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ABSTRACT
The immensity and variety of personal information (e.g., profile,
photo, and microblog) on social sites require access control poli-
cies tailored to individuals’ privacy needs. Today such policies are
still mainly specifiedmanuallyby ordinary users, which is usu-
ally coarse-grained, tedious, and error-prone. This paperpresents
the design, implementation, and evaluation of anautomatedaccess
control policy specification tool,XACCESS, that helps non-expert
users effectively specify who should have access to which part of
their data. A series of key features distinguishXACCESSfrom prior
work: 1) it adopts a role-based access control model (instead of
the conventional rule-based paradigm) to capture the implicit pri-
vacy/interest preference of social site users; 2) it employs a novel
hybrid mining method to extract a set of semantically interpretable,
functional “social roles”, from both static network structures and
dynamic historical activities; 3) based on the identified social roles,
confidentiality setting of personal data, and (optional andpossi-
bly inconsistent) predefined user-permission assignments, it rec-
ommends a set of high-quality privacy settings; 4) it allowsuser
feedback in every phase of the process to further improve thequal-
ity of the suggested privacy policies. A comprehensive experimen-
tal evaluation is conducted over real social network and user study
data to validate the efficacy ofXACCESS.

Categories and Subject Descriptors
K6.5 [Computing Milieux ]: Management of Computing and In-
formation Systems—Security and Protection

General Terms
Security, Management

Keywords
Social role, Social Network, Access control

1. INTRODUCTION
This is the era of social networking! Online social networks

(OSNs) have become a de facto portal for hundreds of millions
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of Internet users. For example,FACEBOOK, one representative so-
cial network provider, claims that it enjoys over 350 million active
users [2]. With the help of these social sites, users share informa-
tion with their friends, participate in online activities,and get to
know more new friends. The unprecedented immensity and diver-
sity of personal information over social networks (e.g., itis esti-
mated that over 3.5 billion pieces of content, including weblinks,
news stories, blog posts, notes, and photo albums, are shared by
FACEBOOK users each week), however, is far beyond the devel-
opment of privacy control enforcement tools. Improper privacy
control over personal information tends to lead to severe conse-
quences [4, 1].

So far, users still mainly rely on social network sites to provide
privacy control to restrict data sharing with friends, corporate affili-
ates, or application developers. Nevertheless, the available controls
are rather limited. For example,FACEBOOK launched the platform
for users to personalize their privacy setting, via manually speci-
fying who (classified into classes such aspublic, friends}) should
have access to which parts of their information. Clearly therigid
classification of relevant users into several groups is fairly coarse-
grained. For example, for two users belonging to the same category,
one may desire to assign different permissions. More flexible con-
trol could only be achieved through a manualcustomsetting, such
as the “circle” concept inGOOGLE PLUS

1, which leads to the next
problem; a full manual setting is usually tedious and error-prone.
Consider that right now an average user has 130 friends onFACE-
BOOK, and the number of friends of friends is typically quadratic.
With such a large pool of relevant users, it becomes a non-trivial
task for ordinary users to effectively specify their privacy policies.

1.1 State of the Art
In both the database and security communities, intensive research

efforts have been dedicated to protecting individuals’ privacy in so-
cial network data publishing, a problem orthogonal to the scope
of this work. In [5, 17, 25], it was shown to be possible to re-
identify individuals in the published network data even if explicit
identification information, e.g., name, affiliation, and address, has
been masked. In [26, 7, 13, 15], countermeasures have been pro-
posed against the re-identification attacks while the adversary pos-
sesses various background knowledge regarding the original net-
work, e.g., degree, neighborhood structure, or subgraph ingeneral.

Some initiative research works have recently recognized the im-
portance of enforcing user-specified privacy control over personal
information on online social networks. For example,XBOOK [22]
attempts to enforce control of what third-party applications can
do with the information they receive from social network sites,
using an information flow model.PERSONA [6] hides user data

1https//plus.google.com



with attribute-based encryption (ABE) schemes, allowing users to
apply fine-grained, customized policies over who may view their
data. Nevertheless, all these works focus on how to enforce user-
specified control, with the assumption that the privacy policies are
completely and clearly specified.

In a recent work [10], Fang and LeFevre proposedPRIVACY WIZ-
ARDS, a semi-automatedprivacy setting recommendation tool that
extracts a set of permission assignment rules, based on an active
learning paradigm,uncertainty sampling. This rule-basedmodel,
however, suffers from two major drawbacks. First, it implicitly re-
lies on a “lazy user” assumption (users are fully capable of,yet not
willing to manually specify the policies), and requires accurate user
input on a set of highly ambiguous assignments that, however, are
typically the most difficult spots for non-expert users. Second, the
discovered permission assignment rules may lack semantical inter-
pretation, and are thus difficult to understand by social site users,
which severely limits its applicability.

1.2 Challenges and Contributions
This work presents the design, implementation, and evaluation

of an access-control policy specification tool,XACCESS, for social
networking platform. To our best knowledge, this is the firstau-
tomatedframework that helps ordinary social network users effec-
tively specify customized privacy polices for their personal data.
For a social site user,XACCESSsuggests a set of high-quality per-
mission assignments for all relevant users. The suggested assign-
ments are semantically meaningful and understandable fromthe
perspective of social activity in that they reflect functional, fine-
grained, latent “social roles”, e.g., a friend with certaincommon
interest, a co-worker on certain project, etc.

The fundamental assumption ofXACCESSis the existence of a
set of fine-grained, latent social roles that capture the social func-
tions of the users relevant to the target individual. This concept is
in spirit similar to the “role” in role-based access control(RBAC)
paradigm [11]. We argue that it makes much more sense to rea-
son about user-permission assignment based on social rolesinstead
of social relationships: first, the social relationship could be fairly
vague, and deviates from its semantic meaning, e.g., “friend” may
actually mean relative or co-worker; second, an individualmay
carry multiple social roles, and thus should have the union of per-
missions associated with these social roles, which could not be cap-
tured by a single social relationship.

Unlike conventional RBAC frameworks wherein roles are typi-
cally captured by auxiliary structures, e.g., enterprise managerial
hierarchies, a social network is, however, inherently “flat”, in the
sense that no hierarchical structures are available to define social
roles. To address this challenge, we introduce a novel hybrid min-
ing method that combines graph mining (over social network struc-
ture) and event mining (over historical social activities of users).
Based on the identified social roles, confidentiality setting of per-
sonal information, and predefined user-permission assignments (op-
tional and may contain inconsistency),XACCESSmatches relevant
users to their potential social roles, and social roles to their associ-
ated permissions. Moreover,XACCESSallows user feedback in ev-
ery phase of the process to further improve the quality of suggested
user-permission assignments. The main framework ofXACCESSis
illustrated in Figure 1.

