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1. Introduction
The availability of realistic network data plays a sig-

nificant role in fostering collaboration and ensuring U.S.
technical leadership in network security research. Unfor-
tunately, a host of technical, legal, policy, and privacy is-
sues limit the ability of operators to produce datasets for
information security testing. In an effort to help over-
come these limitations, several data collection efforts (e.g.,
CRAWDAD [14], PREDICT [34]) have been established in
the past few years. The key principle used in all of these
efforts to assure low-risk, high-value data is that of trace
anonymization—the process of sanitizing data before re-
lease so that potentially sensitive information cannot be ex-
tracted.

Recently, however, the utility of these techniques in pro-
tecting host identities, user behaviors, network topologies,
and security practices within enterprise networks has come
under scrutiny. In short, several works have shown than
unveiling sensitive data in anonymized network traces may
not be as difficult as initially thought. The naı̈ve solution
to this problem is to address the specifics of these attacks
as they are discovered. However, doing so fails to address
the underlying problem in its entirety. While isolated ad-
vances in network data anonymization are important, with-
out a holistic approach to the problem they will simply shift
the information-encoding burden to other properties of the
traces, resulting in future privacy breaches. Given the sig-
nificant reliance on anonymized network traces for security
research, it is clear that a more exhaustive and principled
analysis of the trace anonymization problem is in order.

Luckily, the problem of anonymizing publicly released
data is not new. Over the past several decades, statisti-
cians and computer scientists have developed approaches
to anonymizing various forms of microdata, which are es-
sentially databases of attributes collected about individuals.
One prominent example is census data, which collects infor-
mation about the salary, marital status, and many other po-
tentially sensitive attributes from the population of an area

or country. This census microdata, much like network data,
is valuable to researchers for tracking trends, and as such the
anonymized microdata must provide accurate information
about potentially sensitive information. At the same time, it
is essential that specifics from the data cannot be linked to
individuals. In response, several anonymization methods,
privacy definitions, and utility metrics have been developed
to ensure that researchers can use the microdata for a wide
spectrum of analyses while simultaneously providing prin-
cipled, concrete guarantees on the privacy of those individ-
uals within the data.

At first glance, it would seem as though the accumulated
knowledge of microdata anonymization can be directly ap-
plied to network data anonymization since the two scenar-
ios share so much in common, including similar privacy and
utility goals. Unfortunately, the inherently complex nature
of network data makes direct application of these microdata
methods difficult, at best. We can, however, learn from ex-
isting microdata anonymization literature and glean signif-
icant insight into how to approach the problem of network
data anonymization in a principled fashion.

In this extended abstract, we compare and contrast the
fields of microdata and network data anonymization to re-
veal the ways in which existing microdata literature may
be applied to the network data anonymization problem. We
further lay out several challenges that lie ahead in the devel-
opment of robust network data anonymization methodolo-
gies that are grounded in the insights and lessons learned
from microdata anonymization. Specifically, we examine
the difficulties of clearly defining the privacy properties of
network data due to its complex nature. In addition, we
point out the necessity of utility measures in quantifying the
extent to which anonymization may alter results obtained
from analysis of the data. It is important to note that there
are additional challenges that we do not address here, such
as the legal and ethical issues with collecting network data.
As a whole, we hope that this comparison between the fields
of microdata and network data anonymization serves to fo-



cus the attention of the research community on a holistic ap-
proach to network data anonymization that enables the type
of collaboration necessary to further progress in the areas of
network and computer security research.

2. Microdata Anonymization
Roughly speaking, microdata can be thought of as a

database with n rows and m columns, where each row in
the microdata corresponds to a single entity that contributed
its data. In the case of census data, for example, the rows
might represent people who responded to the survey. The
columns represent the attributes of those entities, such as
their height or salary information. The goal of microdata
anonymization is to alter the original data such that it is
difficult (and quantifiably so) to infer potentially sensitive
information about entities within the data while simultane-
ously ensuring that statistics computed on the data remain
valid. As an example, average salary information for a given
area should remain unchanged, but it should not be possible
to infer a specific person’s salary.

