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Abstract— Privacy preservation in data mining demands pro-
tecting both input and output privacy. The former refers to
sanitizing the raw data itself before performing mining. The latter
refers to preventing the mining output (model/pattern) from
malicious pattern-based inference attacks. The preservation of
input privacy does not necessarily lead to that of output privacy.

This work studies the problem of protecting output privacy in
the context of frequent pattern mining over data streams. After
exposing the privacy breaches existing in current stream mining
systems, we propose Butterfly, a light-weighted countermeasure
that can effectively eliminate these breaches without explicitly
detecting them, meanwhile minimizing the loss of the output accu-
racy. We further optimize the basic scheme by taking account of
two types of semantic constraints, aiming at maximally preserving
utility-related semantics while maintaining the hard privacy and
accuracy guarantee. We conduct extensive experiments over real-
life datasets to show the effectiveness and efficiency of our
approach.

I. INTRODUCTION

Recent years have witnessed increasing concerns about
individual privacy in numerous data mining and management
applications. Individuals were usually unwilling to provide
their personal information if they knew that the privacy of
the data could be compromised. A plethora of work has been
done on preserving the input privacy for static data [1], [2], [3],
[4], [5], which assumes untrusted mining service providers and
enforces privacy regulations by sanitizing the raw data before
sending it to the service providers. The mining algorithms are
performed over the sanitized data. This scenario is shown as
the first four steps of Fig. 1.

However, surprisingly limited attention has been given to
preserving output privacy in data mining: the published mining
output can be leveraged to infer properties possessed only by
a unique or a small number of individuals, even though the
models/patterns may be built over the sanitized data. This can
be explained by the fact that input-privacy preserving tech-
niques are designed to make the constructed models/patterns
as close as possible to, if not identical to that built over the raw
data, in order to guarantee the utility of the result. This no-
outcome-change property is considered as a pillar of privacy
preserving data mining [6]. As long as the significant statistical
information of the raw data is preserved, there exists the risk of
disclosure of private information. Therefore, the preservation
of input privacy does not necessarily lead to that of output
privacy.

Example 1: Consider a nursing-care records database that
records the observed symptoms of the patients in a hospital. By
mining such a database, one can discover valuable information
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Fig. 1. Illustration of privacy protection in data mining applications.

about syndromes characterizing particular diseases. However,
the released mining output can also be leveraged to uncover
some combinations of symptoms that are so special that rare
people match them (we will show how to achieve this in
the following sections), which qualifies as severe threats to
individuals’ privacy.

Assume that Alice knows that Bob has certain symptoms
a, b but not c (c), and by analyzing the mining output, she
finds that only one person in the hospital matches the specific
combination of {a, b, c}, and only one has all {a, b, c, d}. She
can then conclude that the one is Bob, who also has the
symptom d. Further more, by studying other medical database,
she may learn that the combination of {a, b, d} is linked to a
rare disease with high chance.

This output privacy issue is even severer in stream mining:
The mining results need to be published in a continuous and
in-time manner. Not only a single-time release may contain
privacy breaches, but also multiple releases can potentially
be exploited in combination, given the overlap of the cor-
responding input data. Taking the sliding window model as
an example, in addition to the leakage in the output of a
single window (intra-window breach), the output of multiple
overlapping window can be combined to infer sensitive in-
formation (inter-window breach), even though each window
itself contains no privacy breach per se. Therefore, one needs
to consider protecting output privacy in stream mining as a
unique problem.

A straightforward solution to preserving output privacy
is to detect and eliminate all potential breaches, i.e., the
detecting-then-removing strategy adopted in inference control
of statistical databases and census data from 1970’s. However,
the results are usually negative in tone [7] for on-line stream
mining systems: First, the detection of breaches usually re-
quires complicated computations over entire dataset and the
bookkeeping of voluminous history output; Second, even at
such high cost, the operations of removing the found breaches,



e.g., suppression, addition [8], usually result in significant
decrease of the utility of the output.

In this work, we study the problem of protecting output
privacy in the context of frequent pattern mining over streams.
Concretely, analogous to sanitizing raw data from leaking
sensitive information, we propose the concept of “sanitized
pattern”, and argue that by intelligently modifying the “raw
pattern” outputted by mining algorithms, one can significantly
reduce the risk of malicious inferences, while maximally
preserving the utility of the raw patterns. This scenario is
shown as the last step in Fig. 1.

Specifically, we present Butterfly, a light-weighted coun-
termeasure against malicious inferences based on value per-
turbation. It possesses the following desirable features: (i) No
need of explicit detection of privacy breaches; (ii) No need of
bookkeeping of history output; (iii) Flexible control over the
balance of multiple utility metrics and privacy guarantee.

Our Contributions (i) We articulate the problem of protect-
ing output privacy in stream mining, and expose the privacy
breaches existing in current stream mining systems; (ii) We
propose a generic framework of protecting output privacy: On
the first tier, it counters malicious inferences by amplifying
the uncertainty of sensitive information; On the second tier,
for the given privacy requirement, it maximally preserves
output utility; (iii) We provide both theoretical analysis and
experimental evaluation to validate our approach in terms of
privacy guarantee, output utility and algorithm efficiency.

II. RELATED WORK

In this section, we outline the related work along three most
relevant areas.

Disclosure Control in Statistical Database Extensive re-
search has been done in statistical databases to provide statis-
tical information without compromising sensitive information
regarding individuals [9], [10], using the techniques of query
restriction or data perturbation. Compared with the simple
statistical information, e.g., min, max, avg, etc, the mining
output (model/pattern) usually has more complex structures,
leading to more complicated requirement for output utility,
which makes it hard to directly apply these techniques in our
scenario.

Input Privacy Preservation The work of [11], [1] paved
the way for the rapidly expanding field of privacy preserv-
ing data mining. While a plethora of techniques have been
developed, including data perturbation [11], [1], [2], [3], k-
anonymity [4], [5] and secure multi-party computation [12],
these techniques focus on protecting input privacy for static
datasets, where the design goal is to provide sufficient privacy
guarantee while minimizing the information loss in the mining
output. A recent work [13] also addresses the problem of
preserving input privacy for streaming data, by on-line analysis
of correlation structure of multivariate streams.

