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Abstract—NoSQL systems are deployed as the core components
for delivering big data Web services today. With growing
main memory capacity, we witness the growing interest and
deployment of in-memory NoSQL services (IM-NoSQL), which
are designed to maximize the utilization of DRAM for ultra-
low latency services. To address the volatility of DRAM for in-
memory computing services, persistence and failure recovery
are important functionality for IM-NoSQL. In this paper we
report an extensive measurement study on the performance
of persistence and recovery for IM-NoSQL. We evaluate the
performance and effectiveness of several common mechanisms
used for persistence and recovery in the presence of server
crashes, such as snapshot and logging based approaches.
Through this study, we are able to answer some of the
most frequently asked questions in provisioning of IM-NoSQL
services: (i) Can an IM-NoSQL system work effectively when
the available memory is insufficient to load the whole dataset?
(ii) What is the overhead of maintaining snapshot compared to
logging? (iii) How fast an IM-NoSQL system can recover in the
presence of failure? And (iv) how does an IM-NoSQL system
respond to the different persistence models? We report our
comprehensive measurement results on execution, persistence
and recovery performance of Redis, a representative imple-
mentation of IM-NoSQL services.

1. Introduction
NoSQL (Not only SQL) systems are attractive and

widely deployed for big data driven Web services. Suc-
cessful examples include Bigtable [9] at Google; Dynamo
[10] at Amazon; HBase [11] at Facebook and Yahoo!;
Voldemort [12] at Linkedin and so forth. As the memory
capacity increases and the unit price of DRAM decreases in
recent years, in-memory NoSQL systems (IM-NoSQL) be-
come vital components for many Internet-scale Web services
[5, 9, 10] offering ultra-low latency [1, 2, 14]. Examples
include Memcached [2], Redis [1], MongoDB [19] (partially
in-memory) from industry; RAMCloud [15], MemC3 [20],
FaRM [22], MICA [23] from academia. Although Non-
Volatile Memory (NVM) [25] is gaining increasing atten-
tion, most IM-NoSQL systems are built on volatile DRAM.
Thus, the persistence and recovery become critical compo-
nents for IM-NoSQL to provide continued data services in
the presence of server crashes or system failures.

There are two types of persistence and recovery models
commonly used for in-memory data management systems
[1, 14–18]. They are Snapshot and Log based approaches.
In comparison, log-based systems are slightly more pop-
ular. For example, RAMCloud [15] uses a logging ap-
proach similar to log-structured file systems while Redis
[1] supports both snapshot and logging and uses Snapshot
way by default. [16] and [18] focus on logging scalabil-
ity. Memcached [2] is designed as an in-memory cache
system without persistence and MongoDB [19] is partially
in-memory system using memory-mapped file. Moreover,
many existing research efforts on persistence and recovery
of data stores [16–18] have primarily been focused on SQL-
based transaction systems. As IM-NoSQL becomes widely
deployed in real world applications, both NoSQL developers
and users often need to make a choice on specific persistence
and recovery mechanism when configuring their NoSQL
systems for ensuring runtime reliability of their applications
[13, 21].

In this paper we conduct an extensive measurement
study on the performance of persistence and recovery for
IM-NoSQL under different workloads. We evaluate the per-
formance and effectiveness of several common mechanisms
used for persistence and recovery in the presence of NoSQL
server crashes, such as snapshot and logging based meth-
ods. We report our comprehensive measurement results on
execution, persistence and recovery performance of NoSQL
workloads. We choose Redis [1] as our target system in
this study because Redis is widely recognized as the most
efficient implementation of IM-NoSQL systems. It is worth
mentioning that existing research efforts on persistence and
recovery of database services have been primarily focused
on relational SQL-based transactional systems [16–18]. To
the best of our knowledge, this work is the first extensive
comparative study on different persistence models, their
performance impact on typical NoSQL workloads, and their
performance impact on recovery efficiency for NoSQL-
based in-memory systems. Moreover, as emerging byte-
addressable, non-volatile memory (NVM) [25] changes the
design principle of main memory systems due to new mem-
ory hierarchy, researchers argue that one should rethink the
design of persistence and recovery methods [6, 7, 16, 24].
Thus this in-depth measurement study will offer insights
which are instrumental to the design of efficient persistence



and recovery mechanisms for NVM based NoSQL systems.