Specifically, the attributes of the microdata are divided
into three categories: (i) identifiers, (ii) key attributes (i.e.,
quasi-identifiers), and (iii) sensitive attributes. Identifiers
are attributes that trivially identify the row, such as name or
social security number. Key attributes can be used to make
inferences on the identity of the row from auxiliary sources
of information. Though these key attributes do not directly
identify the row, unique attribute values can be used to link
rows in the anonymized microdata with other databases that
do have identifying information. For instance, if a row in
the microdata had a unique combination of height, weight,
and age key attributes, then the adversary could use these at-
tributes to look up the row’s identity in a secondary database
that includes the height, weight, age, and name. Finally,
sensitive attributes are those that are not available from
other data sources, and which the adversary would like to
link to specific identities. To achieve the goal of anonymiza-
tion, the data publisher removes identifiers, and applies one
or more anonymization methods to alter the relationship be-
tween the key attributes and sensitive attributes to ensure
that such inferences are unlikely. The resultant sanitized
microdata can then be measured to quantify its level of pri-
vacy and utility.

2.1. Anonymization Methods

Several techniques are used by data publishers to
anonymize microdata for publication. Truncation meth-
ods remove or reorganize records in the microdata to hide
the relationship between the key attributes and sensitive at-
tributes. These methods include removing rows, remov-
ing attributes, suppression of key attribute values in specific
rows, or generalization (i.e., recoding) where several key at-
tributes are combined into a single equivalence class (e.g.,
25 ≤ age ≤ 35) [39]. Additionally, several methods based

on perturbation of the sensitive attributes exist. Some exam-
ples of perturbation include swapping the values of sensitive
attributes among different rows [15], sampling the data, or
adding noise to the values [4, 17].

In addition to the truncation and perturbation-based
methods, two methods have have been proposed which do
not directly sanitize the microdata, but instead provide the
underlying statistics of the data in alternate ways. The first
of which, synthetic data generation [35, 28], attempts to
model the original data and generate completely new mi-
crodata from that statistical model. Since this new data is
generated from a model, the resultant microdata has no con-
nection to real individuals and at the same time the specific
statistical properties captured by the model are guaranteed
to be preserved. The second method stores the data on a
secure remote server, where the data user can access it only
through a query interface [3, 40, 19]. Thus, the user only
gets the answer to specific queries, and the query interface
ensures that no queries are answered if they are harmful to
privacy.

2.2. Measuring Privacy

Obviously, naı̈vely applying anonymization methods to
the data is not enough to guarantee privacy. In fact, inap-
propriate application of anonymization methods may pro-
vide several avenues of information leakage. For instance,
a recent study by Narayanan and Shmatikov [30] showed
that an anonymized dataset of movie recommendations re-
leased by NetFlix fails to meet the accepted privacy defi-
nitions for microdata, which results in re-identification of
several users in the data. To prevent such information leak-
age, it is necessary to concretely measure the privacy of the
resultant anonymized data. As the extensive literature in
microdata privacy measures indicates, however, developing
privacy definitions that encapsulate all areas of information
leakage is not as straightforward as one might hope.

A common microdata privacy definition, known as k-
anonymity, was proposed by Samarati and Sweeney [39].
The definition quantifies the difficulty of an adversary in
determining which row in the microdata belongs to a given
identity by requiring that every row must look like at least
k − 1 other rows with respect to their key attributes. In ef-
fect, this creates equivalence classes of key attributes where
the adversary would have a 1/k chance of identifying the
correct row using the key attributes. Chawla et al. [10] pro-
vide a similar notion of anonymity that applies to microdata
containing numerical, rather than categorical, data types.

