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ABSTRACT
The volume of RDF data continues to grow over the past decade
and many known RDF datasets have billions of triples. A grant
challenge of managing this huge RDF data is how to access this
big RDF data efficiently. A popular approach to addressing the
problem is to build a full set of permutations of (S, P, O) index-
es. Although this approach has shown to accelerate joins by order-
s of magnitude, the large space overhead limits the scalability of
this approach and makes it heavyweight. In this paper, we present
TripleBit, a fast and compact system for storing and accessing RDF
data. The design of TripleBit has three salient features. First, the
compact design of TripleBit reduces both the size of stored RDF
data and the size of its indexes. Second, TripleBit introduces t-
wo auxiliary index structures, ID-Chunk matrix and ID-Predicate
bit matrix, to minimize the number of index selection during query
evaluation. Third, its query processor dynamically generates an op-
timal execution ordering for join queries, leading to fast query ex-
ecution and effective reduction on the size of intermediate results.
Our experiments show that TripleBit outperforms RDF-3X, Monet-
DB, BitMat on LUBM, UniProt and BTC 2012 benchmark queries
and it offers orders of mangnitude performance improvement for
some complex join queries.

1. INTRODUCTION
The Resource Description Framework (RDF) data model and its

query language SPARQL are widely adopted today for managing
schema-free structured information. Large amount of semantic data
are available in the RDF format in many fields of science, engineer-
ing, and business, including bioinformatics, life sciences, business
intelligence and social networks. A growing number of organiza-
tions or Community driven projects, such as White House, New
York Times, Wikipedia and Science Commons, have begun export-
ing RDF data [22]. Linked Open Data Project announced 52 billion
triples were published by March 2012 [22].

RDF data are a collection of triples, each with three columns,
denoted by Subject (S), Predicate (P) and Object (O). RDF triples
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tend to have rich relationships, forming a huge and complex RD-
F graph. Managing large-scale RDF data imposes technical chal-
lenges to the conventional storage layout, indexing and query pro-
cessing [17, 18]. A fair amount of work has been engaged in RDF
data management. Triples table [8, 17], column store with verti-
cally partitioning [3] and property tables [25] are the three most
popular alternative storage layouts for storing and accessing RD-
F data. The storage layouts may not favor all queries. However,
queries constrained on S, P or O values are equally important for
real-world applications. A popular approach to achieving this goal
is to maintain all six permutation indexes on the RDF data in order
to provide efficient query processing for all possible access pat-
terns [5, 9, 17, 24]. Although the permutation indexing techniques
can speed up joins by orders of magnitude, they may result in sig-
nificant demand for both main memory and disk storage. First,
RDF stores need load those indexes into limited memory of com-
puter in order to generate query plans when processing complex
join queries. Consequently, frequent memory swap in/out, and out
of memory problems are common when querying RDF data with
over a billion of triples [14]. Furthermore, the large space overhead
also places a heavy burden on both memory and disk I/O. One way
to address the space cost is to use compression techniques, such as
D-Gap [5], delta compression [17], in storing and accessing RDF
data. Multiple permutation indexes also complicate the decision on
the choices of the indexes for a given query.

In this paper, we present TripleBit, a fast and compact system
for large scale RDF data. TripeBit is designed based on two im-
portant observations. First, it is important to design an RDF data
storage structure that can directly and efficiently query the com-
pressed data. This motivates us to design a compact storage and in-
dex structure in TripleBit. Second, in order to truly scale the RDF
query processor, we need efficient index structures and query eval-
uation algorithms to minimize the size of intermediate results gen-
erated when evaluating queries, especially complex join queries.
This leads us to the design decision that we should not only reduce
the size of indexes (e.g., through compression techniques) but also
minimize the number of indexes used in query evaluation.

The main contributions of the paper are three folds: First, we
present a compact RDF store - TripleBit, including the design of
a bit matrix storage structure and the encoding-based compression
method for storing huge RDF graphs more efficiently. The stor-
age structure enables TripleBit to use merge joins extensively for
join processing. Second, we develop two auxiliary indexing struc-
tures, ID-Chunk bit matrix and ID-Predicate bit matrix, to reduce
the number and the size of indexes to the minimum while provid-
ing orders of magnitude speedup for scan and merge-join perfor-



mance. The ID-Chunk bit matrix provides a fast search of the rel-
evant chunks matching to a given subject (S) or object (O). The
ID-Predicate bit matrix provides a mapping of a subject (S) or an
object (O) to the list of predicates to which it relates. Third, we
employ the dynamic query plan generation algorithm to generate
an optimal execution plan for a join query , aiming at reducing
the size of intermediate results as early as possible. We evaluate
TripleBit through extensive experiments against RDF graphs of up
to 1.47 billion triples. Our experimental comparison with the s-
tate of art RDF stores, such as RDF-3X, MonetDB, shows that the
TripleBit consistently outperforms them and delivers up to 2-4 or-
ders of magnitude better performance for complex long join queries
over large scale RDF data.

2. OVERVIEW & RELATED WORK
A fair number of RDF storage systems has been developed in

the past decade, such as Sesame [8], Jena [25], RDF-3X [17, 18],
Hexastore [24], BitMat [5], gStore [28] etc. These systems can be
broadly classified into four categories: triples table [17], proper-
ty table [25], column store with vertical partitioning [3] and RDF
graph based store. We will illustrate and analyze these four cate-
gories of RDF stores using the following example RDF dataset.

T1: person1 isNamed ”Tom”.
T2: publication1 hasAuthor person1.
T3: publication1 isTitled ”Pub1”.
T4: person2 isNamed ”James”.
T5: publication2 hasAuthor person2.
T6: publication2 isTitled ”Pub2”.
T7: publication1 hasCitation publication2.

Triple table. A natural approach to storing RDF data is to store
(S,P,O) statements in a 3-column table with each row representing
a RDF statement. The 3-column table is called the triple table [17].
For the above example, the seven statements will correspond to
seven rows of a triple table. There are several variants of the triple
table, e.g., using pointers to refer to literals and URIs in the triple
table and storing literals and URIs in a separate table. However,
querying over an RDF table of billions of rows can be challenging.
First, most of queries involve self-joins over this long table. Sec-
ond, larger table size leads to larger table scan and larger index look
up time, which complicates both selectivity estimation and query
optimization [3]. A popular approach to improving performance of
queries over a triple table is to use an exhaustive indexing method
that creates a full set of (S, P, O) permutations of indexes [17, 27].
For example, RDF-3X, one of the best RDF stores today, built clus-
tered B+-trees on all six (S, P, O) permutations� (SPO, SOP, PSO,
POS, OSP, OPS), thus each RDF dataset is stored in six duplicates,
one per index. In order to choose the fastest index among the six
indexes for a given query, another set of 9 aggregate indexes, in-
cluding all six binary projections� (SP, SO, PO, PS, OS, OP), and
three unary projections � (S, P, O) [17, 18], are created and main-
tained, each providing some selectivity statistics. By maintaining
such aggregate indexes, RDF-3X eliminates the problem of expen-
sive self-joins and provides significant performance improvement.
However, storing all permutation indexes may be expensive and the
performance penalty can be high as the volume of dataset increases
due to the cost of storing and accessing these indexes and the cost
of deciding which of these indexes to use at the query evaluation.
Property table. Instead of using a ”long and slim” triple table, the
property table typically stores RDF data in a ”fat” property table
with subject as the first column and the list of distinct predicates
as the remaining columns [25]. Each row of the property table
corresponds to a distinct S-value. Each of the remaining column-
s corresponds to a predicate (P-value). Each table cell represents

an O-value of a triple with the given S-value and P-value. Con-
sider our example RDF dataset of 7 triples with 4 distinct proper-
ties (predicates), and thus we will have a 5-column property table.
publication1 has three properties: hasAuthor, isTitled, hasCitation.
Thus, three statements are mapped into one row corresponding to
publication1 in the table. Clearly, for a big RDF dataset, a single
property table can be extremely sparse and contains many NUL-
L values. Thus multiple-property tables with different clusters of
properties are proposed in Jena [25] as an optimization technique.
BitMat [5] represents an alternative design of the property table
approach, in which RDF triples are represented as a 3D bit-cube,
representing subjects, predicates and objects respectively and slic-
ing along a dimension to get 2D matrices: SO, PO and PS.

