
1

PathGraph: A Path Centric Graph Processing System
Pingpeng Yuan, Changfeng Xie, Ling Liu, Fellow, IEEE, and Hai Jin Senior Member, IEEE

F

Abstract—Large scale iterative graph computation presents an inter-
esting systems challenge due to two well known problems: (1) the lack
of access locality and (2) the lack of storage efficiency. This paper
presents PathGraph, a system for improving iterative graph computation
on graphs with billions of edges. First, we improve the memory and
disk access locality for iterative computation algorithms on large graphs
by modeling a large graph using a collection of tree-based partitions.
This enables us to use path-centric computation rather than vertex-
centric or edge-centric computation. For each tree partition, we re-label
vertices using DFS in order to preserve consistency between the order
of vertex ids and vertex order in the paths. Second, a compact storage
that is optimized for iterative graph parallel computation is developed
in the PathGraph system. Concretely, we employ delta-compression
and store tree-based partitions in a DFS order. By clustering highly
correlated paths together as tree based partitions, we maximize se-
quential access and minimize random access on storage media. Third
but not the least, our path-centric computation model is implemented
using a scatter/gather programming model. We parallel the iterative
computation at partition tree level and perform sequential local updates
for vertices in each tree partition to improve the convergence speed.
To provide well balanced workloads among parallel threads at tree
partition level, we introduce the concept of multiple stealing points
based task queue to allow work stealings from multiple points in the
task queue. We evaluate the effectiveness of PathGraph by comparing
with recent representative graph processing systems such as GraphChi
and X-Stream etc. Our experimental results show that our approach
outperforms the two systems on a number of graph algorithms for both
in-memory and out-of-core graphs. While our approach achieves better
data balance and load balance, it also shows better speedup than the
two systems with the growth of threads.

Index Terms—Graphs and networks, Concurrent Programming, Graph
algorithms, Data Storage Representations.

1 INTRODUCTION

We are entering the big data era. A large number of infor-
mation contents generated from business and science appli-
cations are highly connected datasets, which fuels a growing
number of large scale graph analysis applications [10]. Most
of existing graph processing systems address the iterative
graph computation problem by programming and executing
graph computation using either vertex centric or edge centric
approaches, which suffer from a number of problems, such as

• P. Yuan, C. Xie, H. Jin are with Services Computing Technology and
System Lab., Cluster and Grid Computing Lab., Big Data Technology
and System Lab., School of Computer Science & Technology, Huazhong
Univ. of Sci. & Tech., Wuhan, China, 430074. email:ppyuan@hust.edu.cn,
hjin@hust.edu.cn,

• L. Liu is with the College of Computing, Georgia Institute of Technology,
Atlanta, GA, 30332. email:lingliu@cc.gatech.edu

the lack of access locality and the lack of efficient partitioning
method.

Access Locality. Most of the iterative graph computation
algorithms need to traverse the graph from each vertex to learn
about the influence of this vertex over other vertices in the
graph through its connected paths. Also graphs can be irregular
and unstructured. Thus, vertices or edges that are accessed
together during iterative computations may be stored far apart,
leading to high cache miss rate and poor access locality at
both memory and secondary storage. This is primarily due to
two factors: First, the storage structure for graphs typically
fails to capture the topology based correlation among vertices
and edges. Furthermore, existing graph partitioning approach-
es, such as random edge partitioning or vertex based hash
partitioning tend to break connected components of a graph
into many small disconnected parts, which leads to extremely
poor locality [9], and causes large amount communication
across partitions during each iteration of an iterative graph
computation algorithm. Thus, the runtime is often dominated
by the CPU waits for memory access.

Efficient Graph Partitioning and Processing. Achieving
high performance in processing a large scale graph requires
efficient partitioning of the graph such that the graph com-
putation can be distributed among and performed by multiple
parallel threads or processes. Existing graph processing sys-
tems are primarily based on the vertex centric or edge centric
computation models, and the random hash based partitioning
of a graph by vertices or edges. However, random hash
partitioning often produces ”balanced” partitions in terms
of vertices or edges but such balanced partitions result in
disconnected components of the original graph, which leads to
poor access locality and consequently causes imbalanced com-
putational workload. We argue that one of the key challenges
for improving the runtime of iterative graph computations
is to develop effective mechanisms for load balance among
parallel tasks. A popular way to manage load balance is to
use a parallel task scheduling method that supports work-
stealing based on a non-blocking data structures that prevents
contention during concurrent operations [3]. An open problem
for work stealing is the contention among two or more thieves
when they choose the same victim, causing access conflicts
and imbalance loads.

To address these two problems, we argue that many iterative
graph algorithms explore the graph step-by-step following the
graph traversal paths. For each vertex to be processed, we need
to examine all its outgoing or incoming edges and all of its
neighbor vertices. The iterative computation for each vertex



2

will converge only after completing the traversal of the graph
through the direct and indirect edges connecting to this vertex.
The iterative computation of a graph has to wade through many
paths and then converges when all vertices have completed
their iterative computation. Thus, it motivates us to partition a
graph into a collection of tree based partitions, each consisting
of multiple traversal paths. The second motivation is to support
access locality through both a compact storage for graph data
and a storage placement method using tree-based partitions
instead of random collections of edges or vertices.

Following the motivations, we develop a path-centric graph
processing system − PathGraph for fast iterative computation
on large graphs with billions of edges. Concretely, PathGraph
presents a path centric graph computation model from two
perspectives: First, the input to the PathGraph algorithms is a
set of paths, even though PathGraph provides API to support
the vertex-centric programming model, our PathGraph engine
will generate executable code that performs the graph analysis
algorithm using the path centric computation model. Second,
the graph processing system of PathGraph explores the path-
centric model at both storage tier and computation tier.

At the computation tier, PathGraph first performs the path-
centric graph partitioning to obtain path-partitions. Then it
provides two principal methods for expressing graph compu-
tations: path-centric scatter and path-centric gather, both take
a set of paths from edge traversal trees and produce a set of
partially updated vertices local to the input set of paths. The
path-centric scatter/gather model allows PathGraph to parallels
the iterative computation at tree partition level and performs
sequential local updates for vertices in each tree partition to
improve the convergence speed.

At storage tier, we cluster and store the paths of the same
edge-traversal tree together while balancing the data size of
each path-partition chunk. This path-centric storage layout
can significantly improve the access locality because most
of the iterative graph computations traverse along paths. In
contrast, existing vertex-centric or edge-centric approaches
partition and store a graph into a set of shards (partition
chunks) with each shard storing vertices and their outgoing
(forward) edges like in X-Stream [21] or vertices with their
incoming (reverse) edges like GraphChi [12]. Thus, when
uploading a shard to memory, it is possible that some vertices
and their edges are not utilized in the computation, which
leads to ineffective data access or poor access locality. In
addition to model a large graph using a collection of tree-
based partitions for improving the memory and disk locality
for iterative computation algorithms, we also design a compact
storage using delta-compression, and store a graph by tree-
based partitions in a DFS order. By clustering highly correlated
paths together, we further maximize sequential access and
minimize random access on storage media.

To evaluate the effectiveness of our path-centric approach,
we compare PathGraph with two recent representative graph
processing systems: GraphChi and X-Stream, and show that
the path-centric approach outperforms the vertex-centric sys-
tem GraphChi and the edge-centric system X-Stream on a
number of graph algorithms for both in-memory and out-of-
core graphs.

2 SYSTEM OVERVIEW

In this section, we give an overview of the PathGraph system
from three perspectives. First, we present the basic concepts
used in PathGraph. Second, we present the system architecture
of PathGraph, which outlines the main components of Path-
Graph. We will present the technical description of the core
components of PathGraph in the subsequent sections.

2.1 Preliminary
PathGraph can handle both directed graphs and undirected
graphs. Since undirected graphs can be converted into directed
connected graphs and disconnected graphs can be split into
connected subgraphs, we will present our approach in the
context of directed connected graphs in the rest of the paper.

Definition 2.1 (Graph). A graph G = (V,E) is defined by a
finite set V of vertices, {vi|vi ∈ V } (0 ≤ i < |V |), and a set
E of directed edges which connect certain pairs of vertices,
and {e = (u, v) ∈ E|u, v ∈ V }. The edge (u, v) is referred to
as a forward edge or out-edge of vertex u and a reverse edge
or in-edge of vertex v.

Definition 2.2 (Vertex Degree). Let G = (V,E) denote a
graph. For any vertex u ∈ V , let IE(u)={v|v ∈ V, (v, u) ∈ E},
and OE(u) = {w|w ∈ V, (u,w) ∈ E}. We say that the in-
degree of u, denoted by deg−(u), is ‖IE(u)‖ and the out-
degree of u, denoted by deg+(u), is ‖OE(u)‖.

Definition 2.3 (Path). Let G = (V,E) denote a graph.
A path between two vertices u and w in V , denoted by
Path(u,w) =< v0, v1, ..., vk >, is defined by a sequence of
connected edges via an ordered list of vertices, v0, v1, ..., vk
(0 < k < |V |), such that v0 = u, vk = w,∀i ∈ [0, k − 1] :
(vi, vi+1) ∈ E. When a path from u to w exists, we say that
vertex w is reachable by u through graph traversal.