The notion of k-anonymity provides a necessary, but not
sufficient, condition for privacy since without it a row can
be trivially identified by the uniqueness of its key attributes.
Further restrictions are necessary, however, when we want
to prevent the inference of sensitive attributes and not just
which rows belong to a given identity. It may be possi-



ble, for example, to have an equivalence class that meets
the k-anonymity definition, and yet has only one or a small
number of distinct sensitive values. Thus, any individual
that falls into such a class will have their sensitive attributes
revealed. Machanavajjhala et al. [26] proposed `-diversity
to strengthen the k-anonymity property by requiring that
each class have at least ` distinct sensitive values. Truta and
Vinay [43] concurrently developed p-sensitive k-anonymity
to provide the same requirement.

The `-diversity property was further strengthened by Li
et al. [25] since it may still be possible to leak informa-
tion (in an information theoretic sense) about the sensitive
attributes for an individual if the distribution of sensitive
values in that individual’s equivalence class is significantly
different than those of the population. Essentially, the dis-
tribution within the equivalence class gives the adversary
a more refined distribution of potential sensitive values for
an individual than the adversary would have access to with-
out the anonymized microdata. The t-closeness property
[25] requires that the distribution of sensitive values in all
equivalence classes be within a distance t of the population
distribution across all rows in the microdata. This property
ensures that the data publisher has greater control over the
amount of information the adversary can gain about sen-
sitive values of the individuals in the equivalence classes,
thought small values of t clearly have a deleterious effect
on the utility of the data.

While k-anonymity and t-closeness provide controls
over the information disclosed by the key attributes and sen-
sitive attributes, respectively, there are still other avenues of
information leakage which the adversary can take advan-
tage of. Zhang et al. [45] recently showed that it is possible
to reverse the anonymization of a dataset if the adversary
has knowledge of the anonymization method used (e.g.,
generalization). The key observation is that anonymiza-
tion proceeds deterministically from anonymizations with
the best utility (e.g., minimal equivalence class sizes) to
those with worse utility, and will stop at the first anonymiza-
tion that meets the privacy definition. Zhang et al. sug-
gest the notion of p-safe, p-optimal anonymization, where
anonymized microdata produced to meet privacy definition
p (e.g., k-anonymity) is considered safe if it has more than
one potential original microdata that could have produced
it.

An alternative approach to these uncertainty, or indistin-
guishability, definitions is provided by the notion of differ-
ential privacy [16]. Differential privacy is primarily applied
to interactive query systems where users interact with the
data via a secure query interface. The notion of differential
privacy states that the probability of a privacy breach oc-
curring for a person is similar whether or not that person’s
information is contained in the data. The primary difference
between differential privacy and the uncertainty-based def-

initions is that differential privacy is unable to quantify ex-
actly what sensitive information could be leaked by the data,
and instead focuses on the slightly more general guarantee
that no additional harm will be done by adding a record.

2.3. Measuring Utility

The primary motivation for publishing anonymized mi-
crodata is to provide some utility, such as the ability to cal-
culate statistics on the attributes, to researchers who make
use of the data. Clearly, the data would be useless if the pri-
vacy definitions above are achieved at the expense of util-
ity. As a result, several utility measures have been devel-
oped to provide researchers with metrics that allow them to
gauge the confidence they should have in the results gained
by analysis of the anonymized data. Most utility measures
for microdata focus on specific utilities that are meant to be
preserved. The obvious problem is that in doing so one can
only anticipate a limited set of utilities and therefore can not
offer guidance about other uses of the data.

Recently, some global utility measures have been pro-
posed to try and quantify a wide range of utilities in a sin-
gle metric [44, 20]. These global measures, however, can
be difficult to interpret and often times do not strongly pre-
dict the available utilities. Specifically, these measures are
loosely correlated with the extent to which utility is pre-
served, but they are unable to communicate to the researcher
the exact way in which a particular utility is affected by
the anonymization. For instance, Karr et al. ’s use of the
Kullback-Leibler divergence [20] between the anonymized
and original data provides a broad notion of the similarity of
the two distributions of attribute values, but that value has
no direct connection to the changes to specific utilities.