An advantage of the property tables is that the subject-subject
self-joins on the subject column can be eliminated. However, the
property table approach suffers from several problems [3]: First,
the space overhead of the wide property table(s) with sparse at-
tributes is high. Second, processing of RDF queries that have no
restriction on property values may involve scanning all property ta-
bles. Furthermore, experimental results in [12] have shown that the
performance of the property table approach degrades dramatically
when dealing with large scale RDF data.
Column store with vertical partitioning. This approach stores
RDF data [3] using multiple two-column tables, one for each u-
nique predicate. The first column is for subject whereas the other
column is for object. Consider our running example with four prop-
erties, this approach will map 7 statements to four 2-column tables.
Although those tables can be stored using either row-oriented or
column-oriented DBMS, the column store is a more popular stor-
age solution for vertically partitioned schema [3]. This approach
is easy to implement and can provide superior performance for
queries with value-based restrictions on properties. However, this
approach may suffer from scalability problems when the size of ta-
bles varied significantly [19]. Furthermore, processing join queries
with multiple join conditions and unrestricted properties can be ex-
tremely expensive due to the need of accessing all of the 2-column
tables and the possibility of generating large intermediate results.
Graph-based store. Graph-based approaches represent an orthog-
onal dimension of RDF store research [7, 14], aiming at improving
the performance of graph-based manipulations on RDF datasets be-
yond RDF SPARQL queries. However, most of these graph based
approaches focus more on improving the performance of special-
ized graph operations rather than the scalability and efficiency of
RDF query processing [24]. Large scale RDF data is a very big
sparse graph. A challenge to store and query the graph efficiently
is critical. Álvarez-Garcı́a et al developed a compressed RDF en-
gine k2-triples [4]. In gStore [28] which stores RDF data as a large
graph, VS-tree and VS*-tree index were proposed to process both
exact and wildcard SPARQL queries in a scalable manner.

In comparison, TripleBit advocates two important design prin-
ciples: First, we argue that in order to truly scale the RDF query
processor, we should also minimize the number of indexes used
in query evaluation in addition to design compact storage struc-
ture and indexes. Second, we argue that we need efficient query
processing techniques that can minimize the size of intermediate
results generated, but also process complex joins efficiently.

3. TRIPLE MATRIX AND ITS STORAGE
STRUCTURE

We design the TripleBit storage structure with three objectives
in mind: improving storage compactness, improving encoding or
compression efficiency and improving query processing efficien-



Table 1: The Triple Matrix of the example
isNamed hasAuthor isTitled hasCitation
T1 T4 T2 T5 T3 T6 T7

person1 1 0 1 0 0 0 0
person2 0 1 0 1 0 0 0
publication1 0 0 1 0 1 0 1
publication2 0 0 0 1 0 1 1
”Tom” 1 0 0 0 0 0 0
”James” 0 1 0 0 0 0 0
”Pub1” 0 0 0 0 1 0 0
”Pub2” 0 0 0 0 0 1 0

cy. We will first present the Triple Matrix model and then describe
how to design the storage layout for the Triple Matrix model to
offer more compact storage, higher encoding efficiency, and faster
query execution.

In Triple Matrix model, RDF triples are represented as a two di-
mensional bit matrix. We call it the triple matrix. Concretely, given
an RDF dataset, let VS , VP , VO and VT denote the set of distinct
subjects, predicates, objects and triples respectively, The triple ma-
trix is created with entity e 2 VE = VS [ VO as one dimension
(row) and triples t 2 VT as the other dimension (column). Thus,
we can view the corresponding triple matrix as a two dimensional
table with |VT | columns and |VE | rows. Each column of the ma-
trix corresponds to an RDF triple, with only two entries of bit value
(’1’), corresponding to the subject entity and object entity of the
triple and all the rest of (|VE | � 2) entries of bit (’0’). Each row
is defined by a distinct entity value, with the presence (’1’) in a
subset of entries, representing a collection of the triples having the
same entity. We vertically partition the matrix into multiple dis-
joint buckets, one per predicate (property). For a new triple with
new subject i and new object j, assume that the predicate p is one
of existing ones, thus a new column k is inserted to the bucket cor-
responding to p, and the entries that lie in the i-th row, the j-th row
and the k-th column of the matrix are set to ’1’. The other entries
in the k-th column of the matrix are set to ’0’. Table 1 shows the
triple matrix for the running example of 7 triples (we do not convert
strings to row ids for the purpose of readability). It has 7 columns,
one per triple, and eight entities, representing four subject values
and four object values.

To construct the triple matrix from RDF data, each e 2 VE

is assigned a unique ID using the row number in the matrix. In
TripleBit, we assign IDs to subjects and objects using the same ID
space such that subjects and objects having identical values will be
treated as the same entity. We observe that a fair amount of enti-
ties in many real RDF datasets are used as subject of a triple and
object of another triple. For example, Table 5 in Section 6 showed
that more than 57% subjects of UniProt are also objects. TripleBit
utilizes unique IDs for the same entities for a compact storage and
more importantly for improving query processing efficiency. This
is because query processor does not need to distinguish whether
IDs represent subject or object entities when processing joins. For
example, it makes the join on subject and object more efficient than
the approach where subjects and objects have independent ID s-
pace [5]. Also our approach facilitates index construction.

3.1 Dictionary
In RDF specification, Universal Resource Identifiers (URIs) are

used to identify resources such as subjects and objects. A resource
may have many properties and corresponding values. It is not e-
conomical to store URIs in each appearance of resources. To re-
duce the redundancy, like many RDF stores, such as RDF-3X, in
TripleBit we replace all strings (URI, literals and blank node) by
IDs using mapping dictionaries. Considering the existence of long

Figure 1: String-ID Mapping and ID-String Mapping

common prefixes in URIs, we adopt a prefix compression method
which is similar to Front Coding to obtain compressed dictionaries.
The prefix compression method splits each URI into a prefix slice
and a suffix slice at the last occurrence of separator ’/’. The strings
which do not contain ’/’ are considered as suffixes. We assign each
prefix a PrefixID and construct Prefix-ID mapping table which s-
tores prefix length, prefix ID and prefix. We concatenate prefix ID
and suffix to get a new string which is also assigned an ID in an
independent ID space. Similarly, we build a String-ID mapping ta-
ble, which stores the suffix length, string ID, PrefixID, and suffix.

During query translation, hashing function maps prefix of a string
str to its index and then the offset of prefix stored in corresponding
slot of the hash table is accessed. Using the offset, we can get its
PrefixID in Prefix-ID mapping tables. The process to translate a
string to its ID is illustrated using the solid lines in Figure 1.

Before query results are returned to users or applications, IDs in
the results must be translated back into strings. In order to speed up
the reverse process, we build two inverted tables (PrefixID Offset
and StringID Offset) to translate IDs back into strings. Both store
(id, offset) pairs where id corresponds to the PrefixID or IDs, and
offset represents the position where the prefix or suffix and the ID
are stored. ID Offset structures make the mapping of ids to literal-
s or URIs more efficient (Figure 1). The process to transform ids
back to strings is shown by dashed line in Figure 1.

In summary, searching ids in the dictionary using strings does
not require much time thanks to the hashing index and the fact that
the number of strings occurring in a query is very small. However,
the reverse mapping process can be costly when the query result
size is big [16].

3.2 ID Encoding in the Triple Matrix
In a triple matrix, ID is an integer. The size for storing an integer

is typically a word. Modern computers usually have a word size of
32 bits or 64 bits. Not all integers require the whole word to store
them. For example, it is enough to store the ID of value ”100” using
1 byte. It is wasteful to store values with a large number of bytes
when a small number of bytes are sufficient. Also, since TripleBit
is designed for large scale RDF data, it is difficult to know the max-
imal number of entities in future data sets. For example, 32-bits ID
might be a good choice for current RDF data, but insufficient in the
near future. Thus, we encode the entity ID in triple matrix using
variable-size integer such that the minimum number of bytes are
used to encode this integer. Furthermore, the most significant bit
of each compressed byte is used to indicate whether an ID is the
subject(0) or object (1) of a statement and the remaining 7 bits are
used to store the value. Consider the example in Table 1. The en-
tity ID of 1 denotes a subject in T1 and denotes an object in T2.
The row of this entity will have its 1st and 3rd columns set to ’1’.



Table 2: Storage space of Triple Matrix for six datasets
LUBM

10M
LUBM
50M

LUBM
100M

LUBM
500M

LUBM
1B UniProt

Two Copies of Triple
Matrix (MB)

133 722 1,461 7,363 15,207 24,371

Per Triple (bytes) 5.02 5.48 5.54 5.59 5.97 4.33

We use 00000001 (subject) in the column encoding of T1 and use
10000001 (object) in the column encoding of T2 respectively. By
utilizing the significant bit of each compressed byte, it provides us
a natural means to find a triple without scanning the chunk.

Many RDF stores use fixed-sized integer (e.g., an integer of 4
bytes in 32-bit computer) to encode IDs. The overhead of the
variable-size integer encoding approach is 1 bit per byte but this
approach saves more with more flexibility. Our experiments on
6 datasets show that each ID needs about 2.5-3 bytes on average
(Table 2). Furthermore, the approach is highly extensible compar-
ing with fixed-sized ids since the former can encode any number
of subjects or objects. For example, our approach can encode IDs
larger than 232 using 5 or more bytes while fixed-sized integer does
not have such flexibility.

