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ABSTRACT

Public cloud services rely on virtualization to support multi-
tenancy—customers from different organizations are allowed
to share the data center infrastructure. Unfortunately, today’s
public clouds fail to provide sufficient isolation. Hardware
resources are often multiplexed between virtual machines that
belong to different customers, and they can cause performance
interference to each other. This article characterizes the inter-
ference on an important metric, the network latency between
virtual machines, and shows that Amazon’s EC2 cloud, a
leading public cloud provider, suffers from a long tail latency
problem. The root cause of this problem is co-scheduling
of CPU-bound and latency-sensitive tasks. We leverage these
observations in Bobtail, a system that allows cloud customers
to proactively detect and avoid these bad neighboring virtual
machines without any help from cloud service providers.

I. INTRODUCTION

With the emergence of cloud computing in the mid 2000s,
computing resources became public utility; this concept dates
back to the early 60s [2]. Among cloud computing paradigms,
Infrastructure-as-a-Service (IaaS) employs a pay-as-you-go
model that allows anyone with a valid credit card to rent a
large amount of computing resources from cloud data centers
and only pay for what they use, without an upfront investment
in hardware infrastructure.

Public IaaS clouds, such as Amazon Elastic Cloud Compute
(EC2) [3], often are used to build Internet-scale Web applica-
tions, such as Netflix, Yelp, and Pinterest [4]. The impact of
public clouds on the consumer Internet is therefore enormous.
For example, as of April 2012, sites built on Amazon’s cloud
alone attract one third of all Internet users every day and
contribute to more than 1% of all Internet consumer traffic [5].

A distinguishing feature of public clouds is multi-tenancy—
hardware infrastructure is shared by various users of different
organizations. Thus, instead of allowing direct hardware ac-
cess, cloud providers use virtualization to give users access to
computing resources in the form of virtual machines (VMs),
they retain full control of all underlying hardware infrastruc-
ture. Ideally, virtualization should give users the illusion of
dedicated hardware access and should provide strong isolation
between the virtual machines that share physical machines, the
data center network, and other layers of the cloud infrastruc-
ture, so that they cannot interfere with one another.

This article is derived from the conference paper, Bobtail: Avoiding Long
Tails in the Cloud [1], published in NSDI’13 by the same authors. This work
was completed while Yunjing Xu and Zachary Musgrave were both graduate
students at the University of Michigan.

Unfortunately, such isolation is routinely violated because
of contention for the shared resources multiplexed between
guest VMs in public clouds, and it may results in performance
interference between one another [6]–[8]. For example, the
performance of a workload with temporal locality in its
memory access pattern relies heavily on the efficiency of
various levels of CPU caches, but its neighboring VMs on the
same physical machine may run workloads causing frequent
cache eviction; this behavior forces repeated main memory
access for identical, recently used content [9].

Mitigating the performance interference between guest vir-
tual machines in public clouds is challenging because vir-
tualization creates a semantic gap [10] between the guests
who manage application workloads and the hosts who manage
the cloud infrastructure. Optimizations at one layer are made
without understanding the mechanisms or even intentions at
another, and they tend to operate at cross purposes. For
instance, from the cloud’s guests’ perspective, the extent of
resource contention is determined by the resource schedulers
that are host-controlled and operating underneath all guest
VMs, while from the host’s perspective, applications’ resource
usage patterns may affect their scheduling policies, but only
guest VMs have the knowledge of such patterns.

Therefore, in order to achieve effective mitigation, the first
step is to characterize the impact of performance interference
and study its root causes. The potential impact of performance
interference may exist for both the throughput and latency of
network I/O, disk I/O and computational jobs. As network
I/O latency becomes increasingly important for Internet-scale
user-facing applications [11], [12], this article characterizes the
impact and root cause of performance interference on inter-
VM network latency.

Our characterization studies show that the performance
interference is a consequence of resource contention between
guest VMs. Therefore, this article also explores novel tech-
niques to reduce conflicts of resource usage and mitigate
VM interference. By definition, avoiding hardware sharing
completely would eliminate all possible contention [6], but
it also defeats the economic model of cloud computing.
Instead, to mitigate the performance interference, while still
preserving the benefits of resource multiplexing, a restricted
form of sharing, Bobtail [1], is designed to seek processor
sharing with only compatible workloads to therefore reduce
the conflicts. This approach only requires knowledge about
guest application workloads above the virtualization semantic
gap—it allows guest VMs to reduce network latency without
any infrastructure changes.
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Fig. 1. CDF of RTTs for small, medium, and large instances within one of
Amazon’s EC2 data centers, compared to measurements taken in a dedicated
data center [11], [12]. While the median RTTs are comparable, the 99.9th
percentiles in EC2 are twice as bad when compared to dedicated data centers.

