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ABSTRACT

The immensity and variety of personal information (e.gafite,
photo, and microblog) on social sites require access doptié
cies tailored to individuals’ privacy needs. Today sucligies are
still mainly specifiedmanually by ordinary users, which is usu-
ally coarse-grained, tedious, and error-prone. This pppEsents
the design, implementation, and evaluation ohatomatedaccess
control policy specification toolxAccess that helps non-expert
users effectively specify who should have access to whichgia
their data. A series of key features distinguishccessfrom prior
work: 1) it adopts a role-based access control model (idstéa
the conventional rule-based paradigm) to capture the ainyri-
vacyl/interest preference of social site users; 2) it engpkoyovel
hybrid mining method to extract a set of semantically intetgble,
functional “social roles”, from both static network strugts and
dynamic historical activities; 3) based on the identifieciglroles,
confidentiality setting of personal data, and (optional godsi-
bly inconsistent) predefined user-permission assignméntsc-
ommends a set of high-quality privacy settings; 4) it allavger
feedback in every phase of the process to further improvquhé
ity of the suggested privacy policies. A comprehensive BRrRpEn-
tal evaluation is conducted over real social network and sisely
data to validate the efficacy afAccess

Categories and Subject Descriptors

K6.5 [Computing Milieux]: Management of Computing and In-
formation Systems-Security and Protection

General Terms
Security, Management
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1. INTRODUCTION

This is the era of social networking! Online social networks
(OSNs) have become a de facto portal for hundreds of millions
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of Internet users. For exampleaceBook, one representative so-
cial network provider, claims that it enjoys over 350 mitliactive
users [2]. With the help of these social sites, users shéoenia-
tion with their friends, participate in online activitieand get to
know more new friends. The unprecedented immensity and-dive
sity of personal information over social networks (e.gisiesti-
mated that over 3.5 billion pieces of content, including viaks,
news stories, blog posts, notes, and photo albums, aredshgre
FAceBook users each week), however, is far beyond the devel-
opment of privacy control enforcement tools. Improper aciv
control over personal information tends to lead to severseo
quences [4, 1].

So far, users still mainly rely on social network sites tovile
privacy control to restrict data sharing with friends, anate affili-
ates, or application developers. Nevertheless, the dlait@ntrols
are rather limited. For exampl€acesook launched the platform
for users to personalize their privacy setting, via manusgleci-
fying who (classified into classes suchmsblic, friend$) should
have access to which parts of their information. Clearlyribi
classification of relevant users into several groups i$yfaiarse-
grained. For example, for two users belonging to the sanegoay,
one may desire to assign different permissions. More flexgbh-
trol could only be achieved through a manaabktomsetting, such
as the “circle” concept itGoocLe PLus?, which leads to the next
problem; a full manual setting is usually tedious and epmame.
Consider that right now an average user has 130 friendsoe-
Book, and the number of friends of friends is typically quadratic
With such a large pool of relevant users, it becomes a nwiadri
task for ordinary users to effectively specify their priyamlicies.

1.1 State of the Art

In both the database and security communities, intensseareh
efforts have been dedicated to protecting individuals/gay in so-
cial network data publishing, a problem orthogonal to thepsc
of this work. In [5, 17, 25], it was shown to be possible to re-
identify individuals in the published network data evenxpkcit
identification information, e.g., name, affiliation, andlaess, has
been masked. In [26, 7, 13, 15], countermeasures have been pr
posed against the re-identification attacks while the adwrgrpos-
sesses various background knowledge regarding the drigata
work, e.g., degree, neighborhood structure, or subgragereral.

Some initiative research works have recently recognizednh
portance of enforcing user-specified privacy control ovenspnal
information on online social networks. For exampt®ook [22]
attempts to enforce control of what third-party applicaticcan
do with the information they receive from social networkesit
using an information flow model.PErsoNA [6] hides user data
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with attribute-based encryption (ABE) schemes, allowisgrs to

apply fine-grained, customized policies over who may weeurt%\izgln
ata

data. Nevertheless, all these works focus on how to enfasee
specified control, with the assumption that the privacyqied are
completely and clearly specified.

In arecent work [10], Fang and LeFevre proposed/acy Wiz-
ARDS, a semi-automategrivacy setting recommendation tool that
extracts a set of permission assignment rules, based ontiga ac
learning paradigmyncertainty sampling This rule-basedmodel,
however, suffers from two major drawbacks. First, it imjljcre-
lies on a “lazy user” assumption (users are fully capablgetfnot
willing to manually specify the policies), and requires aate user
input on a set of highly ambiguous assignments that, however
typically the most difficult spots for non-expert users. @et; the
discovered permission assignment rules may lack seméimieg
pretation, and are thus difficult to understand by social sgers,
which severely limits its applicability.

1.2 Challenges and Contributions

This work presents the design, implementation, and evaluat
of an access-control policy specification towAccess for social
networking platform. To our best knowledge, this is the fast
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Figure 1: Framework of xAccess.

saocial role mining method, we construct a fulytomatedaccess
control policy specification toolxAccess for social networking
platforms. Finally, we validate the analytical models aned ¢&ffi-
cacy ofxAccessover real social network and user study data.

The remainder of the paper will be organized as follows. Sec-
tion 2 introduces the fundamental conceptsxatcess Section 3
and 4 detail the design and implementatiorkafccess with pos-
sible extensions discussed in Section 5. An empirical etan
of the proposed solution is presented in Section 6. The paper
concluded in Section 7.

tomatedframework that helps ordinary social network users effec- 2. MODELS AND CONCEPTS

tively specify customized privacy polices for their perabdata.
For a social site usekAccesssuggests a set of high-quality per-
mission assignments for all relevant users. The suggestidma
ments are semantically meaningful and understandable frem
perspective of social activity in that they reflect funcagnfine-
grained, latent “social roles”, e.g., a friend with certammmon
interest, a co-worker on certain project, etc.

The fundamental assumption fAccessis the existence of a
set of fine-grained, latent social roles that capture théaktmc-
tions of the users relevant to the target individual. Thisaapt is
in spirit similar to the “role” in role-based access contfRBAC)

paradigm [11]. We argue that it makes much more sense to rea-

son about user-permission assignment based on socialmstead
of social relationships: first, the social relationship Idoloe fairly
vague, and deviates from its semantic meaning, e.g., ttiemy
actually mean relative or co-worker; second, an individumly
carry multiple social roles, and thus should have the unigoeo-
missions associated with these social roles, which could@oap-
tured by a single social relationship.