There is a class of iterative graph computation algorithms
that need to examine each vertex in a graph by traversal of
the graph along the forward direction or the reverse direction.
Consider PageRank, one way to compute the page rank is
to traverse the graph by following the reverse edges. Each
iteration of the PageRank algorithm will update a vertex rank
score by gathering and integrating the rank scores of the source
vertices of its in-edges. Another way is to traverse the graph
by following the forward edges. Its updated vertex state (rank
score) will be scattered to all destination vertices of its out-
edges for the PageRank computation in the next iteration. In
each iteration, every vertex u will be examined for PageRank
computation by examining its adjacent (neighbor) vertices,
resulting in examining all vertices in a graph. We call such
a reverse traversal tree rooted at u the reverse-edge traversal
tree of u. Similarly, we can also define the forward-edge
traversal tree of u. A graph may have one or more forward or
reverse edge traversal trees. In the following, we will give the
definition of forward or reverse edge traversal tree/forests.

Definition 2.4 (Forward-Edge Traversal Tree). A forward-
edge traversal tree/forest of G, denoted by Tf = (Vf , Ef ),
is defined as follows: 1) Ef = E; (2) ∃vrt ∈ Vf such that
deg−(vrt) = 0. We call this vertex the root vertex of the tree;



3

(a) a Graph

(b) Forward edge traversal tree (c) Reverse edge traversal tree

Fig. 1. A graph and its Forward-edge Traversal Tree,
Reverse-edge Traversal Tree

(3) ∀u ∈ Vf , u satisfies the following conditions: (i) ∃v ∈ V ,
u is v or u is a dummy copy of v; (ii) ∃v ∈ Vf and v is a
child of u s.t. (u, v) ∈ Ef ; (iii) if u is a leaf of Tf , u is a
dummy vertex or deg+(u) = 0. if u is a non-leaf of Tf , u has
at most deg+(u) children by its out-edges.

Definition 2.5 (Reverse-Edge Traversal Tree/Forest). A
reverse-edge traversal tree/forest of G, denoted by Tr =
(Vr, Er), is defined as follows: 1) Er = E; (2) ∃vrt ∈ Vr
s.t. deg+(vrt) = 0. We call this vertex the root vertex of the
tree Tr; (3) ∀u ∈ Vr, u satisfies the following conditions:
(i)∃v ∈ V , u is v or u is a dummy copy of v; (ii) ∃v ∈ Vr
and v is a child of u s.t. (v, u) ∈ E; (iii) if u is a leaf of Tr,
u is a dummy vertex or deg−(u) = 0. if u is a non-leaf of Tr,
u has at most deg−(u) children by its in-edges.

A traversal forest contains traversal trees, each of which is a
connected component of the graph. In a traversal forest, each
tree is a directed tree, namely it is a directed path from the
root to any other vertex in the tree. For the forward traversal
tree or forest Tf , there is deg−(u)− 1 dummy-copies of u as
the dummy leaves in Tf . For the reverse traversal tree/forest
Tr, there is deg+(u) − 1 dummy-copies of u as the dummy
leaves in Tr. For simplicity, we call them the forward tree
and the reverse tree respectively.

We can construct edge traversal trees using breadth-first
search (BFS) or depth-first search (DFS). For instance, we
can construct a forward-edge traversal tree T = (Vf , Ef ) of
graph G by starting with adding a source vertex v (in-degree is
zero) into Vf . We call v the root of T and put v into list. Then
we perform the following steps iteratively: remove an element
v from the list, ∀e : v → u ∈ E, add e into Et, remove e from
G, add u into the list. This process iterates until no edges can

Fig. 2. The Architecture of PathGraph
be added from G. Depending on DFS or BFS, we push and
pop on the same side of list, namely push onto the right (top)
of the queue and pop from the left (bottom) of the queue,
to get a sequence of vertices from the queue. The process
will visit each vertex and edge. Suppose there is at least one
vertex v not visited and let w be the first unvisited vertex
on the path from s to v. Because w was the first unvisited
vertex on the path, there is a neighbor u that has been visited.
But when we visited u we must have looked at edge(u,w).
Therefore w must have been visited. For the example graph
in Fig. 1(a), Fig. 1(b) shows a forward traversal tree of the
graph and Fig. 1(c) shows a reverse traversal tree of the graph.
Consider the example graph in Fig. 1(a), vertex v1 has three
forward-edges, thus, in the reverse-edge traversal tree shown
in Fig. 1(c), v1 has deg+(v1)− 1=2 dummy vertices.

Note that the edge traversal tree in PathGraph, strictly
speaking, is a tree-like subgraph given that it contains dummy
vertices, which are multiple appearances of a vertex. The
reason that we keep the deg+(w) − 1 dummy leaf vertices
for each of those vertices, say w, which has deg+(w) ≥ 2 or
deg−(w) ≥ 2, is to model each of the multiple paths reachable
to (from) w from (to) the root vertex vroot independently
for fast iterative computation. Thus, given a forward traversal
tree/forest Tf = (Vf , Ef ) of G = (V,E), the size of Vf has
the upper bound of

∑
u∈V deg

−(u). Similarly, for a reverse
traversal tree/forest Tr = (Vr, Er) of a graph G, the size of
Vr has the upper bound of

∑
u∈V deg

+(u).
Traversing a graph from a vertex u gives us a traversal tree

rooted at u. Any vertex in the graph that is reachable from
vertex u by following u’s forward (reverse) edges is a part of
the forward (reverse) tree of u. The part of a forward (reverse)
tree is a sub-tree of the forward (reverse) tree.

Definition 2.6 (Sub-Tree). Let T = (VT , ET ) denote a
forward or reverse edge traversal tree. A tree S = (VS , ES)
is a subtree of T if and only if (iff) S satisfies the following
conditions: (i) VS ⊆ VT , ES ⊆ ET , (ii) ∃vrt ∈ VS s.t.
∀(u, vrt) ∈ ET → (u, vrt) /∈ ES . We call vrt the root vertex of
S, and (iii) ∀y ∈ VS , we have (vrt, y) ∈ ES or ∃v1, ..., vk(k ≥
1) such that (vrt, v1),(v1, v2), ...,(vk−1, vk),(vk, y) ∈ ES .

2.2 System Architecture
The PathGraph system consists of five main functional com-
ponents: (1) The Path Centric Graph Partitioner, which takes



4

a raw graph G as input and transforms the graph G into a
collection of forward-edge or reverse-edge traversal trees. (2)
The Path Centric Compact Storage module, which store the
graph based on the traversal trees. For each traversal tree,
we re-label the vertices to improve the access locality. (3)
The Work Stealing schedule using Multi-ended Queue, which
provides load balance among multiple partition-level parallel
threads. (4) The Path Centric Graph Computation module,
including path centric gather and scatter functions. (5) Graph
algorithms, which include PageRank, BFS, CC, SpMV etc.
Figure 2 shows an architectural sketch of PathGraph.

We will dedicate the subsequent four sections to path-centric
graph partitioning, path-centric computation using scatter-
gather, the workstealing scheduler and the path-centric com-
pact storage respectively.

3 PATH-ORIENTED GRAPH PARTITIONING
Since PathGraph runs on a machine, our partitioning approach
differs from general partitioning approach and mainly cares
about load balance and locality. Given that most of the iterative
graph computation algorithms need to traverse the paths, an
intuitive solution is to partition a large graph by employing
a path centric graph-partitioning algorithm to improve access
locality. Our path-oriented graph partitioning approach actu-
ally partitions the traversal trees of a graph as sub-trees, each
of which preserves the traversal path structures of the graph.
In many graph processing systems, vertices are stored in the
lexical order of their vertex IDs assigned randomly. It induces
worse locality. Thus we describe how we re-label the vertices
in each traversal tree in order to improve the access locality.

3.1 Traversal Tree Based Graph Partitioning
In order to effectively generate path partitions for a given graph
without breaking many paths, we use edge-traversal trees as
the basic partitioning unit. By the edge-traversal tree definition
given in the previous section, let G = (V,E) be a graph and
P1, P2, . . . , Pk be a set of edge-traversal (sub) trees of G,
where Pi = (VPi

, EPi
), EP1

∪ EP2
∪ ... ∪ EPk

= E, EPi
∩

EPj =∅ (∀i 6= j). We also call P1, P2, . . . , Pk (0 < k ≤ |E|)
the k partitions of E. If vertex u is an internal vertex of Pi

(0 < i ≤ k) then u only appears in Pi. If u belongs to more
than one partition, then u is a boundary vertex.

Before partitioning a graph, we first define the partition
size is by the number of edges hosted at each partition. Then
we construct the forward-edge traversal trees (or reverse-edge
traversal trees) of the graph using BFS as outlined in Section 2.
Now we examine each of the edge traversal trees to determine
whether we need to further partition it into multiple smaller
edge-traversal sub trees or paths. Concretely, considering the
forward trees, we first examine a partition containing those
vertices with zero incoming edges, perform DFS or BFS on
the tree and add the visited edges into the partition. If the edge
number of the partition exceeds the system-supplied limit for a
partition, we will construct another partition using the similar
process. When partitioning edges, we can divide the edges
of a vertex into multiple partitions or place all of them in a
partition. The process repeatedly operates on the edge traversal
trees (partitions) until all edges of a graph are visited.

For example, suppose that we set the maxsize of a partition
by 10 edges, then one way to partition the graph in Fig. 1(a) is
to divide it into two partitions shown in Fig. 1(b). In Fig. 1(b),
the edges of v10,7 are divided into partition P1, P2. However,
we can place the edges of v10,7 into a partition. The former
case is evener in edge distribution than the latter case. The left
dotted green circle shows P1 with four internal vertices and
six boundary vertices and the right dotted red circle shows P2

with three internal vertices and six boundary vertices.
In PathGraph, each boundary vertex has a home partition

where its vertex state information is hosted. In order to
maximize the access locality, a boundary vertex shares the
same partition as the one where the source vertices of its in-
edges belong. In the situation where the source vertices of its
in-edges belongs to more than one partitions, the partition that
has the highest number of such source vertices will be chosen
as the home partition of this border vertex. If the numbers are
same, the partition where the root of edge traversal tree is in
will be chosen as home partition of the vertex. Considering
the example in Fig. 1(b), the home partition for all boundary
vertices v3,9, v4,10, v6,6, v10,7, v11,8, v12,5 is P1.