2. Overview
Here we describe five types of persistence models and

two types of recovery models that are most popularly used
in IM-NoSQL.

2.1. The Persistence Models
The persistence requirements for current IM-NoSQL

typically depend on the data persistence requirements of
hosted applications. Some systems have no persistence sup-
port. For example, Memcached [2] is a popular distributed
in-memory cache system that it treats the memory as data
cache and thus its design and implementation do not incor-
porate persistence support at all. On the other hand, some
other in-memory systems, such as Redis [1] has strong and
customizable support for persistence. The common persis-
tence approach is to employ snapshot or logging to flush
every update of the in memory data into persistent storage.

2.1.1. Snapshot Persistence. When an IM-NoSQL system
uses the Snapshot model to achieve persistence, the system
periodically takes a snapshot of all the working dataset
hosted in memory and then dumps the snapshot into the
persistence storage as the latest snapshot file. Typical time
intervals are defined by a given number of seconds such
as 900 seconds, 300 seconds, and so forth. Some NoSQL
systems also support aperiodic snapshot triggering condi-
tions based on other parameters such as the number of write
operations that have occurred such as every 10 writes or
every 100 writes. It is also possible to combine periodic
time-based triggers with aperiodic update condition based
triggers, such as triggering snapshot event every 300 seconds
or every 10 write operations, whichever occurs the first. Fig-
ure 1(a) shows a sketch of the Snapshot persistence model.
The snapshot process consists of the following two steps to
generate persistent snapshots: (1) Snapshot trigger: This step
determines when to take a snapshot. If the trigger condition
is aperiodic with a given number of writes as the threshold,
then the trigger manager continuously or periodically checks
with the update profiling manager, which records the number
of write requests and maintains a time interval for all writes
from the previous snapshot or the system start. Whenever
it detects that there are enough writes occurred during a
certain time interval, the snapshot process will be triggered
and the snapshot save (flush) begins. The read/write APIs
are typically implemented as get/set for NoSQL. So the
statistics for write requests used by the snapshot trigger can
be directly collected from the number of set that is invoked.
(2) Snapshot save: Upon triggering the snapshot action, the
target NoSQL system dumps the snapshot to the persistence
storage and stores it as the most recent snapshot file. More
specifically, the target system forks to generate both child
and parent processes. The parent process will continue the
routine operations of the NoSQL system whereas the child
process is responsible of performing snapshot and it starts to
write the working dataset to a temporary snapshot file in the
persistent storage. Upon completing the writing of the last
data entry to the temporary snapshot file, the new version of

the snapshot file is generated and it replaces the old version.
The child process uses the copy-on-write mechanism to
dump in-memory structured dataset into the temporary snap-
shot file, so the parent process can still handle write requests
without halt. And the main instance only needs to stop when
performing the old snapshot file replacement. Also, the in-
memory structured dataset is typically compressed before
dumping to achieve storage I/O efficiency and space saving.

2.1.2. Log Persistence. When the Log model is used to
achieve persistence, the system first records every write
request received by the server as a log record entry and
writes it to the log buffer before it exercises the update
operation. When the log buffer reaches a pre-defined thresh-
old, the logging process is triggered to flush the log buffer
to a log file stored in the persistence storage. The logging
trigger threshold determines when to flush the log buffer
and the setting of this threshold also has significant impact
on the performance of write-intensive workloads and the
persistence guarantee of the dataset currently being updated.
The larger this threshold is, the less frequently the logging
will be flushed to the persistent storage, the less performance
impact by the logging based persistence on the performance
of routine NoSQL workloads, and the weaker persistence
guarantee for the dataset currently being updated.