II. OBSERVATIONS

A. Tail Latency Characterization
To characterize the impact of performance interference on

network latency, we tested network round-trip-times (RTTs)
between virtual machines in several data centers of a lead-
ing public cloud provider, the US east region of Amazon’s
EC2 [3], for five weeks. Virtual machine in EC2 come with
different configurations and price tags. Figure 1 shows the
Cumulative Distribution Function (CDF) of RTTs for a com-
bination of small, medium, and large virtual machine instances
(the units of resources to rent). Specifically, we instantiated 20
instances of each type of virtual machines and measured the
RTTs against them from dedicated testing nodes. The inset of
the figure shows that median RTTs within a single data center,
at ⇠0.6ms, compare well to those found within a dedicated
data center at ⇠0.4ms [11], [12].

While mean or median metrics are useful for high-
throughput applications like MapReduce [13], worst-case per-
formance matters much more to applications like the Web
that require excellent user experience [12]. Because of this,
researchers use the RTTs at the 99th and 99.9th percentiles
to measure flow tail completion times in dedicated data
centers [11], [12]. Figure 1 also shows the 99th to 100th
percentile range of its inset figure. Unfortunately, its results
paint a different picture of latency measurements in Amazon’s
data centers. The 99.9th percentile of RTT measurements is
twice as bad as the same metric in a dedicated data center [11],
[12]. Individual nodes can have 99.9th percentile RTTs up to
four times higher than those seen in dedicated data centers.

To explore potential factors that might create extra long tails,
we launched 16 instances within the same data center and mea-
sure the pairwise RTTs between each instance. Figure 2 shows
measurement results at the 99.9th percentile in milliseconds.
Rows represent source IP addresses, while columns represent
destination IP addresses.

Were host location on the network affecting long tail per-
formance, we would see a symmetric pattern emerge on the
heat map, since network RTT is a symmetric measurement.
Surprisingly, the heat map is asymmetric—there are vertical
bands which do not correspond to reciprocal pairings. To a
large degree, the destination host controls whether a long tail

Fig. 2. A heat map of the 99.9th percentile of RTTs, shown for 16 small
pairwise instances in milliseconds. Bad instances, represented by dark vertical
bands, are bad consistently. This suggests that the long tail problem is a
property of specific nodes instead of the network.

exists. In other words, the extra long tail problem in cloud
environments is a property of nodes, rather than the network.

Interestingly, the data shown in Figure 2 is not entirely
bleak: there are both dark and light bands, so tail performance
between nodes varies drastically. Commonly, service nodes are
allowed only 10ms to return their results [11]. Therefore, we
refer to nodes that fulfill this service as good nodes, which
appear in Figure 2 as light bands; otherwise, they are referred
to as bad nodes. Under this definition, we find that RTTs at
the 99.9th percentile can vary by up to an order of magnitude
between good nodes and bad nodes. In particular, the bad
nodes we measured can be two times worse than those seen in
a dedicated data center [11], [12] for the 99.9th percentile. This
is because the latter case’s latency tail is caused by network
congestion, whose worst case impact is bounded by the egress
queue size of the bottleneck switch port, but the latency tail
problem we study here is a property of nodes, and its worst
case impact can be much larger than that caused by network
queueing delay. This observation will become more clear when
we discuss the root cause of the problem in § III-A.

To determine whether bad nodes are a pervasive problem
in EC2, we spun up 300 small instances in each of four data
centers in the US east region. We measured all the nodes’
RTTs and we found between 40% and 70% bad nodes within
three of the four data centers.

Interestingly, the remaining data center sometimes does not
return bad nodes; nevertheless, when it does, it returns 40%
to 50% bad nodes. We noticed that this data center spans
a smaller address space of only three /16 subnets compared
to the others, which can span tens of /16 subnets. Also, its
available CPU models are, on average, newer than those found
in any of the other data centers; Ou et al. present similar
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findings [14], so we speculate that this data center is newly
built and loaded more lightly than the others.

