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Abstract—Modern networks are complex and hence, network
operators often rely on automation to assist in assuring the
security, availability, and performance of these networks. At the
core of many of these systems are general-purpose anomaly-
detection algorithms that seek to identify normal behavior and
detect deviations. While the number and variations of these algo-
rithms are large, two broad categories have emerged as leading
approaches to this problem: those based on spatial correlation
and those based on temporal analysis. In this paper, we compare
one promising approach from each of these categories, namely
entropy-based PCA and HHH-based wavelets.

I. INTRODUCTION

Network operators face an enormous task in maintaining
large networks. A number of general-purpose, network-based
anomaly detection systems have been proposed to assist
them in this effort. These network-based anomaly detection
systems continuously collect different metrics (e.g., flow-
count, packet-count, byte-count on different links) from the
network as their input and try to isolate anomalies—which
can be broadly defined as events of particular interest to
network operators. While the number and diversity of such
algorithms is quite large, two general classes of anomaly
detection algorithms, namely spatial correlation and temporal
analysis, have emerged. In spatial correlation, normal behavior
is characterized by the correlations between different metrics,
or between identical metrics measured at different physical
locations. Significant uncorrelated changes are then identified
as anomalies. With temporal analysis, the normal behavior of a
metric is characterized by analyzing its time series, and signif-
icant deviations from the predicted future behavior are flagged
as anomalies. The promising methods from these classes are
entropy-based principal component analysis (PCA) [1] and
hierarchical heavy hitter (HHH) based time series analysis [2]
respectively.

The availability of different classes, the various algorithms
in each, along with the different network-metrics and tunable
parameters leave the network operators with a confusing array
of choices. For the automated methods to be truly effective,
operators need guidelines about which methods are appropriate
for their requirements, and also their ideal parameters. Further-
more, it need not be the case that a particular class, algorithm,
or set of parameters is uniformly better than another. It is
likely the case that different methods will be better suited
at identifying disjointed sets of interesting network events
(e.g., port-scans versus denial of service attacks). Comparative

studies can not only help identify which methods and metrics
are better than others, but can also identify the conditions
where the accuracy is compromised in order to help determine
the future directions for improvement or to inspire new hybrid
approaches. While PCA has been studied extensively [3], [1],
[4], [5], we are not aware of any similar evaluation of an HHH-
based anomaly detection system that provides operators with
guidelines about its use. Furthermore, there is no comparative
evaluation of these methods across the temporal and spatial
domains, nor between these two methods in particular, to show
when and how the accuracy of these methods might differ and
where they might be improved.

In this paper, we characterize a temporal-based method that
uses wavelets on HHH time series data and then compare its
performance against a spatial-based detector using entropy as
its metric and PCA for correlation. The intent of this compar-
ison is to enlighten operators as to which methods work better
under which scenarios and to show the design considerations
that affect the detection performances. Using an evaluation
framework based on trace-driven simulation similar to other
work [3], [6], [7], we inject anomalies of varying magnitudes
and thus compare the detection performance of the methods
over a range of operating parameters. In order to evaluate
the detections with respect to different types of anomalies,
we have designed injection experiments for scenarios that are
interesting to network operators: portscans, DDoS, surges in
traffic (called boost), and (partial) outages in traffic (called
drop).

II. RELATED WORK

Among temporal analysis techniques, time-domain model-
ing methods, like smoothing and Box-Jenkins ARIMA model-
ing [8], can potentially face problems in incorporating the peri-
odic behavior present in network traffic (e.g., daily, weekdays,
weekends), while frequency-domain methods, such as Fourier
analysis, can miss sudden changes in the time domain. A good
compromise between both of these methods is wavelets [9],
which provides good resolution in both the time as well as the
frequency domain. For spatial correlation, PCA is the basic
technique [1], [3]. Anomalies can get buried when the traffic-
data is aggregated, and hence, methods that operate at finer ag-
gregates have been proposed. Some methods work with heavy-
hitters (HHs) as the aggregate of choice; e.g., sketches [10]
and hierarchical HHs (HHHs) [2]. HHHs are attractive because



they preserve some of the semantic information (like source,
destination and service) of the underlying flows.