Output Privacy Preservation Compared with the wealth of
techniques developed for preserving input privacy, protecting
mining output privacy has not received the attention it de-
serves. The work [14] proposes an empirical testing scheme
to evaluate if the constructed classifier violates the privacy
constraint. It is shown in [8] that the association rules can be
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Fig. 2. Illustration of data stream and sliding window model.

exploited to infer information about individual transactions.
The work [15] proposes a scheme to block the inference
of sensitive patterns satisfying user-specified templates by
suppressing certain raw transactions. A recent work [6] tries
to consider input and output privacy in a unified framework,
however it is not clear that it can prevent malicious inference
over the mining output. To the best of our knowledge, none has
addressed the problem of protecting output privacy in stream
mining applications.

III. PROBLEM DEFINITION

In this section, we introduce the output privacy issue arising
in this context of frequent pattern mining over data streams.

A. Frequent Pattern Mining

Consider a finite set of items I = {i1, i2, . . . , iM}. An
itemset I is a subset of I, i.e., I ⊆ I. A database D consists of
a set of records, each corresponding to a non-empty itemset.
The support of an itemset I w.r.t. D, denoted by TD(I), is the
number of records in D, which contain I as a subset.

A data stream Ds is modeled as a sequence of records,
(r1, . . . , rN ), where N is the current size of the stream. The
sliding window model is introduced to deal with the potential
of N going to infinity. Concretely, at each N , one considers
only the window of most recent H records, rN−H+1, . . . , rN ,
denoted by Ds(N,H), where H is the size of the window. The
problem of frequent stream pattern mining is to find in each
Ds(N,H), all itemsets with support exceeding a user-defined
threshold C, called the minimum support.

One can further generalize the concept of itemset by intro-
ducing the negation i of an item i: A record is said to contain i
if it does not contain i. Following, we will use the term pattern
to denote a set of items or negation of items, e.g., abc. We
use the notation I to represent the negation of an itemset I ,
i.e., I = {i|i �∈ I}.

Analogously, one can define the support of a pattern p w.r.t.
a database D: We say a record satisfies p if it contains all the
items and negations of items in p. The support of p w.r.t. D
is the number of records in D that satisfy p.

Example 2: Consider a data stream with current size N =
12, window size H = 8, shown in Fig. 2, where a ∼ h and
r1 ∼ r12 represent the set of items and records respectively.
The pattern abc has support 2 w.r.t. Ds(12, 8), because only
records r8 and r11 match it.

B. Mining Output Privacy

The output privacy refers to the requirement that the output
(model/pattern) of a mining process does not disclose any sen-
sitive information regarding an individual or a small number
of records.
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Examples of such sensitive information in the context of
frequent pattern mining are usually in the form of patterns
with low support. Recall Example 1 of nursing-care records
in Section I, clearly the disclosure of such patterns through
output inference can lead to uncovering sensitive information
regarding few individuals.

Therefore we introduce the concept of vulnerable pattern.
Intuitively, vulnerable patterns are those with very low support
w.r.t. the given database, i.e., only few individual records
match them. To quantitatively measure this, we introduce a
threshold K (K � C), called the vulnerable support. We have
the following classification of patterns based on their support
values.

Definition 1 (Pattern Classification): Given a database D,
let P be the set of patterns appearing in D, then all p ∈ P
can be classified into three disjoint classes


Frequent Pattern : Pf = {p|TD(p) ≥ C}
Hard Vulnerable Pattern : Phv = {p|0 < TD(p) ≤ K}
Soft Vulnerable Pattern : Psv = {p|K < TD(p) < C}

for the given thresholds C and K.
The frequent patterns (Pf ) expose the significant statistics

of the underlying data, and are often the candidate in the
mining process. Actually the frequent itemsets found by the
mining process are a subset of Pf . The hard vulnerable
patterns (Phv) represent the properties possessed by only a
very small number of individuals, so it is unacceptable that
they are disclosed or inferred from the mining output. The
soft vulnerable patterns (Psv) neither demonstrate statistical
significance, nor violate the privacy of individual records.

Therefore, the problem of protecting output privacy in
stream frequent pattern mining can be stated as follows:

Definition 2 (Problem Formulation): For each sliding win-
dow Ds(N,H), output privacy protection prevents the dis-
closure or inference of any hard vulnerable patterns w.r.t.
Ds(N,H) from the mining output.

Although the output of frequent pattern mining contains
only those patterns with their support exceeding C (C � K),
as we will show in the next section, an adversary may still be
able to infer certain patterns with support below K from the
released frequent itemsets and their associated support.

IV. OUTPUT PRIVACY BREACHES

For ease of presentation, we will use the following nota-
tions: for two itemsets I and J , IJ denotes their union, J\I
the difference of J and I , and |I| the size of I .

A. Attack Techniques

Lattice Structure As a special case of multi-attribute ag-
gregation, computing the support of I ⊂ J can be considered

as generalization over all the attributes of J\I . Therefore
one can apply the standard work of computing multi-attribute
aggregation, a lattice structure. Without ambiguity, we use the
notation X J

I = {X|I ⊆ X ⊆ J} to represent both the set of
itemsets and their corresponding lattice structure. An example
of lattice X abc

c is shown in Fig. 3.
Deriving Pattern Support Consider two itemsets I ⊂ J , if

the support of the lattice nodes of X J
I is available, one is able

to derive the support of the pattern p of the form, p = I(J \ I),
according to the inclusion-exclusion principle:

TD(I(J \ I)) =
∑

X∈XJ
I

(−1)|X\I|TD(X)

Example 3: As illustrated in Fig. 3, given all the support
of X abc

c w.r.t. Ds(12, 8), the support of pattern p = abc can
be derived as 1.

Estimating Itemset Support Since the support of any
pattern is non-negative, according to the inclusion-exclusion
principle, if the support of the itemsets X J

I \ {J} is available,
one is able to bound the support of J as follows:{

TD(J) ≤ ∑
I⊆X⊂J(−1)|J\X|+1TD(X) |J \ I| odd

TD(J) ≥ ∑
I⊆X⊂J(−1)|J\X|+1TD(X) |J \ I| even

Example 4: In Fig. 3, given the support of c, ac and bc w.r.t.
Ds(12, 8), one is able to establish the lower/upper bound for
TDs(12,8)(abc) as [2,5].