Unlike conventional RBAC frameworks wherein roles are typi
cally captured by auxiliary structures, e.g., enterprismagerial
hierarchies, a social network is, however, inherently *flat the
sense that no hierarchical structures are available toelstnial
roles. To address this challenge, we introduce a novel tdyhin-
ing method that combines graph mining (over social netwotics
ture) and event mining (over historical social activitidsusers).
Based on the identified social roles, confidentiality sgtth per-
sonal information, and predefined user-permission assgtsifop-
tional and may contain inconsistencAccessmatches relevant
users to their potential social roles, and social roles éir gssoci-
ated permissions. MoreoverAccessallows user feedback in ev-
ery phase of the process to further improve the quality ofjsated
user-permission assignments. The main frameworkAafcEssis
illustrated in Figure 1.

Our contributions can be summarized as follows. First, wé-hi
light and articulate the problem of helping ordinary sosit users
understand and specify privacy control policies over tpeitsonal
data. Second, we propose a novel hybrid mining method tisat di
covers semantically meaningful social roles from both alocét-
work structure data and historical activity data. Thirdsdxhon the

A social network is modeled as a graph= (V,&), with V
and £ representing the set of users and their social relatiosship
respectively. In this paper, we focus on deriving the accessrol
policies for a specific user € V, and thus introduce a variant of
this definition:

DEFINITION1 (VIEWPOINT NETWORK). We define thé-hop
viewpoint network of user as the subgrapl@;, = (V;., &) of G
which consists of the users withinhops ofv (including v) in G
and the social relationships among them.

By limiting A to a small number (typically 2 or 3), we focus on
the set of users socially local tg which is sufficient for most so-
cial sites. In the following, when the context is clear, weitotine
referred target userin the notations.

A permission is an access privilege to certain personatinée
tion. Its concrete definition depends on social sites anticgtipns
(e.g., access one’s photo album or comment on one’s miahblo
and is orthogonal to the scope of this work. We assume a set of
predefined permissions. The permissions may be strugtuell
lated; later, we will discuss how such structure impactssttéing
of privacy policy.

The problem of specifying access control policies for usés
essentially equivalent to identifying a proper permissaasign-
ment¢,, for each usew € Vi \ {v} (with respect ta's personal
information). Henceforth, we refer toandv as the source and tar-
get, respectively. The focus of this work is to alleviate theden
of social site users by suggestimjormative personalizedholicy
settings. Instead of relying solely on static informatieng(, hop
distance or relationship type) as currently adopted by reosial
sites, we construct the recommendation framework atopdtiem
of social role

DEFINITION 2 (SocIAL ROLE). A social role [24] is a set of
connected behaviors as conceptualized by individuals avgiven
social connection to the target individual.

A social role specifies the expected social functions, thena-
plying the expected access rights of individuals with a gige-
cial connection to the target user, which makes it an idegler
between users and permissions. To capture the social raheof



sourceu (relative to the target), one needs to consider (i)s so-
cial connection to the target as reflected in the social network
structure, and (iix's social behaviors as reflected in the social ac-
tivities in which v andv participate. Motivated by this observa-
tion, we propose a novel hybrid mining method that extractsta
of semantically interpretable roles from social networkl aocial
activity data. To our best knowledge, this is the first in dsegory.

3. SOCIAL ROLE EXTRACTION

Next, we present our hybrid mining method that exploits tsath
cial network structure (for social connection) and histakisocial
activity (for social behavior), with details presented iec8on 3.1
and 3.2, respectively.

3.1 Social Network Structure

The social connection between the source and the target may

not be solely determined by their hop distance or theiri@iahip
type; rather, it involves all relevant users. As an examgpbasider
three friendsu;, u;, ur of v, while u; andu; are also friends,
which may indicate a stronger connection betwagmndv than
u;. We introduce the concept abcial proximityto capture this
notion, which measures the overall strength of a social ection.

Ideally, if two individuals share many common neighborshwit
close relationships, or they belong to a small and tight carmity,
their social proximity would be high. A variety of measures/é
been proposed [23] to capture the notion of network proxinit
cluding Katz measurghitting timeg andescape probability In our
implementation, we adopt the measureafdom walk with restart
(RWR), one of the most popular proximity metrics in graph8][1
which is empirically proved to perform the best in our expeants.
Specifically, in a RWR, starting from nodge at each step, the walk
moves to one of its current neighbors with probability pntjomal
to the corresponding edge weight, or returnsvtavith a restart
probability (1 — ¢). This process can be analogized to the spread
of an ink drop on paper. The network proximity betweeandv
can be defined as the steady-state probability that the vppi&aas
atu. If we stack the proximity scores into a veciorthe definition
of RWR is given by:

p=cWp+(1l-c)e @)

whereW represents the column normalized adjacent matrix of the
viewpoint networkG}, (details referred to Appendix A), anelis

the starting vector fop. In the following, we useP(u) to denote

the proximity score of user (relative tov).

For clarity of presentation, we temporarily assume the ndtw
structure to be static, which may not hold for real socialveeking
sites. Later, we will lift this assumption and take into amebthe
impact of network dynamics in specifying access controigies.

3.2 Historical Social Activity

While the network structures reflect the relatively staticial
connection between two users, the social activities captieir
dynamic social interactions. Right now, most social sitgsp®rt
myriad online activities (e.g., join online communitiegnement
on others’ microblogs, play online games), which makesasiiele
to understand such interactions by extracting semanticadian-
ingful patterns from the activity data.

Without more detailed information, we can model an activisy
ing (i) the set of users who have participated in it, and i pictivity
type® (from a finite set4), which indicates its nature (e.g., photo

2Without ambiguity, in what follows, we use to denote both an
activity and its associated activity type.
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Figure 2: User-activity bipartite graph and user-role-activity
generative model.

sharing or game playing). Particularly, since we intend toded
the social roles of relevant users with respect to targete focus
on the set of activities participated oy We can organize the set
of users and activities in a bipartite-like graph, as shawthée left
plot of Figure 2.