3.3 Triple Matrix Column Compression
The triple matrix is inherently sparse. To achieve the internal

compact representation of the triple matrix, we store the bit ma-
trix in a compressed format using column compression. Given that
each column of the matrix corresponds to a triple and thus has on-
ly two entries with ’1’, we show that a column-level compression
scheme for storing the triple matrix is more effective than the row-
level, byte-level or bit-level compression scheme [5]. Concretely,
for each column of the triple matrix, instead of storing the entire
column of size |VE |, we use only the two row numbers (i.e., ID-
s) that correspond to the two ’1’ entries. For example, in Table 1,
the first column (T1) and the third column (T2) are represented
as 00000001 10000101 and 10000001 00000011 respectively. By
combining with the variable-size integer encoding approach for the
two IDs, each column requires only 2-8 bytes for storing one triple
in TripleBit if the number of entities (or rows) is less than 228. Our
experiments on 6 data sets show the storage per triple is about 4-6
bytes on average without other storage optimization (Table 2). This
per-triple level saving is significant compared to 12 bytes per triple
in triples table and 8 bytes per triple in column stores, leading to
higher efficiency in storing and scanning data on storage media as
well as high reduction in both the size of intermediate results and
the time complexity of query processing.

3.4 Triple Matrix Chunk Storage
As described earlier, we partition a triple matrix vertically in-

to predicate-based buckets, each containing triples with the same
predicate. Triples of each bucket are stored into fixed-size chunks.
The chunks are physically clustered by predicates such that chunk
clusters having the same predicates are placed adjacently on storage
media. We assign chunks of each bucket with chunk IDs consec-
utively. The size of a chunk can be set according to a number of
parameters, such as the size of dataset, the memory capacity, the
IO page size. Although search in small size chunk is faster, larger
chunk simplifies the construction of ID-Chunk index and reduces
I/O. Larger chunk also has less storage overhead. In the first imple-
mentation of TripleBit, we set the chunk size to be 64KB.

Since the triple matrix does not indicate which entity is subject
or object in a column, we choose to store each column of a buck-
et in a consistent order, either SO or OS. Compared to some ex-
isting RDF systems [17, 24], which store all six permutations of
RDF data, TripleBit stores the triple matrix for each RDF dataset

physically in two duplicates, one in S-O order and another in O-S
order. As the collation order in each permutation is different, we
use the generic terminology x, y to refer to the first and second
elements of pairs. The triples in a bucket are sorted by x, y and
are directly stored consecutively in the chunks of each bucket as
shown in Figure 2. Considering the example in Table 1, the triples
corresponding to ’isNamed’ are stored in the SO chunk as follows:
00000001 10000101 00000010 10000110.

Figure 2 gives a sketch of TripleBit storage layout. In the head
of each chunk, we store the minimum and maximum subject IDs in
each SO chunk and the minimum and maximum object IDs in each
OS chunk, as well as the amount of used space.

Consider a query with a given predicate and a given subject hav-
ing ID of value ”id”. We process this query in three steps: (1) By
using the given predicate, we locate the corresponding SO bucket
containing triples with the given predicate. (2) We need to find the
relevant SO chunks that contain triples with the given subject val-
ue ”id” by checking whether target id falls inside the MinIDs and
MaxIDs of chunks. (3) Now we examine each relevant SO chunk
to find the SO pairs matching the given subject value ”id” using
binary search instead of full scan. Recall Section 3.2, our ID en-
coding in the triple matrix utilizes the most significant bit of each
byte of an entity ID to indicate whether the ID refers to a subject
or an object of a triple. This feature allows TripleBit to get an SO
pair (or OS pair) more efficiently in an SO-chunk (or OS chunk).
Concretely, we start at the middle byte of an SO ordered chunk,
say ”00001001”. TripleBit finds the matching SO pair, namely the
ID of the subject and the ID of the object of the matching triple, in
two steps. First, TripleBit reads the previous bytes and next bytes
until the most significant bit of the bytes are not ’0’. Then TripleBit
reads next bytes till the most significant bit of the bytes are not ’1’
and get the SO pair. Now TripleBit compares the query input id to
the subject ID of the SO pair. If it is a match, it returns the subject
and object of the matching triple. Otherwise, it continues to com-
pare and determine whether the input id is less or greater than the
stored subject ID and starts the next round of binary search with
the search scope reduced by a half. TripleBit repeats this process.
The search space is reduced by a half at each iteration and thus it
can quickly locate the range of matching SO pairs. Similar process
applies to the OS-chunks if the object of the query is given.

In summary, the Triple Matrix model is attractive as it can fa-
cilitate the design of compact RDF storage layout, compact RDF
indexes and ease of query processing. The Triple Matrix model
prevails over other existing RDF stores, such as triples table (triple
row store), column store with vertically partitioning, and proper-
ty table based model, for a number of reasons. First, the Triple
Matrix model allows efficient encoding of each entity using its
row ID though variable-sized integer encoding. Second, the Triple
Matrix model enables effective column level encoding. By com-
bining both entity ID level and column level compression, Triple
Matrix model enables TripleBit to generate a very compact stor-
age model for RDF triples. Third, the Triple Matrix model and its
predicate-based triple buckets provide a natural and intuitive way
to organize TripleBit storage layout by placing the triples with the
same predicate adjacently in contiguous chunks of the correspond-
ing bucket. Thus, TripleBit significantly speeds up queries with
restricted predicate P -value (see Section 5 for more detail). Fur-
thermore, the triple matrix is highly suitable for parallel processing
of queries. For example, Triple Matrix can be partitioned into sev-
eral sub-matrixes each of which corresponds to a subgraph of the
whole RDF graph. Those sub-matrixes can be placed onto differ-
ent nodes. Thus, queries can be executed in multiple nodes using
parallel or distributed frameworks, such as MapReduce [11].



Figure 2: The Storage scheme of TripleBit

In addition, TripleBit can provide optimized storage for reified
statements and can store and process reified statements naturally
using its triple matrix by establishing a mapping of a reified state-
ment identifier to a row id, avoiding the use of four separate triples
for each reified statement. Due to the page limit, we refer readers
to our technical report1 for further detail.

4. INDEXING
With the triple matrix and the predicate-based triple buckets of

SO chunks and OS chunks, TripleBit only needs two of the six
permutations of (S, P, O) in its physical storage, namely PSO and
POS. In order to speed up the processing of RDF queries, we design
two auxiliary index structures: ID-Chunk matrix and ID-Predicate
bit-Matrix.

4.1 ID-Chunk Index
ID-Chunk index is created as an ID-Chunk matrix for each dis-

tinct predicate and it captures the storage relationship between IDs
(rows) and Chunks (columns) having the same predicate. An entry
in the ID-Chunk matrix is a bit to denote the presence (’1’) or ab-
sence (’0’) of an ID in the corresponding chunk. Since the triples
having the same predicate is stored physically in two buckets, we
maintain two ID-Chunk index for each predicate: one for SO or-
dering chunks and the other for OS ordering chunks (Figure 2).

In each ID-chunk matrix, rows and columns are sorted in an as-
cending order of IDs and sorted chunks respectively. Given an enti-
ty id, the set of chunks that store the triples with this id are adjacent
physically in the storage media and thus appeared in the consecu-
tive columns in the ID-chunk matrix with non-zero entries around
the main diagonal. The degree of shift of the non-zero diagonal
from the main diagonal of the matrix depends on the total number
of triples containing this id as subject or object. We can draw two
finite sequences of line segments, which bound the non-zero entries
of the matrix (as shown in Figure 3). Considering the MinIDs and
MaxIDs of chunks as two set of data points, we can fit the upper
boundary lines and lower boundary lines using curve fitting. There
are multiple curve fitting methods, such as lines, polynomial curves
or Bspline, etc. Complicated fitting methods involve large overhead
1http://www.cc.gatech.edu/˜lingliu/TechReport/TripleBit-report-
v2.Dec.2012.pdf

Figure 3: ID-Chunk Bit Matrix

when computing index. Thus, currently we divide the rows (the w-
hole ID space) into several parts (e.g., 4 parts). The upper bound
and the lower bound of each part are fitted using two lines whose
parameters are determined by least square method. Since non-zero
entries of the ID-Chunk Matrix are expressed using two set of lines,
we only need to keep the parameters of two set of lines.

The ID-Chunk index gives the lower bound Chunk ID and up-
per bound of Chunk ID for each chunk in the given predicate bucket
(shown by the boundary lines). Thus, a query with a given predicate
and a given subject id (or object id) can be processed by first hash-
ing the given predicate to get the corresponding bucket. Then, in-
stead of a full scan over all chunks in the predicate bucket, TripleBit
only scan the range of contiguous chunks in the bucket where the
given subject or object id appears, namely finding the lower bound
Chunk ID and upper bound of Chunk ID corresponding to the giv-
en id using the ID-Chunk index. For those chunks identified by the
ID-Chunk index, we can further examine the query relevance of
the triples stored in the chunks by utilizing the MinID and MaxID
stored at the head of each chunk and a binary search, instead of a
full scan of all triples in each chunk (recall Section 3.4).