When the bound is tight, i.e., the lower bound equals
to the upper bound, one can exactly determine the actual
support. This technique is used in [16] to mine non-derivable
frequent itemsets. In our context, an adversary can leverage
this technique to exploit the privacy breaches existing in
mining output.

B. Intra-Window Breaches

In a stream mining system without output privacy protec-
tion, the released frequent itemsets over one specific win-
dow may contain the intra-window breaches, which can be
exploited by an adversary through the technique of deriving
pattern support, as shown in Example 3.

Formally, if J is a frequent itemset, according to the Apriori
rule, all X ⊆ J are frequent, which are supposed to be
reported with their support, so the information is available
to compute the support of pattern p = I(J \ I) for all I ⊂ J .
This also implies that the number of breaches to be checked
is potentially exponential in terms of the number of items.

Even if the information of J is unavailable, i.e., X J
I is

incomplete to infer p = I(J \ I), one could possibly apply the
technique of estimating itemset support first to complete some
missing “mosaics”, then derive vulnerable pattern. In fact, the
itemsets under estimation themselves could be vulnerable.

C. Inter-Window Breaches

In stream mining, the output of the previous window can
be leveraged to infer the vulnerable patterns within the current
one, and vice versa, even though no vulnerable patterns can
be inferred from the output of each window per se.

Example 5: Consider the two windows Ds(11, 8) and
Ds(12, 8) shown in Fig. 3. Assuming C = 4, and K = 1,
then in Ds(11, 8), no Phv exists. In Ds(12, 8), the itemset abc
is unaccessible (shown as a dashed box). From the available



information of Ds(12, 8), the best guess about abc is [2, 5], as
discussed in Example 4. Clearly, this bound is not tight enough
to estimate that the pattern abc is Phv . Thus both windows are
currently immune to intra-window inference attack.

However, if one is able to derive that the support of
abc decreases by 1 between Ds(11, 8) and Ds(12, 8), then
based on the information released in Ds(11, 8), which is
TDs(11,8)(abc) = 4, the exact value of abc in Ds(12, 8) can be
inferred, and the Phv abc is uncovered.

The main idea of inter-window inference is: (i) Estimating
the transition of the support of certain itemsets from the
previous window to the current one, using the technique of es-
timating itemset support; (ii) Uncovering vulnerable patterns,
using the technique of deriving pattern support. Due to the
space limit, a detailed discussion is referred to our technical
report [17].

V. OUTPUT PRIVACY PROTECTION

A. Design Consideration of Solutions

Alternative to the reactive detecting-then-removing strategy,
we propose to use a proactive approach to deal with these two
types of attacks in a uniform way. Our approach is motivated
by two key observations: (i) In many mining applications,
users do not expect the exact support of frequent itemsets.
Rather they care more about their semantic relationships in
terms of the support, e.g., the ranking or the ratio of their
support values. Thus it is tolerable to trade some precision
of the support of frequent itemsets for the output privacy
guarantee, provided that such desired output utility is main-
tained; (ii) Both intra- and inter-window inferences are based
on the inclusion-exclusion principle, which involves multiple
frequent itemsets. If we introduce some trivial uncertainty into
each frequent itemset, the resulting inferred pattern can have
considerable uncertainty, due to the accumulative property of
uncertainty.

Based on these two observations, we propose Butterfly, a
light-weighted output privacy preservation scheme based on
random perturbation.

B. Mining Output Perturbation

Data perturbation refers to the process of modifying confi-
dential data while preserving its utility for intended applica-
tions [9]. This is arguably the most important technique used
so far for protecting original input data.

In our scheme however, we employ perturbation to inject
uncertainty into the mining output. The perturbation over
output pattern is significantly different from that over input
data. In input perturbation, the data utility is defined on the
overall statistical characteristics of the dataset. The distorted
data is fed as input into the following mining algorithms.
There is usually no utility constraints for individual data value.
While in output perturbation, the perturbed results are directly
presented to the end-user, and the data utility is defined over
each individual value.

Specifically, there are two types of utility constraints for the
perturbed results: (i) Each reported value should have enough
accuracy, i.e., the perturbed value should not deviate from the
actual value too far; (ii) The semantic relationships among the

results should be preserved to the maximum extent, e.g., the
order or the ratio of the support values of frequent itemsets.
There is non-trivial tradeoff among these utility metrics. To
our best knowledge, no previous work has considered such
multiple tradeoff in mining output perturbation.

C. Basic Butterfly Approach

On releasing the mining output of a stream window, one
perturbs the support of each frequent itemset X , T (X)1 by
adding a random variable rX drawn from a discrete uniform
distribution over integers within an interval [lX , uX ]. The
sanitized support T ′(X) = T (X) + rX is therefore a random
variable, which can be specified by its bias β(X) and variance
σ2(X). Intuitively, the bias indicates the difference between
the expected value E[T ′(X)] and T (X), and the variance
represents the average deviation of T ′(X) from E[T ′(X)].

While this operation is simple, the setting of β(X) and
σ2(X) is non-trivial, in order to achieve both sufficient privacy
protection and utility guarantee, which is the focus of our
following discussion. At this moment, just note that compared
with T (X), rX is non-significant, i.e., |rX | � T (X).

Given the basic characteristics of the perturbation, we fur-
ther define the metrics to measure the precision for outputted
frequent itemsets, and the privacy guarantee for vulnerable
patterns.

1) Precision Measure: Under the perturbation, the preci-
sion loss of each frequent itemset X can be measured by
the mean square error (mse) of the perturbed support T ′(X):
mse(X) = E[(T ′(X) − T (X))2] = σ2(X) + β2(X).