Our contributions can be summarized as follows. First, we high-
light and articulate the problem of helping ordinary socialsite users
understand and specify privacy control policies over theirpersonal
data. Second, we propose a novel hybrid mining method that dis-
covers semantically meaningful social roles from both social net-
work structure data and historical activity data. Third, based on the
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Figure 1: Framework of xAccess.

social role mining method, we construct a fullyautomatedaccess
control policy specification tool,XACCESS, for social networking
platforms. Finally, we validate the analytical models and the effi-
cacy ofXACCESSover real social network and user study data.

The remainder of the paper will be organized as follows. Sec-
tion 2 introduces the fundamental concepts ofXACCESS. Section 3
and 4 detail the design and implementation ofXACCESS, with pos-
sible extensions discussed in Section 5. An empirical evaluation
of the proposed solution is presented in Section 6. The paperis
concluded in Section 7.

2. MODELS AND CONCEPTS
A social network is modeled as a graphG = (V,E), with V

andE representing the set of users and their social relationships,
respectively. In this paper, we focus on deriving the accesscontrol
policies for a specific userv ∈ V, and thus introduce a variant of
this definition:

DEFINITION 1 (VIEWPOINT NETWORK). We define theh-hop
viewpoint network of userv as the subgraphGvh = (V

v
h ,E

v
h) ofG

which consists of the users withinh hops ofv (including v) in G
and the social relationships among them.

By limiting h to a small number (typically 2 or 3), we focus on
the set of users socially local tov, which is sufficient for most so-
cial sites. In the following, when the context is clear, we omit the
referred target userv in the notations.

A permission is an access privilege to certain personal informa-
tion. Its concrete definition depends on social sites and applications
(e.g., access one’s photo album or comment on one’s microblog),
and is orthogonal to the scope of this work. We assume a set of
predefined permissions. The permissions may be structurally re-
lated; later, we will discuss how such structure impacts thesetting
of privacy policy.

The problem of specifying access control policies for userv is
essentially equivalent to identifying a proper permissionassign-
mentφu for each useru ∈ Vvh ∖ {v} (with respect tov’s personal
information). Henceforth, we refer tou andv as the source and tar-
get, respectively. The focus of this work is to alleviate theburden
of social site users by suggestinginformative, personalizedpolicy
settings. Instead of relying solely on static information (e.g., hop
distance or relationship type) as currently adopted by mostsocial
sites, we construct the recommendation framework atop the notion
of social role.

DEFINITION 2 (SOCIAL ROLE). A social role [24] is a set of
connected behaviors as conceptualized by individuals witha given
social connection to the target individual.

A social role specifies the expected social functions, thereby im-
plying the expected access rights of individuals with a given so-
cial connection to the target user, which makes it an ideal bridge
between users and permissions. To capture the social role ofthe



sourceu (relative to the targetv), one needs to consider (i)u’s so-
cial connection to the targetv as reflected in the social network
structure, and (ii)u’s social behaviors as reflected in the social ac-
tivities in which u andv participate. Motivated by this observa-
tion, we propose a novel hybrid mining method that extracts aset
of semantically interpretable roles from social network and social
activity data. To our best knowledge, this is the first in its category.

3. SOCIAL ROLE EXTRACTION
Next, we present our hybrid mining method that exploits bothso-

cial network structure (for social connection) and historical social
activity (for social behavior), with details presented in Section 3.1
and 3.2, respectively.

3.1 Social Network Structure
The social connection between the source and the target may

not be solely determined by their hop distance or their relationship
type; rather, it involves all relevant users. As an example,consider
three friendsui, uj , uk of v, while ui anduk are also friends,
which may indicate a stronger connection betweenui andv than
uj . We introduce the concept ofsocial proximityto capture this
notion, which measures the overall strength of a social connection.

Ideally, if two individuals share many common neighbors with
close relationships, or they belong to a small and tight community,
their social proximity would be high. A variety of measures have
been proposed [23] to capture the notion of network proximity, in-
cludingKatz measure, hitting time, andescape probability. In our
implementation, we adopt the measure ofrandom walk with restart
(RWR), one of the most popular proximity metrics in graphs [18],
which is empirically proved to perform the best in our experiments.
Specifically, in a RWR, starting from nodev, at each step, the walk
moves to one of its current neighbors with probability proportional
to the corresponding edge weight, or returns tov with a restart
probability (1 − c). This process can be analogized to the spread
of an ink drop on paper. The network proximity betweenu andv
can be defined as the steady-state probability that the walk appears
atu. If we stack the proximity scores into a vectorp, the definition
of RWR is given by:

p = cWp + (1 − c)e (1)

whereW represents the column normalized adjacent matrix of the
viewpoint networkGvh (details referred to Appendix A), ande is
the starting vector forv. In the following, we useP (u) to denote
the proximity score of useru (relative tov).

For clarity of presentation, we temporarily assume the network
structure to be static, which may not hold for real social networking
sites. Later, we will lift this assumption and take into account the
impact of network dynamics in specifying access control policies.

3.2 Historical Social Activity
While the network structures reflect the relatively static social

connection between two users, the social activities capture their
dynamic social interactions. Right now, most social sites support
myriad online activities (e.g., join online communities, comment
on others’ microblogs, play online games), which makes it feasible
to understand such interactions by extracting semantically mean-
ingful patterns from the activity data.

Without more detailed information, we can model an activityus-
ing (i) the set of users who have participated in it, and (ii) its activity
type2 (from a finite setA), which indicates its nature (e.g., photo

2Without ambiguity, in what follows, we usea to denote both an
activity and its associated activity type.
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Figure 2: User-activity bipartite graph and user-role-activity
generative model.

sharing or game playing). Particularly, since we intend to model
the social roles of relevant users with respect to targetv, we focus
on the set of activities participated byv. We can organize the set
of users and activities in a bipartite-like graph, as shown in the left
plot of Figure 2.

To extract the set of social roles from such activity data, wein-
troduce a probabilistic user-role-activity generative model. We as-
sume that each useru is associated with a conditional multinomial
distributionP (r∣u) over a set of rolesr ∈ R (R is latent), mea-
suring the degree thatu carries each roler; further, each roler is
associated with a multinomial distributionP (a∣r) over the set of
activity typesa ∈ A, indicating the likelihood that an individual
with role r participates in an activity of typea. Conceptually, the
event that useru participates in an activity of typea is generated
in two steps: 1)u picks a roler (sample a roler from P (r∣u)); 2)
with roler, u participates ina (sample an activitya fromP (a∣r)).
In this model, we have one focused objective, that is identifying the
number of latent roles and the association between each userand
each role.