The Log model can be implemented differently and at
different levels of granularity for persistence support. We
below describe three different modes of implementations.
(1) Immediate flushing (Log-Immediate): When a log record
is created after the NoSQL server receives a write request,
the logging process immediately flushes the log record to
the log file. In this Log-Immediate persistence model, the
logging trigger is fired upon each write request. This may
lead to a longer delay for each write request under Log-
Immediate, because the server has to be blocked and wait
for the corresponding log record to be appended to the log
file first by the write ahead logging (WAL) principle. This
performance degradation is the worst when the log file is
stored on the slow persistent storage media such as HDD,
because the disk I/O can easily become the bottleneck. One
advantage of immediate flushing is that the logging process
only needs to allocate a small size log buffer. (2) Periodical
flushing (Log-Periodical): The log buffer is periodically
checked by the logging process at the pre-defined interval
set at the system configuration time (e.g., one second for
Redis [1]). If there are newly inserted log records in the
log buffer, the logging process will flush the log buffer to
the log file by log-append operations. Thus, the logging
trigger is responsible for checking the time interval and the
status of log buffer. Under Log-Periodical, a write request
is completed after the corresponding log record has been
successfully appended to the log buffer. Also, the log buffer
uses copy-on-write mechanism to dump log records into the
log file. The drawback of this model is that it does not pro-
vide the write ahead logging (WAL) guarantee. (3) Deferred
flushing (Log-Deferred): It typically has two steps, first
the logging process continuously creates log records to log
incoming updates in the log buffer hosted in memory, and
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Figure 1: Typical persistence models for IM-NoSQL.

then relies on the operating system to manage the log buffer
flushing. Thus, it is assumed that the operating system will
be responsible for flushing its write buffer and its log buffer
to the persistence storage. Similar to the Log-Periodical, a
write request under Log-Deferred is completed after its log
record has successfully appended into the log buffer. This
model shares the same drawback as Log-Periodical. If the
operating system fails to flush the log buffer before a server
crash, then the persistence guarantee is up to the previous
flushing.

In comparison, Log-Immediate with immediate log flush-
ing requires the shortest log buffer flushing interval and
achieves highest working dataset persistence, but the cost
is also the highest, because its write performance is sig-
nificantly decreased due to immediate logging of every
write request to the slow storage I/O stack. Although Log-
Periodical and Log-Deferred both batch the log records to be
flushed, the interval of Log-Deferred relies on the operating
system setting to flush the write buffer. It can be much longer
than the periodical-interval under Log-Periodical. Thus, the
deferred log flushing may have the longest log buffer flush-
ing interval and achieves lowest level of persistence, but
Log-Deferred offers high write performance. Log-Periodical
can be seen as a tradeoff method between high persistence
and high write performance compared to Log-Immediate for
high persistence with low performance and Log-Deferred for
high performance with low persistence. We argue that Log-
Periodical may be employed by IM-NoSQL to achieve high
write performance with acceptable data loss risk.

2.1.3. NoSave without Persistence. To gain in-depth under-
standing of different implementations of snapshot and log-
ging based persistence, we also include the NoSave model
as a naive baseline model with no persistence support. For
NoSave, all the working dataset (i.e., database data and the
index data) is hosted in memory. The operating system may
utilize its memory swap area when the dataset is bigger than
the physical RAM size and it can fit into OS swap area. The
drawback of this NoSave model is that when the NoSQL
system is shutdown due to crashes or other reasons, all the
working dataset hosted in the physical RAM as well as the
swap area will be lost because of no persistence support. Ob-
viously, NoSave offers better throughput performance than

any of the snapshot or logging based persistence models,
especially when the runtime environment has fierce resource
competitions, which may lead to performance bottlenecks
such as the working dataset is bigger than physical RAM
and the OS swapping (page fault) is involved.

2.2. The Recovery Models
2.2.1. Snapshot-based Recovery. When the target NoSQL
system needs to restart from a server instance crash or
shutdown, under the snapshot recovery model, the server
will perform two steps to recover the dataset from the
most recent snapshot file: (i) loading the complete snap-
shot file into memory, and (ii) reconstructing the working
datasets: (1) Snapshot file loading: When the server instance
restarts, by detecting that if the snapshot persistence model
is configured, the server starts the snapshot-based recovery
process. First, the recovery process locates the snapshot
file and checks the file status, including whether the file is
completed, whether it is the right file or right version for this
instance, and so on. Then the recovery process starts loading
the snapshot file by streaming reads (snapshot file is usually
stored as binary format), and each time single or a batch
of key-value formatted records are loaded into memory.
(2) Working dataset reconstruction: After the records have
been loaded into memory, if the records are compressed,
they will be uncompressed first. Then the recovery process
directly inserts these records into the new created in-memory
data structure, such as hash table. Also the index for these
records will be created at the same time. If the snapshot
file is big but still can be handled in memory through OS
swapping, then the OS memory swap area will be used
upon page faults. The frequent memory page swapping may
lead to a performance degradation of the reconstruction
process. However, when the snapshot file is too big to be
handled in memory, the NoSQL system will experience the
out of memory error because the recovery process runs out
of memory space, including the OS swap area. Thus, the
recovery process will halt the working dataset reconstruction
task. Hence, it is very important to estimate the available
memory capacity based on the snapshot file size. Only when
the whole dataset has been reconstructed successfully, the
NoSQL server instance can resume its handling of newly
arrived workload requests.