Intuitively, mse(X) indicates the average deviation of the
perturbed support T ′(X) w.r.t. the actual value T (X). A
smaller mse implies higher precision of the frequent itemset.
Also it is clear that the precision loss should depend on the
actual support. A mse of 5 for frequent itmeset I with T (I)
= 100 may indicate sufficient accuracy, while the same mse
for itemset J with T (J) = 5 may render the output of little
value. Therefore, we have the following precision metric:

Definition 3 (Precision Degradation): For a frequent item-
set X , its precision degradation pred(X) is defined as the
relative mean squared error of T ′(X):

pred(X) =
σ2(X) + β2(X)

T 2(X)

2) Privacy Measure: Distorting the original support of
frequent itemsets is only a part of the story, it is necessary to
ensure that the distortion could not be filtered out. Therefore
one needs to consider the power of the adversary in estimating
the support of vulnerable patterns through the protection.

Without loss of generality, suppose that the adversary de-
sires to estimate the support of pattern p of the form I(J \ I),
and has full access to the sanitized support T ′(X) for all
X ∈ X J

I . The privacy protection should be measured by
the error of the adversary’s estimation of the support of p,
denoted as T ′′(p). We will discuss this estimation from an
adversary’s perspective. Along the discussion, we will show

1In the presentation below, when the context is clear, we omit the referred
database D in the notations.



how various prior knowledge the adversary possesses may
impact the estimation.

From the adversary’s view, of each X ∈ X J
I , its actual

support T (X) = T ′(X) − rX , is a variable with a discrete
uniform distribution over the interval [T ′(X) − uX , T ′(X) −
lX ] (since |rX | � T (X), this is a bounded distribution over
positive integers), and has variance of σ2(X).

Prior Knowledge 1: The support values of different fre-
quent itemsets are related by a set of inequations, derived from
the inclusion-exclusion principle.

For the given frequent itemset-interval pairs, the adversary
may attempt to apply these inequalities to tighten the intervals,
therefore obtaining better estimation of the support. A key
question she needs to answer is: for the modified interval(s),
does there exist a database D that satisfies the constraints of
these itemset-interval pairs? It is called the itemset frequency
satisfiability problem (FREQSAT), which however as shown
in [18] is equivalent to the probabilistic satisfiability problem
(pSAT), i.e., NP-Complete. This indicates that the inequal-
ity relationships among itemsets can hardly be leveraged to
improve the estimation of a single itemset, and one can
approximately consider frequent itemsets as independent in
measuring the adversary’s power.

The actual support of p, T (p) from the adversary’s view,
is also a random variable. The mse of the estimation T ′′(p)
is defined as mse(p) = E[(T ′′(p) − T (p))2] w.r.t. T (p). One
has the following lemma (due to the space limit, the proofs of
all the lemmas are referred to our technical report [17]):

Lemma 1: Given the distribution f(x) of a random variable
x, the mean square error of an estimation e of x, mse(e)
reaches its minimum value V ar[x], when e = E[x].

In our scenario, mse(p) is minimized when T ′′(p) =
E[T (p)], this is the best guess the adversary can achieve (note
that the optimality is defined in terms of average estimation
error, not the semantics, e.g., E[T (p)] could possibly be
negative). In this worst case (best case for the adversary), the
mse(p) equals to the variance of T (p), which corresponds to
the lower bound of the estimation error.

Considering the analysis regarding Prior Knowledge 1,
and the fact that T (p) =

∑
X∈XJ

I
(−1)|X\I|T (X) (a linear

combination), the variance of T (p) can be approximated by
the sum of the variance of all involved T (X), hence mse(p) =∑

X∈XJ
I

σ2(X). Intuitively, a larger mse(p) indicates a more
significant error in estimating T (p) by the adversary, and better
privacy protection.

It is also noted that the privacy guarantee should depend on
the actual value T (p): if T (p) is close to 0, trivial variance
makes it hard for the adversary to estimate if T (p) is zero
or not, i.e., if such vulnerable pattern exists. Such “zero-
indistinguishability” decreases as T (p) grows. Therefore, we
define the privacy metric for a vulnerable pattern p as the ratio
of the variance of T (p) from adversary’s view and the square
of the actual support T (p).

Definition 4 (Privacy Guarantee): For a vulnerable pattern
p, its privacy guarantee prig(p) is defined as its relative
estimation error:

prig(p) =

∑
X∈XJ

I
σ2(X)

T 2(p)

Prior Knowledge 2: The sanitized support of the same fre-
quent itemsets may be published in consecutive windows.

Since our protection is based on independent random pertur-
bation, if the same support value is repeatedly perturbed and
published in multiple windows, the adversary can potentially
improve the estimation by averaging the observed outcomes,
according to the law of large numbers. To block this type of
attack, once the support of a frequent itemset is perturbed,
one keeps publishing this sanitized value if the actual support
remains the same in consecutive windows.

Prior Knowledge 3: The adversary may have access to
other forms of prior knowledge, e.g., the published statistics
of the dataset, the support of the top-k frequent itemset or the
ones near the threshold C, etc.

All these various forms of prior knowledge can be captured
by the notion of knowledge point: a knowledge point is a
specific frequent itemset X , for which the adversary has
an average error less than σ2(X) in estimating T (X). Our
definition of privacy guarantee (prig) can readily incorporate
this notion, by simply replacing the corresponding variance
σ2(X) with the smaller estimation error.

3) Effectiveness: In summary, the effectiveness of our pri-
vacy protection method is evaluated in terms of its resilience
against both intra- and inter-window inferences over stream
mining output. We note three key implications.

First, the uncertainty of involved frequent itemsets are
accumulated in the inferred vulnerable patterns. Moreover,
more complicated inferences (i.e., harder to be detected) face
higher uncertainty.

Second, the actual support of a vulnerable pattern is usually
small (only a unique or less than K records match vulnerable
patterns), hence adding trivial uncertainty can make it hard to
tell the existence of such pattern in the dataset.

Third, the inter-window inferences follow a two-staged
strategy, i.e., first deducing the transition between contingent
windows, then inferring the vulnerable patterns. The uncer-
tainty associated with both stages may result in estimation of
even lower quality.

D. Tradeoff between Precision and Privacy

In our Butterfly approach, the tradeoff between privacy
protection and output utility can be flexibly adjusted by the
variance and bias setting of each frequent itemset. Specifically,
the variance controls the overall balance between privacy and
utility, while the bias gives a finer control over the balance
between precision and other utility metrics, as we will show
in the next section. Here we focus on the setting of variance.
Intuitively, smaller variance leads to higher precision of the
output, however also decreases the uncertainty of the inferred
vulnerable patterns, therefore less privacy guarantee.

