom-up approach. If the
largest possible candidate cloaking box fails to meet the de-
sired privacy requirements, the message cannot be cloaked
using user-defined privacy and QoS requirements and the al-
gorithm terminates. Otherwise, the top-down cloaking ap-
proach starts searching for the smallest possible cloaking box
that meets the k-anonymity and [-diversity requirements by
iteratively removing either an outermost row or column with
the lowest object count from the candidate cloaking area.
This iterative process shrinks the candidate cloaking box
along one of the four directions and terminates when object
counts in candidate cloaking area fall below the privacy re-
quirement. Due to space constraints, we omit the detailed
algorithm in this paper and refer the readers to our technical
report [5] for further discussion.

Figure 5 displays an example walkthrough of the top-down
dynamic cloaking algorithm. Recall the previous example
where a mobile user in the cell at the intersection of the sec-
ond row and second column issued a location anonymization
request. The shaded area in the leftmost figure displays
the largest possible cloaking area computed based on the
user-specified maximum spatial resolution. Given that the
mobile object count is 35 and the still object count is 18,
cell reduction is performed repeatedly by first removing the
third row (lowest mobile object count) and then removing
the first column. The final cloaking box consists of the four
cells marked by the first two rows and the second and third
columns, with k'=21 and I'=6.
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Figure 5: Top-Down Dynamic Reduction Example

5. HYBRID CLOAKING

An obvious enhancement to bottom-up and top-down cloak-

ing algorithms is the hybrid approach that takes advantage
of the strengths of both approaches to produce a cloaking
algorithm that runs faster than either of them. There are
several ways to combine the bottom-up and top-down meth-
ods. In the first prototype of PrRIVACYGRID we adopt a
most straightforward approach. The main idea is to provide
guidelines on how to appropriately decide whether to pro-
ceed in a bottom-up or a top-down manner upon receiving a
message cloaking request. For lower k-anonymity level and
higher maximum spatial resolution values, the algorithm will
benefit by proceeding in a bottom-up manner. On the other
hand, for higher k-anonymity level and lower maximum spa-
tial resolution values, the top-down approach clearly works
faster than the bottom-up approach for finding the ideal
cloaking box. Hence, the ability of the hybrid approach to
identify whether it should proceed in a bottom-up or top-
down manner upon receiving a cloaking request is crucial
to its effectiveness. We provide some guidelines through a
formal analysis of the hybrid cloaking algorithm in [5].

6. PROCESSING ANONYMOUS QUERIES

In PrIivaAcYGRID, each location query will be sanitized
through the location anonymization server before proceed-
ing to the relevant LBS provider. The location anonymiza-
tion engine will transform a raw location query into two
components: anonymized query and privacy sensitive fil-
ter. The anonymized query can be submitted to the LBS
providers by either the mobile user who issued the original
query or by the anonymizer. However, the privacy-sensitive
filter will be kept either at the location anonymization engine
or on the mobile client side. Upon receiving an anonymous
query, the LBS provider will invoke the anonymous location
query processing engine residing at the LBS provider. Based
on processing logic, we divide anonymous location queries
into two classes: location anonymous queries over static ob-
jects (public location data) and location anonymous queries
over moving objects (privacy sensitive location data). In
either case, instead of exact answers, the anonymous loca-
tion query processor will return approximate query answers
that include the exact answer. The exact answer will be
computed over the minimal approximate answer either at
the mobile client or at the location anonymizer, which then
forwards the exact answer to the mobile client.

Anonymous location query processing poses two unique
challenges. First, we must produce the minimal set of ap-
proximate answers, aiming at minimizing the amount of ad-
ditional communication and computation cost due to the
location privacy support. Second, with anonymous loca-
tion queries, the exact query result must be delivered to the
mobile user. This may be done through the trusted loca-
tion anonymizer, which performs the post-processing and

B
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Figure 6: Anonymous Query Processing

forwards the exact answer to the mobile user. Alternatively,
the minimal approximate answer can be forwarded directly
to the mobile client by the LBS provider through the sub-
set of base stations that cover the region of the minimal
query answers. The base stations may broadcast the set of
approximate answers with the secure query identifier — the
hash of user;q and req;q (recall Section 3.4); only the mobile
user who knows the secret identifier will be able to read the
result set and perform the post-processing to produce the
exact answer.