To extract the set of social roles from such activity data,inve
troduce a probabilistic user-role-activity generativedelo We as-
sume that each useris associated with a conditional multinomial
distribution P(r|u) over a set of roles € R (R is latent), mea-
suring the degree that carries each role; further, each role is
associated with a multinomial distributidf(a|r) over the set of
activity typesa € A, indicating the likelihood that an individual
with role r participates in an activity of type. Conceptually, the
event that user participates in an activity of type is generated
in two steps: 1) picks a roler (sample a role: from P(r|u)); 2)
with role r, u participates ire (sample an activity, from P(alr)).

In this model, we have one focused objective, that is idgintifthe
number of latent roles and the association between eachanser
each role.

The Bayesian network of this general generative model iesho
in the right plot of Figure 2:6, and ¢, denote the Dirichlet pri-
ors, parameterized by and 3, while U, R, and A represent the
number of users, roles, and activities in the data, resmaygtiThe
conditional distribution of parameters for given user activity is
calculated as:

P(07‘7 ¢(L7 T a, UlOé, ﬁ)
Za Zu P(97'7 ¢a7r7 a’7u|a7/6)

where the joint distribution”(0,, ¢, a,u|a, 3) can be calcu-
lated using

P(alga,r)P($alB3) P (rlu,0r) P (0r|c) P(u)

In our implementation, we appléibbs sampling19] to esti-
mate all the parameters, apérplexitymeasure to select the op-
timal number of roles (details referred to Appendix B). Aftee
parameters are estimated, we can easily identify the a&otbe-
tween each uset and each role, as reflected in the conditional
distribution P(r|u) computed as(r|u) = P(r|u,0,) P(6-|a).

P(0r, da,rla,u, o, B) =

@)

3.3 Computing Role Score

Recall that from the social network structure, we extractiarp
distribution P(u) over all the users, while from the dynamic so-
cial activities, we obtain a conditional distributidn(r|u). We can
therefore use the joint distributioR (u,r) = P(r|u)P(u) (role
scores) to measure the probability that uaewith role » con-
sumes information from. In what follows, letéd,, . denote the
scoreP(u,r). We organize{#} as aU x R matrix with theu-th
row, r-th column element bein@, .. For a given role-*, one can
rank all the users according to their role scofgs-, i.e., ther*-
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Figure 3: User-permission assignment based on agglomerag
clustering.

th column, which serves as the cornerstone for the useriggion
assignment, as discussed next.

4. USER-PERMISSION ASSIGNMENT

In this section, we present the step of bridging users anaiger
sions via social roles. One key featurexafccesslies in its con-
sideration of the structure of permissions. For ease ofptation,
we assume that the set of permissidiig correspond to a single
(unknown) social role*, and are pair-wise comparablg; < ¢;, if
and only if the grant of; implies that ofp;, i.e., the confidentiality
levels of two permissions are comparable. We will allow tharen
general case that permissions correspond to multiple Isadés,
and are not pair-wise comparable (not monotonically stejah
Section 5. Here, without loss of generality, we assume {hatis
sorted in a monotonic ligtp).

Intuitively, we are given two measures, role scof@s(with re-
spect to a specific rol€") and permissionép). We intend to match
each#,,’® to certaing. Let M(-) denote the mapping of indices,
such that,, is mapped t@,;(.). We dictate that the mapping must
be: (1)Monotonic If 0,,, .+ < 0., -+, thenM (u;) < M (u;); that
is, for given two users, their assigned permissions andsobees
should follow the same order. (B)omplete Vu, 3M (u); that is,
for every user, there must exist an assigned permissionmbayt
not vice versa. We attempt to match users and permissiorle whi
obeying their orders.

We distinguish the case that each permission is associatied w
quantitative confidentiality score (e.g., via automateding [16])
indicating its privacy level, and the more general casedhgt the
ordering information is given. Here, for clarity of presation, we
only consider the latter general case, and the former cadis-is
cussed in Appendix C. Next, we start with the case that no pre-
defined user-permission assignments (called “anchorg”pizen,
and later consider the case that the user supplies a setlafranc

4.1 Matching without Anchors

In the case that no anchors are given, we attempt to provide as
sistance for the most non-expert users. We therefore relhen
intrinsic structure of the serigg) to identify the optimal mapping
between(¢) and(#). Without further information, it is impossible
to identify the latent role-* underlying(¢); hence, we evaluate
usery based on its marginal role scaig = Y, 0., r-

series of role scores, non-leaf nodes as clusters, and ooa-c
sponding to the entire collection of users. To constructmedro-
gram, one starts at the leaves, and successively mergepsestc
clusters together, until all the users are included. Thiegss is il-
lustrated in Figure 3. Clearly, one critical measure is ih@larity
of two consecutive clusters; in out implementation, we adbp
average Manhattan distance as the similarity metric. Quittihe
hierarchy at a given height generates a partition at a selqueci-
sion. We use a parametarto control the precision: the partition
continues only if the number of clusters is larger than thalmer of
permissions, or there exist two consecutive clusters viritlilarity
above.

After the cluster generation, one may followanservativestart-
ing from the permission with the lowest confidentiality Iwassign
a distinct permission to each cluster in an increasing drdgen
(starting from the highest confidentiality level, assignstidct per-
mission to each cluster in a decreasing orderyandom(arbitrar-
ily pick the same number of permissions as clusters, angjassi
them to the clusters following their order) strategy.

4.2 Matching with Anchors

It is possible that the target user may have a set of predefined
user-permission assignments, called “anchors”, thatyirsetting,
is equivalent to a set of role score-permission match. More f
mally,

DEFINITION3 (ANCHOR). An anchor is a user predefined
role scoref to permissiony match(6 - ¢).

Anchors provide important implications regarding the &drgser's
expected permission assignment: that is, users with simola
scores to an anchor should be assigned similar permissitims.
challenge lies in, however, that the anchors may also iotred
inconsistency into the matching process. By inconsisteimty-
itively, we mean that for two given anchors, their assignedps-
sions disobey the order of their associated role scorest, M&x
discuss how to incorporate anchors to improve the qualitgssf
signment, and how to detect and resolve potential incarsigtin
anchors.