Using edge traversal trees as the partitioning units has a
number of advantages. First, edge traversal trees preserve
traversal structure of the graph. Second, most iterative graph
algorithms perform iterative computations by following the
traversal paths. Third, the edge-traversal tree based partition
enables us to carry out the iterative computation for the internal
vertices of the trees independently. This approach also reduces
interactions among partitions since each partition is more
cohesive and independent of other partitions.

3.2 Path Preserving Vertex Relabeling
In PathGraph, all forward traversal trees, as well as reverse
traversal trees are Direct Acyclic Graph (DAG) if we ignore
dummy vertices. Thus, we can find a topological order of
traversal trees in the graph using depth-first search. Given
that original vertex IDs do not indicate the access order, this
motivate us to improve locality using relabeling vertices within
each traversal tree. In order to keep the topological order of
all vertices, we improve locality by relabeling vertices within
each traversal tree. For forward traversal tree, we must assign
small ids to vertices that are in the front of list, and then
bigger ids to vertices in the back of the list. However, for
reverse traversal tree, we must assign bigger ids to vertices in
the front of the list and smaller ids to vertices in the back of
the list. Algorithm 1 is used to find a topological order of a
graph and then re-label vertices according to their orders. Since
dummy vertices are not real vertices (Step 5), we skip them
when constructing topological order of a graph. Concretely,
we visit vertices using DFS, then recursively assign all vertices
unique id in the visiting order. By Algorithm 1, all vertices
are re-labeled for each traversal tree. Figure 1(b) shows that
each vertex is associated with the original label (the first label
of each vertex) and the new label (the second label of each
vertex). For example, the original label of v10,7 is 10 and its
new label is 7. For v1, its new label is the same as its original
label, which is 1. Also the resulting traversal tree defines a
partial order for vertex access.



5

Algorithm 1 Assigning IDs using DFS of tree
1: while there are vertices without assigning new ids do
2: get an vertices v without new ids;
3: DFS-AssigningIDs(v);
4: Function DFS-AssigningIDs(vertex v)
5: if (v is not a dummy vertex) then
6: AssignID(v);
7: for each vertex u: v → u do
8: DFS-AssigningIDs(u);

Lemma 1. Suppose T = (VT , ET ) is a forward (or reverse)
edge traversal tree in G = (V,E). P is the set of paths in T .
∀p =< v0, v1, ..., vk >∈ P , where edge e :vi → vi+1(0 ≤ i <
k) ∈ ET . If vi, vi+1 are not dummy vertices, then id(vi+1) >
id(vi) (0 ≤ i < j < k). And ∀u, v ∈ V , if idu > idv , then the
vertex v should be visited before the vertex u.

Lemma 2. Let S be a subtree of the traversal tree T =
(VT , ET ) and MinId and MaxId are the minimal and maximal
id of non-dummy vertices in S. ∀v ∈ VT , if v is not a dummy
vertex of S, then MinId ≤ id(v) ≤MaxId.

This lemma states that the ids of non-dummy vertices in
a subgraph S of a traversal tree T must fall within the range
defined by its MinID and MaxID. Thus, any vertices with their
vertex ids outside the range do not belong to S. The proof of
these two lemmas is straightforward by using Algorithm 1 and
the definition of MinID and MaxID.

4 PATH CENTRIC SCATTER-GATHER

Scatter-gather programming model is sufficient for a variety
of graph algorithms [12, 21]. In the model, developers define
a scatter function to propagate vertex state to neighbors and
a gather function to accumulate updates from neighbors to
recompute the vertex state. In PathGraph, the path centric
computation model first performs the path-centric graph parti-
tioning to obtain path-partitions. Then it provides two principal
methods to perform graph computations: path-centric scatter
and path-centric gather. Both take one or several traversal trees
or sub-trees as an input and produce a set of partially updated
vertex states local to the input partition.

Given an iterative graph algorithm, at an iteration step i, the
path-centric scatter takes a vertex of a forward tree (suppose
it is v2) and scatters the current value of v2 to all of the
destination vertices of v2’s forward-edges (Fig. 3(a)). Then
the successors vi+1, ..., vi+j of v2 will initiate scatter operation
and distribute theirs values to theirs successors. Different from
scatter, the path-centric gather takes a vertex (suppose it is
vi+1) of a reverse tree and collects the values of source vertices
vi+j+1, ... , vi+j+k of vi+1 to update its value (Fig. 3(b)).
Similarly, then v2 of vi+1 will initiate gather and collect the
values of its predecessors to update the value of v2. For each
partition, path-centric scatter or path-centric gather reads its
vertex set, streams in paths, and produces an output stream
of updates. The main loop alternately runs through an iterator
over vertices that need to scatter state or over those that need
to gather state.

The scatter-gather process is followed by a synchronization
phase to ensure all vertices at the ith iteration have completed

(a) Path Centric Scatter

(b) Path Centric Gather

Fig. 3. Path Centric Computing Model
the scatter or gather completely. For each internal vertex in
a partition, the engine can access its vertex value without
conflict. But for a boundary vertex in a partition, it may
lead to conflict when multiple partitions access the vertex. In
order to reduce conflict, like GraphLab [16], PathGraph stores
two versions of boundary vertex values: one version for other
partitions to read and one for the owner partition to read and
write. Considering vj , vj,r, vj,w reside in its owner partition
is the primary copy of a vertex value. The computation in
the owner partition can read and write vj,w. Other partitions
only access vj,r. If partition Pl need update the value of vj , it
will write a temporary local copy of vertex value vj,l. When
a synchronization step is started, the local copies have to be
propagated to the primary copy after each iteration. Then the
primary copies have to be propagated to the read-only copy.

This scatter/gather-synchronization process is structured as
a loop iteratively over all input paths until the computation
converges locally over the input set of paths, namely some
application-specific termination criterion is met. The comput-
ing model is illustrated in Fig. 3.

4.1 Complexity Analysis
To simplify the complexity analysis, we assume the processor
accesses one vertex or edge at a time, triggering the update
function. Suppose we are given a directed graph G = (V,E).
We denote the cost to write and read a value respectively by
W , R. This assumption does not limit expressiveness, since
the resulting execution policy is generally at the granularity of
vertices or edges. Thus, we can extend the discussion to sets
of vertices or edges as well.

In the edge-centric approach, the computation is structured
as a loop, each iteration of which consists of a scatter phase
followed by a gather phase [21]. The scatter phase iterates
over all edges and update the status of each edge. The gather
phase iterates over all updates on edges and applies the gather



6

method to each update. Before gather phase, a shuffle phase is
required to re-arrange updates such that each update appears
in the update list of the streaming partition containing its
destination vertex. Thus, the complexity to process a graph
is O(3‖E‖(W +R) + 2

∑
v∈V deg

−(v)R).
In vertex-centric model, both the scatter and the gather

phase iterate over all vertices. In each iteration, a function
specified by programmers accesses and modifies the value of a
vertex and its incident edges [12]. Thus, the total complexity is
O(

∑
v∈V ((deg

+(v)+deg−(v))(R+W )+R))=O(2‖E‖(W+
R) + ‖V ‖R).

Our approach consists of two operations (scatter and gath-
er). Developers can implement graph algorithms using one
of two operations. The complexity to execute scatter on the
out-edges of vertex v is deg+(v)W + R; the complexity of
execute gather on in-edges of v is deg−(v)R+W . Thus, the
complexity to process graph G is O(

∑
v∈V (deg

+(v)W +R))
(scatter) or O(

∑
v∈V (deg

−(v)R+W )) (gather). The path cen-
tric computation model performs iterative graph computation
at three levels: at each path partition level within a graph,
at each chunk level within a path partition and at each vertex
level within a chunk. A key benefit of computation on partition
level, chunk level instead of vertex level is improved locality
of reference: by loading a block of closely connected vertices
into the cache, we reduce the cache miss rate.

5 WORK STEALING SCHEDULER

Given that a graph is split into a collection of traversal trees
by the traversal tree partitioning, the graph processing can
be performed on each of these traversal trees separately and
independently. However, the workload for processing different
partitions can be different due to different numbers of vertices
and number of edges in each partition and the amount of
communication cost among partitions. One way to deal with
such potential load imbalance is to devise a work stealing
schedule. It is recognized that work-stealing needs to address
several problems due to its asynchronous nature [3–6]. Work
stealing is mainly performed using the double-ended queues,
or so called deques, each of which is a sequence container
that can be operated on either the front end or the back end
of the queue. In a work-stealing schedule, multiple thieves
can steal work from a owner. Thieves and owner operate on
the different ends of a deque. Although the use of double
ended queues indeed lowers the synchronization cost among
local and stealing threads, it does not eliminate the conflicting
problem between threads, because two or more threads may
steal works from the same deque. We argue that the situation in
which two or more steal operations are executed on the same
deque with no synchronization among thieves should not be
allowed. A thief must have some guarantee that other thieves
concurrently steal work from the same queue will be blocked
or forced to abort due to long wait. Our experimental results on
the first version of the PathGraph system - PathGraph-baseline
show that more than 50% of steal operations conflict. One
obvious reason is that even multiple threads can steal work
from one end of the deque, only one work stealing thread is
active at any given time.

