# TripleBit: a Fast and Compact System for Large Scale RDF Data

Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang Services Computing Tech. and System Lab, Cluster and Grid Computing Lab, School of Computer Sci. & Tech. Huazhong Univ. of Science and Technology ppyuan, hjin@hust.edu.cn Ling Liu
College of Computing
Georgia Institute of Technology
lingliu@cc.gatech.edu

#### **ABSTRACT**

The volume of RDF data continues to grow over the past decade and many known RDF datasets have billions of triples. A grant challenge of managing this huge RDF data is how to access this big RDF data efficiently. A popular approach to addressing the problem is to build a full set of permutations of (S, P, O) indexes. Although this approach has shown to accelerate joins by orders of magnitude, the large space overhead limits the scalability of this approach and makes it heavyweight. In this paper, we present TripleBit, a fast and compact system for storing and accessing RDF data. The design of TripleBit has three salient features. First, the compact design of TripleBit reduces both the size of stored RDF data and the size of its indexes. Second, TripleBit introduces two auxiliary index structures, ID-Chunk matrix and ID-Predicate bit matrix, to minimize the number of index selection during query evaluation. Third, its query processor dynamically generates an optimal execution ordering for join queries, leading to fast query execution and effective reduction on the size of intermediate results. Our experiments show that TripleBit outperforms RDF-3X, Monet-DB, BitMat on LUBM, UniProt and BTC 2012 benchmark queries and it offers orders of mangnitude performance improvement for some complex join queries.

## 1. INTRODUCTION

The Resource Description Framework (RDF) data model and its query language SPARQL are widely adopted today for managing schema-free structured information. Large amount of semantic data are available in the RDF format in many fields of science, engineering, and business, including bioinformatics, life sciences, business intelligence and social networks. A growing number of organizations or Community driven projects, such as White House, New York Times, Wikipedia and Science Commons, have begun exporting RDF data [22]. Linked Open Data Project announced 52 billion triples were published by March 2012 [22].

RDF data are a collection of triples, each with three columns, denoted by Subject (S), Predicate (P) and Object (O). RDF triples

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Articles from this volume were invited to present their results at The 39th International Conference on Very Large Data Bases, August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 7 Copyright 2013 VLDB Endowment 2150-8097/13/05... \$ 10.00. tend to have rich relationships, forming a huge and complex RD-F graph. Managing large-scale RDF data imposes technical challenges to the conventional storage layout, indexing and query processing [17, 18]. A fair amount of work has been engaged in RDF data management. Triples table [8, 17], column store with vertically partitioning [3] and property tables [25] are the three most popular alternative storage layouts for storing and accessing RD-F data. The storage layouts may not favor all queries. However, queries constrained on S, P or O values are equally important for real-world applications. A popular approach to achieving this goal is to maintain all six permutation indexes on the RDF data in order to provide efficient query processing for all possible access patterns [5, 9, 17, 24]. Although the permutation indexing techniques can speed up joins by orders of magnitude, they may result in significant demand for both main memory and disk storage. First, RDF stores need load those indexes into limited memory of computer in order to generate query plans when processing complex join queries. Consequently, frequent memory swap in/out, and out of memory problems are common when querying RDF data with over a billion of triples [14]. Furthermore, the large space overhead also places a heavy burden on both memory and disk I/O. One way to address the space cost is to use compression techniques, such as D-Gap [5], delta compression [17], in storing and accessing RDF data. Multiple permutation indexes also complicate the decision on the choices of the indexes for a given query.

In this paper, we present TripleBit, a fast and compact system for large scale RDF data. TripeBit is designed based on two important observations. First, it is important to design an RDF data storage structure that can directly and efficiently query the compressed data. This motivates us to design a compact storage and index structure in TripleBit. Second, in order to truly scale the RDF query processor, we need efficient index structures and query evaluation algorithms to minimize the size of intermediate results generated when evaluating queries, especially complex join queries. This leads us to the design decision that we should not only reduce the size of indexes (e.g., through compression techniques) but also minimize the number of indexes used in query evaluation.

The main contributions of the paper are three folds: *First*, we present a compact RDF store - TripleBit, including the design of a bit matrix storage structure and the encoding-based compression method for storing huge RDF graphs more efficiently. The storage structure enables TripleBit to use merge joins extensively for join processing. *Second*, we develop two auxiliary indexing structures, ID-Chunk bit matrix and ID-Predicate bit matrix, to reduce the number and the size of indexes to the minimum while providing orders of magnitude speedup for scan and merge-join perfor-

mance. The ID-Chunk bit matrix provides a fast search of the relevant chunks matching to a given subject (S) or object (O). The ID-Predicate bit matrix provides a mapping of a subject (S) or an object (O) to the list of predicates to which it relates. *Third*, we employ the dynamic query plan generation algorithm to generate an optimal execution plan for a join query , aiming at reducing the size of intermediate results as early as possible. We evaluate TripleBit through extensive experiments against RDF graphs of up to 1.47 billion triples. Our experimental comparison with the state of art RDF stores, such as RDF-3X, MonetDB, shows that the TripleBit consistently outperforms them and delivers up to 2-4 orders of magnitude better performance for complex long join queries over large scale RDF data.

# 2. OVERVIEW & RELATED WORK

A fair number of RDF storage systems has been developed in the past decade, such as Sesame [8], Jena [25], RDF-3X [17, 18], Hexastore [24], BitMat [5], gStore [28] etc. These systems can be broadly classified into four categories: triples table [17], property table [25], column store with vertical partitioning [3] and RDF graph based store. We will illustrate and analyze these four categories of RDF stores using the following example RDF dataset.

T1: person1 isNamed "Tom".

T2: publication1 hasAuthor person1.

T3: publication1 isTitled "Pub1".

T4: person2 isNamed "James".

T5: publication2 hasAuthor person2.

T6: publication2 isTitled "Pub2".

T7: publication1 hasCitation publication2.

Triple table. A natural approach to storing RDF data is to store (S,P,O) statements in a 3-column table with each row representing a RDF statement. The 3-column table is called the triple table [17]. For the above example, the seven statements will correspond to seven rows of a triple table. There are several variants of the triple table, e.g., using pointers to refer to literals and URIs in the triple table and storing literals and URIs in a separate table. However, querying over an RDF table of billions of rows can be challenging. First, most of queries involve self-joins over this long table. Second, larger table size leads to larger table scan and larger index look up time, which complicates both selectivity estimation and query optimization [3]. A popular approach to improving performance of queries over a triple table is to use an exhaustive indexing method that creates a full set of (S, P, O) permutations of indexes [17, 27]. For example, RDF-3X, one of the best RDF stores today, built clustered B+-trees on all six (S, P, O) permutations – (SPO, SOP, PSO, POS, OSP, OPS), thus each RDF dataset is stored in six duplicates, one per index. In order to choose the fastest index among the six indexes for a given query, another set of 9 aggregate indexes, including all six binary projections – (SP, SO, PO, PS, OS, OP), and three unary projections -(S, P, O) [17, 18], are created and maintained, each providing some selectivity statistics. By maintaining such aggregate indexes, RDF-3X eliminates the problem of expensive self-joins and provides significant performance improvement. However, storing all permutation indexes may be expensive and the performance penalty can be high as the volume of dataset increases due to the cost of storing and accessing these indexes and the cost of deciding which of these indexes to use at the query evaluation.

**Property table.** Instead of using a "long and slim" triple table, the property table typically stores RDF data in a "fat" property table with subject as the first column and the list of distinct predicates as the remaining columns [25]. Each row of the property table corresponds to a distinct S-value. Each of the remaining columns corresponds to a predicate (P-value). Each table cell represents

an O-value of a triple with the given S-value and P-value. Consider our example RDF dataset of 7 triples with 4 distinct properties (predicates), and thus we will have a 5-column property table. *publication1* has three properties: *hasAuthor*, *isTitled*, *hasCitation*. Thus, three statements are mapped into one row corresponding to *publication1* in the table. Clearly, for a big RDF dataset, a single property table can be extremely sparse and contains many *NUL-L* values. Thus multiple-property tables with different clusters of properties are proposed in Jena [25] as an optimization technique. BitMat [5] represents an alternative design of the property table approach, in which RDF triples are represented as a 3D bit-cube, representing subjects, predicates and objects respectively and slicing along a dimension to get 2D matrices: SO, PO and PS.

An advantage of the property tables is that the subject-subject self-joins on the subject column can be eliminated. However, the property table approach suffers from several problems [3]: First, the space overhead of the wide property table(s) with sparse attributes is high. Second, processing of RDF queries that have no restriction on property values may involve scanning all property tables. Furthermore, experimental results in [12] have shown that the performance of the property table approach degrades dramatically when dealing with large scale RDF data.

Column store with vertical partitioning. This approach stores RDF data [3] using multiple two-column tables, one for each unique predicate. The first column is for subject whereas the other column is for object. Consider our running example with four properties, this approach will map 7 statements to four 2-column tables. Although those tables can be stored using either row-oriented or column-oriented DBMS, the column store is a more popular storage solution for vertically partitioned schema [3]. This approach is easy to implement and can provide superior performance for queries with value-based restrictions on properties. However, this approach may suffer from scalability problems when the size of tables varied significantly [19]. Furthermore, processing join queries with multiple join conditions and unrestricted properties can be extremely expensive due to the need of accessing all of the 2-column tables and the possibility of generating large intermediate results.

**Graph-based store.** Graph-based approaches represent an orthogonal dimension of RDF store research [7, 14], aiming at improving the performance of graph-based manipulations on RDF datasets beyond RDF SPARQL queries. However, most of these graph based approaches focus more on improving the performance of specialized graph operations rather than the scalability and efficiency of RDF query processing [24]. Large scale RDF data is a very big sparse graph. A challenge to store and query the graph efficiently is critical. Álvarez-García et al developed a compressed RDF engine  $k^2$ -triples [4]. In gStore [28] which stores RDF data as a large graph, VS-tree and VS\*-tree index were proposed to process both exact and wildcard SPARQL queries in a scalable manner.

In comparison, TripleBit advocates two important design principles: First, we argue that in order to truly scale the RDF query processor, we should also minimize the number of indexes used in query evaluation in addition to design compact storage structure and indexes. Second, we argue that we need efficient query processing techniques that can minimize the size of intermediate results generated, but also process complex joins efficiently.