The Bayesian network of this general generative model is shown
in the right plot of Figure 2:θr andφa denote the Dirichlet pri-
ors, parameterized byα andβ, while U , R, andA represent the
number of users, roles, and activities in the data, respectively. The
conditional distribution of parameters for given user and activity is
calculated as:

P (θr, φa, r∣a,u,α,β) =
P (θr, φa, r, a, u∣α,β)

∑a∑u P (θr, φa, r, a, u∣α,β)
(2)

where the joint distributionP (θr, φa, r, a, u∣α,β) can be calcu-
lated using

P (a∣φa, r)P (φa∣β)P (r∣u, θr)P (θr∣α)P (u)

In our implementation, we applyGibbs sampling[19] to esti-
mate all the parameters, andperplexitymeasure to select the op-
timal number of roles (details referred to Appendix B). After the
parameters are estimated, we can easily identify the association be-
tween each useru and each roler, as reflected in the conditional
distributionP (r∣u) computed asP (r∣u) = P (r∣u, θr)P (θr∣α).

3.3 Computing Role Score
Recall that from the social network structure, we extract a prior

distributionP (u) over all the users, while from the dynamic so-
cial activities, we obtain a conditional distributionP (r∣u). We can
therefore use the joint distributionP (u, r) = P (r∣u)P (u) (role
scores) to measure the probability that useru with role r con-
sumes information fromv. In what follows, letθu,r denote the
scoreP (u, r). We organize{θ} as aU × R matrix with theu-th
row, r-th column element beingθu,r. For a given roler∗, one can
rank all the users according to their role scoresθu,r∗ , i.e., ther∗-
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Figure 3: User-permission assignment based on agglomerative
clustering.

th column, which serves as the cornerstone for the user-permission
assignment, as discussed next.

4. USER-PERMISSION ASSIGNMENT
In this section, we present the step of bridging users and permis-

sions via social roles. One key feature ofXACCESSlies in its con-
sideration of the structure of permissions. For ease of presentation,
we assume that the set of permissions{φ} correspond to a single
(unknown) social roler∗, and are pair-wise comparable:φi ≺ φj , if
and only if the grant ofφj implies that ofφi, i.e., the confidentiality
levels of two permissions are comparable. We will allow the more
general case that permissions correspond to multiple social roles,
and are not pair-wise comparable (not monotonically sortable) in
Section 5. Here, without loss of generality, we assume that{φ} is
sorted in a monotonic list⟨φ⟩.

Intuitively, we are given two measures, role scores⟨θ⟩ (with re-
spect to a specific roler∗) and permissions⟨φ⟩. We intend to match
eachθu3 to certainφ. Let M(⋅) denote the mapping of indices,
such thatθu is mapped toφM(u). We dictate that the mapping must
be: (1)Monotonic. If θui,r

∗ < θuj ,r
∗ , thenM(ui) ≤M(uj); that

is, for given two users, their assigned permissions and rolescores
should follow the same order. (2)Complete. ∀u,∃M(u); that is,
for every user, there must exist an assigned permission, butmay
not vice versa. We attempt to match users and permissions while
obeying their orders.

We distinguish the case that each permission is associated with a
quantitative confidentiality score (e.g., via automated mining [16])
indicating its privacy level, and the more general case thatonly the
ordering information is given. Here, for clarity of presentation, we
only consider the latter general case, and the former case isdis-
cussed in Appendix C. Next, we start with the case that no pre-
defined user-permission assignments (called “anchors”) are given,
and later consider the case that the user supplies a set of anchors.

4.1 Matching without Anchors
In the case that no anchors are given, we attempt to provide as-

sistance for the most non-expert users. We therefore rely onthe
intrinsic structure of the series⟨θ⟩ to identify the optimal mapping
between⟨φ⟩ and⟨θ⟩. Without further information, it is impossible
to identify the latent roler∗ underlying⟨φ⟩; hence, we evaluate
useru based on its marginal role scoreθu = ∑r θu,r.

We assume that both series have been sorted in non-decreasing
orders. Intuitively, we consider that two individuals withsimilar
role scores should be assigned similar permissions; the question is
thus to find a partition of⟨θ⟩ into a set of subsets, where the num-
ber of subsets is unknown. Clearly, an unsupervised partitioning
method is suitable for our purpose. To this end, we apply an ag-
glomerative hierarchical clustering method, which intuitively cre-
ates a hierarchy of clusters, called dendrogram, with leaves as the

3For simplicity, we useθu as a short version ofθu,⋅.

series of role scores, non-leaf nodes as clusters, and root corre-
sponding to the entire collection of users. To construct thedendro-
gram, one starts at the leaves, and successively merges the closest
clusters together, until all the users are included. This process is il-
lustrated in Figure 3. Clearly, one critical measure is the similarity
of two consecutive clusters; in out implementation, we adopt the
average Manhattan distance as the similarity metric. Cutting the
hierarchy at a given height generates a partition at a selected preci-
sion. We use a parameterλ to control the precision: the partition
continues only if the number of clusters is larger than the number of
permissions, or there exist two consecutive clusters with similarity
aboveλ.

After the cluster generation, one may follow aconservative(start-
ing from the permission with the lowest confidentiality level, assign
a distinct permission to each cluster in an increasing order), open
(starting from the highest confidentiality level, assign a distinct per-
mission to each cluster in a decreasing order), orrandom(arbitrar-
ily pick the same number of permissions as clusters, and assign
them to the clusters following their order) strategy.

4.2 Matching with Anchors
It is possible that the target user may have a set of predefined

user-permission assignments, called “anchors”, that, in our setting,
is equivalent to a set of role score-permission match. More for-
mally,

DEFINITION 3 (ANCHOR). An anchor is a user predefined
role scoreθ to permissionφ match(θ − φ).

Anchors provide important implications regarding the target user’s
expected permission assignment: that is, users with similar role
scores to an anchor should be assigned similar permissions.The
challenge lies in, however, that the anchors may also introduce
inconsistency into the matching process. By inconsistency, intu-
itively, we mean that for two given anchors, their assigned permis-
sions disobey the order of their associated role scores. Next, we
discuss how to incorporate anchors to improve the quality ofas-
signment, and how to detect and resolve potential inconsistency in
anchors.