Fig. 4. Multiple ended queue

To improve work stealing performance, in PathGraph, we
introduce multi-ended queues to replace dequeues (double-
ended queues). Concretely, our task pool is a multiple-ended
queue, denoted by meque. Each thread has a meque of which
it is the owner. The tasks in the meque can be given to other
work stealing threads by the work stealing scheduler. Each
owner thread executes tasks by taking one task at a time
from the front of queue. However, unlike deques that can only
allow work stealing from the back end, meques allow thieves
steal works at multiple end points of the sequence container
except the front end. Concretely, each thread is assigned an
end for steal. Consider Figure 4, there are n threads: T1, ...,
Tn. Each meque has a start position for work stealing, denoted
by startpos, and thieves can steal tasks from the end points
after startpos in order to avoid possible conflicts with the
owner. From startpos, each thread will be assigned an end
for future stealing. The end points assigned to the consecutive
threads will be adjacent. For example, the ends for thread j
and thread j + 1 will be adjacent. If a thread needs to steal
tasks from the meque again, a new end point will be assigned.
considering the end point for the previous steal as pre end.
If thread j chooses thread i as a victim again, and there are
still tasks in the meque of thread i available, thread j will be
assign a new end: (pre end+ n− 1) % mq.length (Line 6)
where % is the MOD operator. The process will repeat until
all tasks in the meque are examined and completed. When

Algorithm 2 steal
1: choose a victim whose queue is not empty;
2: get meque mq of the victim;
3: no is the No. of the stealer.
4: tail = mq.tail;
5: if (pre end ≥ startpos) then
6: cur end = (pre end+ n− 1) % mq.length;
7: else
8: cur end = (startpos+ no) % mq.length;
9: if (cur end > tail) then

10: set cur end as one value of [cur end− no, tail];
11: suc=compare and swap(state[cur end],1,0 );
12: if suc then
13: pre end = cur end;
14: else
15: abort;
16: execute mq[cur end];

a thread finds out that its meque is empty, it acts globally
by stealing the task at the specified end of the meques of a
victim. Our algorithm maintains an end for each thread that is
never decremented. Each thief takes stolen elements from its
assigned end of the meque by the work stealing scheduler. By
utilizing multi-ended queues to replace double-ended queues,
PathGraph eliminates the conflict between thieves when there



7

are enough tasks. When there are not enough tasks in meque,
PathGraph allows thieves to steal the same task. In the case,
our approach can still avoid some conflicts because not all
threads choose the same end points.

In our approach, we use a compare-and-swap (CAS) in-
struction to achieve synchronization (Line 11). It compares the
contents of a memory location to a given value and modifies
the content of that memory location to a given new value only
if they are the same. This is done as a single atomic operation.
Abort is returned if the thread fails to steal a task. Therefore,
meque is more effective for concurrent work stealing and it
allows threads to steal works more efficiently under certain
circumstances, especially with very long sequences, where
stealing work from only one end prohibits other stealing.

Not all threads will steal tasks from the meque because their
own meques are not yet empty or they choose other victims.
Since the owner thread of the meque will proceed to take tasks
from the front of its meque, the owner will sweep the meque.
When it finds the un-stolen tasks, the un-stolen tasks will be
reclaimed by the owner of the meque. The tasks can be inserted
into the tail of the meque or executed by the owner.

6 PATH-CENTRIC COMPACT STORAGE
Simply storing the graph does not enable efficient access
of graph data. We argue that designing an efficient storage
structure for storing big graphs in terms of their access locality
based partitions is paramount for good performance in iterative
graph computation. Such performance gain is multiplexed as
the number of iterations increases. To see this, consider vertex
v, its in-neighbor vertex set I and the out-neighbor vertex
set O. Let w ∈ I is updated, then 1) read the values of w
and v; 2) compute the new value of v; 3) the modification is
written to v. Similarly, when v is changed, its out-neighbors
also do the same operations. According to the above analysis,
the read and write operations are propagated along paths. In
fact, in many algorithms, the value of a vertex only depends
on its neighbors’ values. Thus, if the neighbors are stored
following paths, the system can sequentially access values
of the neighbors, and the amount of random access could be
reduced. Consider this, in PathGraph, we design the storage
structure with two objectives in mind: improving both storage
compactness and access locality.

To further improve the access locality for path-centric com-
putation, we introduce a path-centric compact storage design
(Fig. 5), which includes the compact storage for traversal trees
and vertex based indexing for edge chunks.

6.1 Storing Tree Partitions
In PathGraph, our idea is to store each edge traversal tree
edge by edge in the depth-first traversal (DFS) order. The
reason of using DFS instead of BFS is that vertices of a
path in the DFS order are generally accessed subsequently in
most of the iterative computations. For example, considering
Fig.1(b) again, to store P1 in DFS order, we begin at node v1,1,
and get a DFS ordered list of vertices: v1,1, v2,2, v5,3, v9,4,
v12,5, v6,6, v10,7, v11,8, v3,9, v4,10, among which v3,9, v4,10,
v6,6, v10,7, v11,8, v12,5 are boundary vertices with P1 as their
home partition. If a vertex does not have any child vertex in a

partition (v3,9, v4,10 in P1), we remove it from the list when
storing the list. Thus, the adjacent forward-edge set of v1,1,
v2,2, v5,3, v9,4, v6,6, v10,7 are consecutively stored in chunks
of P1. Similarly, P2 consists of three traversal trees anchored
at the boundary vertices v10,7, v3,9, v4,10 respectively. No
matter which of the three boundary vertices is chosen by the
algorithm to visit first, the algorithm will produce multiple
DFS lists. Suppose one DFS list of P2 is as follows: v10,7,
v12,5, v13,11, v8,12, v3,9, v7,13, v13,8, v6,6, v12,5, v4,10, v8,12,
v10,7. The final list to be stored in chunks of P2 is v10,7, v13,11,
v3,9, v7,13, v11,8, v4,10 v8,12.

Given that PathGraph is by design a general purpose graph
processing system, we support both forward-edge traversal
tree based partitions and reverse-edge traversal tree based
partitions.

Since vertices are relabeled in their forward edge traversal
tree or reverse edge traversal tree according to their topological
sort order. Then vertices and their adjacency lists are stored
in lexical order. Thus, vertex IDs are stored in an ascending
order of IDs when we store DFS lists. This order guarantees
the locality when access data. It is not possible to store both
forward parts and reverse parts in DFS order while maintaining
lexical order of IDs. However, most of graph algorithms do not
need both forward part and reverse part equally. For example,
PathGraph uses reverse parts when computing PageRank and
BFS only accesses forward parts. Thus, we can store one part
of a partition in both DFS order and lexical order. If forward
buckets are stored in DFS order, then reverse buckets will
be stored in lexical order. Otherwise, the reverse buckets are
stored according to the order given by post-order depth-first
traversal, and forward buckets are stored in lexical order.

6.2 Chunk Storage Structure
Edges in each bucket are stored in fixed-size chunks. To
provide access locality, we assign chunks in each bucket to
consecutive chunk IDs such that edges of a forward-edge (or
reverse-edge) traversal tree are stored in physically adjacent
chunks on disk as shown in Fig. 5(b). For the adjacency matrix
of a graph, a chunk stores one or more rows of the matrix and
each row is defined by vertex ID and its adjacent set (Fig.
5(b)). In the head of each chunk, we store the number of
rows stored in the chunk. The row index stores two pieces
of information for each row: the row id and the offset of its
adjacent set in the chunk.

Adjacency set compression. The adjacent set for each row
is sorted lexicographically by the IDs of the vertices in the
adjacent set. We can further compress this adjacent set by
utilizing the numerical closeness of vertex IDs. For example,
the collation order causes neighboring vertex ids to be very
similar, namely the increases in vertex IDs of the adjacent set
may often be very small. Thus, instead of storing the vertex
ID, we only store the changes between each of the vertex IDs
and the first id in the adjacency set.

ID compression. ID (including delta values) is an integer.
The size for storing an integer is typically a word. Modern
computers usually have a word size of 32 bits or 64 bits.
Not all integers require the whole word to store them. It is
wasteful to store values with a large number of bytes when a



8

(a) Partition

(b) Chunk

Fig. 5. The storage scheme
small number of bytes are sufficient. Thus, we encode the
ID using variable-size integer [26] such that the minimum
number of bytes is used to encode this integer. Furthermore,
the most significant bit of each compressed byte is used to
indicate different IDs and the remaining 7 bits are used to
store the value. For example, considering P1 shown in Fig.
1(b), the adjacency set of v1 is v2, v3, v4. Supposing theirs
ids are 2, 3, 400 respectively, the adjacency set of v1 is stored
as ”00000010 10000001 00000011 00001110”. In the byte
sequence, the first byte is the id of v2. 110001110 (after
removing each byte’s most significant bit of the third and
fourth byte) is the difference of 400 (v4) minus 2 (v2).

6.3 Compact Indexing
One way to speed up the processing of graph computations is
to provide efficient lookup of chunks of interest by vertex ID.
We design the Vertex-Chunk index for speeding up the lookup.
Vertex-Chunk index is created as an Vertex-Chunk matrix
and it captures the storage relationship between vertex (rows)
and Chunks (columns) (Fig. 5(a)). An entry in the Vertex-
Chunk matrix denotes the presence (’1’) or absence (’0’) of
a vertex in the corresponding chunk. Since the adjacent sets
are stored physically in two buckets, we maintain two Vertex-
Chunk index structures: one for forward ordering chunks and
the other for reverse ordering chunks.

In each Vertex-chunk matrix, rows and columns are sorted
in an ascending order of IDs and sorted chunks respectively.
Thus, non-zero entries in the Vertex-chunk matrix are around
the main diagonal. We can draw two finite sequence of
line segments, which go through the non-zero entries of the

matrix. There are multiple curve fitting methods, such as
lines, polynomial curves or Bspline, etc. Complicated fitting
methods involve large overhead when computing index. Thus,
we divide the vertex set into several parts (e.g., 4 parts). Since
non-zero entries of the Vertex-Chunk Matrix are expressed
using one set of lines, we only need to store the parameters
of one set of lines.