# 3. TRIPLE MATRIX AND ITS STORAGE STRUCTURE

We design the TripleBit storage structure with three objectives in mind: improving storage compactness, improving encoding or compression efficiency and improving query processing efficien-

Table 1: The Triple Matrix of the example

|              | isNa | isNamed hasAuthor isTitled |    | tled | hasCitation |    |    |
|--------------|------|----------------------------|----|------|-------------|----|----|
|              | T1   | T4                         | T2 | T5   | T3          | T6 | T7 |
| person1      | 1    | 0                          | 1  | 0    | 0           | 0  | 0  |
| person2      | 0    | 1                          | 0  | 1    | 0           | 0  | 0  |
| publication1 | 0    | 0                          | 1  | 0    | 1           | 0  | 1  |
| publication2 | 0    | 0                          | 0  | 1    | 0           | 1  | 1  |
| "Tom"        | 1    | 0                          | 0  | 0    | 0           | 0  | 0  |
| "James"      | 0    | 1                          | 0  | 0    | 0           | 0  | 0  |
| "Pub1"       | 0    | 0                          | 0  | 0    | 1           | 0  | 0  |
| "Pub2"       | 0    | 0                          | 0  | 0    | 0           | 1  | 0  |

cy. We will first present the Triple Matrix model and then describe how to design the storage layout for the Triple Matrix model to offer more compact storage, higher encoding efficiency, and faster query execution.

In Triple Matrix model, RDF triples are represented as a two dimensional bit matrix. We call it the triple matrix. Concretely, given an RDF dataset, let  $V_S$ ,  $V_P$ ,  $V_O$  and  $V_T$  denote the set of distinct subjects, predicates, objects and triples respectively, The triple matrix is created with entity  $e \in V_E = V_S \cup V_O$  as one dimension (row) and triples  $t \in V_T$  as the other dimension (column). Thus, we can view the corresponding triple matrix as a two dimensional table with  $|V_T|$  columns and  $|V_E|$  rows. Each column of the matrix corresponds to an RDF triple, with only two entries of bit value ('1'), corresponding to the subject entity and object entity of the triple and all the rest of  $(|V_E|-2)$  entries of bit ('0'). Each row is defined by a distinct entity value, with the presence ('1') in a subset of entries, representing a collection of the triples having the same entity. We vertically partition the matrix into multiple disjoint buckets, one per predicate (property). For a new triple with new subject i and new object j, assume that the predicate p is one of existing ones, thus a new column k is inserted to the bucket corresponding to p, and the entries that lie in the i-th row, the j-th row and the k-th column of the matrix are set to '1'. The other entries in the k-th column of the matrix are set to '0'. Table 1 shows the triple matrix for the running example of 7 triples (we do not convert strings to row ids for the purpose of readability). It has 7 columns, one per triple, and eight entities, representing four subject values and four object values.

To construct the triple matrix from RDF data, each  $e \in V_E$  is assigned a unique ID using the row number in the matrix. In TripleBit, we assign IDs to subjects and objects using the same ID space such that subjects and objects having identical values will be treated as the same entity. We observe that a fair amount of entities in many real RDF datasets are used as subject of a triple and object of another triple. For example, Table 5 in Section 6 showed that more than 57% subjects of UniProt are also objects. TripleBit utilizes unique IDs for the same entities for a compact storage and more importantly for improving query processing efficiency. This is because query processor does not need to distinguish whether IDs represent subject or object entities when processing joins. For example, it makes the join on subject and object more efficient than the approach where subjects and objects have independent ID space [5]. Also our approach facilitates index construction.

#### 3.1 Dictionary

In RDF specification, Universal Resource Identifiers (URIs) are used to identify resources such as subjects and objects. A resource may have many properties and corresponding values. It is not economical to store URIs in each appearance of resources. To reduce the redundancy, like many RDF stores, such as RDF-3X, in TripleBit we replace all strings (URI, literals and blank node) by *ID*s using mapping dictionaries. Considering the existence of long

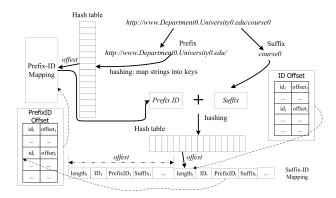


Figure 1: String-ID Mapping and ID-String Mapping

common prefixes in URIs, we adopt a prefix compression method which is similar to Front Coding to obtain compressed dictionaries. The prefix compression method splits each URI into a prefix slice and a suffix slice at the last occurrence of separator '/'. The strings which do not contain '/' are considered as suffixes. We assign each prefix a *PrefixID* and construct Prefix-ID mapping table which stores prefix *length*, prefix *ID* and *prefix*. We concatenate prefix ID and suffix to get a new string which is also assigned an *ID* in an independent ID space. Similarly, we build a String-ID mapping table, which stores the suffix *length*, string *ID*, *PrefixID*, and *suffix*.

During query translation, hashing function maps prefix of a string *str* to its index and then the *offset* of prefix stored in corresponding slot of the hash table is accessed. Using the *offset*, we can get its *PrefixID* in Prefix-ID mapping tables. The process to translate a string to its *ID* is illustrated using the solid lines in Figure 1.

Before query results are returned to users or applications, *ID*s in the results must be translated back into strings. In order to speed up the reverse process, we build two inverted tables (PrefixID Offset and StringID Offset) to translate IDs back into strings. Both store (*id*, offset) pairs where *id* corresponds to the *PrefixID* or IDs, and offset represents the position where the prefix or suffix and the *ID* are stored. ID Offset structures make the mapping of *ids* to literals or URIs more efficient (Figure 1). The process to transform *ids* back to strings is shown by dashed line in Figure 1.

In summary, searching *ids* in the dictionary using strings does not require much time thanks to the hashing index and the fact that the number of strings occurring in a query is very small. However, the reverse mapping process can be costly when the query result size is big [16].

# 3.2 ID Encoding in the Triple Matrix

In a triple matrix, ID is an integer. The size for storing an integer is typically a word. Modern computers usually have a word size of 32 bits or 64 bits. Not all integers require the whole word to store them. For example, it is enough to store the ID of value "100" using 1 byte. It is wasteful to store values with a large number of bytes when a small number of bytes are sufficient. Also, since TripleBit is designed for large scale RDF data, it is difficult to know the maximal number of entities in future data sets. For example, 32-bits ID might be a good choice for current RDF data, but insufficient in the near future. Thus, we encode the entity ID in triple matrix using variable-size integer such that the minimum number of bytes are used to encode this integer. Furthermore, the most significant bit of each compressed byte is used to indicate whether an ID is the subject(0) or object (1) of a statement and the remaining 7 bits are used to store the value. Consider the example in Table 1. The entity ID of 1 denotes a subject in T1 and denotes an object in T2. The row of this entity will have its 1st and 3rd columns set to '1'.

Table 2: Storage space of Triple Matrix for six datasets

|                      | LUBM | LUBM | LUBM  | LUBM  | LUBM   | UniProt |
|----------------------|------|------|-------|-------|--------|---------|
|                      | 10M  | 50M  | 100M  | 500M  | 1B     | Cimrot  |
| Two Copies of Triple | 133  | 722  | 1,461 | 7,363 | 15,207 | 24,371  |
| Matrix (MB)          |      |      |       |       |        |         |
| Per Triple (bytes)   | 5.02 | 5.48 | 5.54  | 5.59  | 5.97   | 4.33    |

We use 00000001 (subject) in the column encoding of T1 and use 10000001 (object) in the column encoding of T2 respectively. By utilizing the significant bit of each compressed byte, it provides us a natural means to find a triple without scanning the chunk.

Many RDF stores use fixed-sized integer (e.g., an integer of 4 bytes in 32-bit computer) to encode *IDs*. The overhead of the variable-size integer encoding approach is 1 bit per byte but this approach saves more with more flexibility. Our experiments on 6 datasets show that each ID needs about 2.5-3 bytes on average (Table 2). Furthermore, the approach is highly extensible comparing with fixed-sized *ids* since the former can encode any number of subjects or objects. For example, our approach can encode *IDs* larger than  $2^{32}$  using 5 or more bytes while fixed-sized integer does not have such flexibility.

# 3.3 Triple Matrix Column Compression

The triple matrix is inherently sparse. To achieve the internal compact representation of the triple matrix, we store the bit matrix in a compressed format using column compression. Given that each column of the matrix corresponds to a triple and thus has only two entries with '1', we show that a column-level compression scheme for storing the triple matrix is more effective than the rowlevel, byte-level or bit-level compression scheme [5]. Concretely, for each column of the triple matrix, instead of storing the entire column of size  $|V_E|$ , we use only the two row numbers (i.e., IDs) that correspond to the two '1' entries. For example, in Table 1, the first column (T1) and the third column (T2) are represented as 00000001 10000101 and 10000001 00000011 respectively. By combining with the variable-size integer encoding approach for the two IDs, each column requires only 2-8 bytes for storing one triple in TripleBit if the number of entities (or rows) is less than  $2^{28}$ . Our experiments on 6 data sets show the storage per triple is about 4-6 bytes on average without other storage optimization (Table 2). This per-triple level saving is significant compared to 12 bytes per triple in triples table and 8 bytes per triple in column stores, leading to higher efficiency in storing and scanning data on storage media as well as high reduction in both the size of intermediate results and the time complexity of query processing.

# 3.4 Triple Matrix Chunk Storage

As described earlier, we partition a triple matrix vertically into predicate-based buckets, each containing triples with the same predicate. Triples of each bucket are stored into fixed-size chunks. The chunks are physically clustered by predicates such that chunk clusters having the same predicates are placed adjacently on storage media. We assign chunks of each bucket with chunk IDs consecutively. The size of a chunk can be set according to a number of parameters, such as the size of dataset, the memory capacity, the IO page size. Although search in small size chunk is faster, larger chunk simplifies the construction of ID-Chunk index and reduces I/O. Larger chunk also has less storage overhead. In the first implementation of TripleBit, we set the chunk size to be 64KB.

Since the triple matrix does not indicate which entity is subject or object in a column, we choose to store each column of a bucket in a consistent order, either SO or OS. Compared to some existing RDF systems [17, 24], which store all six permutations of RDF data, TripleBit stores the triple matrix for each RDF dataset

physically in two duplicates, one in S-O order and another in O-S order. As the collation order in each permutation is different, we use the generic terminology x, y to refer to the first and second elements of pairs. The triples in a bucket are sorted by x, y and are directly stored consecutively in the chunks of each bucket as shown in Figure 2. Considering the example in Table 1, the triples corresponding to 'isNamed' are stored in the SO chunk as follows:  $00000001\ 10000101\ 00000011\ 00000110$ .

Figure 2 gives a sketch of TripleBit storage layout. In the head of each chunk, we store the minimum and maximum subject IDs in each SO chunk and the minimum and maximum object IDs in each OS chunk, as well as the amount of used space.