To ease the discussion, we assume that all the frequent
itemsets are associated with the same variance σ2 and bias
β. In the next section when semantic constraints are taken
into consideration, we will remove this simplified treatment,
and develop more sophisticated setting scheme.

Let C denote the minimum support for frequent itemsets.
From the definition of precision measure, it can be derived
that for each frequent itemset X , its precision degradation
pred(X) ≤ (σ2 + β2)/C2, because T (X) ≥ C. Let P1(C) =



(σ2 + β2)/C2, i.e., an upper bound of the precision loss of
the frequent itemsets. Meanwhile for a vulnerable pattern p =
I(J \ I), it can be proved that its privacy guarantee prig(p)
≥ (

∑
X∈XJ

I
σ2)/K2 ≥ (2σ2)/K2, because T (p) ≤ K and

the inference attack involves at least two frequent itemsets.
Let P2(C,K) = (2σ2)/K2, i.e., a lower bound of the privacy
guarantee of the inferred vulnerable patterns.

P1 and P2 provide a convenient representation to control
the tradeoff between precision and privacy protection. Specif-
ically, setting an upper bound ε over P1 guarantees sufficient
accuracy of the reported frequent itemsets; While setting a
lower bound δ over P2 provides enough privacy protection for
the inferred vulnerable patterns. Therefore one can specify the
requirement of the output precision and privacy guarantee as
a pair of parameters (ε, δ), where ε, δ > 0. That is the setting
of β and σ2 should satisfy P1(C) ≤ ε and P2(C,K) ≥ δ, as

σ2 + β2 ≤ εC2 (1)

σ2 ≥ δK2/2 (2)

To make these two inequations compatible, it should be
satisfied that ε/δ ≥ K2/(2C2). The term ε/δ is called
precision-privacy ratio (ppr), which tends to indicate the
precision loss for user-specified privacy requirement. When
the precision is a major concern, one can set ppr as its
minimum value K2/(2C2) for given K and C, resulting in
the highest precision for the given privacy requirement. The
minimum ppr also implies that β = 0 and the two parameters
ε and δ are coupled. We refer to the perturbation scheme
with the minimum ppr as our basic Butterfly approach. In
the following section, we will relax this condition, and take
into consideration other utility metrics in addition to precision.

VI. OPTIMIZED OUTPUT UTILITY

The basic Butterfly approach treats all the frequent itemsets
uniformly (the same bias β = 0) without taking consideration
of their semantic relationships. Though easy to implement
and effective against inferences, this simple scheme may
easily violate these semantic constraints directly related to the
specific applications of the mining output. In this section, we
refine the basic scheme by taking semantic constraints into our
map, and develop constraint-aware Butterfly approach. Given
the precision and privacy requirement (ε, δ), our optimized
version preserves the semantics to the maximum extent.

We specifically consider two types of utility-related se-
mantic constraints, absolute order and relative frequency. By
absolute order, we refer to the ranking of frequent itemsets
according to their support. In many applications, users pay
considerable attention to the absolute order, e.g., querying the
top-ten popular purchase patterns. By relative frequency, we
mean the ratio of the support of two frequent itemsets. In cer-
tain applications, users care much about the relative frequency,
e.g., computing the confidence in mining association rules.

To help model the order and ratio of the support of itemsets,
we first introduce the concept of frequency equivalence class:

Definition 5 (Frequency Equivalence Class): A frequency
equivalence class (FEC) is a set of frequent itemsets, with the
same support value. Given a FEC fec, we define its support
T (fec) as that of any of its members.

A set of frequent itemsets can be partitioned into a set of
disjoint and strictly ordered FECs, based on their support. We
say that two FECs, feci and fecj , follow a partial order of
feci ≺ fecj if T (feci) < T (fecj). Without loss of generality,
we assume that the given set of FECs are sorted according to
their support, i.e., T (feci) < T (fecj) for i < j.

In complying with the constraints of order or ratio, the
equivalence of itemsets in a FEC should be maximally pre-
served in the perturbed output. Therefore in the optimized
Butterfly schemes, the perturbation is performed over each of
the FECs, instead of each specific itemset.

Clearly, this revision does not affect the privacy guarantee,
considering the fact that the inference of a vulnerable pattern
involves at least two frequent itemsets with different support,
i.e., at least two FECs.

A. Order Preservation

When the absolute order of itemset frequency is an im-
portant concern, the perturbation over all FECs can not be
uniform, since that would easily render the inversion of the
orders of two FECs, especially when their support values are
close. To model the probability of inversion, we first introduce
the concept of uncertainty region of a FEC.

Definition 6 (Uncertainty Region): The uncertainty region
of a FEC feci is defined as the set of values that its perturbed
support T ′(feci) can take: {x|Pr[T ′(feci) = x] > 0}.

For instance, when adding a random variable drawn from
the integers from the interval [l, u] to feci, the uncertainty
region of feci is all the integers in the interval [T (feci) +
l, T (feci) + u].

1) Minimizing Inversion Probability: Below we formally
define the problem of preserving absolute order. To simplify
the notations, we use the following short version: ti = T (feci),
t′i = T ′(feci), and let βi denote the bias setting for feci.

Without loss of generality, consider two FECs feci, fecj

with ti < tj . The order of feci and fecj can be possibly
inverted if their uncertainty regions overlap, that is Pr[t′i ≥
t′j ] > 0, and larger Pr[t′i ≥ t′j ] indicates higher probability
that this inversion occurs.

One can minimize this inversion probability Pr[t′i ≥ t′j ]
by adjusting βi and βj . However, this adjustment is bounded
by the requirement of precision and privacy specified in
Inequations 1 and 2 as introduced in Section 5.3. We therefore
define the concept of maximum adjustable bias:

Definition 7 (Maximum Adjustable Bias): Given a FEC
feci, its bias is allowed to be adjusted within the interval of
[−βm

i , βm
i ], βm

i is called the maximum adjustable bias, given
ε and δ, which is defined as βm

i = �√εt2i − δK2/2�, derived
from Inequations 1 and 2.