The Vertex-Chunk index gives the possible ”middle” Chunk
ID for each vertex. Instead of a full scan over all chunks,
PathGraph only scans contiguous chunks nearby the ”middle”
Chunk. For those candidate chunks, a binary search, instead
of a full scan of all edges in each chunk will be performed.

7 IMPLEMENTATION AND APPLICATIONS
We implement PathGraph by combining path-centric storage
and path-centric computation. Our first prototype is built by
extending TripleBit [26]. Recall Section 4, our path-centric
computation performs iterative computation for each traversal
tree partition independently and then perform partition-level
merge by examining boundary vertices. By introducing path-
centric graph computation, we enable partition-level parallelis-
m for graph processing. As described in Section 4, our model
mainly consists of two functions: Gather and Scatter.

The two functions can process the units with different grain
sizes. For example, Gather can process tree partitions (or sub-
trees) and chunks. Here, we give two implementations of
Gather function. In order to distinguish them, we name the
Gather function processing trees as Gather-T (Algorithm 3),
Gather function on chunks as Gather-C (Algorithm 4). The
Gather-T function executes operations user defines on each
predecessors of a given vertex i. The Gather-C function sweeps
each chunk of the reverse part of a partition. For each chunk,
the Gather-C function initially reads row index of the chunk.
According to the offset corresponding to each row, the Gather-
C function gets the adjacency set of this row, accesses all
the vertex values in the adjacency set and then update the
current vertex value by a user-defined merge function. Using
PageRank as an example, after the Gather-C function processes
a row of chunk, it will move to the next row of the chunk. It
goes up in traversal tree level from i+1 to i since the vertex
ids corresponding to rows are stored in DFS order. Thus, the
Gather function increases locality.

Algorithm 3 Gather-T
Input: vertex i

1: read the adjacency set s of i in reverse tree;
2: for each vertex v in s do
3: execute user defined ops;

Algorithm 4 Gather-C
Input: i

1: for each chunk c of reverse part of partition i do
2: read the row index I of c;
3: for each row r of I do
4: read the adjacency set s of r using offset;
5: execute user defined ops;;

Here, we only give the implementation of Scatter function
on trees (Algorithm 5). The Scatter-T (Algorithm 5) function



9

Algorithm 5 Scatter-T
Input: vertex i

1: read the adjacency set s of i in forward tree;
2: for each vertex v in s do
3: execute user defined ops;

reads adjacency set of a vertex in the forward part of a partition
and scatter the value of a vertex to all its direct successors.
Since trees are stored in DFS order, Gather and Scatter actually
streams along the paths of a graph.

We implemented and evaluated a wide range of applications,
such as PageRank, BFS, SpMV, and Connected Components,
in order to demonstrate that PathGraph can be used for
problems in many domains. Due to the length limit for paper,
we will only describe how to implement SpMV algorithm and
BFS using Gather and Scatter as an illustration.

In SpMV algorithm (Algorithm 6), each partition is pro-
cessed in parallel. In each partition, Gather function is called
to sweep the chunks in reverse part of each partition sequen-
tially. In the implementation of SpMV algorithm, PathGraph
bypasses three phases used in graph processing systems, such
as X-Stream, and directly apply Gather, with improved per-
formance. We also implement a parallel ’level-synchronous’

Algorithm 6 SpMV
1: for each iteration do
2: parfor root p of each Partitions do
3: Gather-C(p);
4: end parfor

breadth-first search (BFS) algorithm [15] using Scatter. The
level is the distance the algorithm travels from the source
vertex. The algorithm explores the neighbor nodes first, before
moving to the next level neighbors. So global synchronization
is needed at the end of each traversal step to guarantee this.
The algorithm is shown in Algorithm 7. In the algorithm,
bag[d] is an unordered-set data structure which stores the set of
vertices at distance d (layer d) from v0. v0 is the source vertex
initiating BFS, and v.dist is the distance from v0 to v. Each
iteration processes the vertexes in the layer d by calling the
Scatter function. The operations user defined in the Scatter
function check all the neighbors of vertex v. For those that
should be added to bag[d+1], we update its distance from the
source vertex and insert the vertex into the bag of d+1 layer
(Line 13 - 16). In the end of each iteration, the sync function
is called to wait for the layer is finished.

8 EVALUATION
We implement the PathGraph system described in this paper,
which incorporates the multi-ended queue based work stealing
scheduler and vertex relabeling scheme to further provide the
load balance among multiple partition threads and enhance
access locality. Since the first version of PathGraph [27] is
developed using Cilk plus (http://en.wikipedia.org/wiki/Cilk),
we name the previous PathGraph as PathGraph-baseline. Both
systems are implemented using C++, compiled with GCC.

We compare PathGraph against PathGraph-baseline. Our
goal is to evaluate whether our implementation of work

Algorithm 7 BFS
Input: v0

1: parfor each vertex v do
2: v.dist=∞;
3: end parfor
4: bag[0]=create-bag();insert-bag(bag[0],v0);
5: v0.dist=0; d=0;
6: while bag[d] IS NOT EMPTY do
7: bag[d+ 1]=create-bag();
8: parfor each v of bag[d] do
9: Scatter-T(v);

10: sync;
11: end parfor
12: d = d+ 1;
13: Function bfs-op(vertex v)
14: if v.dist == ∞ then
15: v.dist=d+1;
16: insert-bag(bag[d+ 1],v);

stealing with meques is competitive with the state of the
art technology. PathGraph and PathGraph-baseline share same
storage structure. Thus, when comparing the storage of sys-
tems, we mention them as PathGraph. We also choose X-
Stream and GraphChi as competitors since they showed better
performance [12, 21] and they are typical systems of vertex
centric and edge centric model.

We used eight graphs of varying sizes to conduct evalu-
ation: Amazon-2008, dblp-2011, enwiki-2013, twitter-2010,
uk-2007-05, uk-union-2006-06-2007-05, webbase-2001, and
Yahoo dataset from [13]. These graphs vary not only in sizes,
but also in average degrees and radius [27]. For example,
yahoo graph has a diameter of 928, and the diameter of enwiki
is about 5.24 [13]. We select two traversal algorithms (BFS
and Connected Components) and two sparse matrix multipli-
cation algorithms (PageRank and SpMV). We implement BFS,
SpMV on GraphChi since GraphChi does not provide them.

All experiments (excluding out-of-core and data balance
cases) are conducted on a server with 4 Way 4-core 2.13GHz
Intel Xeon CPU E7420, 55GB memory; CentOS 6.5 (2.6.32
kernel), 64GB Disk swap space and one SAS local disk with
300GB 15000RPM. Since X-Stream and GraphChi perfor-
m better with larger memory, we constrain X-Stream and
GraphChi to 50GB of maximum memory, which is close
to physical memory size. The comparison includes both in-
memory and out of core graphs. For example, X-Stream can
load small data set (amazon, dblp, enwiki, twitter, webbase)
into memory. For these datasets, X-Stream processes in-
memory graphs. However, X-Stream can not load uk2007,
uk-union, and yahoo, into the memory. In latter cases, X-
Stream processes out-of-core graphs on the testbed machine.
The server the other two cases run on is equipped with 4
Way 4-core 2.4GHz Intel Xeon CPU E5620, 24GB memory;
CentOS 6.5 (2.6.32 kernel), and one local disk with 1 TB.

8.1 Effectiveness of Path-Centric Storage

Table 1 compares the required disk space of PathGraph with
X-Stream and GraphChi. The total storage size of PathGraph
(including forward part and reverse part) is smaller than the
storage size of GraphChi and X-Stream, though PathGraph



10

TABLE 1
Storage in MB

Data sets Amazon DBLP enwiki twitter uk2007 uk-union webbase Yahoo
PathGraph Forward part 13.9 18.0 260.1 3319.7 4867.3 7316.9 1877.6 15211.4

Reverse part 14.2 18.0 219.9 3161.4 4603.2 6661.7 2022.7 10577.7
Vertices, Degree 8.4 11.1 48.2 477.2 1204.6 1507.2 1343.5 8250.6
Total 36.5 47.1 528.2 6958.2 10675.1 15485.8 5243.7 34039.7

X-Stream Edge 59.1 76.8 1161.1 16820.5 42828.2 63092.0 11683.3 76024.1
Vertices ≥#nodes*8 Bytes (depending on graph algorithms)

GraphChi Edge 20.4 26.5 390.6 5718.8 14320.6 21102.4 3886.8 27099.4
Vertices, Degrees, Edge data 28.1 36.9 434.7 6083.6 15405.6 22435.7 5146.9 41558.4
Total 48.5 63.4 825.3 11802.4 29726.2 43538.1 9033.7 68657.8

stores two copies of edges, one in forward bucket and one
in reverse bucket. X-Stream has the largest storage due to its
primitive storage structure. The total storage of GraphChi is
1.3X-2.8X that of PathGraph’s storage.

GraphChi stores edges in CSR format. It also stores the
weights of edges, vertex values and their degrees. X-Stream
stores edges only once and its basic storage consists of a vertex
set, an edge list, and an update list. PathGraph stores edges in
both forward chunks and reverse chunks though most of graph
algorithms only need one of them. For example, PathGraph
only uses reverse part when computing PageRank.