Detecting Inconsistent Anchors
We first introduce the formal definition ofinconsistency.

DEFINITION 4 (INCONSISTENCY). An inconsistency is a pair
of anchors(θui

−φM(ui)) and(θuj
−φM(uj)), such thatθui,r

∗ <
θuj ,r

∗ andφM(ui) ≻ φM(uj).

To identify the subset of inconsistent anchors, we resort tothe
principle of minimal causations[21]. Intuitively, it states that the
best explanation of a given set of data features the minimum set
of causes. Based on this principle, we propose the followingde-
tection scheme. For each roler ∈ R (each dimension of⟨θ⟩),
we check if any inconsistency exists, i.e., if∃(θui

− φM(ui)) and
(θuj

− φM(uj)), θui,r < θuj,r andφM(ui) ≻ φM(uj). If positive,

r is added to an initially empty setRI . If all the dimensions con-
tain inconsistency (i.e.,R = RI ), we regard the dimension (role)
r containing the minimum number of inconsistencies asr∗, and
proceed to resolving the inconsistency (see below); otherwise, we
rank users based on their role scores along the dimensionsR∖RI :
θu = ∑r∈R∖RI θu,r. In this case, we can consider the provided
anchors as a set of ground-truth role score-permission assignment,
⟨θu, φM(u)⟩.

This set of anchors slice the two sequences⟨θ⟩ and ⟨φ⟩ into
pieces. Consider two consecutive anchors (in terms ofθ values),
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Figure 4: User-permission matching under inconsistent an-
chors (solid lines): (a) exceptionalization (b) multi-assignment.

⟨θui
, φM(ui)⟩ and ⟨θuj

, φM(uj)⟩. We are left with aligning the
two sub-sequences,⟨θui+1 , . . ., θuj−1⟩ and⟨φM(ui), . . ., φM(uj)⟩,
which can be easily solved following the paradigm introduced in
Section 4.1.

Resolving Inconsistent Anchors
Next we show how to resolve the inconsistency introduced by the
anchors, i.e., the permissions of the anchors disobey the order of
the associated social role scores. In general, we solve suchin-
consistency using two mechanisms,exceptionalizationandmulti-
assignment. Intuitively, exceptionalization allows the cases that
some users have exceptional trust (or distrust) by the target user,
not reflected in their social relationships and activities;while multi-
assignment accommodates the cases that the anchors only reflect
certain aspects of the “true” assignments for some users, who es-
sentially should be given certain other permissions. More formally,

DEFINITION 5 (EXCEPTIONALIZATION). An exception is an
anchor(θu−φM(u)) that encodes special trust (or distrust) to user
u by the target, which should not be used in the assignment process
to provide general guidance.

We apply exceptionalization to identify the set of anchors that
would result in inconsistency and should be considered as excep-
tions, and suspend them from providing guidance for permission
assignment for the rest users.

DEFINITION 6 (MULTI -ASSIGNMENT). For a given anchor
(θu −φM(u)) , multi-assignment identifies potentially missing per-
mission assignment foru other thanφM(u).

We apply multi-assignment to identify the set of anchors that
should be accompanied by certain other permissions, and remove
the original permission assignments from the matching process.
Multi-assignment is especially meaningful when incomparable per-
missions are taken into consideration, and users tend to feature mul-
tiple social roles, e.g., both friend and co-worker, as viewed from
different perspectives; in such cases, a single user may be asso-
ciated with multiple permissions along different dimensions (i.e.,
multiple roles).

Our approach of matching role score and permission under an-
chors with possible inconsistency is sketched in Algorithm1: 1)
check if inconsistency exists in the set of anchors; 2) identify the
minimum subset of anchors (exceptions), whose absence removes
inconsistency; 3) depending on its intersection with otheranchors,
apply either multi-assignment or exceptionalization to each excep-
tion; 4) apply time-warping-based (for permissions associated with

confidentiality scores) or clustering-based matching to sub-series
of permissions and role scores, as partitioned by the anchors.

Input : proximity setΘ, permission setΦ, anchor setΨ
Output : permission assignments for allθ ∈ Θ

// consistency check
Ψe,Ψr

← ∅;
for each anchorψ ∈ Ψ do

nψ ← number of intersected anchors;
if nψ > 0 then addψ to Ψe;

// inconsistency removal
if Ψe

≠ ∅ then
sortψ ∈ Ψe according tonψ;
while inconsistency existsdo

pop upψ from Ψe to Ψr;
adjust the order ofΨe;

Ψ ← Ψ ∖Ψr
∪Ψe;

for eachψ ∈ Ψr do
if ∃ψ′ ∈ Ψ, θ(ψ) > θ(ψ′) andφ(ψ) ≺ φ(ψ′) then

multi-assignment;
else

exceptionalization;

// proximity-permission matching
for two consecutive anchors(θi, φmi

), (θj , φmj
) ∈ Ψ do

if permissions associated with confidentialitythen
matchθi+1 ∶ θj−1 andφmi

∶ φmj
using time warping;

else
if j − i > mj −mi then

matchθi+1 ∶ θj−1 andφmi
∶ φmj

using clustering;
else

conservative, aggressive, or arbitrary matching;

Algorithm 1 : Role-permission matching under (possibly in-
consistent) anchors.

While the overall framework is clear, we still need to answer
several challenging questions: first, how to identify the minimum
set of exceptions? second, whether to apply multi-assignment or
exceptionalization, when both are possible? Following, weanswer
these questions in the case of pair-wise comparable permissions,
and the more general permission structures will be discussed in
Section 5. For simplicity, we useψ to denote an anchor, andθ(ψ)
andφ(ψ) as its associated role score and permission.

Q1: how to find the minimum set of exceptions?We have the fol-
lowing theorem regarding the complexity of finding the minimum
set of anchors that result in inconsistency (exceptions).

THEOREM 1. Identifying the minimum set of anchors responsi-
ble for inconsistency is NP-Hard.

PROOF. The problem can be re-formulated as the followingSet
Coverproblem. LetS be the set of intersection points of anchors,
andA be the set of anchors involved in the intersections. We intend
to find the minimum subset ofA that “covers” all the intersection
points inS, which is an instantiation of the classical set cover prob-
lem, known to be NP-Hard.

Hence, instead of attempting to find the minimum set, we apply
a greedy approach: at each step, we identify the anchor that causes
the largest number of inconsistencies in the current anchorset, and
remove it as an exception. The intuition behind this scheme is that
an anchor in conflict with a larger number of others tends to bean
exception with higher possibility. It can be derived that this greedy
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approach achieves an approximation ratio ofH(s), wheres is the
largest number of intersections on a single anchor, andH(n) the
n-th harmonic number.