Detecting Inconsistent Anchors
We first introduce the formal definition aficonsistency

DEFINITION 4 (INCONSISTENCY). Aninconsistency is a pair
of anchors(fu, — ¢ar(u,)) and (0w, - qﬁM(uj)), such thab,,, .+ <
euj,'r* and¢k1(’ui) > ¢]\{(uj)-

To identify the subset of inconsistent anchors, we resothé¢o
principle of minimal causation$21]. Intuitively, it states that the
best explanation of a given set of data features the minimetm s
of causes. Based on this principle, we propose the followligg
tection scheme. For each rolee R (each dimension off)),
we check if any inconsistency exists, i.e.3if0., — ¢ar(u,)) and
(Ou; ~ ¢M(uj)), Ousyr < Ouy,r ANAAag(uy) > DM (uy)- If positive,

We assume that both series have been sorted in non-degreasinr is added to an initially empty s& . If all the dimensions con-

orders. Intuitively, we consider that two individuals wihmilar
role scores should be assigned similar permissions; thetiqnds
thus to find a partition of6) into a set of subsets, where the num-
ber of subsets is unknown. Clearly, an unsupervised pariitg
method is suitable for our purpose. To this end, we apply an ag
glomerative hierarchical clustering method, which iritily cre-
ates a hierarchy of clusters, called dendrogram, with kagethe

3For simplicity, we usé,, as a short version @, ..

tain inconsistency (i.eR = R'), we regard the dimension (role)
r containing the minimum number of inconsistenciesrdsand
proceed to resolving the inconsistency (see below); otiserwve
rank users based on their role scores along the dimen&orR’:
Ou = Y ,erwri 0u,r. In this case, we can consider the provided
anchors as a set of ground-truth role score-permissiograsgint,
<0u7 ¢]\{(u)>

This set of anchors slice the two sequen¢@s and (¢) into
pieces. Consider two consecutive anchors (in term® dlues),



confidentiality scores) or clustering-based matching to-series
of permissions and role scores, as partitioned by the aachor

Input: proximity set©, permission seb, anchor sef

¢ P2 b3 P4 b5 P Pr Output: permission assignments for dlk ©
(a) /'l consistency check
0, 0y 03 04 0; 05 6- 05 U " g
0 —O—O O OO OO—0O for each anchory € ¥ do
>L % ny < number of intersected anchors;
LT if ny >0 then addy to U*;
(¢) — T3 — Tt o ,
b1 P b3 b4 /'l inconsistency renoval
(b) if ¢+ g then

sorty € ¥¢ according tauy;

while inconsistency existo
pop upy from ¥ to ¥";

| adjust the order o¥“;

LRV AN VAU /o

for eachy € ¥" do

Figure 4: User-permission matching under inconsistent an-
chors (solid lines): (a) exceptionalization (b) multi-asignment.

(Owis Dra(uy)) and(au],gst(uj)). We are left with aligning the if 3’ € W, 0(4) > 0(¢') and () < $(«') then

two sub-sequencefu,, . - ., Ou;_y ) ANA(Par(u,)s -1 Par(uy) ) | multi-assignment;

which can be easily solved following the paradigm introaliae else

Section 4.1. | exceptionalization;

Resolving Inconsistent Anchors /1 proxinity-pernission matching

Next we show how to resolve the inconsistency introducechiy t for two consecutive anchol®;, ¢m, ), (0, #m, ) € ¥ do
anchors, i.e., the permissions of the anchors disobey ther af if permissions associated with confidentiatiten

the associated social role scores. In general, we solve istch | matchfisy : 0;-1 andem, : om; Using time warping;
consistency using two mechanisnexceptionalizatiorand multi- else

assignment Intuitively, exceptionalization allows the cases that if j —i>m; —m; then

some users have exceptional trust (or distrust) by the ttasggs, | match®s : 021 andgm, : ¢m; using clustering;
not reflected in their social relationships and activitielile multi- else

assignment accommodates the cases that the anchors oabt refl L conservative, aggressive, or arbitrary matching;
certain aspects of the “true” assignments for some users,ash -

sentially should be given certain other permissions. Mormélly, Algorithm 1: Role-permission matching under (possibly in-

L consistent) anchors.
DEFINITION5 (EXCEPTIONALIZATION). An exception is an

anchor (6. - () ) that encodes special trust (or distrust) to user
u by the target, which should not be used in the assignmenepsoc
to provide general guidance.

While the overall framework is clear, we still need to answer
several challenging questions: first, how to identify th@imum
set of exceptions? second, whether to apply multi-assighime

We apply exceptionalization to identify the set of anchdvat t exceptionalization, when both are possible? Followingawswer
would result in inconsistency and should be considered espex ~ these questions in the case of pair-wise comparable péamgss
tions, and suspend them from providing guidance for peioriss ~ and the more general permission structures will be discusse

assignment for the rest users. Section 5. For simplicity, we us¢ to denote an anchor, arid)
) and¢ (1) as its associated role score and permission.
DEFINITION 6 (MULTI-ASSIGNMENT). For a given anchor Q1: how to find the minimum set of exceptioi§e have the fol-
(0w = da1(uy) » Multi-assignment identifies potentially missing per-  |owing theorem regarding the complexity of finding the mioim
mission assignment far other thangy u)- set of anchors that result in inconsistency (exceptions).

We apply multi-assignment to identify the set of anchorg tha
should be accompanied by certain other permissions, andveem
the original permission assignments from the matching gssc

THEOREM 1. Identifying the minimum set of anchors responsi-
ble for inconsistency is NP-Hard.