3. Network Data Anonymization
Network data can be viewed in much the same way as

microdata; containing n rows each representing a single
packet (or summarized network flow) and m columns rep-
resenting the fields in the packet. Unlike microdata, which
generally contains only categorical or numerical data, net-
work data contains a variety of data types that make applica-
tion of well-known anonymization methods difficult, if not
impossible. Some fields in network data, like IP addresses,
have a highly complex hierarchical ordering structure that
often needs to be preserved after anonymization. Moreover,
the relationship among different fields in network data is se-
mantically rich, which means that the values taken by cer-
tain fields is dependent on their context with respect to other
values within the data – both within the same row and within
other rows – and these dependencies must be maintained in
order for the data to be semantically meaningful.

The goals of network data anonymization are also su-
perficially similar in nature to those of microdata insofar
as they are focused on preventing the disclosure of sen-
sitive information about certain entities present within the



data. However, these goals are far more nebulous in the net-
work data case since this sensitive information cannot be
defined as a single field, nor can it be quantified for just
a single row. Network data publishers are concerned with
the privacy of workstations on the network and their users,
which can be associated with multiple rows (e.g., packets)
within the data. The sensitive information about these enti-
ties is often encoded in complex relationships among mul-
tiple fields across several different rows, such as a user’s
web browsing patterns or computer virus activity. Unfortu-
nately, these goals remain ill-defined even in the most recent
work in this area, which necessarily limits the efficacy of the
anonymization procedures.

3.1. Anonymization Methods

Currently, the anonymization of network data is per-
formed by applying one of a limited number of techniques,
many of which are shared with microdata, to fields in
the data chosen by the data publisher and defined in an
anonymization policy language [33, 42]. The most widely
used of these techniques are truncation, randomization,
quantization, and pseudonymization. Truncation and ran-
domization effectively destroy the semantics of the field
they are applied to, but are helpful when dealing with fields
that are likely to contain highly sensitive data. One exam-
ple is the payload of packets, which might contain user-
names and passwords and are removed from the data as
standard practice. Quantization techniques, such as limit-
ing the precision of time stamps, are applied to reduce the
information gained about the identity of the workstations
from timing attacks [21]. Perhaps the most widely used
technique, pseudonymization, replaces IP addresses found
in the data with linkable, prefix-preserving pseudonyms
[32, 18]. These pseudonyms preserve the hierarchical re-
lationships found in the prefixes of the original addresses.
The underlying goal is to enable the analysis of packets gen-
erated from hosts, or whole prefixes, without providing the
actual IPs.

In an effort to maintain as much of the original data
as possible, data publishers apply these methods to as few
fields as possible; normally, just the IP addresses, time
stamps, and payloads. In fact, fields within the network data
are typically anonymized only when they are shown to leak
information via published attacks. As a result, the unaltered
fields of the data provide significant information that can be
used as key attributes to link objects in the data to their real
identities. This reactionary anonymization policy has lead
to the discovery of several attacks which use the unaltered
features of the data to re-identify workstations and their be-
haviors [37, 5, 6, 12], and identify web pages that the users
visit [22, 11].

3.2. Measuring Privacy

Given the reactionary nature of network data anonymiza-
tion, it comes as no surprise that network data does not
have well-defined privacy measures, due in part to the dif-
ficulty in clearly defining the privacy properties desired by
data publishers. To date, there have been a few attempts to
quantify the uncertainty that the adversary has in identify-
ing which pseudonyms or values in the data belong to which
real world workstations. For instance, Ribeiro et al. [37]
derive fingerprints, such as the port numbers used, for each
IP address in both the anonymized and original data, and
compare the two sets of fingerprints to determine the equiv-
alence classes for each IP address. Those workstations with
highly unique fingerprints are considered to be privacy risks
for the data publisher. Coull et al. [13] also examines the
similarity between the anonymized and original data, but
examines a broader range of distributions of values found in
the data. In doing so, they quantify the privacy of worksta-
tions in terms of the number of other workstations with sim-
ilar value distributions, and also discover those fields in the
data that negatively affect privacy. Kounine and Bezzi [23]
perform a similar analysis with respect to the privacy of in-
dividual values after they have been anonymized rather than
workstation privacy as a whole. The problem, of course, is
that each of these techniques focus exclusively on worksta-
tion or individual field privacy, and yet network data can
contain several different types of entities whose privacy is
equally important.