The reason that PathGraph is more efficient comparing to
GrahphChi and X-Stream is due to its compact edge storage
structure. The storage for edges in X-Stream is 2.1X-4.5X that
of storage in PathGraph. However, the storage of GraphChi for
edge relation is 0.72X-1.51X that of PathGraph’s storage. This
is because GraphChi stores one copy of edges. We also observe
that the maximal storage of PathGraph with both forward and
reverse parts is 0.34-0.7X of GraphChi’s edges. It shows that
our storage structure is much more compact.

The storage size of GraphChi for attributes is 3.3X-14.8X of
that in PathGraph, because GraphChi allocates storage for edge
weights while PathGraph does not store them. In X-Stream,
the data structure for vertex set varies depending on different
graph algorithms. For example, in BFS algorithm, the vertex
structure includes two fields (8 bytes). In PageRank, the vertex
structure includes three fields (12 bytes). However, X-Stream
requires at least 8 bytes for each vertex.

8.2 Loading Graphs

The graph loading time consists of reading the original data,
preprocessing the graph data, partitioning the graph and the
time to write two copies of data into the storage for differ-
ent algorithms. Loading time is actually built-time. During
loading, X-Stream just writes edges into its edge lists, and
GraphChi will write one copy of edges [12]. Both systems do
not sort data. In contrast, PathGraph traverses graphs, re-labels
vertices, partitions the graph using path-centric method, and
writes data partitions into a temporary buffer before it writes
data into the persistent storage. GraphChi builds its storage
according to different graph algorithms [21]. PathGraph and
X-Stream partition raw graphs independently of concrete graph
algorithms, and thus only needs to be done once per graph.
Table 2 shows the loading time of GraphChi for PageRank.

We make three observations. First, PathGraph loads data
slower than GraphChi, PathGraph-baseline, but faster than
X-Stream. This is because PathGraph needs to transfer the

TABLE 2
Loading time (time in seconds)

Data sets Amazon DBLP enwiki twitter uk2007 uk-union webbase Yahoo
PathGraph 29 35 592 4421 15479 27035 2893 39672
PathGraph-
baseline

24 28 579 3875 7802 13656 1561 24863

X-Stream 46 58 787 11768 29243 43406 8694 60113
GraphChi 4 6 89 1602 4098 6465 1053 8805

adjacency list to the reverse adjacency list. PathGraph creates
its own data structure for compact graph storage and fast graph
access. Thus, it performs more data processing than X-Stream
for graph loading. Due to its compact storage, PathGraph is
still 1.3X-3X faster than X-Stream in terms of loading time.
However, PathGraph is 2.7X-7X more than GraphChi in terms
of loading time, because PathGraph maintains two access
structures (copies) of data and performs loading using single
thread while GraphChi loads only one copy of graph in parallel
with 16 threads. We plan to develop a parallel loading module
using the algorithms in [15] in the next edition of PathGraph.
Although the graph loading takes slightly longer time, our
experiments in the subsequent sections show that the compact
storage data structure and the fast access support of PathGraph
can significantly speed up the computation of iterative graph
algorithms due to better locality and faster access performance
during iterative graph computations.

8.3 Balance of Data Partitions

The evaluation of PathGraph has two main components: (1) the
time complexity of Graph partitioning with respect to graphs
of different sizes and (2) the effectiveness of our approach on
various iterative graph computation algorithms. We report our
evaluation of (1) in this subsection and the evaluation of (2)
in the subsequent sections.

Here, we choose METIS as a competitor because METIS is
one of the most popular graph partitioning algorithm based
on min-cut. Another reason is that GraphChi, stand-alone
GraphLab and X-Stream are released with the partitioning
component integrated into the graph-loading module. There
is no clear separation of the partitioning component from the
loading module.

We compare our approach with METIS [17] in terms of min
and max execution time for partitions and the total execution
time to run PageRank on partitions of a graph. We choose the
amazon dataset and the DBLP dataset based on the constraints
of METIS because large graph datasets will cause METIS
to incur out of memory error. We initially compute the k-
way original partitions of a graph using METIS. We then add
vertexes that are connected via an edge from any vertex within



11

TABLE 3
Data balance of partitioning (time in ms)

Max. Exec.
Time

Min. Exec.
Time

Average
Exec. Time

Total
Exec. Time

Amazon METIS 1.672 0.78 1.3835 283
Our approach 1.416 0.954 1.1054 204

DBLP METIS 3.001 0.423 1.8431 395
Our approach 2.044 1.144 1.4586 255

the original partition along with the edges to the partition.
Finally, we load the partitions into PathGraph and obtain the
running time on the partitions. In the experiment, our approach
places all edges of a vertex into a partition instead of dividing
them into several partitions (see Section 3.1).

Table 3 shows that the data balance of our approach is
better than METIS. Using METIS, the computing time on the
largest partition, namely the maximal computing time is 2.14X
(amazon)/7.09X (DBLP) of the minimal computing time (the
time to process the smallest partition). For our approach, the
maximal computing time is 1.48X (amazon)/1.786X (DBLP)
of the minimal computing time. Thus, our approach achieves
better data balance than METIS since the difference between
the minimal computing time and maximal computing time of
our approach is smaller than that of METIS. Furthermore,
the total execution time on METIS is 1.38X (amazon)/1.54X
(DBLP) of the total execution time on our partitioning ap-
proach. It shows our path centric partitioning improves the
performance of PathGraph more than METIS partitioning on
the two datasets.

8.4 Scatter Operation
Here, we execute SpMV, Connected Components and BFS
since the algorithms are implemented using scatter operation.
The experimental results are shown in Table 4. The first
observation is that PathGraph performs much more efficiently
than the three systems on all algorithms over all graph datasets.

For BFS, PathGraph improves PathGraph-baseline by fac-
tors of 1.1-1.8. PathGraph outperforms X-Stream by factors
of 1.9-334.6 and outperforms GraphChi by factors of 1.9-5.9.

When executing SpMV, PathGraph improves PathGraph-
baseline by a factor of 1.11-1.31, X-Stream by nearly a
factor of 2.7-31.8, improves GraphChi by a factor of 3.2-
18.2. For twitter, uk2007, uk-union and yahoo, PathGraph is
significantly faster than GraphChi and X-Stream (The factors
are more than 15). One reason is that those graphs are much
bigger than Amazon and DBLP etc, and thus they require
much computing workload. Another reason is that GraphChi
and X-Stream can not load them into memory completely.

As with CC, PathGraph offers the highest performance.
It outperforms PathGraph-baseline by factors of 1.2-1.9,
GraphChi by factors of 4.9 (dblp)-90.1 (uk-union). On larger
datasets (uk2007 etc), X-Stream runs more than one day and
does not output results yet. Thus, we terminate its execution.
For those datasets X-Stream which runs CC successfully, our
system typically outperform X-Stream with factors of 3-81.4.

8.5 Gather Operation
In the experiments, PageRank is implemented using Gath-
er operation. Table 5 shows the execution time of running

PageRank (4 iterations) on eight graphs. In our experimental
comparison to PathGraph, we include the performance of
GraphChi’s in-memory engine, which processes graphs in
memory. PathGraph improves PathGraph-baseline by factors
of 1.1-1.9. PathGraph outperforms X-Stream by factors of
2.5-66. PathGraph outperforms GraphChi (out-of-core) and
GraphChi (in-memory) by factors of 4.5-9.6.

Yahoo webgraph has a diameter much larger than other
comparable graphs in the eight graph datasets tested. A high
diameter results in graphs with a long traversal path structure,
which causes X-Stream to execute a very large number of
scatter-gather iterations, each of which requires streaming the
entire edge list but doing little work. In comparison, PathGraph
orders edges using BFS. PathGraph actually stores the shortest
path between vertices with zero in-degree and other vertices,
and it converges fast during PageRank computation.

X-Stream processes in-memory graphs faster than
GraphChi. In out-of-core graphs, such as uk2007 and uk-
union, GraphChi is faster than X-Stream. However, GraphChi
is far slower than X-Stream in out-of-core graph yahoo.
GraphChi’s execution time on memory is less than half of
that on magnetic disk.

Memory references and cache miss. To understand how
the memory access pattern affects performance, we get
the number of memory read/write and cache misses using
Cachegrind [1]. Cachegrind can simulate memory, the first-
level and last-level caches etc. Here, we only report the number
of memory reads and writes, last-level cache read and write
misses (LL misses row). The reason is that the last-level cache
has the most influence on runtime, as it masks accesses to
main memory [1]. We run experiments on 4 datasets because
both GraphChi and X-Stream can not load larger datasets into
memory. We also replace the storage structure of PathGraph
with the similar storage structure as CSR or CSC used in
GraphChi. However, we store trees as described in Section
6. We call the version of PathGraph as PathGraphCSR. The
experimental results are shown in Table 6.