We also want to explore whether the long latency tail we
observe is a persistent problem, because it is a property defined
by node conditions rather than transient network conditions.
We conducted a five week experiment comprised of two sets
of 32 small instances: one set was launched in equal parts
from two data centers, and one set was launched from all four
data centers. Within each set, we selected random pairs of
instances and measured their RTTs over the five weeks. For
the sake of space, the details of our measurement results are
omitted, but in short, we observed that the long tail latency
is a relatively stable property for the instances used in the
five-week measurement period.

III. ROOT CAUSE ANALYSIS

We know that the latency tail in EC2 is two to four
times worse than that of a dedicated data center. We also
know that, as a property of nodes instead of the network, it
persists. Then, what is its root cause? Wang et al. reported that
network latency in EC2 is highly variable, and they speculated
that virtualization and processor sharing make up the root
cause [15].

However, the coexistence of good and bad instances sug-
gests that processor sharing under virtualization is not suffi-
cient to cause the long tail problem by itself. We will show
in this section that only a certain mix of workloads on shared
processors can cause this problem, and we demonstrate the
patterns of such a bad mix.

A. Root Cause Explained
If processor sharing under virtualization does not always

cause the extra long tail problem, when does it? To answer
this question, we conduct five controlled experiments with the
Xen hypervisor [16], which was reported to be used by EC2
for virtualization [15].

For this set of experiments, we varied the workload types
running on five virtual machines (VMs) sharing a local work-
station. In the first experiment, we ran a server that serves
measurement requests in all five guest VMs; we used another
non-virtualized workstation in the same local network to make
measurement requests to all five servers, once every two
milliseconds, for 15 minutes. During the experiment, the local
network was never congested. In the next four experiments,
we replaced the measurement servers on the guest VMs with
a CPU-intensive workload, one at a time, until four guest
VMs are CPU-intensive and the last one, called the victim
VM, remained latency-sensitive.

Figure 3 shows the CDF of our five experiments’ RTT
distributions from the 99th to the 100th percentile for the
victim VM. While four other VMs also run latency-sensitive
jobs (zero VMs run CPU-intensive jobs), the latency tail up
to the 99.9th percentile remains under 1ms. If one VM runs a
CPU-intensive workload, this result does not change. Notably,
even when the victim VM does share processors with one
CPU-intensive VM and three latency-sensitive VMs, the extra
long tail problem is nonexistent.

Fig. 3. CDF of RTTs for a VM within controlled experiments, with an
increasing number of co-located VMs running CPU-intensive workloads.
Sharing does not cause extra long latency tails as long as physical cores
outnumber CPU-intensive VMs, but once this condition no longer holds, the
long tail emerges.

However, the 99.9th percentile becomes five times larger
once two VMs run CPU-intensive jobs. This still qualifies as
a good node under our definition (<10ms), but the introduction
of even slight network congestion could change that. To make
matters worse, RTT distributions increase further as more
VMs become CPU-intensive. Eventually, the latency-sensitive
victim VM behaves just like the bad nodes we observe in EC2.

The results of our controlled experiments assert that virtu-
alization and processor sharing are not sufficient to cause high
latency effects across the entire tail of the RTT distribution;
therefore, much of the blame rests upon co-located workloads.
We show that having one CPU-intensive VM is acceptable;
why does adding one more make things five times worse?

There are two physical cores available to guest VMs; if we
have one CPU-intensive VM, the latency-sensitive VMs can
be scheduled as soon as they need to be, while the single
CPU-intensive VM occupies the other core. Once we reach
two CPU-intensive VMs, it becomes possible that they occupy
both physical cores concurrently while the victim VM has
a measurement request pending. Unfortunately, Xen’s VM
scheduler does not appear to let the victim VM preempt
the CPU-intensive VMs often enough. Resulting from these
unfortunate scenarios is an extra long latency distribution. In
other words, sharing does not cause extra long latency tails as
long as physical cores outnumber CPU-intensive VMs; once
this condition no longer holds, the long tail emerges.

This conclusion helps understand why one data center in
EC2’s east region has a higher probability of returning good
instances than the others. If we break down VMs returned from
this data center by CPU model, we find a higher likelihood
of newer CPUs, which have six cores instead of four, these
older CPUs are more common in the other three data centers.
One potential explanation is that six-core machines allow more
headroom to tolerate CPU-intensive VMs, i.e., they are less
susceptible to the long tail latency problem.