Consider a query with a given predicate and a given subject having ID of value "id". We process this query in three steps: (1) By using the given predicate, we locate the corresponding SO bucket containing triples with the given predicate. (2) We need to find the relevant SO chunks that contain triples with the given subject value "id" by checking whether target id falls inside the MinIDs and MaxIDs of chunks. (3) Now we examine each relevant SO chunk to find the SO pairs matching the given subject value "id" using binary search instead of full scan. Recall Section 3.2, our ID encoding in the triple matrix utilizes the most significant bit of each byte of an entity ID to indicate whether the ID refers to a subject or an object of a triple. This feature allows TripleBit to get an SO pair (or OS pair) more efficiently in an SO-chunk (or OS chunk). Concretely, we start at the middle byte of an SO ordered chunk, say "00001001". TripleBit finds the matching SO pair, namely the ID of the subject and the ID of the object of the matching triple, in two steps. First, TripleBit reads the previous bytes and next bytes until the most significant bit of the bytes are not '0'. Then TripleBit reads next bytes till the most significant bit of the bytes are not '1' and get the SO pair. Now TripleBit compares the query input id to the subject ID of the SO pair. If it is a match, it returns the subject and object of the matching triple. Otherwise, it continues to compare and determine whether the input id is less or greater than the stored subject ID and starts the next round of binary search with the search scope reduced by a half. TripleBit repeats this process. The search space is reduced by a half at each iteration and thus it can quickly locate the range of matching SO pairs. Similar process applies to the OS-chunks if the object of the query is given.

In summary, the Triple Matrix model is attractive as it can facilitate the design of compact RDF storage layout, compact RDF indexes and ease of query processing. The Triple Matrix model prevails over other existing RDF stores, such as triples table (triple row store), column store with vertically partitioning, and property table based model, for a number of reasons. First, the Triple Matrix model allows efficient encoding of each entity using its row ID though variable-sized integer encoding. Second, the Triple Matrix model enables effective column level encoding. By combining both entity ID level and column level compression, Triple Matrix model enables TripleBit to generate a very compact storage model for RDF triples. Third, the Triple Matrix model and its predicate-based triple buckets provide a natural and intuitive way to organize TripleBit storage layout by placing the triples with the same predicate adjacently in contiguous chunks of the corresponding bucket. Thus, TripleBit significantly speeds up queries with restricted predicate P-value (see Section 5 for more detail). Furthermore, the triple matrix is highly suitable for parallel processing of queries. For example, Triple Matrix can be partitioned into several sub-matrixes each of which corresponds to a subgraph of the whole RDF graph. Those sub-matrixes can be placed onto different nodes. Thus, queries can be executed in multiple nodes using parallel or distributed frameworks, such as MapReduce [11].

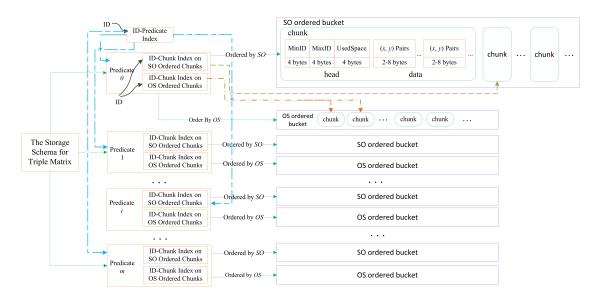


Figure 2: The Storage scheme of TripleBit

In addition, TripleBit can provide optimized storage for reified statements and can store and process reified statements naturally using its triple matrix by establishing a mapping of a reified statement identifier to a row id, avoiding the use of four separate triples for each reified statement. Due to the page limit, we refer readers to our technical report for further detail.

#### 4. INDEXING

With the triple matrix and the predicate-based triple buckets of SO chunks and OS chunks, TripleBit only needs two of the six permutations of (S, P, O) in its physical storage, namely PSO and POS. In order to speed up the processing of RDF queries, we design two auxiliary index structures: ID-Chunk matrix and ID-Predicate bit-Matrix.

#### 4.1 ID-Chunk Index

**ID-Chunk index** is created as an ID-Chunk matrix for each distinct predicate and it captures the storage relationship between IDs (rows) and Chunks (columns) having the same predicate. An entry in the ID-Chunk matrix is a bit to denote the presence ('1') or absence ('0') of an ID in the corresponding chunk. Since the triples having the same predicate is stored physically in two buckets, we maintain two ID-Chunk index for each predicate: one for SO ordering chunks and the other for OS ordering chunks (Figure 2).

In each ID-chunk matrix, rows and columns are sorted in an ascending order of IDs and sorted chunks respectively. Given an entity *id*, the set of chunks that store the triples with this *id* are adjacent physically in the storage media and thus appeared in the consecutive columns in the ID-chunk matrix with non-zero entries around the main diagonal. The degree of shift of the non-zero diagonal from the main diagonal of the matrix depends on the total number of triples containing this *id* as subject or object. We can draw two finite sequences of line segments, which bound the non-zero entries of the matrix (as shown in Figure 3). Considering the *MinIDs* and *MaxIDs* of chunks as two set of data points, we can fit the upper boundary lines and lower boundary lines using curve fitting. There are multiple curve fitting methods, such as lines, polynomial curves or Bspline, etc. Complicated fitting methods involve large overhead

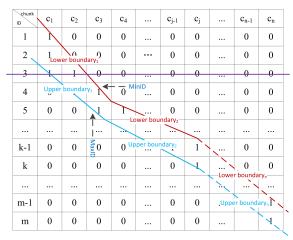


Figure 3: ID-Chunk Bit Matrix

when computing index. Thus, currently we divide the rows (the whole ID space) into several parts (e.g., 4 parts). The upper bound and the lower bound of each part are fitted using two lines whose parameters are determined by least square method. Since non-zero entries of the ID-Chunk Matrix are expressed using two set of lines, we only need to keep the parameters of two set of lines.

The ID-Chunk index gives the lower bound Chunk ID and upper bound of Chunk ID for each chunk in the given predicate bucket (shown by the boundary lines). Thus, a query with a given predicate and a given subject *id* (or object *id*) can be processed by first hashing the given predicate to get the corresponding bucket. Then, instead of a full scan over all chunks in the predicate bucket, TripleBit only scan the range of contiguous chunks in the bucket where the given subject or object *id* appears, namely finding the lower bound Chunk ID and upper bound of Chunk ID corresponding to the given *id* using the ID-Chunk index. For those chunks identified by the ID-Chunk index, we can further examine the query relevance of the triples stored in the chunks by utilizing the *MinID* and *MaxID* stored at the head of each chunk and a binary search, instead of a full scan of all triples in each chunk (recall Section 3.4).

To better understand the effectiveness of ID-Chunk index for TripleBit, we compare ID-Chunk index with B+-Tree index under

<sup>&</sup>lt;sup>1</sup>http://www.cc.gatech.edu/~lingliu/TechReport/TripleBit-report-v2.Dec.2012.pdf

Table 3: Index lookup under varying chunk sizes (time in  $\mu s$ )

|            |       |       |       |        | 0          |       |       |       |  |
|------------|-------|-------|-------|--------|------------|-------|-------|-------|--|
|            |       | Cold  | cache |        | Warm cache |       |       |       |  |
| Chunk size | 4KB   | 16KB  | 32KB  | 64KB   | 4KB        | 16KB  | 32KB  | 64KB  |  |
| ID-Chunk   | 43    | 56    | 59    | 144    | 3.8        | 23.3  | 23.8  | 104   |  |
| B+-Tree    | 16373 | 15393 | 15554 | 292378 | 16072      | 13797 | 13742 | 13647 |  |

Table 4: Query time of LUBM-Q2 under varying chunk sizes

| Table 4. Query time of Ecolivi-Q2 under varying chunk sizes |         |         |         |         |         |         |  |  |  |  |  |  |
|-------------------------------------------------------------|---------|---------|---------|---------|---------|---------|--|--|--|--|--|--|
| Chunk size                                                  | 1KB     | 2KB     | 4KB     | 16KB    | 32KB    | 64KB    |  |  |  |  |  |  |
| cold caches                                                 | 0.0497  | 0.0489  | 0.0466  | 0.0440  | 0.0336  | 0.0295  |  |  |  |  |  |  |
| warm caches                                                 | 0.00017 | 0.00018 | 0.00019 | 0.00025 | 0.00026 | 0.00021 |  |  |  |  |  |  |

different chunk sizes by constructing a B+-Tree index on chunks. We choose triples sharing the same predicate rdf:type of LUBM-1B as the test dataset. Generally, each subject declares its type. Thus the dataset is big. The time to construct the ID-Chunk index is slightly smaller (about 140s) than the construction time of B+-Tree (about 146s). Table 3 shows lookup in B+-Tree is significantly slower than lookup using ID-Chunk index in all chunk sizes. When the chunk size is 64KB, the average times required to lookup in B+-Tree and find the target pairs are 292.378ms (cold cache) and 13.647ms (warm cache) while the times for lookup in ID-Chunk are 0.144ms (cold cache) and 0.104ms (warm cache) respectively. A primary reason is that B+-Tree require large storage space (8.6MB-60MB) while ID-Chunk stores only parameters of functions (128 bytes). We also provide an experimental study of the performance impact of chunk size on TripleBit. Table 4 shows the query time (in seconds) of LUBM Q2 running on LUBM-500M under varying chunk sizes. LUBM Q2 is chosen because triples matching Q2 are in a single chunk and the intermediate result size of Q2 is also not big. Thus, the factors impact on the performance of index lookup is more obvious than other complex queries with larger intermediate results. For both indexes, larger chunk has better performance in cold cache because of less I/O, and smaller chunk has better performance in warm cache cases. For more complex queries which need access more inconsecutive chunks, ID-Chunk index outperforms B+-tree by higher orders of magnitude.

#### 4.2 ID-Predicate Index

The second auxiliary index structure is the **ID-Predicate bit matrix**. We use this index to speed up the queries with un-restricted predicates. Given a query with no restriction on any predicate, instead of a sequential scan of all predicate buckets, we introduce the ID-Predicate bit matrix index structure. An entry in the ID-Predicate matrix is a bit with '1' indicates the occurrence relationship between the ID row and the predicate column. With the ID-Predicate index, if a subject or an object is known in a query, TripleBit can determine the set of relevant predicates. For each relevant predicate, TripleBit can use ID-Chunk matrix to locate the relevant chunks and return the matching triples by binary search within each relevant chunk.