Most of the spatio-temporal query processing techniques
developed in mobile data management field to date can-
not be applied directly to anonymous query processing. We
briefly describe below the anonymous query processing mech-
anisms required at the LBS server. In order to process range
queries associated with cloaked spatial regions instead of
spatial points and produce the minimal set of approximate
answers for each anonymous query, the anonymous query
processor needs to process each query in three steps: (1)
determining the anonymous query minimum bounding rect-
angle (anonymous MBR) that contains the minimal set of
approximate answers, (2) transforming the anonymous lo-
cation query with anonymous MBR to an anonymity-aware
range query, and (3) executing the range query using the
traditional spatial query processor to produce the minimal
set of approximate answers. Figure 6 illustrates this pro-
cess using an example, where a moving object O; issues a
query @, requesting for some static objects (e.g. restau-
rants) within the distance r from its current position. Fig-
ure 6(a) shows the Minimum Bounding Rectangle (light grey
rectangle) which forms the exact result set of the query @ us-
ing a traditional mobile query processor. Figure 6(b) shows
the anonymous MBR (light grey rectangle) which produces
the minimal set of approximate answers for the perturbed
version of ). The cloaked query region produced by the
location anonymization server is shown as a dark grey rect-
angle contained inside the anonymous MBR. The mobile ob-
ject O1 could be present anywhere within the cloaked query
region. Thus the computation of anonymous MBR will need
to consider the four corner points of the cloaked rectangle
and the entire region within a maximum distance r from
each corner point to ensure that the anonymous MBR in-
cludes the exact answer of the query, as long as Oy lies within
the cloaked region. Different formulae will be required for
computing anonymous MBR for different types of location
queries. For example, [18] presents an efficient algorithm for
privacy-aware processing of nearest neighbor queries (kNN).
Due to space constraints, we omit the algorithms for com-
puting the anonymous MBRs for range queries and other
types of location queries and the correctness proof for these
algorithms in terms of their minimality and inclusion of ex-
act answer.



Road type Expresswayl Arterial] Collector]
Mean speed(km/h) [ 90 60 50

Std. dev.(km/h) 20 15 10
Traffic data (cars/h) [ 2916.6 916.6 250

Table 1: Motion Parameters

7. EXPERIMENTAL EVALUATION

We divide the experimental evaluation of PrRivAcYGRID
into two components: the effectiveness of our cloaking al-
gorithms in terms of privacy and quality requirements and
their performance in terms of time complexity and scalabil-
ity. Before reporting our experimental results, we first de-
scribe the experimental setup, including the road-network
based mobile object simulator used in the experiments.

7.1 Experimental Setup

We extend the simulator from [10] to evaluate the effec-
tiveness and performance of PRIVACYGRID cloaking algo-
rithms. The simulator generates a trace of cars moving on
a real-world road network, obtained from maps available at
the National Mapping Division of the USGS [3], and gen-
erates requests based on the position information from the
trace. The simulator extracts the road network based on
three types of roads — expressway, arterial and collector
roads. Our experimentation uses a map from the Chamblee
region of Georgia, which covers an area of approximately
168 km?, to generate traces for a two hour duration. Traffic
volume data from [12] is used, generating a set of 10,000
cars on the road network for Chamblee. Table 1 lists mean
speeds, standard deviation and traffic volume values for each
road type. Cars are randomly placed on the road network
according to the traffic densities, start moving on the roads
and proceed in a random direction at the intersections. The
simulator attempts to keep the number of cars on each type
of road constant with time. Each car generates a set of
messages during the simulation. By default, each message
specifies an anonymity level k from the range [2,150] using
a Zipf parameter of 0.6 favoring higher k£ values. Our exper-
iments do not consider [-diversity requirements, but can be
easily extended to measure relevant values. The maximum
spatial resolution (or spatial tolerance) values of the mes-
sages are selected independently using normal distribution
with default mean spatial resolution of 600m and 5% stan-
dard deviation. Though all parameters take their default
values if not stated otherwise, the settings of many parame-
ters are changed in different experiments to show the impact
of these parameters on the effectiveness and efficiency of the
algorithms.