To better understand the effectiveness of ID-Chunk index for
TripleBit, we compare ID-Chunk index with B+-Tree index under



Table 3: Index lookup under varying chunk sizes (time in µs)
Cold cache Warm cache

Chunk size 4KB 16KB 32KB 64KB 4KB 16KB 32KB 64KB
ID-Chunk 43 56 59 144 3.8 23.3 23.8 104
B+-Tree 16373 15393 15554 292378 16072 13797 13742 13647

Table 4: Query time of LUBM-Q2 under varying chunk sizes
Chunk size 1KB 2KB 4KB 16KB 32KB 64KB
cold caches 0.0497 0.0489 0.0466 0.0440 0.0336 0.0295

warm caches 0.00017 0.00018 0.00019 0.00025 0.00026 0.00021

different chunk sizes by constructing a B+-Tree index on chunks.
We choose triples sharing the same predicate rdf:type of LUBM-1B
as the test dataset. Generally, each subject declares its type. Thus
the dataset is big. The time to construct the ID-Chunk index is s-
lightly smaller (about 140s) than the construction time of B+-Tree
(about 146s). Table 3 shows lookup in B+-Tree is significantly s-
lower than lookup using ID-Chunk index in all chunk sizes. When
the chunk size is 64KB, the average times required to lookup in
B+-Tree and find the target pairs are 292.378ms (cold cache) and
13.647ms (warm cache) while the times for lookup in ID-Chunk are
0.144ms (cold cache) and 0.104ms (warm cache) respectively. A
primary reason is that B+-Tree require large storage space (8.6MB-
60MB) while ID-Chunk stores only parameters of functions (128
bytes). We also provide an experimental study of the performance
impact of chunk size on TripleBit. Table 4 shows the query time
(in seconds) of LUBM Q2 running on LUBM-500M under varying
chunk sizes. LUBM Q2 is chosen because triples matching Q2 are
in a single chunk and the intermediate result size of Q2 is also not
big. Thus, the factors impact on the performance of index lookup is
more obvious than other complex queries with larger intermediate
results. For both indexes, larger chunk has better performance in
cold cache because of less I/O, and smaller chunk has better per-
formance in warm cache cases. For more complex queries which
need access more inconsecutive chunks, ID-Chunk index outper-
forms B+-tree by higher orders of magnitude.

4.2 ID-Predicate Index
The second auxiliary index structure is the ID-Predicate bit ma-

trix. We use this index to speed up the queries with un-restricted
predicates. Given a query with no restriction on any predicate, in-
stead of a sequential scan of all predicate buckets, we introduce
the ID-Predicate bit matrix index structure. An entry in the ID-
Predicate matrix is a bit with ’1’ indicates the occurrence rela-
tionship between the ID row and the predicate column. With the
ID-Predicate index, if a subject or an object is known in a query,
TripleBit can determine the set of relevant predicates. For each rel-
evant predicate, TripleBit can use ID-Chunk matrix to locate the
relevant chunks and return the matching triples by binary search
within each relevant chunk.

The ID-Predicate matrix is huge and sparse for large scale RDF
data. In TripleBit we use semantic preserving compression tech-
niques that can make the matrix compact in storage and memory
but remain searchable by IDs. We decompose ID-Predicate matrix
into a set of block matrixes and treat each block of the ID-Predicate
matrix as a bit vector. We devise the following byte encoding tech-
nique by adapting the Word Aligned Hybrid (WAH) compression
scheme [26]. Instead of imposing the word alignment requirement
as is done by WAH, we choose to impose the byte alignment re-
quirement on the blocks of the matrix. For example, we first divide
the bit vector into 7-bit segments and then merge the 7-bit seg-
ments into groups such that consecutive identical bit segments are
grouped together. A fill is a consecutive group of 7-bits where the
bits are either all 0 or all 1, and a literal is a consecutive group of

Figure 4: Two compressed bit vectors

7-bits with a mixture of 0 and 1. Then we encode each fill as fol-
lows: The most significant bit of each byte is used to differentiate
between literal (0) and fill (1) bytes. The second most significant
bit of a fill word indicates the fill bit (0 or 1), and the remaining bits
store the fill length. Compressed blocks are stored into fixed-size
storage structure adjacently. Thus, given an id, it is easy to locate
the blocks where the idth row is.

Figure 4 shows the compressed representation of two examples.
The second and third line in Figure 4 shows the hexadecimal repre-
sentation of the bit vector as 7-bit groups. The last two lines show
the compressed bytes also as hexadecimal numbers. For example,
the first byte of the last line (”56”) is a literal byte, and the sec-
ond and third are fill bytes. The fill byte ”C2” indicates a 1-fill of
14 bits long, and the fill byte ”93” denotes a 0-fill, containing 133
consecutive 0 bits.

4.3 Aggregate Indexes
The execution time of queries is heavily influenced by the num-

ber of joins necessary to find the results of the query. Therefore, the
query processor needs to utilize the selectivity estimation of query
patterns to select the most effective indexes and minimize the num-
ber of indexes needed. In SPARQL queries, there are eight triple
query patterns: one full scan and 7 triple selection patterns. Al-
l the triples in the store match (?s ?p ?o) and thus a full scan is
required. In the other end of the spectrum, the number of triples
matching (s p o) is 0 or 1. The selectivity of these two patterns is
known intuitively without aggregate indexes. The statistics of triple
pattern (?s p ?o) can be obtained directly in the storage structure
corresponding to the bucket of predicate p. Hence, we need esti-
mate the selectivity of five triple query patterns: (s p ?o); (?s p o);
(s ?p o); (s ?p ?o); (?s ?p o).

In TripleBit, we additionally build two binary aggregate indexes:
SP and OP (instead of 9 aggregate indexes [16–18]). The SP ag-
gregate index stores the count of the triples with the same subject
and the same predicate. With SP aggregate index, we can compute
statistics about (s p ?o) and (s ?p ?o). For example, to get the num-
ber of triples matching (s ?p ?o), TripleBit searches SP aggregate
index and locates the first tuples containing s. Since SP pairs are
stored lexicographically, then TripleBit can read all the tuples hav-
ing same s and return the sum of the count of triples. Similarly, the
OP aggregate index gives the count of the triples having the same
object and the same predicate for fast computation of the statistics
about (?s ?p o) and (?s p o). Finally, statistics about (s ?p o) can
be computed efficiently using ID-Predicate index with SP and OP
indexes. Both aggregated indexes are compressed using delta com-
pression [17] and stored in chunks.

In summary, the indexing structure in TripleBit is also compact.
We minimize the size of the indexes through encoding based com-
pression techniques (storing ID-Chunk index as a list of functions
which requires tiny storage). We reduce the number of indexes by
utilizing a novel triple matrix based storage layout and two aux-
iliary bit matrix indexes. More importantly, the compactness of
TripleBit storage and index structures makes it highly effective for
complex long join queries, compared to exhaustive-indexing used
in some triples table [17, 24]. For example, using SO and OS chunk



pairs in the storage and ID-Chunk index, we can replace PSO, POS
indexes. By adding the ID-Predicate matrix, TripleBit can cover
all the other four permutations of (S, P, O). To estimate selectivity,
we only use two aggregate indexes instead of all permutations of 9
aggregate indexes [16, 18].

5. QUERY PROCESSING
There are two types SPARQL queries: queries with selection

triple pattern and queries with join triple patterns. Processing the
queries with single selection triple pattern is straightforward. When
a query consists of multiple triple patterns that share at least one
variable, we call the query the join triple pattern query. For this type
of queries, TripleBit generates the query plan dynamically, aiming
at reducing the size of intermediate results and then executes the
final full joins accordingly. In this section we describe how we use
the triple matrix, the ID-Chunk and ID-Predicate indexes to process
two kinds of queries respectively.

5.1 Queries with Selection Triple Pattern
We have briefly discussed in Section 4.3 about the eight selec-

tion triple patterns: (?s p ?o); (s p ?o); (?s p o); (s p o); (s ?p o);
(s ?p ?o); (?s ?p o); (?s ?p ?o). Processing queries with these sim-
ple selection triple patterns is straightforward. Due to page length
limit, we below describe the steps for evaluating two representative
triple patterns: (s p ?o) and (s ?p o).

For triple pattern (s p ?o), we first hash by p to obtain the pred-
icate bucket of p and use the ID-Chunk index of the bucket p to
locate the range of chunks relevant to the given s. Next, the query
processor examines each of the candidate SO chunks to see if s
falls inside the range of MinID and MaxID of this chunk to prune
out irrelevant chunks. For the relevant chunks, a binary search is
performed over each of such chunks to find the matching SO pairs.
There are three special cases: (i)If the MinID and MaxID of a chunk
are equal to s, then all the SO pairs in the chunk are matching
the queries and the query processor just return all the triples in the
chunk. If the MinID of a chunk equals to s, the query processor just
locates the first pair which does not match the query pattern and re-
turns all the SO pairs before that pair. Similarly, if the MaxID of
a chunk equals to s, the query processor just locates the last pair
whose subject is not s and returns all the SO pairs after that pair.

To execute the selection triple query pattern (s ?p o), the query
processor first needs to determine which predicates are relevant us-
ing s and o. It searches the ID-Predicate index using both s and o,
and get two sets of candidate predicates, one based on s and the oth-
er based on o. Then the query processor computes the intersection
of the two sets of predicates, which gives the set of relevant pred-
icates connecting s to o. For each matching predicate p, the query
processor first determines whether to use SO chunks or OS chunks
by comparing the selectivity of sp and the selectivity of op using
the aggregate indexes: SP and OP, denoted by �f (sp) and �f (op)
respectively. If �f (sp) � �f (op), then we search the chunks or-
dered by s as sp is more selective. Otherwise, we search the chunks
ordered by o. Finally, we output those triples matching (s p o).