Q2: exceptionalization or multi-assignment?After identifying
the set of exceptions, the anchors are divided into two sets:the
exceptionsΨe and the restΨr, the next step is to apply excep-
tionalization or multi-assignment to handle eachψ ∈ Ψe. Con-
ceptually, both mechanisms removeψ from the matching process;
while, in addition, multi-assignment also attempts to find any miss-
ing permission assignments potentially neglected by the user. We
distinguish the cases thatψ intersects with “up-stream” anchors,
i.e., ∃ψ′ ∈ Ψr, θ(ψ) < θ(ψ′) andφ(ψ) ≻ φ(ψ′), as shown in
Figure 4(a), or with “down-stream” ones, i.e.,∃ψ′ ∈ Ψr, θ(ψ) >
θ(ψ′) andφ(ψ) ≺ φ(ψ′), as shown in Figure 4(b). We claim that
in the case of pair-wise comparable permissions, only one case is
possible, with the following theorem.

THEOREM 2. For pair-wise comparable permissions, each ex-
ception can only exclusively intersect with either up-stream or down-
stream anchors.

PROOF. Without loss of generality, consider an exceptionψ that
intersects with an “up-stream” anchor, i.e.,∃ψ′ ∈ Ψr, θ(ψ) <
θ(ψ′) and φ(ψ) ≻ φ(ψ′). Assume that it also intersects with
certain “down-stream” one, i.e.,∃ψ′′ ∈ Ψr, θ(ψ) > θ(ψ′′) and
φ(ψ) ≺ φ(ψ′′). We haveθ(ψ′′) < θ(ψ′) andφ(ψ′′) ≻ φ(ψ′),
i.e., an exception, which is a contradiction to thatΨr is exception-
free.

Hence, multi-assignment makes sense only whenψ intersects
with “down-stream” anchors; that is, an additional permission ψ∗

with higher confidentiality level (φ(ψ∗) ≻ φ(ψ)) is assigned. With-
out further information, we set the additional permissionφ∗ as the
minimumone that does not cause any inconsistency inΨr: ψ∗ =
max{φ(ψ′) ∶ ψ′ ∈ Ψr andθ(ψ′) < θ(ψ)}. An example is shown
in Figure 4(b) where the exception(θ7 − φ1) intersects with two
down-stream anchors(θ2 − φ2) and(θ4 − φ3), and an additional
permissionφ3 is assigned toθ7.

Also note that the multi-assignement policy bears the nature of
“suggestion”; it is possible that an exception encodes certain spe-
cial “distrust” preference by the target user. In such cases, only
exceptionalization will be applied.

5. EXTENSION
In the discussion so far, we have made two simplification as-

sumptions: 1) the set of permissions are pair-wise comparable, i.e.,
a totally ordered set; 2) the target user provides sufficientinfor-
mation (e.g., social network structures, historical social activities,
anchors), forXACCESSto perform privacy setting recommendation.
Now we lift these simplifications and consider the cases that1) the

set of permissions form a partially ordered set, i.e., not every pair of
permissions are comparable, which is fairly common in access con-
trol literatures and practice [9], and 2) the information supplied by
the target user is insufficient to make informative recommendation;
we can, however, gain valuable insights into the reasonablepri-
vacy setting by examining the settings of his/her peers. Further, we
discuss the problem of semantically labeling a social role,thereby
making it interpretable by users.

5.1 Partially Ordered Permissions
Assume that the set of permissions form a partially ordered set

(i.e., lattice) according to their confidentiality levels.Now, a pair
of permissions can be one of the following relationships,≻, ≺, =,
andincomparable; therefore, the techniques in Section 4 is not di-
rectly applicable. One can, however, applylinear extension[8]
over the set of permissions, which generates atopological ordering
of the permissions, compatible with the original partial ordering.
In particular, we are interested in a classed representation of the or-
dering information, where the permissions in each class areequal
or incomparable to each other, and can be considered as having
equivalent confidentiality level. For example, in Figure 5,the set of
permissions can be grouped into four classes{φ1}, {φ2, φ3, φ4},
{φ5, φ6}, {φ7}. Note that these classes are totally ordered, and it
holds that for every two consecutive classesΦi andΦj , ∀φ ∈ Φi,
∃φ′ ∈ Φj , φ ≺ φ′. Such classification can be obtained following
a breadth-first search paradigm, as sketched in Algorithm 2 (we
define two permissionsφ andφ′ as predecessor and successor, re-
spectively, if and only ifφ ≺ φ′).

Input : set of permissionsΦ
Output : classification ofΦ
C ← ∅;
C ← set of permissions with no successors;
C′ ← ∅;
while C is non-emptydo

addC to C;
for each permissionφ ∈ C do

for each direct predecessorφ′ of φ do
delete relationshipφ′ ≺ φ;
if φ′ has no successorthen

addφ′ toC′;

C ← C′;

Algorithm 2 : Linear extension of partially ordered set.

Now we can perform role-score permission assignment on the
level of permission classes. In the case that no anchors are pro-
vided, we apply agglomerative clustering to the set of social roles
scores, generate a partition, and match each class of role scores
(i.e., users) with a distinct permission class, following their orders.
Such class-to-class mapping is then presented to end users for fur-
ther refinement.

Given the non-comparability of permissions, it is likely that for
one social scoreθu, the target user may provide multiple anchors,
{ψu}. As an example, in Figure 5,θ6 is assigned two permissions
φ1 andφ4. We assume that each pair ofφ(ψui ) andφ(ψuj ) are
incomparable; otherwise, one can remove the one with lower con-
fidentiality level, without affecting the overall capacity.

We consider that such multiple anchors correspond to multiple
social roles; that is, eachψui ∈ {ψ

u} is associated with a role. Con-
ceptually, two anchorsψui andψu

′

j associated with the same role
should be consistent; hence, we intend to find a permission-role



mapping such that the number of inconsistencies could be mini-
mized. After that, one can perform user-permission assignment
along each dimension (role) independently, solve the possible in-
consistency, and finally collect and merge the exception-free an-
chors. Exception handling is similar to that in Section 4.2,except
that the selected additional permissionφ∗ should be a successor of
the permissions associated with conflicting anchors, i.e.,their least
common ancestor (LCA). One then merge the set of exception-free
anchors and the identified missing permission assignment toform
the anchor set for proximity-permission matching. For example, in
Figure 5,(θ6 −φ1) conflicts with anchors(θ3 −φ3) and(θ4−φ2);
the LCA of θ2 andθ3, θ5, is identified as the missing permission,
which is then merged with another assignmentφ4, with φ5 as the
final assignment forφ6.