The problem of preserving absolute order can therefore be
formalized as: Given a set of FECs FEC = {fec1, . . . , fecn}
one finds the optimal bias setting for each FEC feci within
its maximum adjustable bias [−βm

i , βm
i ], to minimize the sum

of pairwise inversion probability: min
∑

i<j Pr[t′i ≥ t′j ].
We now show how to compute Pr[t′i ≥ t′j ] in our setting.

For a discrete uniform distribution over the interval [l, u], α
= u − l is called the length of the region. The variance of
this distribution is σ2 = ((α + 1)2 − 1)/12. According to



Inequations 2 in Section V, one has α = √1 + 6δK2� − 1.
Let dij be the distance between the estimators ei = ti +βi and
ej = tj +βj of feci and fecj : dij = ej - ei. The optimization
problem above can be simplified as:

∑
i<j(α + 1 − dij)2 for

dij ≥ 0 (the details are referred to [17]) .
Note that the discussion so far has not considered the char-

acteristics of each FEC, such as the number of its members.
The inversion of two FECs containing five frequent itemsets
each, is much more serious than that of two FECs with only
one member respectively. Quantitatively, let si be the number
of members in feci, the inversion of feci and fecj means the
ordering of si + sj itemsets is disturbed.

Therefore, our aim is to solve the following weighted
optimization problem:

min
∑
i<j

(si + sj)(α + 1 − dij)2

s.t. dij =
{

α + 1 ej − ei ≥ α + 1
ej − ei ej − ei < α + 1

∀i < j, ei ≤ ej ∀i, ei ∈ Z
+, |ei − ti| ≤ βm

i

This is a quadratic integer programming (QIP) problem, with
piecewise cost function. In general, quadratic programming
is NP-hard, even without integer constraints [19]. Instead of
applying off-the-shelf quadratic optimization tools, we are
more interested in on-line algorithms that can flexibly trade
accuracy for efficiency. Following we present such a solution
based on dynamic programming.

2) A Near Optimal Solution: Although this optimization
problem in the general setting is NP-hard, by relaxing the
constraint that ∀i < j, ei ≤ ej to ei < ej , one can construct the
following optimal substructure property, leading to an efficient
dynamic programming solution.

Lemma 2: Assume that the bias setting of the last α FECs
{fecn−α+1:fecn}2 are fixed as {β∗

n−α+1:β
∗
n} respectively,

and {β+
1 :β+

n−α} are optimal w.r.t. {fec1:fecn}, then for given
{β+

n−α,β∗
n−α+1:β

∗
n−1}, {β+

1 :β+
n−α−1} must be optimal w.r.t.

{fec1:fecn−1}.
Based on this optimal sub-structure, we propose a dy-

namic programming solution, which adds FECs sequentially
according to their order. Let Cn−1(βn−α:βn−1) represent the
achievable minimum cost by adjusting {fec1:fecn−α−1} with
the last α FECs fixed as {βn−α:βn − 1}, and let cij denote
(si +sj)(α+1−dij)2. When adding fecn, the minimum cost
Cn(βn−α+1 : βn) is computed using the rule:
Cn(βn−α+1 : βn) = min

βn−α

Cn−1(βn−α : βn−1) +
n−1∑

i=n−α

cin

The optimal setting is the one with the global minimum value
among all the combinations of {βn−α+1 : βn}.

Computation Complexity Let βmax be the maximum value
of maximum adjustable bias of all FECs: βmax = maxi βm

i ,
the time and space complexity of this scheme are both bounded
by O(βα

maxn), i.e., O(n) in terms of total number of FECs.
The empirical time/space complexity is usually much lower
than this bound, given the facts that under the constraint ∀i <

2Without ambiguity, following we use {xi : xj} as a short version of
{xi, xi+1, . . . , xj−1, xj}.

j, ei < ej , a number of combinations are invalid, and βmax is
an over-estimation of the average maximum adjustable bias.

To even lower the complexity, on adding a FEC, one can
approximately considers its intersection with its previous γ
FECs, instead of α ones (γ < α). This approximation is close
to the exact solution when the distribution of FECs is not
extremely dense, which is usually the case, and verified by our
experiments. The complexity is then bounded by O(βγ

maxn).
By adjusting γ, one can flexibly control the tradeoff between
accuracy and efficiency.

Algorithm 1: Order Preserving Bias Setting
Input: {ti, βm

i } for each feci ∈ FEC, α, γ.
Output: βi for each feci ∈ FEC.
begin

/* initialization */;
for β1 = −βm

1 : βm
1 do

C1(β1) = 0;

for i = 2 : γ do
for βi = −βm

i : βm
i do

/* ei < ej */;
if βi + ti > βi−1 + ti−1 then

Ci(β1 : βi) = Ci−1(β1 : βi−1) +
∑ i−1

j=1 cji;

/* dynamic programming */;
for i = γ + 1 : n do

for βi = −βm
i : βm

i do
if βi + ti > βi−1 + ti−1 then

Ci(βi−γ+1 : βi) = minβi−γ
Ci−1(βi−γ : βi−1) +∑ i−1

j=i−γ cji;

/* find the optimal setting */;
find the minimum Cn(βn−γ+1 : βn);
backtrack and output βi for each feci ∈ FEC;

end

The order-preserving bias setting scheme is shown in Algo-
rithm 1: After initializing the cost function for the first γ FECs,
one computes the cost function for each newly added FEC, via
the dynamic programming scheme. The optimal configuration
is the one with the global minimum value Cn(βn−γ+1 : βn).

B. Ratio Preservation

In a number of applications, it is desirable to maximally
preserve the relative frequency (ratio) information during the
output perturbation process. Similar to the order preservation
optimization, one can achieve this by carefully adjust the bias
setting of FECs.

1) Maximizing (k, 1/k) Probability of Ratio: Without loss
of generality, consider two FECs feci and fecj . To preserve
the relative frequency of feci and fecj , one is interested in
making the ratio of the perturbed support t′i/t′j appear in a tight
neighborhood of the actual value ti/tj with high probability.