Multi-assighment is especially meaningful when incompbeger- PROOF. The problem can be re-formulated as the followSeg
missions are taken into consideration, and users tendtiaréeaul- Coverproblem. LetS be the set of intersection points of anchors,
tiple social roles, e.g., both friend and co-worker, as @évirom and.A be the set of anchors involved in the intersections. We thten
different perspectives; in such cases, a single user mayd® a  to find the minimum subset ofl that “covers” all the intersection
ciated with multiple permissions along different dimemsidi.e., points inS, which is an instantiation of the classical set cover prob-
multiple roles). lem, known to be NP-Hard. [

Our approach of matching role score and permission under an-
chors with possible inconsistency is sketched in Algorithml) Hence, instead of attempting to find the minimum set, we apply
check if inconsistency exists in the set of anchors; 2) ifietite a greedy approach: at each step, we identify the anchor dlnaes
minimum subset of anchors (exceptions), whose absencevemmo the largest number of inconsistencies in the current anetipand
inconsistency; 3) depending on its intersection with odrahors, remove it as an exception. The intuition behind this schentlat
apply either multi-assignment or exceptionalization toheaxcep- an anchor in conflict with a larger number of others tends tarbe

tion; 4) apply time-warping-based (for permissions assed with exception with higher possibility. It can be derived thas tireedy
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Figure 5: Role-score-permission matching under partiallyor-
dered permissions.

approach achieves an approximation ratidbfs), wheres is the
largest number of intersections on a single anchor, Higd) the
n-th harmonic number.

Q2: exceptionalization or multi-assignmeni&fter identifying
the set of exceptions, the anchors are divided into two Sbis:
exceptions¥® and the rest@”, the next step is to apply excep-
tionalization or multi-assignment to handle eaghe ¥°. Con-
ceptually, both mechanisms remowerom the matching process;
while, in addition, multi-assignment also attempts to fing miss-
ing permission assignments potentially neglected by tlee u&/e
distinguish the cases thdt intersects with “up-stream” anchors,
i.e, I € U, 0(v) < (') and () > ¢(z"), as shown in
Figure 4a), or with “down-stream” ones, i.e3y’ € U", 0(z)) >
0(x") andp(ep) < ¢(1p"), as shown in Figure(®). We claim that
in the case of pair-wise comparable permissions, only ose
possible, with the following theorem.

THEOREM 2. For pair-wise comparable permissions, each ex-
ception can only exclusively intersect with either up-atneor down-
stream anchors.

PrROOF Without loss of generality, consider an exceptipthat
intersects with an “up-stream” anchor, i.€y’ ¢ ¥", 6(¢b) <
0(x") and ¢(vb) > #(b"). Assume that it also intersects with
certain “down-stream” one, i.e3y"” ¢ ¥", () > 6(¥»") and
$(1) < ¢(v"). We haved(") < 6(x') andg(v") > $(1),
i.e., an exception, which is a contradiction to tkdtis exception-
free. O

Hence, multi-assignment makes sense only witeimtersects
with “down-stream” anchors; that is, an additional pernaiss)*
with higher confidentiality levelg(v*) > ¢(v)) is assigned. With-
out further information, we set the additional permissjgnas the
minimumone that does not cause any inconsistencyin ¢* =
max{p(v)') : " € ¥" andf(zp") < 0(x»)}. An example is shown
in Figure 4b) where the exceptio(d; — ¢1) intersects with two
down-stream anchor®: — ¢2) and (64 — ¢3), and an additional
permissionys is assigned t@-.

Also note that the multi-assignement policy bears the eatdr
“suggestion”; it is possible that an exception encodesategpe-
cial “distrust” preference by the target user. In such casal/
exceptionalization will be applied.

5. EXTENSION

In the discussion so far, we have made two simplification as-
sumptions: 1) the set of permissions are pair-wise comparaé.,
a totally ordered set; 2) the target user provides suffidiefiotr-
mation (e.g., social network structures, historical dogdivities,
anchors), foixAccessto perform privacy setting recommendation.
Now we lift these simplifications and consider the casesthtie

set of permissions form a partially ordered set, i.e., netgpair of

permissions are comparable, which is fairly common in accen-
trol literatures and practice [9], and 2) the informatiopslied by

the target user is insufficient to make informative recomaagion;

we can, however, gain valuable insights into the reasongatie
vacy setting by examining the settings of his/her peersthearwe
discuss the problem of semantically labeling a social rihlereby
making it interpretable by users.

5.1 Partially Ordered Permissions

Assume that the set of permissions form a partially ordeetd s
(i.e., lattice) according to their confidentiality levelslow, a pair
of permissions can be one of the following relationshipsx, =,
andincomparable therefore, the techniques in Section 4 is not di-
rectly applicable. One can, however, apfilyear extension8]
over the set of permissions, which generatespalogical ordering
of the permissions, compatible with the original partiadlening.
In particular, we are interested in a classed representafithe or-
dering information, where the permissions in each clas&qual
or incomparable to each other, and can be considered asghavin
equivalent confidentiality level. For example, in Figurét® set of
permissions can be grouped into four clas§gs}, {¢2, ¢3, P4},
{¢5,96}, {¢7}. Note that these classes are totally ordered, and it
holds that for every two consecutive clasggsand®;, V¢ € &,
3¢’ € ®;, ¢ < ¢'. Such classification can be obtained following
a breadth-first search paradigm, as sketched in Algorithrwe? (
define two permissiong and¢’ as predecessor and successor, re-
spectively, if and only it < ¢').

Input: set of permission®
Output: classification ofd
C<g
C < set of permissions with no successors;
C' < g;
while C'is non-emptyo
addC'toC;
for each permissior € C do
for each direct predecessar of ¢ do
delete relationship’ < ¢;
if ' has no successdhen
| add¢’toC’;

L C<C

Algorithm 2: Linear extension of partially ordered set.

Now we can perform role-score permission assignment on the
level of permission classes. In the case that no anchorsrare p
vided, we apply agglomerative clustering to the set of $ooias
scores, generate a partition, and match each class of rotessc
(i.e., users) with a distinct permission class, followihgit orders.
Such class-to-class mapping is then presented to end usdts-f
ther refinement.

Given the non-comparability of permissions, it is likelyatHor
one social scoré,,, the target user may provide multiple anchors,
{¢*}. As an example, in Figure B is assigned two permissions
¢1 and ¢4. We assume that each pair of+;") and ¢(v;') are
incomparable; otherwise, one can remove the one with lomwer ¢
fidentiality level, without affecting the overall capacity

We consider that such multiple anchors correspond to nhltip
social roles; that is, eaah € {1)"} is associated with a role. Con-

ceptually, two anchorg;’ and w}‘l associated with the same role
should be consistent; hence, we intend to find a permissiten-r



mapping such that the number of inconsistencies could bé& min
mized. After that, one can perform user-permission assigmm
along each dimension (role) independently, solve the plesan-
consistency, and finally collect and merge the exceptiea-fin-
chors. Exception handling is similar to that in Section £%;ept
that the selected additional permissighshould be a successor of
the permissions associated with conflicting anchors,their least
common ancestor (LCA). One then merge the set of exceptém-f
anchors and the identified missing permission assignmeiorto
the anchor set for proximity-permission matching. For egkamnin
Figure 5,(0s — ¢1) conflicts with anchorgfs — ¢3) and (04 — ¢2);
the LCA of 8, and@s, 05, is identified as the missing permission,
which is then merged with another assignmeént with ¢5 as the
final assignment fops.