IV. AVOIDING THE LONG TAILS

While sharing is inevitable in multi-tenant public clouds,
we set out to design a system, Bobtail, to find instances where
processor sharing does not cause extra long tail distributions
for network RTTs. Cloud customers can use Bobtail as a utility
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to decide on which instances to run their latency-sensitive
workloads without any help from their cloud providers.

A naive approach might be to conduct network measure-
ments with every candidate. But however accurate it might be,
such a design would not scale well to handle a large number
of candidate instances in parallel. On the other hand, the most
scalable approach involves conducting testing locally at the
candidate instances, which does not rely on any resources
outside the instance itself. Therefore, all operations can be
done quickly in parallel and scale linearly. This approach
trades accuracy for scalability.

Based on our root cause analysis, such a method exists
because the part of the long tail problem we focus on is a
property of nodes instead of the network. Accordingly, if we
know the workload patterns of the VMs co-located with the
victim VM, we should be able to predict if the victim VM will
have a bad latency distribution locally without any network
measurement.

In order to achieve this, we must infer how often long
scheduling delays happen to the victim VM. Because the long
scheduling delays caused by the co-located CPU-intensive
VMs are not unique to network packet processing and any
interrupt-based events will suffer from the same problem, we
can measure the frequency of large delays by measuring the
time for the target VM to wake up from the sleep function
call. Delay in processing the timer interrupt serves as a proxy
for delays in processing all hardware interrupts.

Algorithm 1 Instance Selection Algorithm
1: num delay = 0
2: for i = 1 ! M do

3: sleep for S micro seconds
4: if sleep time � 10ms then

5: num delay++
6: end if

7: end for

8: if num delay  LOW MARK then

9: return GOOD
10: end if

11: if num delay  HIGH MARK then

12: return MAY USE NETWORK TEST
13: end if

14: return BAD

Based on the results of our controlled experiments, we can
design an instance selection algorithm to predict locally if a
target VM will experience a large number of long scheduling
delays. Algorithm 1 shows the pseudocode of our design.
While the algorithm itself is straightforward, the challenge
is to find the right threshold in EC2 to distinguish the two
cases (LOW_MARK and HIGH_MARK) and to draw an accurate
conclusion as quickly as possible (loop size M ).

Our current policy is to be conservative in choosing the
thresholds. In order words, we want to reduce the possibility
of labeling bad nodes as good incorrectly (i.e., false positives).
The cost of such conservatism is that we may label good nodes
as bad incorrectly (i.e., false negatives), and as a result we
must instantiate even more nodes to reach a desired number.

To return N good nodes as requested by users, our system
needs to choose from a pool of K ⇤N instances and find the
best N instances of that set. The details of parameterization
can be found in our conference paper [1]. The intuition is that
because the candidates launched directly by EC2 contains 40%
to 70% bad nodes (§ II-A) and our instance selection algorithm
is not perfect, we need a relatively large pool of candidates,
from which we can pick the ones with the lowest probability
of producing long latency tails. Empirically, we find K = 3 to
4 are reasonable choices in practice, and we set LOW_MARK
to be 13 and HIGH_MARK five times as LOW_MARK.

After Bobtail fulfills a user’s request for N instances whose
delays fall below LOW_MARK, we can apply the network-
based latency testing to the leftover instances whose delays fall
between LOW_MARK and HIGH_MARK; this costs the user no
more than the one-time over-provisioning of VM instances but
provides further value using the instances that users already
paid for by the hour. Many of these nodes are likely false
negatives which, upon further inspection, can be approved and
returned to the user. In this scenario, scalability is no longer a
problem because we no longer need to make a decision within
minutes. Aggregate network throughput for testing can be thus
much reduced.

V. EVALUATION

In this section, we compare the latency tails of instances
selected by Bobtail with those launched directly via the
standard mechanism using two common workload patterns—
sequential and partition-aggregation workloads. In sequential
workloads, a client calls some number of servers in series to
complete a single, timed observation. In partition-aggregation
workloads, a client calls all workers in parallel for each timed
observation.