The ID-Predicate matrix is huge and sparse for large scale RDF data. In TripleBit we use semantic preserving compression techniques that can make the matrix compact in storage and memory but remain searchable by IDs. We decompose ID-Predicate matrix into a set of block matrixes and treat each block of the ID-Predicate matrix as a bit vector. We devise the following byte encoding technique by adapting the Word Aligned Hybrid (WAH) compression scheme [26]. Instead of imposing the word alignment requirement as is done by WAH, we choose to impose the byte alignment requirement on the blocks of the matrix. For example, we first divide the bit vector into 7-bit segments and then merge the 7-bit segments into groups such that consecutive identical bit segments are grouped together. A *fill* is a consecutive group of 7-bits where the bits are either all 0 or all 1, and a *literal* is a consecutive group of

|   | uncompressed (in 7-bit groups)                  |  |  |  |  |  |  |  |  |  |  |
|---|-------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Α | 31 00 03 50 00 00 00 00 00 00 00 00 00 00 00 00 |  |  |  |  |  |  |  |  |  |  |
| В | 56 7F 7F 00 00 00 00 00 00 00 00 00 00 00 00 00 |  |  |  |  |  |  |  |  |  |  |
|   | compressed                                      |  |  |  |  |  |  |  |  |  |  |
| Α | 31 81 03 50 8F 0E                               |  |  |  |  |  |  |  |  |  |  |
| В | 56 C2 93                                        |  |  |  |  |  |  |  |  |  |  |

Figure 4: Two compressed bit vectors

7-bits with a mixture of 0 and 1. Then we encode each fill as follows: The most significant bit of each byte is used to differentiate between literal (0) and fill (1) bytes. The second most significant bit of a fill word indicates the fill bit (0 or 1), and the remaining bits store the fill length. Compressed blocks are stored into fixed-size storage structure adjacently. Thus, given an *id*, it is easy to locate the blocks where the *id*th row is.

Figure 4 shows the compressed representation of two examples. The second and third line in Figure 4 shows the hexadecimal representation of the bit vector as 7-bit groups. The last two lines show the compressed bytes also as hexadecimal numbers. For example, the first byte of the last line ("56") is a literal byte, and the second and third are fill bytes. The fill byte "C2" indicates a 1-fill of 14 bits long, and the fill byte "93" denotes a 0-fill, containing 133 consecutive 0 bits.

# 4.3 Aggregate Indexes

The execution time of queries is heavily influenced by the number of joins necessary to find the results of the query. Therefore, the query processor needs to utilize the selectivity estimation of query patterns to select the most effective indexes and minimize the number of indexes needed. In SPARQL queries, there are eight triple query patterns: one full scan and 7 triple selection patterns. All the triples in the store match (?s?p?o) and thus a full scan is required. In the other end of the spectrum, the number of triples matching (spo) is 0 or 1. The selectivity of these two patterns is known intuitively without aggregate indexes. The statistics of triple pattern (?sp?o) can be obtained directly in the storage structure corresponding to the bucket of predicate p. Hence, we need estimate the selectivity of five triple query patterns: (sp?o); (?spo); (spo); (spo)

In TripleBit, we additionally build two binary aggregate indexes: SP and OP (instead of 9 aggregate indexes [16–18]). The SP aggregate index stores the count of the triples with the same subject and the same predicate. With SP aggregate index, we can compute statistics about  $(s\ p\ ?o)$  and  $(s\ ?p\ ?o)$ . For example, to get the number of triples matching  $(s\ ?p\ ?o)$ , TripleBit searches SP aggregate index and locates the first tuples containing s. Since SP pairs are stored lexicographically, then TripleBit can read all the tuples having same s and return the sum of the count of triples. Similarly, the OP aggregate index gives the count of the triples having the same object and the same predicate for fast computation of the statistics about  $(s\ ?p\ o)$  and  $(s\ p\ o)$ . Finally, statistics about  $(s\ ?p\ o)$  can be computed efficiently using ID-Predicate index with SP and OP indexes. Both aggregated indexes are compressed using delta compression [17] and stored in chunks.

In summary, the indexing structure in TripleBit is also compact. We minimize the size of the indexes through encoding based compression techniques (storing ID-Chunk index as a list of functions which requires tiny storage). We reduce the number of indexes by utilizing a novel triple matrix based storage layout and two auxiliary bit matrix indexes. More importantly, the compactness of TripleBit storage and index structures makes it highly effective for complex long join queries, compared to exhaustive-indexing used in some triples table [17, 24]. For example, using SO and OS chunk

pairs in the storage and ID-Chunk index, we can replace PSO, POS indexes. By adding the ID-Predicate matrix, TripleBit can cover all the other four permutations of (S, P, O). To estimate selectivity, we only use two aggregate indexes instead of all permutations of 9 aggregate indexes [16, 18].

#### 5. QUERY PROCESSING

There are two types SPARQL queries: queries with selection triple pattern and queries with join triple patterns. Processing the queries with single selection triple pattern is straightforward. When a query consists of multiple triple patterns that share at least one variable, we call the query the join triple pattern query. For this type of queries, TripleBit generates the query plan dynamically, aiming at reducing the size of intermediate results and then executes the final full joins accordingly. In this section we describe how we use the triple matrix, the ID-Chunk and ID-Predicate indexes to process two kinds of queries respectively.

# 5.1 Queries with Selection Triple Pattern

We have briefly discussed in Section 4.3 about the eight selection triple patterns:  $(?s \ p \ ?o)$ ;  $(s \ p \ ?o)$ ;  $(?s \ p \ o)$ ;  $(s \ p \ o)$ . Processing queries with these simple selection triple patterns is straightforward. Due to page length limit, we below describe the steps for evaluating two representative triple patterns:  $(s \ p \ ?o)$  and  $(s \ ?p \ o)$ .

For triple pattern  $(s\ p\ ?o)$ , we first hash by p to obtain the predicate bucket of p and use the ID-Chunk index of the bucket p to locate the range of chunks relevant to the given s. Next, the query processor examines each of the candidate SO chunks to see if s falls inside the range of MinID and MaxID of this chunk to prune out irrelevant chunks. For the relevant chunks, a binary search is performed over each of such chunks to find the matching SO pairs. There are three special cases: (i)If the MinID and MaxID of a chunk are equal to s, then all the SO pairs in the chunk are matching the queries and the query processor just return all the triples in the chunk. If the MinID of a chunk equals to s, the query processor just locates the first pair which does not match the query pattern and returns all the SO pairs before that pair. Similarly, if the MaxID of a chunk equals to s, the query processor just locates the last pair whose subject is not s and returns all the SO pairs after that pair.

To execute the selection triple query pattern  $(s?p \ o)$ , the query processor first needs to determine which predicates are relevant using s and o. It searches the ID-Predicate index using both s and o, and get two sets of candidate predicates, one based on s and the other based on o. Then the query processor computes the intersection of the two sets of predicates, which gives the set of relevant predicates connecting s to o. For each matching predicate p, the query processor first determines whether to use SO chunks or OS chunks by comparing the selectivity of sp and the selectivity of op using the aggregate indexes: SP and OP, denoted by  $\sigma_f(sp)$  and  $\sigma_f(op)$  respectively. If  $\sigma_f(sp) \geq \sigma_f(op)$ , then we search the chunks ordered by o as sp is more selective. Otherwise, we search the chunks ordered by o. Finally, we output those triples matching (sp).

#### **5.2** Queries with Join Triple Patterns

A query with join triple patterns typically forms a query graph [5, 10, 21], with selection triple patterns or variables as nodes and the types of joins as edges. We classify multi-triple pattern queries into three categories: (i) *star join* where many triple patterns are joined on one variable (We call a star join using its common variable), (ii) *cyclic join* where join variables are connected as a cycle, and (iii) *bridge join* where several stars are connected as a chain. In LUB-M, Q1, Q2 are star joins; Q3, Q5, Q6 are cyclic joins; and Q4 is

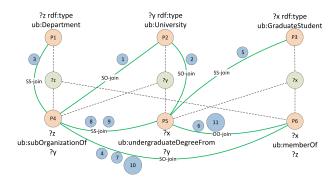


Figure 5: Query graph and its query plan of LUBM Q5

bridge join. SPARQL queries tend to contain multiple star-shaped sub-queries [17]. For example, cyclic joins and bridge joins are actually star joins connected as a cycle or a chain.

Here, we use the query graph model of [5] to represent a query. In this query graph model, nodes are triple patterns and join variables. There are two kinds of edges connecting the nodes: One type of edges between pattern nodes and variable nodes, indicating the variables appearing in the corresponding triple patterns. The other type of edges between two triple patterns, denoting one of the three join types: *SS-join*, the subject-subject join, *SO-join*, the subject-object join and *OO-join*, the object-object join. Figure 5 is the query graph of LUBM-Q5, with some edges (e.g., the join edge between *P*1 and *P*6) omitted for presentation clarity.

When a query involves multiple join patterns as shown in Figure 5, the most important task is to produce an optimal execution ordering of the join nodes (join triple patterns) of the query graph. We can compute the optimal ordering of join patterns in terms of three factors: (i) the triple pattern selectivity estimation, (ii) the reduction of the size of intermediate results and (iii) the opportunity to use merge joins instead of hash or nested-loop joins. All these factors aim at progressively reducing the cost of query processing by following the optimal order of joins.

#### 5.2.1 Dynamic Query Plan Generation

For executing queries with multiple join patterns, TripleBit employs a Dynamic Query Plan Generation Algorithm (DQPGA) and the pseudo code is given in Algorithm 1. The DQPGA algorithm consists of three parts: processing star-joins (Lines 1 - 12); further reduction (Lines 15 - 28); final join (Lines 29).

In DQPGA, a number of optimization tactics are employed to produce an optimal execution order of the join patterns for the query. Consider the example query in Figure 5 with the optimal join order marked on the edges. First, SPARQL queries generally contain multiple star-shaped subqueries. Star joins are simple tree queries [6] and impose restrictions on the common variables. The query processor can reduce intermediate results by executing star joins before other types of join queries. The second tactic is to use semi-joins [5, 6, 20] if we can further reduce the number of bindings involved in the subsequent join operations. For example, considering  $P4 \ltimes P2$ , the semi-join operator retrieves those triples in P4 that join with some triple in P2. Thus, the bindings of P4 that do not match P2 are removed. Semi-joins also reduce the amount of computation, such as sorting or hashing, required to perform subsequent joins that are more expensive.

In addition, to determine an optimal execution plan, we consider three types of selectivity: triple pattern selectivity, variable selectivity and join selectivity. Triple pattern selectivity is computed as the fraction of the number of triples which match the triple pattern [21]. We refer to the highest triple pattern selectivity as the variable selectivity. The join selectivity is the product of the selectivity estimates of the two join patterns.