Definition 8 ((k, 1/k) Probability): For the ratio t′i
t′j

of

two random variables t′i and t′j , its (k, 1/k) probability

Pr(k,1/k)

[
t′i
t′j

]
is defined as Pr

[
k ti

tj
≤ t′i

t′j
≤ 1

k
ti

tj

]
, where k ∈

(0, 1), is an indicator of the tightness of the approximation
area, the larger k, the tighter the interval.

This (k, 1/k) probability can quantitatively measure the im-
pact of the perturbation over the ratio. Therefore the problem
of ratio preservation is formalized as follows:



max
∑
i<j

Pr(k,1/k)

[
t′i
t′j

]

s.t. ∀i, ei ∈ Z
+, |ei − ti| ≤ βmi

In the case of discrete uniform distribution, the (k, 1/k) proba-
bility of the ratio of two random variables is a non-linear piece-
wise function, resulting in a non-linear integer optimization
problem, which in general sense, is NP-hard, even without
integer constraints. Below we present an efficient approximate
solution that can find the near-optimal configuration with
complexity linear in terms of the number of FECs.

2) A Near Optimal Solution: In order to maximize the
(k, 1/k) probability, one can alternatively minimize the prob-

ability Pr
[

t′i
t′j

≥ 1
k

ti

tj

]
+ Pr

[
t′j
t′i

≥ 1
k

tj

ti

]
. With Markov’s In-

equality, one knows that the probability Pr
[

t′i
t′j

≥ 1
k

ti

tj

]
is

bounded as Pr
[

t′i
t′j

≥ 1
k

ti

tj

]
≤ k

tj

ti
E

[
t′i
t′j

]
, which can be further

simplified as (the details are referred to [17]):

min
tj
ti

ei

ej
+

ti
tj

ej

ei

Bottom-up Bias Setting Assuming that ei is fixed, by dif-
ferentiating the expression w.r.t. ej , and setting the derivative
as zero, one gets the solution of ej as ej/ei = tj/ti, i.e.,
βj/βi = tj/ti.

Following this solution is our bottom-up bias setting
scheme: for each FEC feci, its bias βi should be set in
proportion to its support ti. Note that the larger ti + βi

compared with α, the more accurate the approximation applied
here [17], therefore βi should be set as its maximum possible
value. The whole scheme is shown in Algorithm 2.

Algorithm 2: Ratio Preserving Bias Setting
Input: {ti} for each feci ∈ FEC, ε, δ, K.
Output: βi for each feci ∈ FEC.
begin

/* setting of the minimum FEC */;

set β1 = �
√

εt21 − δK2/2�;
/* bottom-up setting */;
for i = 2 : n do

set βi = �βi−1
ti

ti−1
�;

end

Further, we have the following lemma to show that for each
FEC feci, βi falls within the interval [−βm

i , βm
i ].

Lemma 3: For two FECs feci and fecj with ti < tj , if the
setting of βi is feasible for feci, namely within the interval
[−βm

i , βm
i ], then the setting βj = βi

tj

ti
is feasible for fecj .

C. A Hybrid Scheme

While order preserving (OP) and ratio preserving (RP) bias
settings achieve the maximum utility at their ends, in some
applications where both semantic relationships are important,
it is desired to balance the two factors in order to achieve the
overall optimal quality.

We therefore develop a hybrid scheme that takes advanta-
geof the two approaches, and can flexibly trade between order
and ratio preservation quality.

Specifically, for each FEC fec, let βop and βfp denote its
bias setting obtained by the order preserving and frequency
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Fig. 4. Average privacy guarantee (avg prig) and precision degradation
(avg pred).

preserving approaches respectively. We incorporate them using
a linear combination: β = λβop + (1 − λ)βfp.

The parameter λ ∈ [0, 1], controls the balance between
the two quality metrics. Intuitively, larger λ tends to assign
more importance over absolute order, but less over relative
frequency, and vise versa. Especially, the order-preserving and
ratio-preserving schemes are the special cases when λ = 1 and
0 respectively.

VII. EXPERIMENTAL ANALYSIS

In this section, we investigate the effectiveness and ef-
ficiency of the proposed Butterfly approaches. Specifically,
the experiments are designed to measure the following three
properties: (i) privacy guarantee: the effectiveness against both
intra-/inter-window inferences; (ii) result utility: the degrada-
tion of the output precision, the order and ratio preservation,
and the tradeoff among these utility metrics; (iii) efficiency:
The time taken to perform our approaches. We start by
describing the datasets and the setup of the experiments.

A. Experimental Setting

We tested our approaches over two real-life datasets. The
first one is BMS-WebView-1, which contains a few months of
clickstream data from an e-commerce web site, and the second
one is BMS-POS, which contains several years of point-of-sale
from a large number of electronic retailers. Both datasets have
been used in stream frequent pattern mining [20].

We built our Butterfly prototype on top of Moment [20], a
stream frequent pattern mining framework, which finds closed
frequent itemsets over a sliding window model. By default,
the minimum support C and vulnerable support K are set as
25 and 5 respectively, and the window size is set as 2K. Note
that the setting here is designed to test the effectiveness of
our approach with high ratio of vulnerable/minimum threshold
(K/C). All the experiments are performed over a workstation
with Intel Xeon 3.20GHz and 4GB main memory, running Red
Hat Linux 9.0 operating system. The algorithm is implemented
in C++ and compiled using g++ 3.4.

B. Experimental Results

To provide an in-depth understanding of our output privacy
preservation schemes, we evaluated four different versions of
our approach: the basic version, the optimized version with λ



= 0, 0.4 and 1 respectively, over both real datasets. Note that
λ = 0 corresponds to the ratio preserving scheme, while λ =
1 corresponds to the order preserving one.

Privacy and Precision To evaluate the effectiveness of output
privacy protection of our approach, one needs to find all
potential privacy breaches in the mining output. This is done
by running an analysis program over the results returned by the
mining algorithm, and finding all possible vulnerable patterns
that can be inferred through either intra-window or inter-
window inferences.