5.2 Collaborative Privacy Setting
The privacy settings by his/her peers provide valuable informa-

tion for determining the best access control policy for a specific
user, especially when the information associated with the user (e.g.,
social activities, anchors, etc.), is insufficient forXACCESSto per-
form informative recommendation. Here, we discuss how to lever-
age such information in suggesting reasonable privacy setting.

The most straightforward solution is based on the principleof
mutual equivalence: a pair of individuals tend to demonstrate simi-
lar trust/distrust inclination in information sharing with each other;
hence, one can “mirror” the setting of a peer: given two individuals
u andv, letφ(u ↝ v) denote the permission assigned byu to v; v
can simply copy this setting asφ(v ↝ u) = φ(u ↝ v). This solu-
tion, though simple, considers only the information of the specific
peer when determining his/her access level. A more comprehensive
solution is based on the paradigm ofcollaborative filtering. Given
two individualsu andv, for the sets of users relevant tou andv,
Vu andVv , one creates a mapping (letMuv(w) be the counterpart
of w of Vu in Vv), based on the social role scores ofVu andVv
with respect tou andv, respectively. The setting ofw ∈ Vu can be
calculated as:φ(u ↝ w) = arg minφ∏v f(φ(v ↝Muv(w)), φ),
whereφ(v ↝ Muv(w)) is the actual assignment toMuv(w) by
v, andf(φ(v ↝ Muv(w)), φ) is thecostfunction of assigningφ
toMuv(w) by v. Various instantiations are possible,L1 norm for
example,f(φ(v ↝Muv(w)), φ) = ∣φ(v ↝Muv(w)) − φ∣.

5.3 Labeling Social Roles
To make the extracted social roles interpretable, it is imperative

to attach “semantical tags” to them. Back to our discussion in Sec-
tion 3.2, we assume that each activity typea is associated with a
set of descriptive terms, from a finite setW. We can extend the
generative model in Section 3.2 by including another observable
w, i.e., the terms of an activity typea, associated with multinomial
distributionψw parameterized byγ. Now, the joint distribution is
given byP (w,a, r, u∣α,β, γ), which can be estimated following
that sketched in Section B. From the joint distribution, onecan
derive the conditional distributionP (w∣r).

We can extract a set of candidate labels using frequent pattern
mining. For each candidate labell, we evaluate its semantic rel-
evance to a roler, S(l, r). More formally, letl = wl0w

l
1 . . . w

l
m,

we can estimate its semantical relevance to a roler using multiple
metrics, the simplest case, for example:

S(l, r) = log
P (l∣r)
P (l)

=
m

∑
i=0

log
P (wli∣r)
P (wli)

(3)

alternatively, the negative KL divergence of{P (w∣r)} and{P (w∣l)}
overw ∈W could also be used.

6. EMPIRICAL EVALUATION
In this section, we present an empirical evaluation of the effi-

cacy of XACCESSover two real-life social network and user study
datasets. The experiments are specifically designed centering around
the following metrics: 1) the efficacy in capturing individuals’ im-
plicit privacy preference for relevant users, 2) the effectiveness in
incorporating users’ predefined preference to improve the quality
of privacy setting, 3) the scalability with respect to the scale of un-
derlying social network and the volume of historical activity data.

6.1 Datasets and Experimental Design
In the first set of experiments, we applyXACCESSto analyzing a

publicly available speed dating dataset [12] from a study conducted
by Fishman et al. [12]. It involves 530 participants and consists
of data regarding 4,150 dynamic “dates” arranged between pairs
of participants. For each participant, the demographic information
(e.g., age, race, zipcode, etc.) and the information of hobby ac-
tivities (e.g., entertainment, museum, hiking, etc.) the participants
usually take part in is also collected. After the date, the satisfac-
tion of each participant regarding his/her partner is recorded with a
score on a scale from 1 to 10, which we regard as the implicit pri-
vacy preference indicated by the participant. For each individual,
we applyXACCESSto extracting the roles of his/her partners, based
on the structure of dating arrangement (as the static network struc-
tures) and the description of their hobbies (as the dynamic social
activities), and match it against the set of permissions (the set of
integers over[1,10]). We compare the predicated results with that
given by the participants in the dataset.

In the second set of experiments, we analyze the social net-
work of a subset of IBM employees who participated in theSmall
Blue project [14] and the archive of bookmarks tagged by these
social users (as the dynamic activity data), to predict individuals’
information sharing behavior. The dataset corresponds to the so-
cial network as of January 2009, which involved 41,702 IBM em-
ployees. The personal information regarding each individual in-
cludes his/her (i) work location, (ii) managerial position, and (iii)
social connections with other employees. The associated book-
mark archive consists of the webpages tagged by the individuals
appearing in the first dataset, collected by DOGEAR [3], a personal
bookmark management application that as well supports sharing
the community’s bookmarks. The archive contains 20,870 book-
mark records, relevant to 7,819 urls. Attributes of interest to us are
listed in Table 1; in particular,email andurl uniquely identifies a
user and a webpage, respectively, andtagsencode the semantics of
the object. We regard the volume of email sent from an individual
to his/her relevant user (note this communication is directional) as a
quantitative indication of his/her intension of information sharing,
and evaluate the result predicted byXACCESSagainst it.

Attribute Description
email email address of users (identifier of subject)
url url o bookmarked bys (identifier of object)
tags bookmark tags made bys regardingo
time time-stamp thats accesseso

Table 1: Attributes and descriptions of Dogear dataset.

In the last set of experiments, we implement and deployXACCESS

on the platform ofFACEBOOK and conduct a concrete user study on
helping everyday users specify their privacy policies. Fora given
FACEBOOK useru, we consider the following types of social activ-
ities of u’s friends with respect tou’s FACEBOOK page: comment
(post),like (page, post, status), andtag (photo).



Structure Permission order

total order
(4) > (5) > (7) > (8) > (2) > (6) > (3) > (9)
> (10) > (11) > (12) > (1)

partial order
{(4)} > {(5), (7), (8)} > {(2), (6), (3), (9)}
> {(10), (11), (12)} > {(1)}

Table 2: Alternative structures of permission order.
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Figure 6: Recommendation accuracy ofXACCESSand baseline
approach with respect to the number of correct and false an-
chors. From left to right, the three columns correspond to the
speed dating, small blue, and facebook datasets, respectively.