The difference between path centric model and other models
is that the CPU is able to do more work on data residing in the
cache. We observed a significant reduction in cache miss of
PathGraph. The typical factors (the cache misses of opponents
divided by the cache misses of PathGraph) are among 3.3-
15 (GraphChi/PathGraph), 2.7-28.9 (X-Stream/PathGraph),
1.4-1.6 (PathGraphCSR/PathGraph) and 1.1-1.2(PathGraph-
baseline/PathGraph). For PathGraphCSR, its LL cache misses
are also smaller than the LL cache misses of the other two sys-
tems. Since PathGraphCSR shares the similar storage structure
with GraphChi, the smaller cache misses of PathGraphCSR
can contribute to our parallel computing model. A cache write
miss generally causes the least delay than cache read miss,
because the write can be queued and there are few limitations
on the execution of subsequent instructions. We observed that
GraphChi has the largest cache read miss and X-Stream has
the largest cache write miss while both cache read miss and
cache write miss of PathGraph are the smallest. This is because
PathGraph has a regular memory access pattern while the
memory access pattern of GraphChi and X-Stream could be
random. One reason for small cache miss of X-Stream is that



12

TABLE 4
SpMV, Connected Components (CC), BFS (time in seconds)

Data sets Amazon DBLP enwiki twitter uk2007 uk-union webbase Yahoo
BFS PathGraph 0.617 0.916 4.634 113.581 171.971 203.301 65.452 583.066

PathGraph-baseline 1.138 1.214 5.231 148.955 195.426 234.775 81.237 738.718
X-Stream 1.664 1.781 28.452 3408.54 57538.7 7220.732 291.469 2871.583
GraphChi 1.386 1.769 25.693 522.203 782.491 1200.24 192.89 3252.86

SpMV PathGraph 0.208 0.565 3.103 36.216 55.614 73.758 23.154 192.341
PathGraph-baseline 0.249 0.739 3.449 40.443 61.665 82.552 30.097 215.579
X-Stream 1.231 1.535 24.132 661.955 1701.06 2348.03 217.385 2999.52
GraphChi 1.337 1.797 25.369 643.394 904.357 1308.03 196.105 3502.62

CC PathGraph 0.718 1.133 8.144 126.725 187.606 224.036 86.468 1823.09
PathGraph-baseline 1.181 2.114 14.022 208.263 224.951 265.791 132.52 2224.34
X-Stream 2.281 3.39 30.274 10311.4 > 1 day > 1 day 637.478 > 1day
GraphChi 4.505 5.546 60.862 2918.94 8925.36 20385.6 568.747 13196.6

TABLE 5
PageRank (time in seconds)

Data sets Amazon DBLP enwiki twitter uk2007 uk-union webbase Yahoo
PathGraph 0.591 0.683 7.667 102.442 74.518 103.554 41.401 330.138
PathGraph-baseline 0.716 0.876 9.043 117.113 121.681 195.531 53.881 374.654
X-Stream 1.452 1.822 26.116 1833.1 4763.82 6859.49 247.551 8497.93
GraphChi (out-of-core) 7.318 10.111 123.675 3388.11 2453.55 3951.75 892.604 12500.4
GraphChi (in-memory) 2.643 4.041 41.704 N/A 399.241 N/A

TABLE 6
Memory read/write and cache miss

Data sets Amazon DBLP enwiki webbase
Read Write Read Write Read Write Read Write

PathGraph mem. refs 191,384,872 61,265,888 246,196,023 75,976,184 3,399,048,230 1,122,110,774 34,311,392,889 10,143,669,388
LL misses 1,144,845 472,375 1,596,759 613,271 122,181,461 4,582,567 214,866,645 65,919,038

PathGraph- mem. refs 325,068,748 67,413,223 420,310,473 86,283,931 5,952,627,465 1,255,625,657 59,712,508,254 11,242,856,082
baseline LL misses 1,355,255 516,537 1,806,381 688,966 145,119,289 5,134,542 253,567,011 72,181,698

PathGraph- mem. refs 420,001,396 120,834,733 542,839,709 154,669,628 7,409,252,728 1,531,800,282 76,879,743,103 20,490,978,720
CSR LL misses 1,733,022 570,235 2,375,377 736,843 190,140,339 6,784,194 318,473,215 83,256,895

GraphChi mem. refs 642,401,662 209,622,677 810,975,478 261,689,457 6,201,543,908 1,674,127,967 84,936,733,309 23,793,075,681
(in-memory) LL misses 19,702,217 4,753,012 26,510,357 6,507,206 331,735,964 82,483,788 2,999,477,472 741,954,191

X-Stream mem. refs 8,758,604,005 155,590,792 11,028,245,311 202,321,456 22,191,880,756 2,972,662,257 1,209,959,609,960 47,368,254,124
LL misses 12,673,249 5,153,627 16,850,956 6,726,011 242,056,283 97,740,493 5,149,318,368 2,966,473,860

X-Stream combines nodes, degrees, matrix of graph into a
single data structure while PathGraph and GraphChi separate
graph data into different data structure.

We also observed much more saving on memory references,
in which the vertex centric model is more than 1.1-2.17 times
larger than our model and the edge centric model is 5.6-
35.3 times larger than our model. This is because the storage
structure of PathGraph is more compact than CSR used in
GraphChi and PathGraphCSR and native storage of X-Stream.
X-Stream has the largest memory references. The reasons are
that its storage is native and the three phases of its graph
computation requires many memory references. Although the
memory references of GraphChi are far less than that of X-
Stream, X-Stream is still faster than GraphChi. The reason is
that last-level cache has the most influence on runtime.

Switching from the CSR storage structure to our storage
structure, We see similar reduction for PageRank, but for
different reasons. We reduce about 19% more of LL cache
misses and 19% more of memory references for PageRank on
4 graphs. This is because our storage structure is more regular.
CSR can only sequentially search the data while our storage
structure can perform binary search in the chunk.

8.6 Processing Out of Core Graphs
We now compare the out-of-core performance of PathGraph to
X-Stream and GraphChi. We constrain four systems to 16GB
of memory and using the SAS for storage. For the experiments,

TABLE 7
Processing out-of-core graphs (yahoo)

PageRank BFS CC SpMV
PathGraph 372.729 614.721 1915.679 211.396
PathGraph-baseline 426.325 771.829 2335.274 237.872
X-Stream 10167.47 3309.27 > 1day 3403.29
GraphChi 16013.84 3839.07 17029.38 4125.62

we choose yahoo data set and run the four algorithms on it
because four systems can not load yahoo into memory. The
results (Table 7) show PathGraph finishes its execution faster
than the other systems.

We attribute PathGraph shorter runtimes to two factors. The
first factor is the path-centric approach, in which many updates
are absorbed by vertices in the same partitions. The second
contributor is our small usage of available bandwidth from
the disk. In order to fit the data that will be processed into
memory, X-Stream and GraphChi need swap data in and out.
This leads to more fragmented reads and writes. In contrast,
PathGraph’s storage is compact. Comparing to the other two
systems, PathGraph requires less bandwidth. Moving further,
PathGraph processes partitions in parallel, by virtue of the fact
that each partition does not depend on each other much and it
only needs to fit the vertex data for the partition into memory.

8.7 Load Balance of Scheduling and Speedup
Here, we report the load balance of our approach against Cilk
plus. We use the same tasks generator, and the same compiler



13

TABLE 8
Load balance (yahoo)

Min. Exec.
Time

Max. Exec.
Time

Median
Exec. Time STDEV

PageRank Cilk 0.888 1.336 0.9605 0.1203
meq 0.94 1 0.9465 0.0147

BFS Cilk 0.865 1.098 0.997 0.0710
meq 0.996 1.001 0.998 0.0012

SpMV Cilk 1 1.198 1.082 0.0694
meq 0.969 1.025 0.995 0.0212

CC Cilk 0.815 1.242 1.0115 0.1217
meq 0.999 1.005 1.001 0.0013

Fig. 6. PageRank Speedup

when running PathGraph-baseline and PathGraph. In Table
8, we reported the minimal, maximal, median and standard
deviation (σ) of the relative value of the execution time of 16
threads to a random chosen thread’s execution time. In Cilk,
there is usually 16% - 34% difference between a long and a
short execution time. For our approach, the variance between
the long execution and short execution is only 0.4%-6%. The
standard deviation in the execution time of 16 threads explains
the significant difference in load balance between Cilk Plus
and our implementation of meques: the standard deviation of
Cilk is 3.3-98.7 times of our approach’s standard deviation.
From these results, we conclude that the meque approach to
work stealing outperforms the state of the art technology.

We show speedups of PathGrath, GraphChi and X-Stream
from PageRank as one representative application. Since X-
Stream requires powers of 2 threads, we only run X-Stream
using 1, 2, 4, 8, 16 threads. As shown in Fig. 6, the speedup
of PathGraph increases to 8.3 (16 threads) with the growth of
threads even though its speedup slows down after 10 threads as
our execution becomes memory-bound. However, the speedups
of GraphChi and X-Stream are less than 1.6 and changes
very slowly while the number of threads increases to 16. The
reason is that these algorithms scale poorly with increasing
parallelism because computing a vertex update is cheaper than
retrieving the required data from neighboring vertices [25].

9 RELATED WORK

A fair amount of work has been engaged in graph data pro-
cessing [8, 9, 12, 16, 20, 21, 23, 28, 29]. Since 2004, more than
80 systems have been proposed from both academia and the
industry [7]. Vertex centric, edge centric and storage centric
approach are the three most popular alternative solutions for
storing and processing graph data.

In vertex-centric computation model, each vertex is pro-
cessed in parallel. Many abstractions based on vertex centric
model have been proposed [12, 16]. Since vertex centric access
is random, GraphChi [12] breaks large graphs into small
parts, and uses a parallel sliding windows method to improve
random access on vertex. Xie etc. proposes a block-oriented
computation model, in which computation is iterated over
blocks of highly connected nodes instead of one vertex [25].
Tian etc [24] proposed a ”think like a graph” programming
paradigm, in which the partition structure is opened up to
the programmers so that programmers can bypass the heavy
message passing or scheduling machinery.

X-Stream [21] uses an edge-centric graph computation mod-
el. Comparing with vertex centric view, edge centric access
is more sequential although edge traversal still produces an
access pattern that is random and unpredictable. Furthermore,
executing algorithms that follow vertices or edges inevitably
results in random access to the storage medium for the
graph and this can often be the determinant of performance,
regardless of the algorithmic complexity or runtime efficiency
of the actual algorithm in use.

A storage-centric approach adopts optimized storage of
graph. Common used storage structures for graph structure
is adjacency matrix and the Compressed Sparse Row (CSR)
format [12, 19], which is equivalent to storing the graph as
adjacency sets. The research on graph databases proposed
some more complicate storage structures. They usually rely
on physical structures and indices to speed up the execution
of graph traversals and retrievals [18, 26]. They do not, how-
ever, provide powerful computational capabilities for iterative
computation [12].