7.2 Experimental Results

Our experimental evaluation of the PRIVACYGRID algo-
rithms consists of two parts. First, we evaluate the effec-
tiveness of the location anonymization algorithms by mea-
suring success rate, relative anonymity level, relative spatial
resolution, average cloaking time, user location distribution
and observe how these parameters behave when we vary the
settings of a number of parameters, such as grid cell size,
anonymity level k and maximum spatial resolution {d,,dy}.
Then we evaluate the scalability of the algorithms in terms
of cloaking time and update cost by varying the number of
mobile users. We briefly describe the impact of incorporat-
ing temporal cloaking on the anonymization success rate of
our dynamic approaches. Our results show that the PRiva-
cYGRID dynamic grid cloaking algorithms are fast, effective,
scalable and outperform other location cloaking approaches
in terms of both anonymization success rate and cloaking
QoS in the presence of a larger range of k values.

Cell SizelSucces
(meters)| Rate RAL | RSR

24 X 28 | 93.9% |1.0001] 3.276
48X 56 | 92.8% |1.0009| 3.291
24 X 28| 93.9% | 1.001 | 3.296
48X 56 | 92.9% | 1.004 | 3.243
24 X 28 | 93.9% [1.0001] 3.305
48X 56 | 92.9% | 1.001 | 3.306
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Figure 7: Results with Varying Size of Grid Cells
7.2.1 Varying Size of Grid Cells

This set of experiments aims at measuring cloaking perfor-
mance obtained by using different settings of grid cell size.
Figure 7 shows the results measured for different settings of
grid cell size which are equivalent to different settings for the
grid size, ranging from 128 x 128 cells to 1024 x 1024 cells.
The user-defined anonymity levels for this set of experiments
are chosen in the range [10 — 50] with a Zipf distribution us-
ing parameter 0.6 favoring higher £ values.

Figure 7(a) shows that the basic pyramid expansion (BPE)
is fast in terms of cloaking time and the cloaking time does
not increase significantly with the decrease in the size of
grid cells. We implement the basic location anonymizer
using the pyramid approach as described in [18]. Due to
the fine granularity of the grid structure and consequently
small cell sizes, the adaptive location anonymizer [18] does
not work well due to frequent splitting and merging of cells
and experiences inferior performance compared to the ba-
sic anonymizer. Except for the smallest grid size, both
bottom-up dynamic expansion (BUDE) and top-down dy-
namic reduction (TDDR) almost match the performance
of BPE. More rows (or columns) need to be added (or re-
moved) to obtain ideal cloaking regions but maintenance of
data structures is less expensive for these approaches. In-
teresting to note is that the actual cloaking time of all dy-
namic approaches is still below 1.5 ms in all cases and such
low delays are hardly perceivable. Hybrid dynamic expan-
sion reduction (HDER) performs better than both bottom-
up and top-down approach, adapting appropriately to each
message, by deciding whether to proceed in a bottom-up or
top-down fashion.