3.3. Measuring Utility

The idea of quantifying the utility of network data is
only just beginning to gain traction in the network data
anonymization community, though the complex nature of
the data makes such measures as important, if not more
so, as those proposed in microdata anonymization. One
such utility measure was recently proposed by Lakkaraju
and Slagell [24], and compares the performance of a well-
known intrusion detection system on the anonymized and
unanonymized data. Another measure was proposed by
Burkhart et al. [8] and applies anomaly detection method-
ologies to the anonymized data to quantify the way in which
it affects its performance. Both methods closely resem-
ble those of Brickell and Shmatikov [7] that apply machine
learning tasks to microdata to determine the degradation in
accuracy. In addition, the global utility measure of Woo
et al. [44] can also be adapted to network data due to its
use of standard statistical classification techniques. As with
microdata, the use of highly specific measures, such as eval-
uations under specific anomaly detection methodologies or
intrusion detection systems, leads to results that may not
be applicable in a more general context. Similarly, global
measures still remain difficult to interpret due to their dis-
connection from concrete utilities, and may in fact be even



more difficult to apply effectively to network data because
of its inherently complex and interdependent nature.

4. The Challenges Ahead

Clearly, the problem of anonymizing microdata has re-
ceived significant attention over the past three decades, and
that attention has served to develop several methodologies
for providing private and useful microdata to researchers. It
is equally clear that network data anonymization is only just
beginning to mature as an area of active research, and it can
benefit from the substantial body of work generated by mi-
crodata anonymization research due to the similarities be-
tween the two areas. That said, microdata and network data
have a number of non-trivial differences that make direct
application of well-known microdata anonymization con-
cepts meaningless. In this section, we outline three broad
challenges that lie ahead in the development of effective
methods for anonymizing network data.

4.1. What are we protecting?

Before we can begin developing effective anonymization
methods for network data, we must first have a clear un-
derstanding of exactly what it is we hope to protect. For
microdata, this question is easily answered because there
is a natural one-to-one correspondence between the rows
in the data and the entities being protected. With network
data, however, this connection is not as clear. Publishers
of network data are interested in protecting the privacy of a
number of entities: the network users, the network’s secu-
rity procedures, and the hosts that operate on the network.
What makes it difficult to clearly define these entities is the
fact that network data is inherently multifaceted. A single
record in the network data may actually affect the privacy
of many entities of varying types. Moreover, the privacy of
those entities is not contingent on only a single row in the
data, but on many rows that define their behavior over time.
These issues naturally raise questions about how we define
each of the entities for which the data publisher is interested
in providing privacy.

With that said, for some types of entities the answer to
this question is relatively straightforward. When consider-
ing the privacy of hosts on the network, for example, these
host entities can be defined by assuming that the IP ad-
dresses in the network data consistently and uniquely iden-
tify a host. Even so, the relatively simple entity definition
of hosts is not without its caveats, such as the possibility
that multiple hosts may use the same IP. More complex en-
tities, like users or web pages, are more difficult to define
without significant auxiliary information (e.g., audit logs).
Using those auxiliary data sources to mark the entities asso-
ciated with each record in the data is one potential avenue
for defining the entities of interest in the network data.

4.2. What is sensitive?

Network data has a wide variety of information encoded
within it. One need only consider some of its uses in
network research to appreciate its scope: e.g., measure-
ments of network traffic characteristics, testing new net-
working methodologies and tools, and studying emerging
phenomena. As we move forward, we must decide which
of these pieces of information encoded within the network
data should be considered to be sensitive. Again, the rel-
atively simple structure of microdata allows for an elegant
definition of sensitive information – any attribute in the data
that is likely to be unavailable from an external information
source should be labeled as sensitive. The sensitivity of at-
tributes are often easily intuited from knowledge of the un-
derlying data. Unfortunately, such intuitive definitions are
simply not applicable to network data.