TABLE 1: Typical persistence & recovery implementation in Redis system.

Generic Models
Redis Implementation

Persistence Implementation Recovery Implementation
Model Parameter Config Model Parameter Config

NoSave NoSave [save “ ”]; [appendonly no] N/A N/A

Snapshot Snapshot(DRB) [save 900 1]; [save 300 10]; [save 60 1000]; Snapshot(RDB) Default[appendonly no] (Default)

Log
Log-Deferred AOF-No [save “ ”]; [appendonly yes]; [appendfsync no] AOF-Rewrite/ auto-aof-rewrite-Log-Periodical AOF-Everysec [save “ ”]; [appendonly yes]; [appendfsync everysec] AOF-NoRewrite percentage 100/0Log-Immediate AOF-Always [save “ ”]; [appendonly yes]; [appendfsync always]

TABLE 2: Setup of testbed.

CPU Intel Core i3, 2.6 GHz
CPU cores 2 (4 with Hyper-threading)
Processor cache L1–128 KB, L2–512 KB, L3–3 MB
DRAM–8GB 8GB (4GB×2, 1600 MHz DDR3)
DRAM–16GB 16GB (8GB×2, 1600 MHz DDR3)
Storage: SSD SATA-3 with 3Gb/s (Intel 320 series)
OS Ubuntu 14.04 with kernel version 3.11.0+

2.2.2. Log-based Recovery. When a NoSQL server restarts
the system under a log-based persistence model including
Log-Immediate/Periodical/Deferred, the log-based recovery
process needs to reconstruct the whole working dataset by
replaying all the log records in two steps: (1) Log file load-
ing: Similar to the snapshot file loading, the recovery process
needs to first locate the log file and check the file status.
Normally, the log file is stored in text format and each log
record contains the write command as well as the operands.
Each time, single or a batch of log records will be loaded
into the memory. (2) Log records replay: Reconstructing
the working dataset from the text formatted log file is very
different from the binary formatted snapshot file. During
log records replaying, the NoSQL server will rely on the
recovery client maintained by the server under the log-based
persistence configuration. After the log records are loaded
into memory, the recovery client will parse out the write
commands, including the operands from the corresponding
log record entry, and redo the write command to reconstruct
the matching key-value record. The whole working dataset
is successfully reconstructed after all the log records are
replayed by the recovery client. Also, when the log file
is big and exceeds the memory capacity of the NoSQL
server, the recovery performance will decrease sharply, and
the recovery may fail to complete.

3. Measurement Study: Design Guidelines
The main objectives of this measurement study are

to gain in-depth understanding of the performance impact
of different persistence models and the effectiveness of
snapshot based recovery model and logging based recovery
model. Through this study, we want to answer some of the
most frequently asked questions with respect to the research
and development of IM-NoSQL systems: How does an in-
memory NoSQL system respond to the different persistence
models? Can an in-memory NoSQL system work effectively
when the available memory is insufficient to load the whole
dataset? What is the overhead of maintaining snapshot com-
pared to logging? And how fast an in-memory system can
recover in the presence of failure?

We set up the testbed using two servers of two different
DRAM sizes: 8GB and 16GB respectively. The choice
of the DRAM sizes allows us to study how in-memory

NoSQL performs under sufficient DRAM memory v.s. under
insufficient memory. Table 2 shows the details of the mea-
surement setup. We use Yahoo! Cloud Serving Benchmark
(YCSB) [3, 8] to generate target NoSQL workloads.