DQPGA begins by selecting the star sub-query associated with the maximum variable selectivity, orders its edges based on their join selectivity and adds them to the query plan (Lines 1 - 12 in Algorithm 1). In the example of Figure 5, it is the star query associated with ?y. In star query ?y, we first choose the pattern node with the highest selectivity, namely P2. Then we compute the join selectivity, which is the product of selectivity of two join patterns, namely the SO-join between P2 and P4 and the SO-join between P2 and P5, denoted by the two edges directly connected with P2from P4 and P5. By comparing the join selectivity, we determine the join order with the SO-join between P2 and P4 first and followed by the SO-join between P2 and P5. Now the query processor will execute each of the two SO-joins using semi-join [5, 6, 20]. The semi-join between two patterns can be two ways, for example,  $P4 \ltimes P2$  or  $P2 \ltimes P4$ . In order to reduce communication during joining the two patterns, TripleBit chooses the pattern having higher selectivity to reduce the bindings of the other pattern having lower selectivity. Considering the semi-join between P2 and P4, TripleBit will execute  $P4 \ltimes P2$  instead of  $P2 \ltimes P4$ . Once the star sub-query is processed, the patterns containing one variable (for example P2) can be removed from the query graph because bindings of those patterns are joined with other patterns. Similarly, the bindings of patterns, such as P4 may be dropped and the triple pattern selectivity may change. We compute variable selectivity again and order the remaining variable nodes until all patterns associated to the first star query ?y is processed. The query processor will repeat this procedure until all variable nodes are processed.

After all variable nodes are processed, those triple patterns (for example P1, P2, P3 in Figure 5) having only one variable are removed. If queries are star queries, the query processor will generate a plan for full joins and output final results. For cyclic queries and bridge queries, the query processor will repeat the similar procedure as mentioned above. But the query processor will choose the pattern with the highest triple pattern selectivity from the remaining patterns, orders the edges based on their join selectivity, adds them to the query plan and executes it using semi-joins (Lines 15 - 28 in Algorithm 1). For example, in Figure 5, the query of the remaining patterns (P4, P5, P6) is a cyclic query. P4 has the highest selectivity. By comparing the join selectivity of P4 and P6, P4 and P5, we can determine the join order by executing the join between P4 and P6 first and followed by the join between P4 and P5.

Once the above process ends, the query processor will generate a final plan for the remaining patterns, execute the plan using full joins (Lines 29 in Algorithm 1), and final results will be generated.

#### 5.2.2 Reducing the Size of Intermediate Results

The query response time can be further improved if we can minimize the size of intermediate results produced during query evaluation. By intermediate results, we refer to both the number of triples that match the query patterns and the data loaded into the main memory during query evaluation. The TripleBit compact design reduces the size of intermediate data in several ways. First, TripleBit does not load triples of the form (x,y,z), but (x,y) pairs. Thus, the size of the intermediate results is at most  $\frac{2}{3}$  of the size of the intermediate results of (x,y,z) format. Second, TripleBit uses less indexes for each query, which leads to less data loaded into main memory during query evaluation.

Furthermore, TripleBit reduces the number of triples with matching patterns in two phases: initializing patterns and join processing.

To initialize the triple patterns involved in a query, TripleBit considers the minimal and maximal IDs of matching triples of adjacent

#### Algorithm 1 Dynamic Query Plan Generation

```
Input: queryGraph
1: jVars=getJoinVar(queryGraph);
 2: while jVars IS NOT NULL do
      var = getVarwithMaxSel(jVars);
 3:
 4:
      p=getPatternwithMaxSel(var);
 5:
      for each pattern t adjacent to p do
         e.v1 = p; e.v2 = t; e.sel=sel(p) \times sel(t) \times factor;
 6:
 7:
        insert(iEdges, e):
 8:
      sortjoinSelectivity(jEdqes);
 9:
      for i \leftarrow 0 to size of[jEdges] - 1 do
10:
         semi-join(jEdges[i]);
      remove the patterns which only contains one join variable
      var from queryGraph;
12:
      remove var from jVars;
13: if queryGraph is star joins then
14:
      goto 29;
15: p = getPatternwithMaxSel(queryGraph);
16: flag = true; jEdges = NULL;
17: while jEdges IS NOT NULL\ OR\ flag = true\ do
18:
      for each pattern t adjacent to p do
         e.v1 = p; e.v2 = t; e.sel=sel(p) \times sel(t) \times factor;
19:
20:
         if visited[e] == NULL then
21:
           insert(jEdges, e); visited[e] = false;
22:
         else
23:
           if visited[e] == false then
24:
              update(jEdges, e);
      sortjoinSelectivity(jEdges);
25:
26:
      e=getfirstEdge(jEdges);
27:
      semi-join(e); remove(jEdges,e); visited[e]=true;
28:
      p=e.v1 == p?e.v2 : e.v1; flag = false;
29: generate plan following the above steps and execute the plan
    using full joins.
```

patterns when loading bindings of a pattern. For example, in Figure 5, the query processor first initializes P2 since it has the highest selectivity. When triples matching P2 are loaded, the bindings of join variable ?y should be bounded. Obviously, it is not necessary to load the triples beyond the boundaries even though they are bindings of P4. TripleBit will filter those triples beyond the boundaries. Filtering before materializing is super efficient for star queries, such as Q1, Q2 of LUBM. By filtering early, TripleBit reduces the intermediate results when loading triples.

When processing using semi-joins, the query processor tries to further reduce the bindings of triple patterns. Consider Figure 5,  $P4 \ltimes P2$ ,  $P5 \ltimes P2$ . Those bindings of the former, which have no matching in the latter are dropped. Hence, the constraints on join variable bindings of the latter are propagated to the former.

By reducing intermediate results, we gain two benefits: (i) we achieve lower memory bandwidth usage and (ii) we accomplish the computation of joins with smaller intermediate results.

#### 5.2.3 Join Processing

The most efficient way to execute star joins is merge-join which is faster than hash or nested-loop join [17]. TripleBit uses merge joins extensively. This entails preserving interesting orders. The bindings of most triple patterns with a given predicate p are either SO pairs which are SO ordered, or OS pairs, which are SO ordered, in TripleBit storage. Note that the second elements of these pairs are also sorted if they have the same first element. Thus, merge joins can be utilized naturally. For the triple patterns with un-restricted predicates, such as (s?p?o), (?s?po) or (?s?p?o),

Table 5: Dataset characteristics

| Dataset   | #Triples      | #S          | #O          | $\#(S \cap O)$ | #P     |
|-----------|---------------|-------------|-------------|----------------|--------|
| LUBM 10M  | 13,879,970    | 2,181,772   | 1,623,318   | 501,365        | 18     |
| LUBM 50M  | 69,099,760    | 10,857,180  | 8,072,359   | 2,490,221      | 18     |
| LUBM 100M | 138,318,414   | 21,735,127  | 16,156,825  | 4,986,781      | 18     |
| LUBM 500M | 691,085,836   | 108,598,613 | 80,715,573  | 24,897,405     | 18     |
| LUBM 1B   | 1,335,081,176 | 217,206,844 | 161,413,041 | 49,799,142     | 18     |
| UniProt   | 2,954,208,208 | 543,722,436 | 387,880,076 | 312,418,311    | 112    |
| BTC 2012  | 1,048,920,108 | 183,825,838 | 342,670,279 | 165,532,701    | 57,193 |

Table 6: LUBM 500M (time in seconds)

|             | Q1       | Q2       | Q3       | Q4       | Q5        | Q6       | Geom.    |  |  |  |  |
|-------------|----------|----------|----------|----------|-----------|----------|----------|--|--|--|--|
| #Results    | 10       | 10       | 0        | 8        | 2528      | 219772   | Mean     |  |  |  |  |
| Cold caches |          |          |          |          |           |          |          |  |  |  |  |
| RDF3X       | 0.2684   | 0.2077   | 21.9648  | 0.2473   | 1198.6520 | 295.0343 | 6.8911   |  |  |  |  |
| MonetDB     | 279.4118 | 281.0015 | 366.9872 | 283.1664 | 524.3888  | 468.7374 | 355.1170 |  |  |  |  |
| TripleBit   | 0.1291   | 0.1006   | 12.474   | 0.1759   | 46.8604   | 47.2446  | 1.9952   |  |  |  |  |
|             |          |          | Warm     | caches   |           |          |          |  |  |  |  |
| RDF-3X      | 0.0013   | 0.0027   | 16.8547  | 0.0035   | 1114.5000 | 45.9599  | 0.4687   |  |  |  |  |
| MonetDB     | 1.4475   | 1.2411   | 66.8715  | 3.3124   | 45.1842   | 86.2431  | 10.7585  |  |  |  |  |
| TripleBit   | 0.0001   | 0.0002   | 3.7421   | 0.0003   | 30.9478   | 15.6158  | 0.0471   |  |  |  |  |
|             |          |          |          |          |           |          |          |  |  |  |  |

the bindings are PSO ordered or POS ordered. Given that the intermediate data format is often ordered pairs, we say that TripleBit facilitates merge joins by design.

Considering the join  $P4 \ltimes P2$ , the query processor loads OS ordered pairs to initialize P2 because there exists two bounded components in P2. For the subsequent join, we transform the bindings of P2 into SO ordered pairs easily because O is a fixed value. TripleBit can load OS ordered pairs or SO ordered pairs to initialize P4 because S and O of the pattern are variables. Considering the subsequent merge-join with P2, TripleBit loads OS ordered pairs to initialize P4 since the bindings of P2 are SO ordered pairs.

TripleBit makes use of order-preserving merge-joins whenever possible. If the intermediate results are not in an order suitable for a subsequent merge-join (for example  $P4 \ltimes P1$ ), we can transform them into suitable ordered pairs such that merge sort can be used efficiently. The transformation is cheap because the bindings of most patterns are (x,y) ordered pairs.

Not all joins can be processed using merge-joins. If it is expensive to transform bindings of two patterns to an order suitable for later merge join, TripleBit will switch to hash-joins. The query processor will also execute hash joins because intermediate results of standard joins, for example  $P4 \bowtie P5$ , may not be (x, y) pairs.

#### 6. EVALUATION

TripleBit was implemented using C++, compiled with GCC, using -O2 option to optimize. In this section we evaluate the TripleBit against some existing popular RDF stores using the well known RDF benchmark datasets. We choose RDF-3X (v0.3.5), MonetD-B (2010.11 release) and BitMat [5] for our evaluation, since they show much better performance than many others [5, 18]. BitMat did not have a dictionary component and cannot translate strings to IDs and IDs to strings [5]. Thus, we only use it in some selected experiments, such as core execution time comparison (Table 8).