5.2 Collaborative Privacy Setting

The privacy settings by his/her peers provide valuablermés
tion for determining the best access control policy for acfffe
user, especially when the information associated with tee (e.g.,
social activities, anchors, etc.), is insufficient fokccessto per-
form informative recommendation. Here, we discuss howerle
age such information in suggesting reasonable privacingett

The most straightforward solution is based on the princgfle
mutual equivalencea pair of individuals tend to demonstrate simi-
lar trust/distrust inclination in information sharing Wwi¢ach other;
hence, one can “mirror” the setting of a peer: given two irtlials
u andv, let¢(u ~ v) denote the permission assigneddbio v; v
can simply copy this setting agv ~ u) = ¢(u ~ v). This solu-
tion, though simple, considers only the information of tpedafic
peer when determining his/her access level. A more compsiree
solution is based on the paradigmanfilaborative filtering Given
two individualsu andw, for the sets of users relevant #oandv,
V. andV,, one creates a mapping (I&f,.., (w) be the counterpart
of w of V, in V,), based on the social role scoresaf andV,
with respect taw andv, respectively. The setting af € V,, can be
calculated as¢(u ~ w) = arg ming [T, f(¢(v ~ My (w)), d),
where¢(v ~ My, (w)) is the actual assignment ., (w) by
v, and f(¢(v ~ My (w)), @) is thecostfunction of assignings
to M, (w) by v. Various instantiations are possible} norm for

example.f(¢(v ~ Muy(w)), @) = (v ~ Muo(w)) = ¢|-

5.3 Labeling Social Roles

To make the extracted social roles interpretable, it is iraiee
to attach “semantical tags” to them. Back to our discussioBdc-
tion 3.2, we assume that each activity typés associated with a
set of descriptive terms, from a finite 98¢. We can extend the
generative model in Section 3.2 by including another olz#es
w, i.e., the terms of an activity type associated with multinomial
distribution),, parameterized by. Now, the joint distribution is
given by P(w,a,r,u|a, 3,7v), which can be estimated following
that sketched in Section B. From the joint distribution, aa
derive the conditional distributio® (w|r).

We can extract a set of candidate labels using frequentrpatte
mining. For each candidate labklwe evaluate its semantic rel-
evance to a role, S(I,r). More formally, letl = ww! ... w!,,
we can estimate its semantical relevance to aralsing multiple
metrics, the simplest case, for example:

Pl &,

P(w!]r)
O

P(w;)

S(l,r) =log (©)]

alternatively, the negative KL divergence{d?(w|r)} and{P(w|l)}
overw € W could also be used.

6. EMPIRICAL EVALUATION

In this section, we present an empirical evaluation of thie ef
cacy ofxAccessover two real-life social network and user study
datasets. The experiments are specifically designed cemsgound
the following metrics: 1) the efficacy in capturing indivalg’ im-
plicit privacy preference for relevant users, 2) the effestess in
incorporating users’ predefined preference to improve thaity
of privacy setting, 3) the scalability with respect to thalswf un-
derlying social network and the volume of historical adtidata.

6.1 Datasets and Experimental Design

In the first set of experiments, we applyiccessto analyzing a
publicly available speed dating dataset [12] from a studydcated
by Fishman et al. [12]. It involves 530 participants and ¢stss
of data regarding 4,150 dynamic “dates” arranged betweés pa
of participants. For each participant, the demographicrinition
(e.g., age, race, zipcode, etc.) and the information of )b
tivities (e.g., entertainment, museum, hiking, etc.) th&ipipants
usually take part in is also collected. After the date, thesta-
tion of each participant regarding his/her partner is réedrwith a
score on a scale from 1 to 10, which we regard as the implicit pr
vacy preference indicated by the participant. For eachviddal,
we applyxAccessto extracting the roles of his/her partners, based
on the structure of dating arrangement (as the static nktstauc-
tures) and the description of their hobbies (as the dynant@k
activities), and match it against the set of permissione it of
integers ovef1,10]). We compare the predicated results with that
given by the participants in the dataset.

In the second set of experiments, we analyze the social net-
work of a subset of IBM employees who participated in gneall
Blue project [14] and the archive of bookmarks tagged by these
social users (as the dynamic activity data), to predictviddals’
information sharing behavior. The dataset correspondeecso-
cial network as of January 2009, which involved 41,702 IBM-em
ployees. The personal information regarding each indalidio-
cludes his/her (i) work location, (ii) managerial positi@and (iii)
social connections with other employees. The associate#-bo
mark archive consists of the webpages tagged by the indilsdu
appearing in the first dataset, collected bg ®EAR[3], a personal
bookmark management application that as well supportsrghar
the community’s bookmarks. The archive contains 20,87&kboo
mark records, relevant to 7,819 urls. Attributes of intetesis are
listed in Table 1; in particulaemail and url uniquely identifies a
user and a webpage, respectively, agsencode the semantics of
the object. We regard the volume of email sent from an indizid
to his/her relevant user (note this communication is dioeet) as a
quantitative indication of his/her intension of infornatisharing,
and evaluate the result predictedo§ccessagainst it.

Attribute | Description

email email address of user(identifier of subject)
url url o bookmarked bys (identifier of object)
tags bookmark tags made hyregardingo

time time-stamp thag accesses

Table 1: Attributes and descriptions of Dogear dataset.

In the last set of experiments, we implement and deploycess
on the platform ofFaceBook and conduct a concrete user study on
helping everyday users specify their privacy policies. &given
FACEBOOK Useru, we consider the following types of social activ-
ities of u’s friends with respect ta’'s FAceEBook page: comment
(post),like (page, post, status), atag (photo).