Additionally we consider the following set of private data items
(permissions):(1) About me, (2) Personal Info, (3) Birthday, (4)
Religious and Political Views, (5) Family and Relationship, (6) Ed-
ucation and Work, (7) Photos and Videos of Me, (8) Photo Albums,
(9) Posts by Me, (10) Allow to post on my Wall, (11) Posts by
Friends, (12) Comments on Posts. We consider alternative access
structures of these permissions (e.g., totally ordered set, partially
ordered set) as listed in Table 2. We then collect the privacyset-
tings regarding these permissions by 23 volunteers, and compare
the privacy settings suggested byXACCESSwith that manually la-
beled by the participating users.

We use all three datasets in the experiments, aiming at capturing
the influence of factors such as activity types and user character-
istics. The algorithms are implemented using Python, and all the
experiments are conducted on a workstation with 1.6GHz Pentium
IV and 2GB memory, running Windows XP.

6.2 Experimental Results

Capture of Privacy Preference
This set of experiments are designed to evaluate the efficacyof
XACCESS(denoted byX) in capturing social users’ implicit pref-
erence of information sharing with relevant users. In particular, we
intend to examine the contributions by different features (i.e., static
social network structure, dynamic historical activities)in capturing
such implicit reference. Letφ∗(⋅) andφr(⋅) be the access control
level set manually by the user, and suggested by a recommendation
method, respectively. We measure the quality of recommendation
using the metric ofrecommendation accuracy,

1 −
∑i∈I ∣φ∗(i) − φr(i)∣∣I∣ ⋅ ∣Φ∣

whereI and Φ are the set of individuals, distinct access levels,
respectively. Further, we construct a baseline bayesian approach
(denoted byB) that makes recommendation solely based on hop
distance, i.e.,friend, friend-of-friend, and minimizes the recom-
mendation error, i.e., a unique settingφrh for all users with hop
distanceh to the target individual that satisfies

φ
r
h = argmin

φh

∑
i∈Ih

∣φ∗(i) − φr(i)∣
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Figure 7: Robustness ofXACCESSand baseline approach against
false anchors.

whereIh is the set of users with hop distanceh. We also consider
the possibility of leveraging the possible quantitative confidential-
ity levels associated with permissions (detailed discussion in Sec-
tion C). Overall, we implemented four versions ofXACCESS, X,
X∗, X+, andX∗+, where the symbols∗ and+ indicates that the ver-
sion considers dynamic social activities and confidentiality scores,
respectively.

B X X∗ X+ X∗+

speed dating 0.522 0.795 0.823 0.884 0.887
small blue 0.374 0.758 0.885 0.785 0.902
facebook 0.683 0.853 0.892 N/A N/A

Table 3: Accuracy of privacy settings suggested byXACCESS

and baseline approach.

Table 3 shows the accuracy of the four versions ofXACCESSand
the baseline approach with respect to the three datasets. Itis ob-
served that, for all three datasets, over the baseline approach,XAC-
CESSachieves approximately 1.3∼ 2.4 times higher recommenda-
tion accuracy. It is noted that the incorporation of dynamicsocial
behavior significantly boots the accuracy, especially for the small
blue dataset (17.4% increase). This can be explained by thatbook-
marks well capture users’ interests and preferences, and the behav-
ior of recommending bookmarks is a good indicator of user’s will
of information sharing. Also, the incorporation of quantitative con-
fidentiality information of permissions further improves the qual-
ity of recommendation, which is especially evident for the speed
dating dataset. This is explained by that the social networkstruc-
ture in this dataset is much simpler (mainly composed by 1-hop
neighbors), while the social activity data includes 11 attributes, and
contains much semantically richer information.

Incorporation of User Input
In this set of experiments, we take into account user predefined
permission assignment (anchor). Specifically, we measure the rec-
ommendation accuracy ofXACCESSand the baseline approach with
respect to varying percentage of anchors (over the total number of
assignments), where the anchors are randomly selected.

The result is shown in Figure 6. First notice that, as the num-
ber of provided anchors grows, the accuracy of all the modelsin-
crease; intuitively, the anchors provide valuable clues regarding
users’ implicit preference. Also notice thatXACCESS(all four ver-
sions) demonstrates higher effectiveness in leveraging such hints
to improve the quality of assignment; for example, for the small
blue dataset, even the basic versionX achieves accuracy approxi-
mately 0.87 when 10% of the assignments are provided as anchors,
compared with approximately 0.42 ofB. This is explained by the
fact thatXACCESSleverages the anchors as “structural clues” for
aligning social role measures and permissions, which improves the
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Figure 8: Average execution time (per user) ofXACCESSversus
the maximum hop and the volume of social activity data.

overall quality of the alignment, in contrast to the point-wise im-
provement by the baseline approach.

To evaluate the impact of the inconsistency possibly existing in
the anchors, we randomly generate a set of “false” anchors, in ad-
dition to the anchors provided by users. With the percentageof
“correct” anchors fixed as 5%, we measure the accuracy ofXAC-
CESSwith respect to the varying percentage of false anchors (note
that the baseline approach treats anchors as point-wise information,
therefore is not affected by the false anchor). The result isshown
in Figure 7: on all three datasets, the accuracy ofXACCESSis fairly
stable under the influence of false anchors, mainly attributed to the
exceptionalization mechanism.

Efficiency and Scalability
Now, we proceed to evaluating the operation efficiency ofXACCESS.
In particular, we intend to capture the influence of two factors: the
scale of the underlying social network, and the volume of historical
activity data. We use the small-blue dataset in this set of experi-
ments, given its large scale.

First, we measure the wall execution time ofXACCESSas a func-
tion of the maximum hoph of the viewpoint networks. The result
is illustrated in the left plot of Figure 8. Overall, it is noticed that
X andX+ are fairly efficient, even though the number of relevant
users grows approximately quadratically. This is attributed to the
fact that extracting the social proximity measure from the social
network only involves solving a linear equation system, typically
featuring polynomial complexity for sparse matrices. While the
extraction of social roles inX∗ andX∗+ is costly; their overall ex-
ecution efficiency, however, is fairly reasonable, considering the
scale of the small blue social network (over 40K individuals).