All experiments are conducted using the three well-known benchmarks: LUBM [13], UniProt (2012.Feb. release) [2] and Billion Triples Challenge (BTC) 2012 data set [1]. Table 5 gives the characteristics of the datasets. All experiments except those in Table 8, 10 were conducted on a server with 4 Way 4-core 2.13GHz Intel Xeon CPU E7420, 64GB memory; Red Hat Enterprise Linux Server 5.1 (2.6.18 kernel), 64GB Disk swap space and one SAS local disk with 300GB 15000RPM. The server also connected with a storage system which consists of 20 disks, each of which is 1T-B 7200 RPM. Other experiments (Table 8, 10) were running on a server with the same configuration except that its OS is CentOS 5.6 (2.6.18 kernel) and it did not connect with the storage system.

**Table 7: LUBM 1 Billion (time in seconds)** 

|             | Q1       | Q2       | Q3        | Q4       | Q5        | Q6        | Geom.    |  |  |  |  |  |
|-------------|----------|----------|-----------|----------|-----------|-----------|----------|--|--|--|--|--|
| #Results    | 10       | 10       | 0         | 8        | 2528      | 439997    | Mean     |  |  |  |  |  |
| Cold caches |          |          |           |          |           |           |          |  |  |  |  |  |
| RDF-3X      | 0.3064   | 0.3372   | 53.3966   | 0.3616   | 2335.8000 | 496.1967  | 11.4992  |  |  |  |  |  |
| MonetDB     | 560.3912 | 562.0915 | 3081.1862 | 579.2889 | 966.9349  | 4929.8527 | 1178.575 |  |  |  |  |  |
| TripleBit   | 0.1471   | 0.1441   | 21.8571   | 0.2313   | 69.8887   | 99.6401   | 3.0117   |  |  |  |  |  |
|             |          |          | Warm      | caches   |           |           |          |  |  |  |  |  |
| RDF-3X      | 0.0018   | 0.0029   | 33.4861   | 0.0035   | 2227.5900 | 91.5595   | 0.7069   |  |  |  |  |  |
| MonetDB     | 2.5824   | 2.4552   | 910.7387  | 6.8218   | 95.7446   | 4608.3609 | 50.8953  |  |  |  |  |  |
| TripleBit   | 0.0002   | 0.0003   | 7.5591    | 0.0003   | 41.0003   | 46.1635   | 0.0798   |  |  |  |  |  |

#### 6.1 LUBM dataset

To evaluate how well TripleBit can scale, we used 5 LUBM datasets of varying sizes generated using LUBM data generator [13](Table 5). We run almost the same set of LUBM benchmark queries as [5] did, except that Q4 and Q2 in [5] are similar, so we modify Q2 in [5] and name it as Q4 (see Appendix A). we drop Q6 in [5] when we report results here due to both space constraint and query pattern and result size similarity of Q6 in [5] with Q2.

Due to page limit, we only report the experimental results on LUBM-500M, LUBM-1B (Table 6, 7, best times are boldfaced) because larger datasets tend to put more stress on RDF stores for all queries. To account for caching, each of the queries is executed for three times consecutively. We took the average result to avoid artifacts caused by OS activity. We also include the geometric mean of the query times. All results are rounded to 4 decimal places.

The first observation is that TripleBit performs much better than RDF-3X and MonetDB for all queries. TripleBit outperforms RDF-3X in both the cold-cache case and warm cache case. The typical factors (the query run time of opponents divided by the query run time of TripleBit) in the geometric mean are among 3.4-3.8 (cold cache) and 8-10 (warm cache), and sometimes even by more than 54 (Q5 in LUBM-1B). TripleBit improves MonetDB on the cold cache time by nearly a factor of 177-391 in the geometric mean, and the warm-cache time by a factor of 228-638 in the geometric mean (more than 500 for LUBM-1B). Furthermore, for several queries (such as Q1, Q2, Q4 in LUBM-1B) the performance gain of TripleBit is more than a factor of 1000.

Another important factor for evaluating RDF systems is how the performance scales with the size of data. It is worth noting that the TripleBit scales linearly and smoothly (no large variation is observed), when the scale of the LUBM data sets increases from 500M to 1 Billion triples. Furthermore, the experimental results show that the storage and index structures in TripleBit are compact and efficient in the sense that only data relevant to the queries will be accessed most of the time. Thus the time spent for accessing data in TripleBit is directly related to the type of query patterns, but less sensitive to the scale of data in the RDF store. For example, the variation in the execution times of Q1, Q2, Q4 for 2 LUBM data sets are 0-0.0001s (warm cache). And the variation in the execution times of Q3, Q5, Q6 for the 2 data sets are larger. This is because intermediate results related with the query patterns increase with the scale of the dataset. The query processor needs to access more chunks and to perform more joins, thus the query run-time increases. In fact, this set of experiments also show that TripleBit prevails over RDF-3X and MonetDB in terms of the size of intermediate results and the compactness of its storage and index structures.

We also compared our core query execution (without dictionary lookup) with RDF-3X, MonetDB and BitMat in Table 8 (time in seconds). In the experiment, we execute the queries on RDF-3X and TripleBit and get theirs core query execution time by inserting codes. It is not easy to get the core query execution time of MonetDB by inserting codes because it is a complex system. Thus, for MonetDB and BitMat, we load MonetDB and BitMat by inserting the integer IDs generated out of RDF-3X dictionary mapping [5].

Table 8: LUBM 500M (excluding dictionary lookup)

|             | Q1     | Q2       | Q3      | Q4      | Q5        | Q6       | Geom.<br>Mean |  |  |  |  |
|-------------|--------|----------|---------|---------|-----------|----------|---------------|--|--|--|--|
| Cold caches |        |          |         |         |           |          |               |  |  |  |  |
| BitMat      | 0.2669 | 394.2805 | 3.9379  | 28.2388 | 193.9220  | 123.0972 | 25.5679       |  |  |  |  |
| RDF-3X      | 0.1190 | 0.1260   | 18.9420 | 0.1700  | 1139.3210 | 207.1380 | 4.7437        |  |  |  |  |
| MonetDB     | 12.287 | 11.963   | 125.371 | 236.139 | 147.849   | 287.328  | 75.4758       |  |  |  |  |
| TripleBit   | 0.0290 | 0.0295   | 6.1732  | 0.0510  | 30.3652   | 25.8629  | 0.7718        |  |  |  |  |
|             |        |          | Warm    | caches  |           |          |               |  |  |  |  |
| BitMat      | 0.2190 | 381.0911 | 1.9379  | 26.0217 | 190.6282  | 119.9245 | 21.4058       |  |  |  |  |
| RDF-3X      | 0.0010 | 0.0020   | 16.4640 | 0.0030  | 1115.5120 | 46.0710  | 0.4146        |  |  |  |  |
| MonetDB     | 0.099  | 0.094    | 53.033  | 2.273   | 22.861    | 24.472   | 2.9260        |  |  |  |  |
| TripleBit   | 0.0002 | 0.0002   | 3.6663  | 0.0005  | 21.1920   | 14.1073  | 0.0505        |  |  |  |  |

TripleBit shows better performance than RDF-3X, MonetDB and BitMat (except Q3). For Q3, BitMat is the best, because the result set of Q3 is empty and BitMat has a mechanism to check early stop condition [5]. Once BitMat knows queries returns zero results, it will terminates the query evaluation immediately. Moreover, according to Table 6, 8, TripleBit shows better performance in both queries with small result set and queries with large result set. Thus, the dictionary lookup is not a dominating factor for the better performance of TripleBit.

In summary, TripleBit outperforms the other three systems thanks for the following three design characteristics:

Compact design in storage and index. The saving from compact storage and index structure design also leads to efficient memory utilization and reduced I/O cost. For example, the run-time of RDF-3X increases rapidly for O5 and O6 because these queries produce much larger intermediate results, and thus require more time for I/O and sometimes it may induce I/O burst (e.g., many memory swap in/out). Concretely, in LUBM-500M there are 52M triples matching P6 of Q5 (Fig. 5). For initializing P6 of Q5, RDF-3X needs to load and decompress about 600MB data in a short time in addition to loading aggregate indexes to help the selection of permutation indexes. However, TripleBit only requires about 278MB because its intermediate results are SO pairs or OS pairs. It further reduces intermediate results as indicated in 5.2.2. Also TripleBit needs not decompress the data. In comparison, RDF-3X places heavier burden on I/O and requires much time for decompression. Furthermore, the storage structure of TripleBit allows more efficient data access than RDF-3X and BitMat as we discussed in Section 3.4.

**Efficient indexes.** First, index scan using TripleBit is fast as we discussed in Section 4.1. Second, selecting the suitable indexes from many indexes complicate query evaluation. For example, to evaluate Q3, RDF-3X needs to access 3 aggregate indexes and 3 permutation indexes whereas TripleBit only accesses one aggregate index and the ID-Chunk index. Consequently, RDF-3X loads more indexes into memory for scan. It also requires much memory to hold the indexes.

Join processing. TripleBit mainly uses merge join for join processing in star queries (Q1, Q2) and bridge queries (Q4). RDF-3X employs merge join, hash join and nested loop join depending on actual cases. However, by storing (x, y, z) triples, RDF-3X has less opportunities to execute merge join than TripleBit does. Bit-Mat reduces bindings of each pattern in the reduction phase and then processes join using a means like nested loop join [5]. In star queries and bridge queries (Q1, Q2, Q4), TripleBit improves BitMat and MonetDB on the cold cache time by a factor of 9 to 13369, and the warm-cache time by a factor of 464 to 2,474,617 because these queries have one highly selective pattern. For such queries, RDF-3X is also faster than BitMat and MonetDB. Moreover, TripleBit and BitMat can reduce intermediate results during query evaluation as early as they can, thus join queries have smaller intermediate results, leading to better performance in cyclic queries Q5, Q6. TripleBit still outperforms BitMat due to its capability to employ merge join and hash join to process join operations. How-

**Table 9: UniProt (time in seconds)** 

|             | QI      | Q2      | Q3     | Q4      | Q5       | Q6       | Q7       | Q8      | Geom.    |  |  |  |
|-------------|---------|---------|--------|---------|----------|----------|----------|---------|----------|--|--|--|
| #Results    | 0       | 0       | 26     | 1       | 14       | 838568   | 4196     | 167     | Mean     |  |  |  |
| Cold caches |         |         |        |         |          |          |          |         |          |  |  |  |
| RDF-3X      | 0.4039  | 0.3047  | 0.5046 | 0.3152  | 0.3859   | 377.4531 | 16.7898  | 3.0905  | 1.8675   |  |  |  |
| MonetDB     | 98.2642 | 41.8234 | >30min | 26.2415 | 56.9313  | 792.3241 | 112.4354 | 76.3957 | >88.2798 |  |  |  |
| TripleBit   | 0.0558  | 0.0352  | 0.1701 | 0.0864  | 0.1159   | 8.4504   | 0.6447   | 1.4522  | 0.2678   |  |  |  |
|             |         |         |        | Warn    | n caches |          |          |         |          |  |  |  |
| RDF-3X      | 0.0047  | 0.0015  | 0.0099 | 0.0079  | 0.0053   | 14.4739  | 0.1679   | 0.8786  | 0.0398   |  |  |  |
| MonetDB     | 15.5636 | 3.4345  | >30min | 0.0032  | 0.0153   | 26.7242  | 17.1546  | 3.5359  | >1.2293  |  |  |  |
| TripleBit   | 0.0002  | 0.0001  | 0.0032 | 0.0002  | 0.0008   | 6.1344   | 0.0474   | 0.6862  | 0.0061   |  |  |  |