Measurement Metrics. We want to measure the per-
formance of an in-memory NoSQL write workloads in the
presence of sufficient DRAM and insufficient DRAM with
respect to the size of the dataset to be loaded into the NoSQL
store. We use the open source tool SYSSTAT [4] to measure
and analyze when and how the CPU or memory resource
bottleneck occurs. The CPU bottleneck can be detected
from the CPU utilization of user level activities (%user)
because all the NoSQL workloads are running as the user
level processes. We can detect the memory bottleneck by
measuring the DRAM utilization (%memused), and spot the
storage I/O bottleneck by measuring the CPU time used
for I/O requests (%iowait), measuring the major page faults
(majflt/s), and whether swapping starts (%swpused).

Persistence and recovery performance measure-
ments. Redis [1] is chosen as our target IM-NoSQL system
for two reasons. First, Redis is widely recognized as the
fastest and most representative IM-NoSQL system. Second,
Redis provides support for both snapshot based persistence
model and logging based persistence model. Table 1 shows
a summary of the persistence and recovery implementation
in Redis. Specifically, we can disable the persistence module
of Redis to implement the NoSave scenario. In the NoSave
case, the whole dataset is stored in memory and the OS-
managed swap storage partition when the main memory is
insufficient to host the whole dataset. Data is not persistent
when Redis is shutdown or crashes.

When the Snapshot model is configured as the per-
sistence model for Redis, the configuration should also
specify the time interval for periodic snapshot triggering
the snapshot and the number of writes for threshold based
snapshot triggering. For example, the condition of 900sec or
1 write defines that the snapshot should be triggered every
900 seconds or upon receiving one write request. Also, the
working dataset is flushed to the persistent storage as RDB
file by the rdbSave process with default configuration. When
the persistence model is snapshot based, the snapshot based
recovery model will be used upon failure for recovery from
the RDB file. For Redis, the rdbLoad process is used to
load RDB file and reconstruct the working dataset. Redis
also implements the logging based persistence models rep-
resented by AOF-No/Everysec/Always as shown in Table 1,
corresponding to Log-Deferred/Periodical/Immediate mod-
els. Redis stores the log file as the append only file (AOF)
with or without rewriting. Thus, the log based recovery
model is implemented as AOF-Rewrite or AOF-NoRewrite.
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Figure 2: The realtime throughput with different persistence.

4. Measurement and Evaluation Results
4.1. Persistence

Here we first run different persistence models with both
light-weight workloads and heavy-weight workloads, gener-
ated by 1/16 YCSB threads. We vary the raw dataset size
from 1GB (1 million records, and 1KB size for each record),
4GB (4 million records) and 8GB (8 million records). Figure
2(a) and Figure 2(b) measure the throughput performance
results (ops/sec) by running all five persistence models using
the light-weight workloads and the heavy-weight workloads
respectively. For light-weight workloads, we mean that the
physical memory (DRAM) is sufficient to host the whole
dataset of 4GB. In contrast, the heavy-weight workloads
refer to the cases in which we observe that the physical
memory (DRAM) is insufficient to host the whole dataset
of 8GB using the server setup with 8GB DRAM.

We make a number of interesting observations: First,
under the light-weight workloads, data can be loaded suc-
cessfully under all five persistence models. However, the
throughput of AOF-Always is the lowest though relatively
stable. This is because each write operation will bypass the
write buffer and sync (by invoking fsync()) to the persistent
storage, so the low speed storage media such as HDD or
SSD always becomes the bottleneck compared with DRAM.
This can be further observed by the CPU (%iowait) trace
results in Figure 9(a). Second, the throughput of AOF-
Everysec is the next worst compared to AOF-No, Snapshot
and NoSave configuration. This is because log flushing is
triggered every second, which is costly compared to (i)
AOF-No, which let the OS determine when to flush the data
to the persistent storage, or (ii) Snapshot, which periodi-
cally triggers the snapshot of the whole working dataset
and flushes it to the persistent storage. As a result, the
throughput of AOF-Everysec is seriously affected by insuf-
ficient DRAM and can decrease drastically when memory
swapping starts as shown in Figure 2(a). Third and more
interestingly, we observe that the throughput performance
of Snapshot and AOF-No is unstable with frequently ups
and downs. This real-time throughput volatility is primarily
caused by the sudden increase and release of the CPU,
DRAM and I/O resources, which results in making the data
loading performance for Snapshot and AOF-Everysec faster
than NoSave. Finally, under the heavy-weight workload,
the DRAM is insufficient to host the whole dataset of
8GB. All AOF-No/Everysec/Always logging models cannot
finish the dataset loading compared to NoSave, the Snapshot
persistence model shows unstable throughput performance