5.2 Queries with Join Triple Patterns
A query with join triple patterns typically forms a query graph [5,

10, 21], with selection triple patterns or variables as nodes and the
types of joins as edges. We classify multi-triple pattern queries into
three categories: (i) star join where many triple patterns are joined
on one variable (We call a star join using its common variable), (ii)
cyclic join where join variables are connected as a cycle, and (iii)
bridge join where several stars are connected as a chain. In LUB-
M, Q1, Q2 are star joins; Q3, Q5, Q6 are cyclic joins; and Q4 is

Figure 5: Query graph and its query plan of LUBM Q5

bridge join. SPARQL queries tend to contain multiple star-shaped
sub-queries [17]. For example, cyclic joins and bridge joins are ac-
tually star joins connected as a cycle or a chain.

Here, we use the query graph model of [5] to represent a query.
In this query graph model, nodes are triple patterns and join vari-
ables. There are two kinds of edges connecting the nodes: One
type of edges between pattern nodes and variable nodes, indicating
the variables appearing in the corresponding triple patterns. The
other type of edges between two triple patterns, denoting one of
the three join types: SS-join, the subject-subject join, SO-join, the
subject-object join and OO-join, the object-object join. Figure 5 is
the query graph of LUBM-Q5, with some edges (e.g., the join edge
between P1 and P6) omitted for presentation clarity.

When a query involves multiple join patterns as shown in Fig-
ure 5, the most important task is to produce an optimal execution
ordering of the join nodes (join triple patterns) of the query graph.
We can compute the optimal ordering of join patterns in terms of
three factors: (i) the triple pattern selectivity estimation, (ii) the re-
duction of the size of intermediate results and (iii) the opportunity
to use merge joins instead of hash or nested-loop joins. All these
factors aim at progressively reducing the cost of query processing
by following the optimal order of joins.

5.2.1 Dynamic Query Plan Generation
For executing queries with multiple join patterns, TripleBit em-

ploys a Dynamic Query Plan Generation Algorithm (DQPGA) and
the pseudo code is given in Algorithm 1. The DQPGA algorithm
consists of three parts: processing star-joins (Lines 1 - 12); further
reduction (Lines 15 - 28); final join (Lines 29).

In DQPGA, a number of optimization tactics are employed to
produce an optimal execution order of the join patterns for the
query. Consider the example query in Figure 5 with the optimal
join order marked on the edges. First, SPARQL queries generally
contain multiple star-shaped subqueries. Star joins are simple tree
queries [6] and impose restrictions on the common variables. The
query processor can reduce intermediate results by executing star
joins before other types of join queries. The second tactic is to use
semi-joins [5, 6, 20] if we can further reduce the number of bind-
ings involved in the subsequent join operations. For example, con-
sidering P4 n P2, the semi-join operator retrieves those triples in
P4 that join with some triple in P2. Thus, the bindings of P4 that
do not match P2 are removed. Semi-joins also reduce the amoun-
t of computation, such as sorting or hashing, required to perform
subsequent joins that are more expensive.

In addition, to determine an optimal execution plan, we consider
three types of selectivity: triple pattern selectivity, variable selec-
tivity and join selectivity. Triple pattern selectivity is computed as
the fraction of the number of triples which match the triple pat-
tern [21]. We refer to the highest triple pattern selectivity as the



variable selectivity. The join selectivity is the product of the selec-
tivity estimates of the two join patterns.

DQPGA begins by selecting the star sub-query associated with
the maximum variable selectivity, orders its edges based on their
join selectivity and adds them to the query plan (Lines 1 - 12 in
Algorithm 1). In the example of Figure 5, it is the star query asso-
ciated with ?y. In star query ?y, we first choose the pattern node
with the highest selectivity, namely P2. Then we compute the join
selectivity, which is the product of selectivity of two join patterns,
namely the SO-join between P2 and P4 and the SO-join between
P2 and P5, denoted by the two edges directly connected with P2
from P4 and P5. By comparing the join selectivity, we determine
the join order with the SO-join between P2 and P4 first and fol-
lowed by the SO-join between P2 and P5. Now the query proces-
sor will execute each of the two SO-joins using semi-join [5, 6, 20].
The semi-join between two patterns can be two ways, for example,
P4 n P2 or P2 n P4. In order to reduce communication dur-
ing joining the two patterns, TripleBit chooses the pattern having
higher selectivity to reduce the bindings of the other pattern having
lower selectivity. Considering the semi-join between P2 and P4,
TripleBit will execute P4 n P2 instead of P2 n P4. Once the s-
tar sub-query is processed, the patterns containing one variable (for
example P2) can be removed from the query graph because bind-
ings of those patterns are joined with other patterns. Similarly, the
bindings of patterns, such as P4 may be dropped and the triple pat-
tern selectivity may change. We compute variable selectivity again
and order the remaining variable nodes until all patterns associated
to the first star query ?y is processed. The query processor will re-
peat this procedure until all variable nodes are processed.

After all variable nodes are processed, those triple patterns (for
example P1, P2, P3 in Figure 5) having only one variable are re-
moved. If queries are star queries, the query processor will generate
a plan for full joins and output final results. For cyclic queries and
bridge queries, the query processor will repeat the similar proce-
dure as mentioned above. But the query processor will choose the
pattern with the highest triple pattern selectivity from the remaining
patterns, orders the edges based on their join selectivity, adds them
to the query plan and executes it using semi-joins (Lines 15 - 28 in
Algorithm 1). For example, in Figure 5, the query of the remaining
patterns (P4, P5, P6) is a cyclic query. P4 has the highest selec-
tivity. By comparing the join selectivity of P4 and P6, P4 and P5,
we can determine the join order by executing the join between P4
and P6 first and followed by the join between P4 and P5.

Once the above process ends, the query processor will generate
a final plan for the remaining patterns, execute the plan using full
joins (Lines 29 in Algorithm 1), and final results will be generated.

5.2.2 Reducing the Size of Intermediate Results
The query response time can be further improved if we can min-

imize the size of intermediate results produced during query eval-
uation. By intermediate results, we refer to both the number of
triples that match the query patterns and the data loaded into the
main memory during query evaluation. The TripleBit compact de-
sign reduces the size of intermediate data in several ways. First,
TripleBit does not load triples of the form (x, y, z), but (x, y) pairs.
Thus, the size of the intermediate results is at most 2

3 of the size of
the intermediate results of (x, y, z) format. Second, TripleBit uses
less indexes for each query, which leads to less data loaded into
main memory during query evaluation.

Furthermore, TripleBit reduces the number of triples with match-
ing patterns in two phases: initializing patterns and join processing.

To initialize the triple patterns involved in a query, TripleBit con-
siders the minimal and maximal IDs of matching triples of adjacent

Algorithm 1 Dynamic Query Plan Generation
Input: queryGraph
1: jV ars=getJoinVar(queryGraph);
2: while jV ars IS NOT NULL do
3: var = getV arwithMaxSel(jV ars);
4: p=getPatternwithMaxSel(var);
5: for each pattern t adjacent to p do
6: e.v1 = p; e.v2 = t; e.sel=sel(p)⇥ sel(t)⇥ factor;
7: insert(jEdges, e);
8: sortjoinSelectivity(jEdges);
9: for i 0 to sizeof [jEdges] - 1 do

10: semi-join(jEdges[i]);
11: remove the patterns which only contains one join variable

var from queryGraph;
12: remove var from jV ars;
13: if queryGraph is star joins then
14: goto 29;
15: p = getPatternwithMaxSel(queryGraph);
16: flag = true; jEdges = NULL;
17: while jEdges IS NOT NULL OR flag = true do
18: for each pattern t adjacent to p do
19: e.v1 = p; e.v2 = t; e.sel=sel(p)⇥ sel(t)⇥ factor;
20: if visited[e] == NULL then
21: insert(jEdges, e); visited[e]=false;
22: else
23: if visited[e] == false then
24: update(jEdges, e);
25: sortjoinSelectivity(jEdges);
26: e=getfirstEdge(jEdges);
27: semi-join(e); remove(jEdges,e); visited[e]=true;
28: p=e.v1 == p?e.v2 : e.v1; flag = false;
29: generate plan following the above steps and execute the plan

using full joins.

patterns when loading bindings of a pattern. For example, in Fig-
ure 5, the query processor first initializes P2 since it has the high-
est selectivity. When triples matching P2 are loaded, the bindings
of join variable ?y should be bounded. Obviously, it is not nec-
essary to load the triples beyond the boundaries even though they
are bindings of P4. TripleBit will filter those triples beyond the
boundaries. Filtering before materializing is super efficient for star
queries, such as Q1, Q2 of LUBM. By filtering early, TripleBit re-
duces the intermediate results when loading triples.

When processing using semi-joins, the query processor tries to
further reduce the bindings of triple patterns. Consider Figure 5,
P4n P2, P5n P2. Those bindings of the former, which have no
matching in the latter are dropped. Hence, the constraints on join
variable bindings of the latter are propagated to the former.