From Figure 7(b) we observe two interesting results. First,
the success rate, the relative anonymity level (RAL) and
the relative spatial resolution (RSR) do not change much
as we vary the size of grid cells. Second, given a fixed grid
cell size, say [24m X 28m]|, we see sharp differences when
comparing BPE with the three dynamic grid cloaking ap-
proaches. BPE, though marginally faster for the smallest
grid cell sizes (recall Figure 7(a)), has only 41% of the mes-
sages being anonymized successfully when QoS measures are
considered, while all the dynamic approaches have similar
but much higher rate of success (> 92.8%). All the dy-
namic approaches give low relative anonymity levels, which
are close to one, whereas the BPE approach has about 17%
higher relative anonymity level, indicating that it might
be cloaking requests to unnecessarily larger spatial regions.
This is confirmed by the relative spatial resolution (RSR)
measurement, which is about 40% higher for the dynamic
approaches when compared to BPE. We use grid cells of size
[24m x 28m)] for further evaluation.

7.2.2 Varying User-defined Anonymity Lewvel

This set of experiments evaluates cloaking performance
with varying anonymity level k for various ranges: [2-10],
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[10-50], [50-100] and [100-150]. Maximum spatial resolu-
tion values for the anonymity ranges are 400 m, 800 m, 1200
m and 1600 m (mean values with 5% standard deviation) re-
spectively and are chosen to be large enough to theoretically
allow cloaking of a large fraction of the messages. Figure 8
shows that BPE is able to cloak only around 70% of the
messages with anonymity level k set in the range of [2-10]
and the success rate falls further to 50-60% with increasing
k values. In contrast, the dynamic approaches cloak 95-
99.6% of the messages within user-defined maximum spatial
resolution values (Figure 8(a)). From Figure 8(b), we see
that BPE results in higher relative anonymity level but all
dynamic cloaking approaches have relative anonymity levels
close to one, indicating that the anonymity levels obtained
for all perturbed messages are very close to the user-defined
k.

Figure 8(c) shows the impact of varying k on the cloaking
time of all algorithms. BPE is the fastest and its cloaking
time does not increase much with the increase in the user-
defined k values. Though all dynamic cloaking algorithms
will incur relatively higher cloaking time with increasing &
values, the amount of increase in cloaking time for BUDE
and HDER is lower when compared to TDDR. It is impor-
tant to note that the cloaking time for the worst case (where
the top down approach is used) is still below 3.5 ms for k
values in [100-150].

Figure 8(d) displays the impact of changing k values on
relative spatial resolution (RSR) obtained for the perturbed
messages. Clearly, the dynamic cloaking algorithms have
considerably higher RSR (25-35%) than BPE approach for
all £ values, though RSR values decrease as the k values
become larger.

7.2.3 Varying Maximum Spatial Resolution Values

This set of experiments examines the performance of the
algorithms by varying the maximum spatial resolution set-
tings; messages are generated with anonymity level k from
the range [10-50] with Zipf distribution using parameter 0.6,
favoring messages with higher £ values. We vary the max-
imum spatial resolution value from 500 m to 800 m (mean
values with 5% standard deviation) and examine the effect
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Figure 10: Results with Varying Number of Users

of different settings of maximum spatial resolution on the
effectiveness of the different approaches. Figure 9 displays
the results. The dynamic approaches are able to cloak all
messages which can be theoretically cloaked for each max-
imum spatial resolution value, whereas BPE fails to cloak
a large number of messages (50-60% less as shown in Fig-
ure 9(a)). Figure 9(b) shows that the relative anonymity
levels for all cloaking algorithms do not change much when
the user-defined maximum spatial resolutions change signif-
icantly. Figure 9(c) shows that only the top-down cloak-
ing algorithm experiences an increase in cloaking time as
the maximum spatial resolution values increase, while other
cloaking algorithms are not very time-sensitive to maximum
spatial resolution. Finally, Figure 9(d) shows that with in-
creasing maximum spatial resolution, the relative spatial res-
olution (RSR) for all cloaking algorithms will increase pro-
portionally, with a close to constant gap between BPE and
the dynamic grid algorithms.