The very same information-rich properties that make
network data so useful to the research community also lead
to two significant challenges in defining which pieces of in-
formation might be considered sensitive. First, potentially
sensitive information encoded within the network data is not
restricted to a single column in the data. In fact, the relation-
ships between the columns and across several records of-
ten indicate the most sensitive of information. For instance,
the distribution of ports used by a host in combination with
other fields may indicate that the host is infected by a virus,
whereas the distribution of ports alone would not. Similar
arguments could be made for whether a user visited an il-
licit web site, or if the network is using a particular security
system. Second, many of the fields present within network
data contain a combination of both publicly known and pri-
vate values. As an example, the distribution of ports used
by a host may indicate the services it offers, both publicly
and privately within the local network. These scenarios are
particularly troublesome since the known values within the
column of port numbers can act as key attributes, while the
unknown values act as sensitive attributes that the adversary
may seek to infer.

Many of the attacks that have been discovered for
anonymized network data take advantage of these issues in
subverting the privacy of the data. Host profiling attacks
[37, 5, 6, 12], for instance, use some of the ports and IP
pseudonyms in the data as key attributes to link the hosts to
their real identities, and then use the remaining ports to in-
fer the hosts hidden services. Rather than attempt to adapt
the static notions of key and sensitive attributes to multi-
faceted network data, current approaches to measuring pri-
vacy of network data (e.g., [37, 13, 23]) instead focus on the
uniqueness of a piece of data as an indicator for sensitivity.
The underlying assumption is that a sufficiently unique be-
havior encoded within the data is likely to be unavailable
from other data sources.



4.3. Defining Utility for Network Data

An area of considerable interest for both microdata and
network data anonymization is the development of met-
rics that measure the utility of the data after it has been
anonymized. These metrics are especially important in
the case of network data, where the inherent difficulties of
defining sensitivity and entities within the data may lead
to essentially useless data. For instance, if we follow the
definition that sensitive information in network data is any
piece of information that is sufficiently unique, then it is
easy to imagine a scenario in which the network data con-
tains only homogenous behavior. This type of homogenous
data would be useless to researchers who are interested in
investigating anomalous incidents or who want to get an ac-
curate estimation of traffic characteristics. In these types
of scenarios, it is imperative that researchers have access
to utility metrics with respect to certain properties of the
data so that they, and those that review their work, can ade-
quately gauge its appropriateness to the task at hand.

Specific utility measures may provide an adequate short
term solution to the problem. In general, a utility measure
can be derived by comparing the results of a particular util-
ity on the anonymized data to those of the unanonymized
data. The problem, of course, lies in predicting the utilities
that will be used. One simple way to address this concern is
for the data publisher to publish a set of metrics for standard
utilities on the data, and allow researchers to request addi-
tional utility measures as necessary. However, this type of
arrangement is a significant burden on data publishers and
researchers, since data publishers would need to run vari-
ous analyses on the data and researchers would be unable to
perform exploratory analyses in a timely fashion. A slightly
different approach might be to adapt the concept of a re-
mote verification server, such as the one proposed by Reiter
et al. [36], to allow researchers to automatically compare
their results from the anonymized data with those from the
original data with respect to a specific utility.

5. Conclusion
The uncertainties that currently exist about the efficacy

of network data anonymization, from both technical and
policy perspectives, leave the research community in a vul-
nerable position. Even as the field marches forward, it does
so with little understanding of the implications of publish-
ing anonymized network data on the privacy of the net-
works being monitored and the utility to researchers. With-
out that understanding, data publishers are left to wonder
what fields must be anonymized to avoid legal fallout, while
researchers question the confidence of results gained from
the data. However, the extensive work done on micro-
data anonymity provides the network research community
with several useful insights about how to effectively apply
anonymization to published data. At the same time, this

prior wisdom cannot be applied directly without first over-
coming several challenges, including the development of
appropriate privacy and utility definitions for the more com-
plex case of network data. Addressing these challenges is
essential, in our view, to ensure the continued, yet respon-
sible, availability of network trace data to support security
research.
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