Structure | Permission order
(4)>(5)>(7)>(8)>(2)>(6)>(3)>(9)
> (10) > (11) > (12) > (1)

{(4)} >{(5),(7),(8)} > {(2),(6),(3),(9)}
>{(10),(11),(12)} > {(1)}

Table 2: Alternative structures of permission order.

total order
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-
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Figure 6: Recommendation accuracy okAccessand baseline
approach with respect to the number of correct and false an-
chors. From left to right, the three columns correspond to tte

speed dating, small blue, and facebook datasets, respeetiy.

Additionally we consider the following set of private datams
(permissions):(1) About me, (2) Personal Info, (3) Birthday, (4)
Religious and Political Views, (5) Family and Relationship) Ed-
ucation and Work, (7) Photos and Videos of Me, (8) Photo Athum
(9) Posts by Me, (10) Allow to post on my Wall, (11) Posts by
Friends, (12) Comments on Postd/e consider alternative access
structures of these permissions (e.g., totally orderedpsetially
ordered set) as listed in Table 2. We then collect the privaaty
tings regarding these permissions by 23 volunteers, angamn
the privacy settings suggested kbgccesswith that manually la-
beled by the participating users.

We use all three datasets in the experiments, aiming atagtu
the influence of factors such as activity types and user ctexra
istics. The algorithms are implemented using Python, ahthal
experiments are conducted on a workstation with 1.6GHziant
IV and 2GB memory, running Windows XP.

6.2 Experimental Results

Capture of Privacy Preference

This set of experiments are designed to evaluate the effiohcy
xAccess(denoted byXx) in capturing social users’ implicit pref-
erence of information sharing with relevant users. In patér, we
intend to examine the contributions by different features,(static
social network structure, dynamic historical activitissgapturing
such implicit reference. Leb* () and¢”(-) be the access control
level set manually by the user, and suggested by a recomi@mda
method, respectively. We measure the quality of recomnteda
using the metric ofecommendation accuracy

Liez |¢7 (1) = 6" (D)
IZ] - ||

whereZ and @ are the set of individuals, distinct access levels,
respectively. Further, we construct a baseline bayesianoaph

1-

(denoted byB) that makes recommendation solely based on hop

distance, i.e.friend, friend-of-friend and minimizes the recom-
mendation error, i.e., a unique settigg for all users with hop
distanceh to the target individual that satisfies

¢h = argmin 3 |¢"(1) - ¢" (D)

h ieZ;,

ec. accuracy
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Figure 7: Robustness ok Accessand baseline approach against
false anchors.

whereZ,, is the set of users with hop distankeWe also consider
the possibility of leveraging the possible quantitativafadential-
ity levels associated with permissions (detailed discussi Sec-
tion C). Overall, we implemented four versions ohccess X,
X*, X*, andx**, where the symbols and+ indicates that the ver-
sion considers dynamic social activities and confidenyialcores,
respectively.

| B | X

0522] 0.795
0.374| 0.758
0.683| 0.853

| X

0.823
0.885
0.892

| X
0.884

0.785
N/A

| X*+
0.887
0.902
N/A

speed dating
small blue
facebook

Table 3: Accuracy of privacy settings suggested byxAccess
and baseline approach.

Table 3 shows the accuracy of the four versions s€cessand
the baseline approach with respect to the three dataseits oltt
served that, for all three datasets, over the baseline appAc-
cessachieves approximately 1:32.4 times higher recommenda-
tion accuracy. It is noted that the incorporation of dynasucial
behavior significantly boots the accuracy, especially fiar small
blue dataset (17.4% increase). This can be explained b tukE:
marks well capture users’ interests and preferences, ariokthav-
ior of recommending bookmarks is a good indicator of useils w
of information sharing. Also, the incorporation of quaatite con-
fidentiality information of permissions further improvdgetqual-
ity of recommendation, which is especially evident for tipeed
dating dataset. This is explained by that the social netwtikc-
ture in this dataset is much simpler (mainly composed by d-ho
neighbors), while the social activity data includes 1lilatties, and
contains much semantically richer information.

Incorporation of User Input

In this set of experiments, we take into account user preei@fin
permission assignment (anchor). Specifically, we measarestc-
ommendation accuracy @fAccessand the baseline approach with
respect to varying percentage of anchors (over the totabeumof
assignments), where the anchors are randomly selected.

The result is shown in Figure 6. First notice that, as the num-
ber of provided anchors grows, the accuracy of all the moidels
crease; intuitively, the anchors provide valuable cluesmrding
users’ implicit preference. Also notice thatccess(all four ver-
sions) demonstrates higher effectiveness in leveragio bints
to improve the quality of assignment; for example, for theabm
blue dataset, even the basic verskoachieves accuracy approxi-
mately 0.87 when 10% of the assignments are provided as exmcho
compared with approximately 0.42 Bf This is explained by the
fact thatxAccessleverages the anchors as “structural clues” for
aligning social role measures and permissions, which ingwthe
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Figure 8: Average execution time (per user) ok Accessversus
the maximum hop and the volume of social activity data.

overall quality of the alignment, in contrast to the poiris&im-
provement by the baseline approach.

To evaluate the impact of the inconsistency possibly exdsitn
the anchors, we randomly generate a set of “false” anchoisgl4
dition to the anchors provided by users. With the percentdge
“correct” anchors fixed as 5%, we measure the accuracyAat

cesswith respect to the varying percentage of false anchorse(not

that the baseline approach treats anchors as point-wiserafion,
therefore is not affected by the false anchor). The res@hévn
in Figure 7: on all three datasets, the accuracyfdcessis fairly
stable under the influence of false anchors, mainly ateibtt the
exceptionalization mechanism.

Efficiency and Scalability

Now, we proceed to evaluating the operation efficiencyafcess
In particular, we intend to capture the influence of two festdhe
scale of the underlying social network, and the volume dbhisal
activity data. We use the small-blue dataset in this set pégx
ments, given its large scale.