By reducing intermediate results, we gain two benefits: (i) we
achieve lower memory bandwidth usage and (ii) we accomplish the
computation of joins with smaller intermediate results.

5.2.3 Join Processing
The most efficient way to execute star joins is merge-join which

is faster than hash or nested-loop join [17]. TripleBit uses merge
joins extensively. This entails preserving interesting orders. The
bindings of most triple patterns with a given predicate p are ei-
ther SO pairs which are SO ordered, or OS pairs, which are SO
ordered, in TripleBit storage. Note that the second elements of
these pairs are also sorted if they have the same first element. Thus,
merge joins can be utilized naturally. For the triple patterns with
un-restricted predicates, such as (s ?p ?o), (?s ?p o) or (?s ?p ?o),



Table 5: Dataset characteristics
Dataset #Triples #S #O #(S

T
O) #P

LUBM 10M 13,879,970 2,181,772 1,623,318 501,365 18
LUBM 50M 69,099,760 10,857,180 8,072,359 2,490,221 18
LUBM 100M 138,318,414 21,735,127 16,156,825 4,986,781 18
LUBM 500M 691,085,836 108,598,613 80,715,573 24,897,405 18
LUBM 1B 1,335,081,176 217,206,844 161,413,041 49,799,142 18
UniProt 2,954,208,208 543,722,436 387,880,076 312,418,311 112
BTC 2012 1,048,920,108 183,825,838 342,670,279 165,532,701 57,193

Table 6: LUBM 500M (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Geom.

#Results 10 10 0 8 2528 219772 Mean
Cold caches

RDF3X 0.2684 0.2077 21.9648 0.2473 1198.6520 295.0343 6.8911
MonetDB 279.4118 281.0015 366.9872 283.1664 524.3888 468.7374 355.1170
TripleBit 0.1291 0.1006 12.474 0.1759 46.8604 47.2446 1.9952

Warm caches
RDF-3X 0.0013 0.0027 16.8547 0.0035 1114.5000 45.9599 0.4687
MonetDB 1.4475 1.2411 66.8715 3.3124 45.1842 86.2431 10.7585
TripleBit 0.0001 0.0002 3.7421 0.0003 30.9478 15.6158 0.0471

the bindings are PSO ordered or POS ordered. Given that the in-
termediate data format is often ordered pairs, we say that TripleBit
facilitates merge joins by design.

Considering the join P4nP2, the query processor loads OS or-
dered pairs to initialize P2 because there exists two bounded com-
ponents in P2. For the subsequent join, we transform the bind-
ings of P2 into SO ordered pairs easily because O is a fixed value.
TripleBit can load OS ordered pairs or SO ordered pairs to initialize
P4 because S and O of the pattern are variables. Considering the
subsequent merge-join with P2, TripleBit loads OS ordered pairs
to initialize P4 since the bindings of P2 are SO ordered pairs.

TripleBit makes use of order-preserving merge-joins whenever
possible. If the intermediate results are not in an order suitable for
a subsequent merge-join (for example P4nP1), we can transform
them into suitable ordered pairs such that merge sort can be used
efficiently. The transformation is cheap because the bindings of
most patterns are (x, y) ordered pairs.

Not all joins can be processed using merge-joins. If it is expen-
sive to transform bindings of two patterns to an order suitable for
later merge join, TripleBit will switch to hash-joins. The query pro-
cessor will also execute hash joins because intermediate results of
standard joins, for example P4 ./ P5, may not be (x, y) pairs.

6. EVALUATION
TripleBit was implemented using C++, compiled with GCC, us-

ing -O2 option to optimize. In this section we evaluate the TripleBit
against some existing popular RDF stores using the well known
RDF benchmark datasets. We choose RDF-3X (v0.3.5), MonetD-
B (2010.11 release) and BitMat [5] for our evaluation, since they
show much better performance than many others [5, 18]. BitMat
did not have a dictionary component and cannot translate strings to
IDs and IDs to strings [5]. Thus, we only use it in some selected
experiments, such as core execution time comparison (Table 8).

All experiments are conducted using the three well-known bench-
marks: LUBM [13], UniProt (2012.Feb. release) [2] and Billion
Triples Challenge (BTC) 2012 data set [1]. Table 5 gives the char-
acteristics of the datasets. All experiments except those in Table
8, 10 were conducted on a server with 4 Way 4-core 2.13GHz In-
tel Xeon CPU E7420, 64GB memory; Red Hat Enterprise Linux
Server 5.1 (2.6.18 kernel), 64GB Disk swap space and one SAS
local disk with 300GB 15000RPM. The server also connected with
a storage system which consists of 20 disks, each of which is 1T-
B 7200 RPM. Other experiments (Table 8, 10) were running on a
server with the same configuration except that its OS is CentOS 5.6
(2.6.18 kernel) and it did not connect with the storage system.

Table 7: LUBM 1 Billion (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Geom.

#Results 10 10 0 8 2528 439997 Mean
Cold caches

RDF-3X 0.3064 0.3372 53.3966 0.3616 2335.8000 496.1967 11.4992
MonetDB 560.3912 562.0915 3081.1862 579.2889 966.9349 4929.8527 1178.575
TripleBit 0.1471 0.1441 21.8571 0.2313 69.8887 99.6401 3.0117

Warm caches
RDF-3X 0.0018 0.0029 33.4861 0.0035 2227.5900 91.5595 0.7069
MonetDB 2.5824 2.4552 910.7387 6.8218 95.7446 4608.3609 50.8953
TripleBit 0.0002 0.0003 7.5591 0.0003 41.0003 46.1635 0.0798

6.1 LUBM dataset
To evaluate how well TripleBit can scale, we used 5 LUBM

datasets of varying sizes generated using LUBM data generator [13](Ta-
ble 5). We run almost the same set of LUBM benchmark queries
as [5] did, except that Q4 and Q2 in [5] are similar, so we modify
Q2 in [5] and name it as Q4 (see Appendix A). we drop Q6 in [5]
when we report results here due to both space constraint and query
pattern and result size similarity of Q6 in [5] with Q2.

Due to page limit, we only report the experimental results on
LUBM-500M, LUBM-1B (Table 6, 7, best times are boldfaced)
because larger datasets tend to put more stress on RDF stores for
all queries. To account for caching, each of the queries is executed
for three times consecutively. We took the average result to avoid
artifacts caused by OS activity. We also include the geometric mean
of the query times. All results are rounded to 4 decimal places.

The first observation is that TripleBit performs much better than
RDF-3X and MonetDB for all queries. TripleBit outperforms RDF-
3X in both the cold-cache case and warm cache case. The typical
factors (the query run time of opponents divided by the query run
time of TripleBit) in the geometric mean are among 3.4-3.8 (cold
cache) and 8-10 (warm cache), and sometimes even by more than
54 (Q5 in LUBM-1B). TripleBit improves MonetDB on the cold
cache time by nearly a factor of 177-391 in the geometric mean,
and the warm-cache time by a factor of 228-638 in the geomet-
ric mean (more than 500 for LUBM-1B). Furthermore, for several
queries (such as Q1, Q2, Q4 in LUBM-1B) the performance gain
of TripleBit is more than a factor of 1000.

Another important factor for evaluating RDF systems is how the
performance scales with the size of data. It is worth noting that
the TripleBit scales linearly and smoothly (no large variation is
observed), when the scale of the LUBM data sets increases from
500M to 1 Billion triples. Furthermore, the experimental results
show that the storage and index structures in TripleBit are compact
and efficient in the sense that only data relevant to the queries will
be accessed most of the time. Thus the time spent for accessing da-
ta in TripleBit is directly related to the type of query patterns, but
less sensitive to the scale of data in the RDF store. For example, the
variation in the execution times of Q1, Q2, Q4 for 2 LUBM data
sets are 0-0.0001s (warm cache). And the variation in the execution
times of Q3, Q5, Q6 for the 2 data sets are larger. This is because
intermediate results related with the query patterns increase with
the scale of the dataset. The query processor needs to access more
chunks and to perform more joins, thus the query run-time increas-
es. In fact, this set of experiments also show that TripleBit prevails
over RDF-3X and MonetDB in terms of the size of intermediate
results and the compactness of its storage and index structures.

We also compared our core query execution (without dictionary
lookup) with RDF-3X, MonetDB and BitMat in Table 8 (time in
seconds). In the experiment, we execute the queries on RDF-3X
and TripleBit and get theirs core query execution time by inserting
codes. It is not easy to get the core query execution time of Mon-
etDB by inserting codes because it is a complex system. Thus, for
MonetDB and BitMat, we load MonetDB and BitMat by inserting
the integer IDs generated out of RDF-3X dictionary mapping [5].



Table 8: LUBM 500M (excluding dictionary lookup)
Q1 Q2 Q3 Q4 Q5 Q6 Geom.