7.2.4 Scalability

We now study the scalability of the PRIVACYGRID sys-
tem with respect to the changing number of mobile users.
Obviously, as the number of users in the system increases,
we can expect the cloaking time for algorithms to generally
decrease as messages will be anonymized more easily, but
the update costs for the grid-based structures will also in-
crease. We use a similar setup to that in Section 7.2.3 with
the mean spatial resolution fixed at 800 m with 5% stan-



dard deviation. We vary the number of users from 10K to
100K and observe the effect on the cloaking time and update
cost. From Figure 10(a) we observe some interesting results.
First, the amount of difference in cloaking time among the
algorithms changes slightly with the increase in the number
of mobile users. Second, TDDR shows a modest increase
in cloaking time with the increase in the number of mobile
users in the system. This is because the approach requires
more iterations as messages can be cloaked to smaller spa-
tial regions. However, BUDE displays a reverse trend — the
cloaking time decreases as the number of users increases.
This is because a higher density of mobile users per grid cell
will enable it to find the smallest cloaking box faster. Fi-
nally, we observe that HDER adapts well to the increase in
the number of users, offering similar performance as BUDE
in terms of cloaking time. Figure 10(b) measures the to-
tal number of updates per second required to update the
grid-based data structures as the number of mobile users in-
creases. For this experiment, the grid index is maintained as
a main memory data structure. Each user provides a loca-
tion update to the system after moving a distance of 100 m.
We observe that BPE requires a large number of updates as
the number of users increases. A nine-level pyramid is used
in this experiment, requiring an average of 8 to 9 updates per
location update request. In contrast, the dynamic cloaking
approaches use the flat grid index, requiring only 2 updates
for each location update request, which is significantly lower
than the BPE approach [18].

7.2.5 Distribution of User Location within Cloaked

Areas
This experiment is
0.02 designed to study the
distribution of the user
location within the cloak-
ing area. Figure 11 dis-
plays the user location
distribution (ULD) for
the different cloaking al-
gorithms. Plotting the
0— %% 02 05 08 1 ULD allows us to ob-
Normalized Distance serve the distribution of
the normalized distance
from the center of cloak-
ing area to the actual
user position for each of
the algorithms. The more uniform the distribution of user
locations is within the cloaking areas, the harder it is for an
adversary to guess the actual location of the user within the
cloaking area. We observe that all dynamic cloaking algo-
rithms provide a rather uniform distribution of user location
within the cloaking area. None of the approaches reveal any
significantly skewed ULD patterns.
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Figure 11: User Location
Distribution

7.2.6 Effectiveness of Spatio-Temporal Cloaking

We also examined the effect of introducing temporal cloak-
ing in the message anonymization process. Message cloaking
may be delayed according to user-specified maximum tem-
poral resolution values. Again we use the same experimental
setup as in Section 7.2.3 to measure the success rate by vary-
ing both maximum temporal resolution (or temporal toler-
ance) d; from 15 seconds to 60 seconds (mean values with
5% standard deviation) and the maximum spatial resolution
from 500 m to 800 m. The use of maximum temporal reso-
lution helps increase the fraction of messages being cloaked
by 10-20%; detailed results are omitted due to space con-
straints. In our experiments, the dynamic approaches were

able to cloak 99.9% of the message anonymization requests
successfully using spatio-temporal cloaking in most scenar-
ios.

8. CONCLUSION

We described the PrRIvACYGRID framework which allows
users to express their privacy requirements in terms of loca-
tion hiding and QoS measures to control query processing
overheads. Three dynamic grid-based spatial cloaking algo-
rithms are developed for providing location k-anonymity and
location [-diversity in a mobile environment. A brief discus-
sion of the PRIVACYGRID mechanisms for processing anony-
mous location queries is provided. We report our extensive
experimental evaluation results and show that compared to
existing grid cloaking approaches such as [18], our dynamic
grid cloaking algorithms provide much higher anonymization
success rate and yet are highly efficient in terms of both time
complexity and update cost.
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