Table 10: BTC 2012 dataset (time in seconds)

|           | Q1     | Q2     | Q3     | Q4     | Q5       | Q6     | Q7       | Q8     | Geom.   |
|-----------|--------|--------|--------|--------|----------|--------|----------|--------|---------|
| #Results  | 4      | 2      | 1      | 4      | 13       | 1      | 664      | 321    | Mean    |
|           |        |        |        | Cold   | caches   |        |          |        |         |
| RDF-3X    | 0.3506 | 0.3205 | 0.392  | 0.7232 | 0.7658   | 0.675  | 6.5977   | 6.5589 | 0.9585  |
| MonetDB   | >30    | min    | 0.601  | >30    | min      | 0.413  | 106.3342 | >30min | >2.9774 |
| TripleBit | 0.0785 | 0.1432 | 0.0705 | 0.2834 | 0.1969   | 0.2966 | 1.5299   | 3.1717 | 0.2989  |
|           |        |        |        | Warn   | n caches |        |          |        |         |
| RDF-3X    | 0.0047 | 0.0046 | 0.0061 | 0.0114 | 0.0852   | 0.0204 | 0.569    | 1.0528 | 0.0334  |
| MonetDB   | >30    | min    | 0.0249 | >30    | )min     | 0.0262 | 0.3806   | >30min | >0.0629 |
| TripleBit | 0.0005 | 0.0012 | 0.0003 | 0.0041 | 0.0033   | 0.0028 | 0.2504   | 0.0232 | 0.0038  |

ever, it still takes TripleBit much time to execute LUBM-Q5, Q6. One reason is that TripleBit executes each join operation sequentially. We can overlap some join operations and thus further improve the performance of join processing.

#### 6.2 UniProt

UniProt is a protein dataset [2]. We choose two queries from [16] and one query from [5]. We also design 5 queries in order to show the performanc. All queries are listed in Appendix B. Among 8 queries, Q1, Q3, Q6, Q7 are bridge joins, and Q2, Q4, Q5 are star joins. The last query Q8 is loop joins. The results are shown in Table 9. BitMat cannot handle tripe datasets over 1 billion and thus cannot be included in this set of experiments. Again, TripleBit outperforms RDF-3X and MonetDB for all queries in both cold and warm Cache. Comparing with RDF-3X, TripleBit gains the performance factor of 7 (cold cache) and 6.46 (warm cache) in geometric mean. For MonetDB, the typical factor ranges 19-300, and sometimes higher than 77,818 (e.g. O1). In summary, TripleBit reduces the geometric means to 0.2678s (cold) and 0.0061s (warm), which is significantly faster than RDF-3X and MonetDB. For 4 queries: Q1, Q2, Q3, Q7, TripleBit gained more than 361x improvement over the MonetDB in warm cache.

#### **6.3** BTC 2012 Dataset

Billion Triples Challenge (BTC) 2012 dataset was crawled during May/June 2012 and provided by the Semantic Web Challenge 2012 [1]. BTC dataset has varying quality due to its composition of multiple web sources. We ignored those noise data including the redundant triples which appeared many times in the data set. This resulted in 1,048,920,108 unique triples (Table 5). An obvious feature of the BTC dataset, different from other datasets, is that there are 57,193 distinct predicates. The space consumption of RDF-3X, MonetDB and TripleBit for this dataset is shown in Table 11, 12. We ran almost same queries as [16] (See Appendix C). The sizes of results the queries return are not big: from 1 to 664. Predicates of some patterns of Q1, Q2, Q4, Q5, Q8 are blank nodes. In the S-PARQL specification, blank nodes are treated as non-distinguished variables [23]. It is not an issue for RDF-3X and TripleBit to process queries containing non-fixed predicates, but the vertical partitioning approach using MonetDB handles this poorly [16]. The query run-times are shown in Table 10. TripleBit performs consistently the best for all queries.

#### 6.4 Storage space

We compare the required disk space of TripleBit with RDF-3X and MonetDB in Table 11. Here, we exclude BitMat because Bit-

Table 11: Storage space in GB

|           | LUBM | LUBM | LUBM | LUBM  | LUBM  | UniProt  | BTC 2012 |  |
|-----------|------|------|------|-------|-------|----------|----------|--|
|           | 10M  | 50M  | 100M | 500M  | 1B    | UlliFiot | B1C 2012 |  |
| RDF-3X    | 0.67 | 3.35 | 6.83 | 34.84 | 69.89 | 145.74   | 81.32    |  |
| MonetDB   | 0.35 | 1.7  | 3.5  | 22.8  | 45.6  | 78.34    | 46.98    |  |
| TripleBit | 0.42 | 2.39 | 4.88 | 22.01 | 44.5  | 63.81    | 53.08    |  |

Table 12: Storage space (Excluding dictionary) in GB

|           | LUBM | LUBM | LUBM | LUBM  | LUBM  | UniProt  | BTC 2012 |  |
|-----------|------|------|------|-------|-------|----------|----------|--|
|           | 10M  | 50M  | 100M | 500M  | 1B    | UlliFiot | B1C 2012 |  |
| RDF-3X    | 0.40 | 2.00 | 4.12 | 21.16 | 42.49 | 98.17    | 43.65    |  |
| MonetDB   | 0.14 | 0.67 | 1.6  | 5.9   | 12    | 22.04    | 8.33     |  |
| BitMat    | 0.69 | 3.5  | 6.9  | 34.1  | abort | abort    | abort    |  |
| TripleBit | 0.17 | 1.24 | 2.58 | 11.12 | 22.68 | 28.37    | 23.51    |  |

Mat does not have the dictionary facility in its public release package. TripleBit outperforms RDF-3X for all datasets in storage space. The reason is that RDF-3X maintains all six permutations of S, P and O in separate indexes, plus 9 aggregate indexes [17]. The storage of TripleBit is larger than MonetDB when loading smaller datasets, such as LUBM-50M, LUBM-100M datasets. The reason is that MonetDB only stores SO pairs of RDF data. However, MonetDB requires more storage space than TripleBit when loading LUBM-500M and LUBM-1B. For UniProt, TripleBit only needs 63.81GB storage, more compact than MonetDB and significantly more efficient than RDF-3X since TripleBit only consumes 43.8% of storage required by RDF-3X. Although BTC 2012 contains less triples than LUBM-1B, TripleBit consumes more storage space when loading BTC 2012 than LUBM-1B. There are two reasons: First, more predicates leads to larger storage for aggregate indexes and ID-Predicate index; Second, strings of BTC 2012 do not share many common prefixes as other two datasets.

Since the storage for dictionary is usually large, Table 12 shows a comparison of the core storage (not including storage for dictionary) among all 4 systems. TripleBit remains to be more compact than RDF-3X and BitMat. BitMat has the largest storage among the four systems (BitMat experiments on LUBM-1B and BTC 2012 aborted). According to Table 11, 12, the dictionary size of TripleBit is smaller than dictionary size of RDF-3X.

Table 13 shows a comparison of TripleBit with the other 2 systems on the peak memory usage during the execution of LUBM Q6. LUBM Q6 is chosen because of its large intermediate results. Both the peak virtual and physical memory usage of MonetDB are the largest compared to the other 2 systems. Surprisingly, the query time in MonetDB also grew quickly. To some extent, this showed that the MonetDB process spent much more time in the kernel waiting for the memory pages to be allocated.

During query processing, the memory is allocated for holding intermediate results and data structures for join processing. For example, RDF-3X will construct several hash tables for hash joins. Larger intermediate results lead to larger hash tables. Thus, the size of memory allocated for data structures used in processing join is also highly relevant with the size of intermediate results. One thing we need to note is that intermediate results are not only the number of triples matching patterns, but also the size of intermediate data loaded into memory during query evaluation. Table 13 showed that the memory consumption of RDF and TripleBit is in proportion to the result sizes. For example, the virtual memory consumption of RDF-3X in LUBM-1B is about 2 times of its virtual memory consumption in LUBM-500M. We can find the similar phenomenon in other data sets. It is also true for TripleBit. However, comparing with RDF-3X and MonetDB, TripleBit requires the smallest virtual memory, and the size of virtual memory for TripleBit grows slower than RDF-3X and MonetDB. In LUBM-1B, TripleBit's virtual memory size is about 40% of those of RDF-3X and MonetDB.

Table 13: Peak memory usage in GB

|           | LUBM 10M |       | LUBM 50M |       | LUBM 100M |      | LUBM 500M |      | LUBM 1B |      |
|-----------|----------|-------|----------|-------|-----------|------|-----------|------|---------|------|
| #Results  | 4,462    |       | 22,001   |       | 44,190    |      | 219,772   |      | 439,997 |      |
|           | virtual  | phy.  | virtual  | phy.  | virtual   | phy. | virtual   | phy. | virtual | phy. |
| RDF-3X    | 0.793    | 0.145 | 4.058    | 0.816 | 8.249     | 1.6  | 42.1      | 9.6  | 84.1    | 18   |
| MonetDB   | 1.577    | 0.851 | 5.104    | 4     | 10.5      | 8.1  | 44.8      | 40   | 89.3    | 61   |
| TripleBit | 0.713    | 0.331 | 2.818    | 1.8   | 5.545     | 3.7  | 23.7      | 16   | 47.8    | 33   |

These experimental results show that TripleBit can reduce the intermediate result size in comparison to the other 2 systems.

#### 7. CONCLUSION AND FUTURE WORK

We have presented TripleBit, a fast and compact system for large scale RDF data. TripleBit is both space efficient and query efficient. First, the design of a triple matrix storage structure allows us to utilize the variable-size integer encoding of IDs and the column-level compression scheme for storing huge RDF graphs more efficiently. Second, the design of the two indexing structures, ID-Chunk matrix and ID-Predicate matrix, allow us to reduce both the size and the number of indexes to the minimum while providing orders of magnitude speedup for scan and merge-join performance. In addition, the query processing framework of TripleBit best utilizes its compact storage and indexing structures. Our experimental comparison shows that TripleBit consistently outperforms RDF-3X, MonetDB, BitMat and delivers up to 2-4 orders of magnitude better performance for complex join queries over large scale RDF data.