Mean
Cold caches

BitMat 0.2669 394.2805 3.9379 28.2388 193.9220 123.0972 25.5679
RDF-3X 0.1190 0.1260 18.9420 0.1700 1139.3210 207.1380 4.7437
MonetDB 12.287 11.963 125.371 236.139 147.849 287.328 75.4758
TripleBit 0.0290 0.0295 6.1732 0.0510 30.3652 25.8629 0.7718

Warm caches
BitMat 0.2190 381.0911 1.9379 26.0217 190.6282 119.9245 21.4058
RDF-3X 0.0010 0.0020 16.4640 0.0030 1115.5120 46.0710 0.4146
MonetDB 0.099 0.094 53.033 2.273 22.861 24.472 2.9260
TripleBit 0.0002 0.0002 3.6663 0.0005 21.1920 14.1073 0.0505

TripleBit shows better performance than RDF-3X, MonetDB and
BitMat (except Q3). For Q3, BitMat is the best, because the result
set of Q3 is empty and BitMat has a mechanism to check early stop
condition [5]. Once BitMat knows queries returns zero results, it
will terminates the query evaluation immediately. Moreover, ac-
cording to Table 6, 8, TripleBit shows better performance in both
queries with small result set and queries with large result set. Thus,
the dictionary lookup is not a dominating factor for the better per-
formance of TripleBit.

In summary, TripleBit outperforms the other three systems thanks
for the following three design characteristics:
Compact design in storage and index. The saving from compact
storage and index structure design also leads to efficient memory u-
tilization and reduced I/O cost. For example, the run-time of RDF-
3X increases rapidly for Q5 and Q6 because these queries produce
much larger intermediate results, and thus require more time for I/O
and sometimes it may induce I/O burst (e.g., many memory swap
in/out). Concretely, in LUBM-500M there are 52M triples match-
ing P6 of Q5 (Fig. 5). For initializing P6 of Q5, RDF-3X needs to
load and decompress about 600MB data in a short time in addition
to loading aggregate indexes to help the selection of permutation
indexes. However, TripleBit only requires about 278MB because
its intermediate results are SO pairs or OS pairs. It further reduces
intermediate results as indicated in 5.2.2. Also TripleBit needs not
decompress the data. In comparison, RDF-3X places heavier bur-
den on I/O and requires much time for decompression. Further-
more, the storage structure of TripleBit allows more efficient data
access than RDF-3X and BitMat as we discussed in Section 3.4.
Efficient indexes. First, index scan using TripleBit is fast as we
discussed in Section 4.1. Second, selecting the suitable indexes
from many indexes complicate query evaluation. For example, to
evaluate Q3, RDF-3X needs to access 3 aggregate indexes and 3
permutation indexes whereas TripleBit only accesses one aggre-
gate index and the ID-Chunk index. Consequently, RDF-3X loads
more indexes into memory for scan. It also requires much memory
to hold the indexes.
Join processing. TripleBit mainly uses merge join for join pro-
cessing in star queries (Q1, Q2) and bridge queries (Q4). RDF-3X
employs merge join, hash join and nested loop join depending on
actual cases. However, by storing (x, y, z) triples, RDF-3X has
less opportunities to execute merge join than TripleBit does. Bit-
Mat reduces bindings of each pattern in the reduction phase and
then processes join using a means like nested loop join [5]. In s-
tar queries and bridge queries (Q1, Q2, Q4), TripleBit improves
BitMat and MonetDB on the cold cache time by a factor of 9 to
13369, and the warm-cache time by a factor of 464 to 2,474,617
because these queries have one highly selective pattern. For such
queries, RDF-3X is also faster than BitMat and MonetDB. More-
over, TripleBit and BitMat can reduce intermediate results during
query evaluation as early as they can, thus join queries have smaller
intermediate results, leading to better performance in cyclic queries
Q5, Q6. TripleBit still outperforms BitMat due to its capability to
employ merge join and hash join to process join operations. How-

Table 9: UniProt (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Geom.

#Results 0 0 26 1 14 838568 4196 167 Mean
Cold caches

RDF-3X 0.4039 0.3047 0.5046 0.3152 0.3859 377.4531 16.7898 3.0905 1.8675
MonetDB 98.2642 41.8234 >30min 26.2415 56.9313 792.3241 112.4354 76.3957 >88.2798
TripleBit 0.0558 0.0352 0.1701 0.0864 0.1159 8.4504 0.6447 1.4522 0.2678

Warm caches
RDF-3X 0.0047 0.0015 0.0099 0.0079 0.0053 14.4739 0.1679 0.8786 0.0398
MonetDB 15.5636 3.4345 >30min 0.0032 0.0153 26.7242 17.1546 3.5359 >1.2293
TripleBit 0.0002 0.0001 0.0032 0.0002 0.0008 6.1344 0.0474 0.6862 0.0061

Table 10: BTC 2012 dataset (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Geom.

#Results 4 2 1 4 13 1 664 321 Mean
Cold caches

RDF-3X 0.3506 0.3205 0.392 0.7232 0.7658 0.675 6.5977 6.5589 0.9585
MonetDB >30min 0.601 >30min 0.413 106.3342 >30min >2.9774
TripleBit 0.0785 0.1432 0.0705 0.2834 0.1969 0.2966 1.5299 3.1717 0.2989

Warm caches
RDF-3X 0.0047 0.0046 0.0061 0.0114 0.0852 0.0204 0.569 1.0528 0.0334
MonetDB >30min 0.0249 >30min 0.0262 0.3806 >30min >0.0629
TripleBit 0.0005 0.0012 0.0003 0.0041 0.0033 0.0028 0.2504 0.0232 0.0038

ever, it still takes TripleBit much time to execute LUBM-Q5, Q6.
One reason is that TripleBit executes each join operation sequen-
tially. We can overlap some join operations and thus further im-
prove the performance of join processing.

6.2 UniProt
UniProt is a protein dataset [2]. We choose two queries from [16]

and one query from [5]. We also design 5 queries in order to show
the performanc. All queries are listed in Appendix B. Among 8
queries, Q1, Q3, Q6, Q7 are bridge joins, and Q2, Q4, Q5 are star
joins.The last query Q8 is loop joins. The results are shown in Ta-
ble 9. BitMat cannot handle tripe datasets over 1 billion and thus
cannot be included in this set of experiments. Again, TripleBit out-
performs RDF-3X and MonetDB for all queries in both cold and
warm Cache. Comparing with RDF-3X, TripleBit gains the perfor-
mance factor of 7 (cold cache) and 6.46 (warm cache) in geometric
mean. For MonetDB, the typical factor ranges 19-300, and some-
times higher than 77,818 (e.g. Q1). In summary, TripleBit reduces
the geometric means to 0.2678s (cold) and 0.0061s (warm), which
is significantly faster than RDF-3X and MonetDB. For 4 queries:
Q1, Q2, Q3, Q7, TripleBit gained more than 361x improvement
over the MonetDB in warm cache.

6.3 BTC 2012 Dataset
Billion Triples Challenge (BTC) 2012 dataset was crawled dur-

ing May/June 2012 and provided by the Semantic Web Challenge
2012 [1]. BTC dataset has varying quality due to its composition
of multiple web sources. We ignored those noise data including the
redundant triples which appeared many times in the data set. This
resulted in 1,048,920,108 unique triples (Table 5). An obvious fea-
ture of the BTC dataset, different from other datasets, is that there
are 57,193 distinct predicates. The space consumption of RDF-3X,
MonetDB and TripleBit for this dataset is shown in Table 11, 12.
We ran almost same queries as [16] (See Appendix C). The sizes
of results the queries return are not big: from 1 to 664. Predicates
of some patterns of Q1, Q2, Q4, Q5, Q8 are blank nodes. In the S-
PARQL specification, blank nodes are treated as non-distinguished
variables [23]. It is not an issue for RDF-3X and TripleBit to pro-
cess queries containing non-fixed predicates, but the vertical par-
titioning approach using MonetDB handles this poorly [16]. The
query run-times are shown in Table 10. TripleBit performs consis-
tently the best for all queries.

6.4 Storage space
We compare the required disk space of TripleBit with RDF-3X

and MonetDB in Table 11. Here, we exclude BitMat because Bit-



Table 11: Storage space in GB
LUBM

10M
LUBM
50M

LUBM
100M

LUBM
500M

LUBM
1B UniProt BTC 2012

RDF-3X 0.67 3.35 6.83 34.84 69.89 145.74 81.32
MonetDB 0.35 1.7 3.5 22.8 45.6 78.34 46.98
TripleBit 0.42 2.39 4.88 22.01 44.5 63.81 53.08

Table 12: Storage space (Excluding dictionary) in GB
LUBM

10M
LUBM
50M

LUBM
100M

LUBM
500M

LUBM
1B UniProt BTC 2012

RDF-3X 0.40 2.00 4.12 21.16 42.49 98.17 43.65
MonetDB 0.14 0.67 1.6 5.9 12 22.04 8.33
BitMat 0.69 3.5 6.9 34.1 abort abort abort
TripleBit 0.17 1.24 2.58 11.12 22.68 28.37 23.51

Mat does not have the dictionary facility in its public release pack-
age. TripleBit outperforms RDF-3X for all datasets in storage s-
pace. The reason is that RDF-3X maintains all six permutations
of S, P and O in separate indexes, plus 9 aggregate indexes [17].
The storage of TripleBit is larger than MonetDB when loading s-
maller datasets, such as LUBM-50M, LUBM-100M datasets. The
reason is that MonetDB only stores SO pairs of RDF data. How-
ever, MonetDB requires more storage space than TripleBit when
loading LUBM-500M and LUBM-1B. For UniProt, TripleBit only
needs 63.81GB storage, more compact than MonetDB and signifi-
cantly more efficient than RDF-3X since TripleBit only consumes
43.8% of storage required by RDF-3X. Although BTC 2012 con-
tains less triples than LUBM-1B, TripleBit consumes more storage
space when loading BTC 2012 than LUBM-1B. There are two rea-
sons: First, more predicates leads to larger storage for aggregate
indexes and ID-Predicate index; Second, strings of BTC 2012 do
not share many common prefixes as other two datasets.