due to the real-time throughput volatility (Figure 2(b)).
Concretely, the throughput decreasing is due to the fact
that the operating system (OS) has to swap some of the
dataset from memory to disk swap partition, and handle
partial working dataset in the swap space. We can see from
Figure 5(a) and Figure 6(a) that the CPU time (%iowait)
used for I/O processing increases sharply when the memory
swapping starts. From Figure 5(a), even DRAM is enough,
the storage I/O is consumed by flushing the working dataset
into a snapshot file. The CPU utilization (%iowait and
%user) may suddenly increase and drops when flushing
starts and finishes respectively. Similar situation happens for
AOF-Everysec as the log buffer is periodically flushed when
DRAM is enough.

Moreover, from Figure 2(b), we can see the realtime
throughput of Snapshot decreases sharply when DRAM is
not enough and maintains the low throughput steadily until
the end. While the realtime throughput of NoSave model can
rise again after swapping becomes stable (see major page
faults patterns in Figure 4(c)), and I/O resource competition
under NoSave is not as high as under the Snapshot model,
as shown in Figure 4(c) and Figure 6(c).

4.2. Recovery
The recovery measurement mainly focuses on recovery

time and collects the trace results during recovery. Then we
further analysis the recovery bottlenecks based on the trace
results. As the logging files of AOF-No/Everysec/Always are
the same, so the recovery processing from each logging
model is also the same. While as the logging file rewrites
can impact the log file size as well as logging records organ-
isation much, we dig into recovery processing from logging
file with/without rewrite (AOF-Rewrite/AOF-NoRewrite).

As shown in Figure 10, we can see different DRAM
size has significant impact on recovery time when doing
recovery from persistence files with different dataset size.
For 1Million case with 1GB raw dataset size in our setup,
both DRAM-8GB and DRAM-16GB can handle all the work-
ing dataset in DRAM, so the recovery time is similar and
the bottleneck is from CPU ( similar situation to 4Million
case of DRAM-16GB, we will explain the details in the
following 4Million case with trace results). For 4Million
case with 4GB raw dataset size, the recovery speed of
DRAM-16GB is much faster than DRAM-8GB. And the
specific recovery speedup for Snapshot/AOF-Rewrite/AOF-
NoRewrite model is 1.82x/2.09x/2.15x. Then we dig into the
4Million case with trace results, as shown in Figure 12 for
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Figure 4: Trace results of NoSave (Heavy).
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Figure 5: Trace results of Snapshot (Light).
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Figure 6: Trace results of Snapshot (Heavy).
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(b) AOF-No-DRAM(Light)
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Figure 7: Trace results of AOF-No (Light).
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Figure 8: Trace results of AOF-Everysec (Light).
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Figure 9: Trace results of AOF-Always (Light).
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Figure 10: Recovery time with different DRAM size.
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Figure 11: Memory and storage usage of different dataset.
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Figure 12: Recovery trace from different persistence files with DRAM-8GB.
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Figure 13: Recovery trace from different persistence files with DRAM-16GB.
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Figure 14: Recovery trace of CPU core level from different persistence files with DRAM-8GB.

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

CP
U	
  
ut
ili
sa
tio

n	
  (
%
)

Time	
  (s)

Core0 Core1 Core2 Core3

(a) Snapshot-CPU (Core level)

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

CP
U	
  
ut
ili
sa
tio

n	
  (
%
)

Time	
  (s)

Core0 Core1 Core2 Core3

(b) AOF-Rewrite-CPU (Core level)

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

CP
U	
  
ut
ili
sa
tio

n	
  (
%
)

Time	
  (s)

Core0 Core1 Core2 Core3

(c) AOF-NoRewrite-CPU (Core level)

Figure 15: Recovery trace of CPU core level from different persistence files with DRAM-16GB.