For both workload patterns, we compare 40 small instances
launched directly by EC2 to 40 small instances selected by
our system from the same data center. To select 40 good
instances, we use Bobtail to choose from a pool of 160
candidate instances. That is, we launched K = 4 times as
many instances to find the desired number of good ones. In
addition, we launch four extra large instances for every 40
small instances to run the measurement clients. We did this
because of the observation that extra large instances do not
experience the extra long tail problem; we therefore can blame
the server instances for bad latency distributions.

A. Sequential Model
Our traffic models for both sequential and partition-

aggregation workloads have inter-arrival times of client re-
quests forming a Poisson process. For sequential workloads,
we apply the workload model to 10-node, 20-node, and
40-node server groups. In this case, the client sends small
requests, and the servers reply with a message size randomly
chosen from among 1KB, 2KB, and 4KB. For each workflow,
instead of sending requests to all the servers, the client will
randomly choose one server from the groups of sizes 10, 20,
and 40. Then, it will send 10 synchronous requests to the
chosen server; the total time to complete all 10 requests is
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(a) Sequential Model

(b) Partition-Aggregation Model

Fig. 4. Reduction in flow tail completion time for sequential and partition-
aggregation models by using Bobtail in two data centers in EC2’s US east
region. The mean reduction time is presented with a 90% confidence interval.

then used as the workflow RTT. The workflow rates for the
sequential model include 10, 20, and 50 workflows per second.

Figure 4(a) shows our improvement under the sequential
model with 20 servers per group. Bobtail brings a 35% to 40%
improvement to sequential workloads at the 99th percentile
across all experiments, and it roughly translates to an 8ms
reduction. While not shown in the figure, there is a similarity in
the reduction of flow completion time with different numbers
of server nodes, which shows that the tail performance of
the sequential workflow model only depends on the ratio of
bad nodes among all involved server nodes. Essentially, the
sequential model demonstrates the average tail performance
across all server nodes by randomly choosing one server node
each time with equal probability at the client side.

B. Partition-Aggregation Model
For the partition-aggregation model, we use the same 10,

20, and 40-node groups to evaluate Bobtail. In this case, the
client always sends requests to all servers concurrently, and
the workflow finishes as the slowest response returns; servers
always reply with 2KB of random data. The RTT of the
slowest server is effectively the RTT of the workflow.

Figure 4(b) shows improvement under the partition-
aggregation model with 20 servers involved. The improvement
brought by Bobtail at the 99th percentile varies from less than
20% to over 60%, and the improvement at 99.9th percentile
is always around 20%. In addition, while not shown in the
figure, the reduction in tail completion time diminishes as the
number of servers involved in the workload increases.

VI. DISCUSSION

The key challenge of mitigating performance interference
in public clouds is dealing with the semantic gap between
guests and hosts. Bobtail provides a guest-centric solution that

allows cloud users to avoid long latency tails without changing
any of the underlying infrastructure. Since the tail latency
distribution has become an important metric and received
lots of attention among practitioners [17], public cloud users
can leverage Bobtail today to improve their applications. We
obtained such an ability by carefully characterizing the impact
of the performance interference and analyzing its root cause
entirely from the perspective of cloud users.

Alternatively, cloud providers can provide host-centric so-
lutions by modifying their cloud infrastructure and placement
policy in a way that is completely transparent to their users.
For example, new versions of Xen’s credit scheduler [18] may
help alleviate the long tail latency problem. More generally,
providers can allocate fewer VMs on each physical machine to
relieve resource contention, at the cost of hardware utilization.
On the other hand, cloud providers can also challenge the
semantic gap by breaking the virtualization abstraction. If they
can infer the types of workloads running in the guest VMs,
they will be able to overhaul their VM placement policy to
allocate different types of VMs in different regions in the first
place. In this arrangement, cloud providers need to make sure
that the VMs allocated in the same region exhibit compatible
resource usage patterns so that they do not cause as much
performance interference to each other.
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ing Hardware Heterogeneity within the Same Instance Type of Amazon
EC2,” in Proceedings of the 4th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud’12), Boston, MA, USA, June 2012.

[15] G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center,” in Proceedings of the 29th
conference on Information communications (INFOCOM’10), San Diego,
CA, USA, March 2010.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), Bolton Landing, NY, USA, October 2003.

[17] S. Newman, “Three Latency Anomalies,” http://amistrongeryet.blogspot.
com/2010/04/three-latency-anomalies.html.

[18] xen.org, “Xen Credit Scheduler,” http://wiki.xen.org/wiki/Credit
Scheduler.