Concretely, given a stream window, let Phv denote all the
hard vulnerable patterns that are inferable from the mining
output. After the perturbation, we evaluate the square relative
deviation of the inferred value and the estimator for each
p ∈ Phv for 100 continuous windows. we use the following
average privacy (avg prig) metric to measure the effectiveness
of the privacy preservation:

avg prig =
∑

p∈Phv

(T ′(p) − E[T ′(p)])2

T 2(p)|Phv|
The decrease in precision of the output is measured by

the average precision degradation (avg pred) of all frequent
itemsets I:

avg pred =
∑
I∈I

(T ′(I) − T (I))2

T 2(I)|I|
In this set of experiments, we fix the precision-privacy ratio

ε/δ = 0.04, and measure avg prig and avg pred for different
setting of ε (δ).

Specifically, the two plots in the top tier of Fig. 4 show
that as the value of δ increases, all four versions of the
Butterfly approaches provide similar amount of average
privacy protection for both datasets, all above the minimum
privacy guarantee δ. The two plots in the lower tier show that
as σ increases from 0 to 0.04, the output precision decreases,
however all four versions of the Butterfly approaches have
average precision degradation below the the system-supplied
maximum threshold ε. Among them, the basic Butterfly
offers the lowest precision loss, which can be explained by
the fact that the basic version trades the minimum precision
loss for the privacy guarantee, without considering semantic
constraints.

Order and Ratio For given privacy and precision requirement
(ε, δ), we measure the effectiveness of our approaches in
preserving order and ratio of frequent itemsets.

The quality of order preservation is evaluated by the pro-
portion of the order preserved pairs over all possible pairs,
referred to as the rate of order preserved pairs (ropp):

ropp =

∑
I,J∈I∩T (I)≤T (J) 1T ′(I)≤T ′(J)

C2
|I|

where 1 is the indicator function, returning 1 if the condition
is met, and 0 otherwise.

Analogously, the quality of ratio preservation is evaluated
by the fraction of the number of (k, 1/k) probability preserved
pair over the number of possible pairs, referred to as the
rate of ratio preserved pairs (rrpp) (k is set 0.95 in all the
experiments):
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rrpp =

∑
I,J∈I∩T (I)≤T (J) 1k

T (I)
T (J)≤ T ′(I)

T ′(J)≤ 1
k

T (I)
T (J)

C2
|I|

In this set of experiments, we vary the precision-privacy
ratio ε/δ for fixed δ = 0.4, and measure the ropp and rrpp for
four versions of the Butterfly approaches (the parameter γ =
2 in all the experiments), as shown in Fig. 5.

As predicted by our theoretical analysis, the order-
preserving (λ = 1) and ratio-preserving (λ = 0) bias settings
are quite effective, both outperform all other approaches at
their ends. The ropp and rrpp increase as the ratio of ε/δ
grows, due to the fact that larger ε/δ offers more adjustable
bias therefore leading to better quality.

It is also noticed that order-preserving scheme has the
worst performance in the term of avg rrpp, even worse than
the basic approach. This can be explained by that in order to
distinguish overlapping FECs, the order-preserving scheme
may significantly disturb the ratio of pairs of FECs. In all
these cases, the hybrid scheme λ = 0.4 achieves the second
best in terms of avg rrpp and avg ropp, and an overall
best quality when order and ratio preservation are equally
important.

Tuning of Parameters γ and λ Here we give a detailed
discussion over the setting of the parameters γ and λ.

Specifically, γ controls the depth of the dynamic program-
ming in the order-preserving bias setting. Intuitively, larger γ
leads to better order preservation, but also higher time/space
complexity. We desire to characterize the increase of order-
preservation quality in term of γ to find the setting that
balances the computation complexity and the quality.

For both datasets, we measure the ropp versus the setting
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of γ, with result shown in Fig. 6. It is noted that the quality
of order-preservation increases sharply at certain points γ =
2 or 3, and the trend becomes much flatter after that. This is
explained by the fact that in most real datasets, the distribution
of FECs is not extremely dense, hence under proper setting
of (ε, δ), a FEC can intersect with only 2 or 3 neighboring
FECs on average. Therefore, a setting of small γ is usually
sufficient for most datasets.

The setting of λ balances the order and ratio-preservation.
For each dataset, we evaluate ropp and rrpp with different
setting of λ (0.2, 0.4, 0.6, 0.8 and 1) and precision-privacy
ratio ε/δ (0.3, 0.6 and 0.9), as shown in Fig. 7.

These plots give good estimation of the gain of order
preservation, given the ratio preservation one is willing to
sacrifice. A larger ε/δ gives more room for this adjustment.
In most cases, the setting of λ = 0.4 offers a good balance
between the two metrics. The trade-off plots could be made
more accurate by choosing more settings of λ and ε/δ to
explore more points in the space.

Efficiency In evaluating the efficiency, we measure the com-
putation overhead of our Butterfly approaches over the original
mining algorithm, given different settings of minimum support
C. We divide the execution time into three parts: the mining
algorithm (Mining alg), the optimization part seeking the
optimal setting (Opt) and the basic perturbation part (Basic).
The window size is set 5K for both datasets.

The result plotted in Fig. 8 shows clearly that the overhead
of our approaches, especially the basic perturbation operation
is almost unnoticeable, therefore, it can be readily imple-
mented in current stream mining systems. While the current
version of our methods are window-based, in the future work
we aim at developing incremental version, and expect even
lower overhead.

Note that in most cases, the running time of both mining
algorithm and optimization part grow significantly as C de-
creases, however the growth of the overhead of Butterfly is
much less evident than that of the mining algorithm. This
is explained by that as the minimum support decreases, the
number of frequent itemsets increases super-linearly, but the
number of FECs has much lower growth rate, which dominates
the performance of the Butterfly approaches.

VIII. CONCLUSIONS

In this work, we investigated the problem of protecting out-
put privacy in data stream mining. We presented the inference
and disclosure scenarios where the adversary performs attack
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over the mining output. Motivated by the basis of the attack
model, we proposed Butterfly, a two-tier countermeasure: In
the first tier, it counters the malicious inferences by amplifying
the uncertainty of vulnerable patterns, at the cost of trivial
decrease in the output precision; In the second tier, for given
privacy and precision requirement, it maximally preserves
th utility-related semantics of output, therefore achieving the
optimal balance between privacy guarantee and output quality.
The effectiveness and efficiency of our approaches are vali-
dated by extensive experiments over real-life datasets.
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