DRAM-8GB, we can see much higher CPU utilisation for
handling outstanding storage I/O requests (%iowait) begins
when DRAM is not enough to host the new constructed
working dataset and swapping is involved to use virtual
memory (see Figure 12(a) for Snapshot, Figure 12(b) for
AOF-Rewrite and Figure 12(c) for AOF-NoRewrite). While
compared with trace results for 4Million case of DRAM-
16GB in Figure 13, we can see no CPU time is idle for
storage I/O requests. Moreover, from Figure 10, we can see
logging file rewriting helps to speedup the recovery for both
DRAM scales as expected. And here we reconstruct the
dataset from the logging file generated only by handling
insert workload, if update workload is also added then
more speedup from rewriting can be achieved. Another
interesting result is that although persistence file of Snashot
is always smaller than AOF-Rewrite (see Figure 11(b)), but

the recovery time of Snapshot is longer than AOF-Rewrite.
Moreover, as shown in Figure 14 and Figure 15, we

verified that Redis is the single thread system as only one
CPU core is used for each moment. And for each running
Redis instance, when DRAM is enough the capability of
a single CPU core is critical for recovery performance, and
can easily become the bottleneck if the single core capability
is not enough powerful, such as our setup here that each core
of Intel i3 from hyper-threading is not that powerful one.
So although the CPU utilisation (%user) is just using 25%
of the whole CUP source as shown in the Figure 13, but
one core is already fully used (almost 95∼100%) as shown
in Figure 15 (one out of the four cores). When DRAM is
not enough and swapping starts, then storage I/O can easily
become the bottleneck and the CPU bottleneck per core
is not existing anymore. So as shown in Figure 12, also



though the CPU utilisation for storage I/O request (%iowait)
is approximate 25% (one out of four cores) but there has
been I/O bottleneck during the recovery processing for
DRAM-8GB. What’s more, the network performance is also
critical for recovery processing and can easily become the
bottleneck especially when DRAM and CPU become very
powerful. Because network latency has significant impact of
the round trip time for Internet service based IM-NoSQL,
such as Redis to redo the logging records, especially when
doing recovery under distributed runtime environment.

4.3. Resource Usage
As we have already been detailed discussed the CPU

utilisation, here we focus on the memory and storage space
usage. We use DRAM-16GB environment to finish these ex-
periments, and use single YCSB thread to load and generate
1GB, 4GB and 8GB raw datasets. Then we use statistic
tool of Redis client (“Redis-cli> info memory”) to collect
memory information from running instance, and use linux
shell to get persistence file size. From Figure 11, memory
usage is about 2.2x of the raw dataset size as shown in
Figure 11(a). While the storage usage is about 1.1x∼1.2x
of the raw dataset. More specifically, the snapshot file size
(Snapshot) is 1.1x and logging file size (AOF) is around
1.2x of raw dataset size, so the Snapshot persistence model
saves 10% space) compared with AOF model. Here we want
to mention that although logging file rewriting for AOF-
Rewrite only gets about 2% storage space saving compared
with AOF-NoRewrite, but as we only use insert workload
in this measurement and if update workload is added then
rewriting mechanism can save much more space. Another
point we want to mention is that, when the whole work-
ing dataset has been persisted in storage, the compression
functionality provided by Redis can get rid of almost 100%
space for both Snapshot and AOF models. However, the cost
is that a lot of CPU resource is consumed by uncompressing
the persistence files when need to do recovery.

5. Conclusion
We have conducted an extensive measurement study

on the performance of different persistence and recovery
models for IM-NoSQL services. We evaluate the perfor-
mance and effectiveness of several common mechanisms
used for persistence and recovery upon server crashes, such
as snapshot and logging. We report our comprehensive
measurement results on execution, persistence and recovery
performance of Redis [1]. A number of interesting obser-
vations are made. First, NoSQL services with persistence
support does not necessarily have low throughput perfor-
mance compared to the NoSave case. Second, IM-NoSQL
can leverage OS swapping to deal with the problem of
insufficient DRAM. Third, the internal representation of the
raw dataset in a NoSQL system is typically two times bigger
than the raw dataset size, thus, even the raw dataset can
fit into the DRAM, the memory swapping may still occur.
Finally, the recovery efficiency of an IM-NoSQL service is
seriously constrained by the DRAM capacity. We conjecture
that the results of this measurement study provide some
deeper insights on effectively configuring and tuning IM-
NoSQL in the presence of server failure.
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