Further, in addition to the activities (bookmarks) in the dataset,
we randomly injected in a set of user-activity pairs to evaluate
the scalability ofXACCESSagainst the size of activity data. The
right plot of Figure 8 demonstrates how the volume of activity data
affects the efficiency ofXACCESS(with h fixed as 2), which ex-
hibits even less significant impact over the performance ofXAC-
CESS, compared with the scale of social network (note thatX and
X+ are not affected). This can be attributed to that 1) Gibbs sam-
pling and the optimization of entropy filtering significantly reduces
the overall complexity of social role mining; and 2) the number of
social activities usually grows quadratically with the scale of the
underlying social network.

7. CONCLUSION
This work presents a systematic study on the problem of speci-

fying access control policies over personal data on social sites. We
proposedXACCESS, a novel automated policy specification tool that
can help ordinary social site users understand, specify, and diag-
nose their privacy settings. Compared with prior work,XACCESS

highlights itself with three distinct features: 1) it adopts a role-
based access control model, instead of the conventional rule-based
one, which leads to privacy policies semantically interpretable by
users; 2) it exploits both static social network structuresand dy-
namic social activities in extracting the underlying social roles; 3)
it considers potential inconsistency in user input permission assign-
ments, and proposes effective countermeasure against suchincon-
sistency. Extensive experiments over real social network data have
been conducted to validate the efficacy ofXACCESS.
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APPENDIX

A. RANDOM WALK WITH RESTART
We assume that each relationship type is associated with a weight,

indicating its strength. We usewij to denote the weight of the re-
lationshipij (between two direct friendsi andj). Specifically, in
RWR, at each step, the walk moves from a userj to one of its
friendsk with probability proportional to the weightwjk, and re-
turns toj (restart) with probability(1− c) (c is a parameter). More
concretely, letNj be the set of friends ofj. The transition proba-
bility from j to k ∈ N j , pjk, is given as:

pjk =
wjk

∑k′∈Nj
wjk′

(4)

where the parameterc controls the probability of returning to the
original node. Stackingpij into a matrix, column-wise, which pro-
duces the column, normalized adjacent matrixW .

B. PARAMETER ESTIMATION
To obtain parameter estimates for the generative model, we em-

ploy Gibbs Sampling, a Markov chain Monte Carlo (MCMC) algo-
rithm, as it provides a simple method of performing parameter es-
timation for Dirichlet priors and allows combinations of estimates
from several local maxima of the posterior distribution.

Instead of estimating the model parameters directly, we first eval-
uate the posterior distribution on roler, then use the results to infer
θr andφa. For each activity, the role of users who participate in it
(role assignment) is sampled from the following term:

P (ri = j∣ai =m,ui = k,r−i)∝ CARmj + β

∑m′ CARm′j +Bβ
CURkj +α

∑j′ CURkj′ +Rα

whereri = j represents the assignment of thei-th activity, and
ai = m andui = k represent that the observation that the userk

participates in thei-th event of activity typem; A,B,R,U are the
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Figure 9: User-permission matching (with quantitative confi-
dentiality scores) using dynamic time warping.

number of activity types, activities, roles, and users, respectively;
CARmj is the number of times that an activity of typem is associated
with a social rolej, similar forCURkj ; r−i represents the all the role
assignment except thei-th activity. From these count matrices, one
can easily estimate the parametersθr andφa as:

φmj =
CARmj + β

∑m′ CARm′j
θkj =

CURkj + α

∑j′ CURkj′ +Rα

Further, in this process, we useentropy filteringto filter non-
informative trash activities to improve efficiency. Specifically, after
N (a user-specified parameter) iterations of sampling, we start to
ignore the set of non-informative activities (trash activities). In our
implementation, we measure the informativeness of activities using
the entropy of the variableCAR. Particularly, we ignore thei-th
activity ai if the i-th row ofCAR has entropy above a thresholdω.

The remaining question is how to select the optimal number of
latent roles. We employ the perplexity measure, a standard measure
of estimating the performance of a probabilistic model. We run the
Gibbs sampling using perplexity score as the termination condition;
the number of roles is determined by using the minimum number
of roles that leads to the near maximum perplexity. More details
are referred to [20].

C. PERMISSIONS WITH CONFIDENTIAL-
ITY SCORES

Here we consider the case that each permission is associatedwith
a quantitative confidentiality level4.

Intuitively, we intend to match the shapes of the entire series⟨θ⟩
and⟨φ⟩ to the maximum extent; that is, if the difference betweenθi
andθi′ is (non)significant, so should be the case forφmi

andφmi′
.

We can formalize this notion as follows:

min
m(⋅)
∑
i

∆(θi, φmi
) (5)

where∆(θi, φmi
) is the distance betweenθi andφmi

; its concrete
definition depending on the definitions ofθ andφ.

We assume that both series⟨θ⟩ and⟨φ⟩ have been properly nor-
malized to the interval of[0,1] (e.g., via linear interpolation), and
∆(θ,φ) may simply be the absolute value of their difference. Es-
sentially, the optimization problem of Eq. 5 can be re-formulated
as computing the minimumtime warping distancebetween⟨θ⟩ and⟨φ⟩, ∆(⟨θ⟩, ⟨φ⟩), with definition given as:

min{ ∆(head(⟨θ⟩), head(⟨φ⟩)) +∆(rest(⟨θ⟩), rest(⟨φ⟩))
∆(⟨θ⟩, rest(⟨φ⟩))

wherehead(⋅) is the first element of a series, andrest(⋅) is the
sub-series without the first element. Specifically, we have

∆(⟨⟩, ⟨⟩) = 0 ∆(⟨θ⟩, ⟨⟩) =∞ ∆(⟨⟩, ⟨φ⟩) = 0

4Here we abuse the notation a little bit, and useφ to denote both
the permission and its associated confidentiality level (ifavailable).
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Figure 10: User-permission matching under consistent anchors
(solid lines): (a) permissions with confidentiality levels.

This time warping distance defines a path in the matrix composed
of the elements of(θi, φj), corresponding to the alignment ofθi
andφj , i.e., mi = j, as shown in the right plot of Figure 9. This
path represents an optimal mapping between⟨θ⟩ and⟨φ⟩. Given
the mappingm(⋅), users with social proximity scoreθi are assigned
permissionφmi

. The computation of minimum time warping dis-
tance can be approached using dynamic programming.

In the case of consistent anchors, we perform piece-wise time-
warping distance matching for each piece-pair{θi∗+1, . . ., θj∗−1}
and{φmi∗

, . . ., φmj∗
}. An example is shown in Figure 10, where

the solid lines represent anchors, and the dashed ones derived matches.
Note the difference of the match forθ5 from that in Figure 9. In the
case of permission without confidentiality levels,