A required step before processing graph is graph partition-
ing. Graph partitioning problem has received lots of attentions
over the past decade in high performance computing [2, 11,
14, 22]. Common approaches to graph partitioning involve
identifying edge-cuts or vertex-cuts. While edge-cuts result
in partitions that are vertex disjoint, in vertex-cuts the ver-
tices will be replicated on all relevant partitions. The most
commonly used strategies in large-scale graph processing
systems are vertex-centric hash partitioning. However, this
approach has extremely poor locality [9], and incurs large
amount communication across partitions. A variety of heuristic
algorithms, such as the multilevel partitioning paradigms have
been developed that offer different cost-quality trade-offs. One
widely used example of such an approach is METIS [17].

10 CONCLUSIONS AND FUTURE WORK
We have presented PathGraph, a path-centric approach for
fast iterative graph computations on extremely large graphs.
Our approach implements the path-centric abstraction at both
storage tier and computation tier. In the storage tier, we
follow storage-centric view and design a compact and efficient
storage structure. Our compact path-centric storage allows for
fast loading of in-edges or out-edges of a vertex for parallel
scattering or gathering vertex values. In computation tier, the
path based parallel graph computation is used for promoting
locality-optimized processing of very large graphs. We parallel
the iterative computation at partition tree level or chunk level.



14

To provide well balanced workloads among parallel threads,
we introduce the concept of multiple stealing points based task
queue to allow work stealings from multiple points in the task
queue. We have demonstrated that the PathGraph outperforms
X-Stream and GraphChi on real graphs of varying sizes for
a variety of iterative graph algorithms. The results also show
our approach achieve better balance and speedup.

Our work on PathGraph development continues along two
dimensions. First, we are working on extending PathGraph
for scaling big graph using distributed computing architecture,
including distributed computing algorithms and efficient com-
munication protocols. Second, we are exploring the potential
of using PathGraph to speedup the graph applications, such as
natural language processing.

Acknowledgement. Yuan, Xie, and Jin’s research is funded
by NSFC (No. 61433019) and Ling Liu’s research is partially
supported by grants from NSF CISE and Intel ISTC on Cloud
Computing and an IBM Faculty award.

REFERENCES
[1] Cachegrind. http://www.valgrind.org/, 2014.
[2] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning

power-law graphs. In Proc. of IPDPS 2006, pages 124–124. IEEE
Computer Society, 2006.

[3] U. A. Acar, A. Charguéraud, and M. Rainey. Scheduling parallel
programs by work stealing with private deques. In Proc. of PPoPP’13.
ACM, 2013.

[4] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In Proc.
of SPAA’05, pages 21–28. ACM, 2005.

[5] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha. Scalable work stealing. In Proc. of SC’09. ACM.

[6] X. Ding, K. Wang, P. B. Gibbons, and X. Zhang. BWS: Balanced work
stealing for time-sharing multicores. In Proc. of EuroSys’12, pages 365–
378. ACM, 2012.

[7] N. Doekemeijer and A. L. Varbanescu. A survey of parallel graph
processing frameworks. Delft University of Technology, 2014.

[8] D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader. Graphct: Multithreaded
algorithms for massive graph analysis. IEEE Transactions on Parallel
& Distributed Systems, 24(11):2220–2229, 2013.

[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In
Proc. of OSDI’12, pages 17–30. USENIX.

[10] Q. Gu, S. Xiong, and D. Chen. Correlations between characteristics
of maximum influence and degree distributions in software networks.
Science China (Information Sciences), 57, 2014.

[11] G. Karypis. Multi-constraint mesh partitioning for contact/impact
computations. In Proc. of SC’03, pages 1–11. ACM, 2003.

[12] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: large-scale graph
computation on just a PC. In Proc. of OSDI’12, pages 31–46. USENIX.

[13] Laboratory for Web Algorithmics (LAW). Datasets.
http://law.di.unimi.it/datasets.php, 2013.

[14] K. Lee and L. Liu. Efficient data partitioning model for heterogeneous
graphs in the cloud. In Proc. of SC’13, pages 25–36. ACM, 2013.

[15] C. E. Leiserson and T. B. Schardl. A work-efficient parallel breadth-first
search algorithm. In Proc. of SPAA’10, pages 303–314. ACM, 2010.

[16] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: a framework for machine learning
and data mining in the cloud. PVLDB, 5(8):716–727, 2012.

[17] METIS. http://glaros.dtc.umn.edu/gkhome/views/metis.
[18] T. Neumann and G. Weikum. The RDF-3X engine for scalable

management of RDF data. The VLDB Journal, 19(1):91–113, 2010.
[19] R. Pearce, M. Gokhale, and N. M. Amato. Multithreaded asynchronous

graph traversal for in-memory and semi-external memory. In Proc. of
SC’10, pages 1–11. IEEE Computer Society, 2010.

[20] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-
dasan. Managing large graphs on multi-cores with graph awareness. In
Proc. of USENIX ATC’12, pages 4–4. USENIX, 2012.

[21] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-centric
graph processing using streaming partitions. In Proc. of SOSP’13, pages
472–488. ACM, 2013.

[22] K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic
multi-constraint graph partitioning. Concurrency and Computation:
Practice and Experience, 14(3):219–240, 2002.

[23] J. Shun and G. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. In Proc. of PPoPP 2013.

[24] Y. Tian, A. Balminx, S. A. Corsten, S. Tatikonday, and J. McPhersony.
From ’think like a vertex’ to ’think like a graph’. PVLDB, 7(3).

[25] W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke. Fast iterative
graph computation with block updates. PVLDB, 6(14):2014–2025, 2013.

[26] P. Yuan, P. Liu, B. Wu, L. Liu, H. Jin, and W. Zhang. TripleBit: a fast
and compact system for large scale RDF data. PVLDB, 6(7).

[27] P. Yuan, W. Zhang, C. Xie, L. Liu, H. Jin, and K. Lee. Fast iterative
graph computation: A path centric approach. In Proc. of SC 2014, pages
401–412. IEEE, 2014.

[28] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: an asynchronous graph
processing framework for delta-based accumulative iterative computa-
tion. IEEE Transactions on Parallel & Distributed Systems, 25(8):2091–
2100, 2014.

[29] J. Zhong and B. He. Medusa: Simplified graph processing on gpus. IEEE
Transactions on Parallel & Distributed Systems, 25(6):1543–1552, 2014.

Pingpeng Yuan is an associate professor in the
School of Computer Science and Technology
at Huazhong University of Science and Tech-
nology. His research interests includes databas-
es, knowledge representation and reasoning
and information retrieval, with a focus on high-
performance computing. Now he focus on inves-
tigating the storage and query processing tech-
nologies for big data and innovative applications.
During exploring his research, he believes in it
is necessary to implement systems in addition

to theoretical evaluation. Thus, Dr. Yuan is the principle developer in
multiple system prototypes, including TripleBit, PathGraph and SemreX.

Changfeng Xie is Master of School of Computer
Science and Technology, Huazhong University
of Science and Technology. His research in-
terests include semantic web technology and
distributed processing.

Ling Liu is a Professor in the School of Com-
puter Science at Georgia Institute of Technology.
She directs the research programs in Distributed
Data Intensive Systems Lab (DiSL), examining
various aspects of large scale data intensive
systems, including performance, availability, se-
curity, privacy and trust. Prof. Ling Liu is an inter-
nationally recognized expert in the areas of Big
data systems and data analytics, Cloud Comput-
ing, Database Systems, Distributed Computing,
Internet Data Management, and Service orient-

ed computing. Prof. Liu has published over 300 international journal and
conference articles and is a recipient of the best paper award from a
number of top venues, including ICDCS 2003, WWW 2004, 2005 Pat
Goldberg Memorial Best Paper Award, IEEE Cloud 2012, IEEE ICWS
2013, IEEE/ACM CCGrid 2015. Prof. Liu is an elected IEEE Fellow, a
recipient of IEEE Computer Society Technical Achievement Award in
2012. In addition to services as general chair and PC chairs of numerous
IEEE and ACM conferences in data engineering, very large databases
and distributed computing fields, Prof. Liu has served on editorial board
of over a dozen international journals. Currently Prof. Liu is the editor
in chief of IEEE Transactions on Service Computing, and serves on
the editorial board of international journals, including ACM Transactions
on Web (TWEB), ACM Transactions on Internet Technology (TOIT). Dr.
Liu’s current research is primarily sponsored by NSF, IBM and Intel.



15

Hai Jin is a Cheung Kung Scholars Chair Pro-
fessor of computer science and engineering at
Huazhong University of Science and Technology
(HUST) in China. Jin received his PhD in com-
puter engineering from HUST in 1994. In 1996,
he was awarded a German Academic Exchange
Service fellowship to visit the Technical Uni-
versity of Chemnitz in Germany. Jin worked at
The University of Hong Kong between 1998 and
2000, and as a visiting scholar at the University
of Southern California between 1999 and 2000.

He was awarded Excellent Youth Award from the National Science Foun-
dation of China in 2001. Jin is the chief scientist of ChinaGrid, the largest
grid computing project in China, and the chief scientists of National
973 Basic Research Program Project of Virtualization Technology of
Computing System, and Cloud Security.

Jin is a Fellow of CCF, senior member of the IEEE and a member
of the ACM. He has co-authored 22 books and published over 700
research papers. His research interests include computer architecture,
virtualization technology, cluster computing and cloud computing, peer-
to-peer computing, network storage, and network security.