First, we measure the wall execution timex#fccessas a func-
tion of the maximum hop of the viewpoint networks. The result
is illustrated in the left plot of Figure 8. Overall, it is iogéd that

X andX* are fairly efficient, even though the number of relevant

users grows approximately quadratically. This is atteluto the
fact that extracting the social proximity measure from tbeia
network only involves solving a linear equation system,dsfty
featuring polynomial complexity for sparse matrices. \Whihe
extraction of social roles ix* andx** is costly; their overall ex-
ecution efficiency, however, is fairly reasonable, consigpthe
scale of the small blue social network (over 40K individjials
Further, in addition to the activities (bookmarks) in theadet,
we randomly injected in a set of user-activity pairs to estdu

the scalability ofxAccessagainst the size of activity data. The

right plot of Figure 8 demonstrates how the volume of agtidita
affects the efficiency okAccess(with h fixed as 2), which ex-
hibits even less significant impact over the performance Af-
cess compared with the scale of social network (note thand

X* are not affected). This can be attributed to that 1) Gibbs-sam

pling and the optimization of entropy filtering significanteduces
the overall complexity of social role mining; and 2) the nienbf
social activities usually grows quadratically with the Iscaf the
underlying social network.

7. CONCLUSION

highlights itself with three distinct features: 1) it adsg role-
based access control model, instead of the conventiorexbagded
one, which leads to privacy policies semantically intergibie by
users; 2) it exploits both static social network structumad dy-
namic social activities in extracting the underlying sboides; 3)
it considers potential inconsistency in user input periasassign-
ments, and proposes effective countermeasure againstrexari
sistency. Extensive experiments over real social netwaté Have
been conducted to validate the efficacyx@fccess
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APPENDIX
A. RANDOM WALK WITH RESTART

We assume that each relationship type is associated witightye
indicating its strength. We use;; to denote the weight of the re-
lationshipij (between two direct friendsand ). Specifically, in
RWR, at each step, the walk moves from a ugdo one of its
friends £ with probability proportional to the weigh;, and re-
turns toj (restart) with probability(1 - ¢) (c is a parameter). More
concretely, let\; be the set of friends of. The transition proba-
bility from j to k € »vj, p;;., is given as:

ij
pjk Zk’eNj ij/ (4)
where the parameter controls the probability of returning to the
original node. Stacking, ; into a matrix, column-wise, which pro-
duces the column, normalized adjacent mak¥ix

B. PARAMETER ESTIMATION

To obtain parameter estimates for the generative modelmve e
ploy Gibbs Sampling, a Markov chain Monte Carlo (MCMC) algo-
rithm, as it provides a simple method of performing paramese
timation for Dirichlet priors and allows combinations otiezates
from several local maxima of the posterior distribution.

Instead of estimating the model parameters directly, wiedia-
uate the posterior distribution on ratethen use the results to infer
0, and¢,. For each activity, the role of users who participate in it
(role assignment) is sampled from the following term:

Calt+p ClF +a

“ T CAEYBBY, CIF+ Ra

P(r; = jla; =m,u; = k,r_;)

wherer; = j represents the assignment of thth activity, and
a; = m andu; = k represent that the observation that the user
participates in the-th event of activity typen; A, B, R, U are the

<
=
=W A U1 ~1 00

Figure 9: User-permission matching (with quantitative corfi-
dentiality scores) using dynamic time warping.

number of activity types, activities, roles, and userspeetively;
C’{;‘lf is the number of times that an activity of typeis associated
with a social rolej, similar forC,S’jR; r_; represents the all the role
assignment except thieth activity. From these count matrices, one
can easily estimate the parametérandg¢,, as:

AR UR
ij + /8 _ OkJ + «
> CAT 5, CUT+ Ra

Further, in this process, we usatropy filteringto filter non-
informative trash activities to improve efficiency. Spegfly, after
N (a user-specified parameter) iterations of sampling, we &ta
ignore the set of non-informative activities (trash ati@g). In our
implementation, we measure the informativeness of aigt#viising
the entropy of the variable*®. Particularly, we ignore thé-th
activity a; if the i-th row of C*% has entropy above a threshold
The remaining question is how to select the optimal number of
latent roles. We employ the perplexity measure, a standaasore
of estimating the performance of a probabilistic model. \ifethe
Gibbs sampling using perplexity score as the terminatiowition;
the number of roles is determined by using the minimum number
of roles that leads to the near maximum perplexity. More itfeta
are referred to [20].

Pmj = O;

C. PERMISSIONS WITH CONFIDENTIAL-
ITY SCORES

Here we consider the case that each permission is assowiiited
a quantitative confidentiality levkl

Intuitively, we intend to match the shapes of the entireesdrl)
and(¢) to the maximum extent; that is, if the difference betwégn
andd,s is (non)significant, so should be the caseds; andém,, .
We can formalize this notion as follows: '

min ) A0, ém,) ®)
whereA(6;, ¢m, ) is the distance betweeh and¢n,; its concrete
definition depending on the definitions @and¢.

We assume that both serig® and(¢) have been properly nor-
malized to the interval of0, 1] (e.g., via linear interpolation), and
A(0, ¢) may simply be the absolute value of their difference. Es-
sentially, the optimization problem of Eq. 5 can be re-folaed
as computing the minimutime warping distancbetween(d) and
(&), A({0), (@), with definition given as:

min { A(head((0)), head({$))) + A(rest((0)),rest({¢)))
A((0),rest({9)))

wherehead(-) is the first element of a series, andst(-) is the
sub-series without the first element. Specifically, we have

A, (D =0 A[E),{) =0 A(():(#) =0

“Here we abuse the notation a little bit, and gst denote both
the permission and its associated confidentiality levely@#ilable).
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Figure 10: User-permission matching under consistent analrs
(solid lines): (a) permissions with confidentiality levels

This time warping distance defines a path in the matrix comgbos
of the elements of0;, ¢;), corresponding to the alignment 6f
and¢;, i.e., m; = j, as shown in the right plot of Figure 9. This
path represents an optimal mapping betwé#nand (¢). Given
the mappingn,.,, users with social proximity scots are assigned
permissiongm,. The computation of minimum time warping dis-
tance can be approached using dynamic programming.

In the case of consistent anchors, we perform piece-wise-tim
warping distance matching for each piece-g#i .1, ..., 0,+_1}
and{¢m., .., ¢mj* }. An example is shown in Figure 10, where
the solid lines represent anchors, and the dashed onesdlenatches.
Note the difference of the match 6 from that in Figure 9. In the
case of permission without confidentiality levels,