Furthermore, RDF store can be a core component of reasoner that is responsible for storing ABox triples [15]. TripleBit can be very helpful to further speed up the reasoners as it can store the precomputed triple sets in a compact style using TripleBit storage techniques and support fast querying over precomputed triple sets through its indexing techniques. Since our store can evaluate conjunctive queries quickly, thus, it can process some rules quickly because a conjunctive query can be seen as a rule. One of our future research directions could be to implement a TripleBit enabled RDF-graph reasoner and compare it with the state of art reasoners built on top of Jena and Sesame etc.

# 8. ACKNOWLEDGMENTS

Thank all the reviewers for their valuable comments and suggestions so as we can improve our paper. The research is supported by National Science Foundation of China (61073096) and 863 Program (No.2012AA011003). Ling Liu is partially supported by grants from NSF NetSE program, SaTC program and Intel ISTC.

### 9. REFERENCES

- [1] Semantic web challenge 2012. http://challenge.semanticweb.org/2012/.
- [2] UniProt RDF. http://dev.isb-sib.ch/projects/uniprot-rdf/.
- [3] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web data management using vertical partitioning. In *Proc. of VLDB 2007*, pages 411–422. ACM, 2007.
- [4] S. Álvarez García, N. R. Brisaboa, J. D. Fernández, and M. A. Martínez-Prieto. Compressed k<sup>2</sup>-triples for full-in-memory RDF engines. In *Proc. of AMCIS 2011*.
- [5] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix bit loaded: A scalable lightweight join query processor for RDF data. In *Proc. of WWW 2010*, pages 41–50. ACM, 2010.
- [6] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to solve relational queries. *Journal of the Associanon for Computing Machinery*, 28(1):25–40, 1981.

- [7] V. Bonstrom, A. Hinze, and H. Schweppe. Storing RDF as a graph. In *Proc. of LA-WEB 2003*, pages 27–36.
- [8] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture for storing and querying RDF and RDF schema. In *Proc. of ISWC 2002*, pages 54–68.
- [9] A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A federated repository for querying graph structured data from the web. In *Proc. of ISWC/ASWC2007*, pages 211–224.
- [10] O. Hartig and R. Heese. The SPARQL query graph model for query optimization. In *Proc. of ESWC 2007*, pages 564–578.
- [11] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL querying of large RDF graphs. PVLDB, 4(11):1123–1134.
- [12] M. Janik and K. Kochut. BRAHMS: A workbench RDF store and high performance memory system for semantic association discovery. In *Proc. of ISWC 2005*, pages 431–445. Springer, Berlin, 2005.
- [13] LUBM. http://swat.cse.lehigh.edu/projects/lubm/.
- [14] A. Matono, T. Amagasa, M. Yoshikawa, and S. Uemura. A path-based relational RDF database. In *Proc. of 16th ADC*.
- [15] B. Motik, I. Horrocks, and S. M. Kim. Delta-reasoner: a semantic web reasoner for an intelligent mobile platform. In *Proc. of WWW 2012*. ACM, 2012.
- [16] T. Neumann and G. Weikum. Scalable join processing on very large RDF graphs. In *Proc. of SIGMOD 2009*, pages 627–639. ACM, 2009.
- [17] T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF data. *The VLDB Journal*, 19(1):91–113, 2010.
- [18] T. Neumann and G. Weikum. x-RDF-3X: Fast querying, high update rates, and consistency for RDF databases. *PVLDB*, 3(1-2):256–263, 2010.
- [19] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold. Column-store support for RDF data management: Not all swans are white. *PVLDB*, 1(2):1553–1563, 2008.
- [20] K. Stocker, D. Kossmann, R. Braumandl, and A. KemperK. Integrating semi-join-reducers into state of the art query processors. In *Proc. of ICDE 2001*, pages 575–584, 2001.
- [21] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL basic graph pattern optimization using selectivity estimation. In *Proc. of WWW 2008*, pages 595–604. ACM, 2008.
- [22] SWEO Community Project. Linking open data on the semantic web. http://www.w3.org/wiki/SweoIG/TaskForces/ CommunityProjects/LinkingOpenData.
- [23] W3C. SPARQL query language for RDF. http://www.w3.org/TR/rdf-sparql-query/, 2008.
- [24] C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple indexing for semantic web data management. *PVLDB*, 1(1):1008–1019, 2008.
- [25] K. Wilkinson. Jena property table implementation. In *Proc.* of SSWS 2006, pages 35–46, 2006.
- [26] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient compression. ACM Transactions on Database Systems, 31(1):1–38, March 2006.
- [27] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. Efficiently querying RDF data in triple stores. In *Proc. of WWW 2008*, pages 1053–1054. ACM, 2008.
- [28] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore: Answering SPARQL queries via subgraph matching. *PVLDB*, (8):482–493, 2011.

#### **APPENDIX**

# A. LUBM QUERIES

PREFIX r: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a> PREFIX ub: <a href="http://www.lehigh.edu/~zhp2/2004/0401/univbench.owl#">http://www.lehigh.edu/~zhp2/2004/0401/univbench.owl#</a>

Q1-Q3: Same as Q5, Q4, Q3 respectively in [5].

**Q4:** SELECT ?x WHERE {?x ub:worksFor <a href="http://www.Department0.-University0.edu">http://www.Department0.-University0.edu</a>, ?x r:type ub:FullProfessor . ?x ub:name ?y1 . ?x ub:emailAddress ?y2 . ?x ub:telephone ?y3 .}

Q5-Q6: Same as Q1 and Q7 respectively in [5].

# **B. UNIPROT QUERIES**

PREFIX r: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>

PREFIX rs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#</a>

PREFIX u: <a href="http://purl.uniprot.org/core/">http://purl.uniprot.org/core/</a>

**Q1:** Same as Q6 in [5].

Q2-Q3: Same as Q1, Q3 respectively in [16].

- Q4: SELECT ?a ?vo WHERE { ?a u:encodedBy ?vo. ?a s:seeAlso <a href="http://purl.uni-prot.org/refseq/NP\_346136.1">http://purl.uni-prot.org/refseq/NP\_346136.1</a>. ?a s:seeAlso <a href="http://purl.uniprot.org/pfam/-PF00842">http://purl.uniprot.org/pfam/-PF00842</a>. ?a s:seeAlso <a href="http://purl.uniprot.org/prints/PR00992">http://purl.uniprot.org/prints/PR00992</a>. }
- **Q5:** SELECT ?a ?vo WHERE { ?a u:annotation ?vo. ?a s:seeAlso <a href="http://purl.uniprot.org/interpro/IPR000842">http://purl.uniprot.org/interpro/IPR000842</a> ?a s:seeAlso <a href="http://purl.uniprot.org/citations/9298646">http://purl.uniprot.org/interpro/IPR000842</a> ?a u:citation <a href="http://purl.uniprot.org/citations/9298646">http://purl.uniprot.org/citations/9298646</a> .
- **Q6:** SELECT ?p ?a WHERE { ?p u:annotation ?a . ?p r:type uni:Protein . ?a r:type <a href="http://purl.uniprot.org/core/Transmembrane\_Annotation">http://purl.uniprot.org/core/Transmembrane\_Annotation</a>. ?a u:range ?range . }
- **Q7:** SELECT ?p ?a WHERE { ?p u:annotation ?a . ?p r:type uni:Protein . ?p u:organism taxon:9606 . ?a r:type <a href="http://purl.uniprot.org/core/Disease\_Annotation">http://purl.uniprot.org/core/Disease\_Annotation</a> . ?a rs:comment ?text . }
- **Q8:** SELECT ?a ?b ?ab WHERE { ?b u:modified "2008-07-22" . ?b r:type uni:Protein . ?a u:replaces ?ab . ?ab u:replacedBy ?b . }

#### C. BTC 2012 QUERIES

PREFIX geo: <a href="http://www.geonames.org/">http://www.geonames.org/</a>

PREFIX pos: <a href="http://www.w3.org/2003/01/geo/wgs84\_pos#">http://www.w3.org/2003/01/geo/wgs84\_pos#</a>

PREFIX dbpedia: <a href="http://dbpedia.org/property/">http://dbpedia.org/property/</a>

PREFIX dbpediares: <a href="http://dbpedia.org/resource/">http://dbpedia.org/resource/</a>

PREFIX owl: <a href="http://www.w3.org/2002/07/owl#">http://www.w3.org/2002/07/owl#>

PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>

- Q1: SELECT ?lat ?long where { ?a [] "Bro-C'hall" . ?a geo:ontology#in-Country geo:/countries/#FR . ?a pos:lat ?lat . ?a pos:long ?long . }
- **Q2:** Same as Q2 in [16],
- Q3: SELECT ?t ?lat ?long WHERE { ?a dbpedia:region dbpediares:List\_of\_World\_Heritage\_Sites\_in\_Europe . ?a dbpedia:title ?t . ?a pos:lat ?lat . ?a pos:long ?long . ?a dbpedia:link <a href="http://whc.unesco.org/en/list/728">http://whc.unesco.org/en/list/728</a> . }

**Q4-Q5:** Same as Q4, Q5 in [16],

- **Q6:** SELECT DISTINCT ?d WHERE { ?a dbpedia:senators ?c . ?a dbpedia:name ?d . ?c dbpedia:profession dbpediares:Politician . ?a owl:sameAs ?b . ?b geo:ontology#inCountry geo:countries/#US . }
- Q7: SELECT DISTINCT ?a ?b ?lat ?long WHERE { ?a dbpedia:spouse ?b . ?a rdf:type <a href="http://dbpedia.org/ontology/Person">http://dbpedia.org/ontology/Person</a> . ?a dbpedia:placeOfBirth ?c . ?c owl:sameAs ?c2 . ?c2 pos:lat ?lat . ?c2 pos:long ?long . }
- **Q8:** SELECT DISTINCT ?a ?y WHERE { ?a a <a href="http://dbpedia.org/class/yago/Politician110451263">http://dbpedia.org/class/yago/Politician110451263</a>. ?a dbpedia:years ?y. ?a <a href="http://xmlns.-com/foaf/0.1/name">http://xmlns.-com/foaf/0.1/name</a> ?n. ?b [] ?n. ?b rdf:type <a href="http://dbpedia.org/onto-logy/OfficeHolder">http://dbpedia.org/onto-logy/OfficeHolder</a>. }
- Note: Q1, Q3, Q6, Q7, Q8 are similar as Q1, Q3, Q6, Q7, Q8 respectively in [16]. Because they return no results when they are executed on BTC 2012 dataset, we modify them slightly.