Since the storage for dictionary is usually large, Table 12 shows
a comparison of the core storage (not including storage for dictio-
nary) among all 4 systems. TripleBit remains to be more compact
than RDF-3X and BitMat. BitMat has the largest storage among
the four systems (BitMat experiments on LUBM-1B and BTC 2012
aborted). According to Table 11, 12, the dictionary size of TripleBit
is smaller than dictionary size of RDF-3X.

Table 13 shows a comparison of TripleBit with the other 2 sys-
tems on the peak memory usage during the execution of LUBM
Q6. LUBM Q6 is chosen because of its large intermediate results.
Both the peak virtual and physical memory usage of MonetDB are
the largest compared to the other 2 systems. Surprisingly, the query
time in MonetDB also grew quickly. To some extent, this showed
that the MonetDB process spent much more time in the kernel wait-
ing for the memory pages to be allocated.

During query processing, the memory is allocated for holding
intermediate results and data structures for join processing. For
example, RDF-3X will construct several hash tables for hash joins.
Larger intermediate results lead to larger hash tables. Thus, the size
of memory allocated for data structures used in processing join is
also highly relevant with the size of intermediate results. One thing
we need to note is that intermediate results are not only the number
of triples matching patterns, but also the size of intermediate data
loaded into memory during query evaluation. Table 13 showed that
the memory consumption of RDF and TripleBit is in proportion to
the result sizes. For example, the virtual memory consumption of
RDF-3X in LUBM-1B is about 2 times of its virtual memory con-
sumption in LUBM-500M. We can find the similar phenomenon in
other data sets. It is also true for TripleBit. However, comparing
with RDF-3X and MonetDB, TripleBit requires the smallest vir-
tual memory, and the size of virtual memory for TripleBit grows
slower than RDF-3X and MonetDB. In LUBM-1B, TripleBit’s vir-
tual memory size is about 40% of those of RDF-3X and MonetDB.

Table 13: Peak memory usage in GB
LUBM 10M LUBM 50M LUBM 100M LUBM 500M LUBM 1B

#Results 4,462 22,001 44,190 219,772 439,997
virtual phy. virtual phy. virtual phy. virtual phy. virtual phy.

RDF-3X 0.793 0.145 4.058 0.816 8.249 1.6 42.1 9.6 84.1 18
MonetDB 1.577 0.851 5.104 4 10.5 8.1 44.8 40 89.3 61
TripleBit 0.713 0.331 2.818 1.8 5.545 3.7 23.7 16 47.8 33

These experimental results show that TripleBit can reduce the in-
termediate result size in comparison to the other 2 systems.

7. CONCLUSION AND FUTURE WORK
We have presented TripleBit, a fast and compact system for large

scale RDF data. TripleBit is both space efficient and query efficient.
First, the design of a triple matrix storage structure allows us to uti-
lize the variable-size integer encoding of IDs and the column-level
compression scheme for storing huge RDF graphs more efficiently.
Second, the design of the two indexing structures, ID-Chunk matrix
and ID-Predicate matrix, allow us to reduce both the size and the
number of indexes to the minimum while providing orders of mag-
nitude speedup for scan and merge-join performance. In addition,
the query processing framework of TripleBit best utilizes its com-
pact storage and indexing structures. Our experimental comparison
shows that TripleBit consistently outperforms RDF-3X, MonetDB,
BitMat and delivers up to 2-4 orders of magnitude better perfor-
mance for complex join queries over large scale RDF data.

Furthermore, RDF store can be a core component of reasoner
that is responsible for storing ABox triples [15]. TripleBit can be
very helpful to further speed up the reasoners as it can store the
precomputed triple sets in a compact style using TripleBit storage
techniques and support fast querying over precomputed triple sets
through its indexing techniques. Since our store can evaluate con-
junctive queries quickly, thus, it can process some rules quickly
because a conjunctive query can be seen as a rule. One of our fu-
ture research directions could be to implement a TripleBit enabled
RDF-graph reasoner and compare it with the state of art reasoners
built on top of Jena and Sesame etc.
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APPENDIX
A. LUBM QUERIES
PREFIX r: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/⇠zhp2/2004/0401/univbench.owl#>
Q1-Q3: Same as Q5, Q4, Q3 respectively in [5].
Q4: SELECT ?x WHERE {?x ub:worksFor <http://www.Department0.-

University0.edu>. ?x r:type ub:FullProfessor . ?x ub:name ?y1 . ?x
ub:emailAddress ?y2 . ?x ub:telephone ?y3 .}

Q5-Q6: Same as Q1 and Q7 respectively in [5].

B. UNIPROT QUERIES
PREFIX r: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX u: <http://purl.uniprot.org/core/>
Q1: Same as Q6 in [5].
Q2-Q3: Same as Q1, Q3 respectively in [16].
Q4: SELECT ?a ?vo WHERE { ?a u:encodedBy ?vo. ?a s:seeAlso <http://-

purl.uni-prot.org/refseq/NP 346136.1>. ?a s:seeAlso <http://purl.uni-
prot.org/tigr/SP 1698>. ?a s:seeAlso <http://purl.uniprot.org/pfam/-
PF00842>. ?a s:seeAlso <http://purl.uniprot.org/prints/PR00992>.
}

Q5: SELECT ?a ?vo WHERE { ?a u:annotation ?vo. ?a s:seeAlso <http://-
purl.uniprot.org/interpro/IPR000842>. ?a s:seeAlso <http://purl.uni-
prot.org/geneid/-945772>. ?a u:citation <http://purl.uniprot.org/cita-
tions/9298646>. }

Q6: SELECT ?p ?a WHERE { ?p u:annotation ?a . ?p r:type uni:Protein .
?a r:type <http://purl.uniprot.org/core/Transmembrane Annotation>
. ?a u:range ?range . }

Q7: SELECT ?p ?a WHERE { ?p u:annotation ?a . ?p r:type uni:Protein .
?p u:organism taxon:9606 . ?a r:type <http://purl.uniprot.org/core/Di-
sease Annotation> . ?a rs:comment ?text . }

Q8: SELECT ?a ?b ?ab WHERE { ?b u:modified ”2008-07-22” . ?b r:type
uni:Protein . ?a u:replaces ?ab . ?ab u:replacedBy ?b . }

C. BTC 2012 QUERIES
PREFIX geo: <http://www.geonames.org/>
PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84 pos#>
PREFIX dbpedia: <http://dbpedia.org/property/>
PREFIX dbpediares: <http://dbpedia.org/resource/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
Q1: SELECT ?lat ?long where { ?a [] ”Bro-C’hall” . ?a geo:ontology#in-

Country geo:/countries/#FR . ?a pos:lat ?lat . ?a pos:long ?long . }
Q2: Same as Q2 in [16],
Q3: SELECT ?t ?lat ?long WHERE { ?a dbpedia:region dbpediares:List of -

World Heritage Sites in Europe . ?a dbpedia:title ?t . ?a pos:lat ?lat .
?a pos:long ?long . ?a dbpedia:link <http://whc.unesco.org/en/list/728>
. }

Q4-Q5: Same as Q4, Q5 in [16],
Q6: SELECT DISTINCT ?d WHERE { ?a dbpedia:senators ?c . ?a db-

pedia:name ?d . ?c dbpedia:profession dbpediares:Politician . ?a
owl:sameAs ?b . ?b geo:ontology#inCountry geo:countries/#US . }

Q7: SELECT DISTINCT ?a ?b ?lat ?long WHERE { ?a dbpedia:spouse
?b . ?a rdf:type <http://dbpedia.org/ontology/Person> . ?b rdf:type
<http://dbpedia.org/-ontology/Person> . ?a dbpedia:placeOfBirth ?c
. ?b dbpedia:placeOfBirth ?c . ?c owl:sameAs ?c2 . ?c2 pos:lat ?lat .
?c2 pos:long ?long . }

Q8: SELECT DISTINCT ?a ?y WHERE { ?a a <http://dbpedia.org/class/-
yago/Politician110451263> . ?a dbpedia:years ?y. ?a <http://xmlns.-
com/foaf/0.1/name> ?n. ?b [] ?n. ?b rdf:type <http://dbpedia.org/onto-
logy/OfficeHolder> . }

Note: Q1, Q3, Q6, Q7, Q8 are similar as Q1, Q3, Q6, Q7, Q8 respectively
in [16]. Because they return no results when they are executed on
BTC 2012 dataset, we modify them slightly.