The need for rigorous evaluations of anomaly detection
systems has recently become apparent [11], [12]. In [13], a
comparison of a number of state-of-the-art anomaly detectors
is presented, albeit only under portscan attacks. Other studies
[7], [6] present comparisons using trace-driven simulation,
but [7] compares variations of the same basic method (i.e.,
analysis of residuals) while [6] compares the utility of different
entropy-based metrics. Much interest has been generated in the
PCA-based detector, as evidenced by quite a few characteri-
zation studies [4], [5].

III. DESCRIPTION OF THE ANOMALY DETECTORS

In this paper, we compare two prominent techniques for
detecting anomalies in network traffic: HHH-based anomaly
detection and entropy-based PCA analysis. Note that we
are unaware of any previous work that has used wavelet
analysis on HHHs; though wavelet analysis [9] and HHH
extraction [14], [15], [2] have been studied independently.

A. Wavelet Analysis of Hierarchical Heavy Hitters

The basic idea here is to divide the traffic into a number of
buckets of at least a given size (i.e., identify the HHHs) and
then monitor the time-series of these buckets using wavelets.
For HHHs, hierarchies on the packet attributes of interest
(source, service, etc.) are assumed. After choosing a metric
(e.g., flow, bytes), an attribute on which the hierarchy is
imposed, and an aggregation-threshold φ, the HHHs (which
are nodes in the hierarchy that constitute at least φ-fraction
of the total metric count in a given period) are periodically
flushed, giving the time series of the HHHs. The HHHs
occurring within all intervals of a training-period are added
for monitoring.

To perform wavelet analysis on the time series of each HHH,
each time series is profiled and analyzed at different time
granularities (e.g., 15 mins, 30 mins, 1 hour, etc.) For each
time granularity, Haar-wavelet coefficients indicating changes
between adjacent counts are computed and then, Z-statistics
is used on the coefficients. A user-specified percentage (called
coverage), denoting the assumed percentage of normal in-
stances in the data, is used to select the value zthr from all
of the z-values of the wavelet coefficients obtained during
training. During detection, time intervals corresponding to
wavelet coefficients with z exceeding zthr are flagged as
anomalous.

In the experiments for each anomaly scenario, attributes
that were expected to better detect anomalies were selected.
The metrics and attributes used in each scenario (described in
Section IV-D) are shown in Table I. Note that we use only
1-D HHHs in this paper.

B. Entropy-based PCA

The entropy-based PCA detector by Lakhina et al. [1] aims
to identify uncorrelated changes in the entropies of different
packet feature distributions (i.e., srcip, dstip, srcp and dstp)

TABLE I
METRICS AND ATTRIBUTES USED BY 1-D HHHS FOR THE ANOMALY

SCENARIOS

Scenario Traffic Metric Attribute
Portscan flow srcip
DDoS flow, bytes dstip, dstp
Boost bytes dstip, dstp
Drop flow srcip, dstp

corresponding to different O-D flows. The topk parameter is
used to identify the normal and residual subspaces, and the
projection of an observation vector onto the residual subspace
is used to identify anomalies. Specifically, we use Z-statistics
on the norms of the residual vectors obtained during training
to determine zthr for a specified coverage (in a fashion similar
to wavelets). While our approach is different from that of [1],
it does not affect the ranking of the instances and hence, the
Precision-Recall graphs obtained later (see IV-C).

Lakhina et al. aggregate their flows into O-D flows, but
Ringberg et al. [4] show that the level of aggregation of flows
(ingress routers, OD flows, input links) affects the sensitivity
of PCA. Since it is unclear which level of aggregation will
afford a fair comparison with HHH-wavelets, we use PCA
without aggregation. Next, while Lakhina et al. measure
entropy in terms of the packet counts, we measure it in terms
of the flow counts as well, and present the results of using this
metric too.

IV. DESCRIPTION OF EXPERIMENTS AND METRICS

In this section, we describe the traffic traces used, our
approach for injecting and detecting anomalies, the metrics
we use for evaluation, and the anomaly scenarios we have
modeled.

A. Data

In order to evaluate the anomaly detection systems, we
collected NetFlow [16] data from a live academic network,
for the period of Jan-Feb 2008. The network traces contained
5.23 million flow records, and a total of 244 billion packets
and 153 TB of data were transferred during this period. The
measurements were aggregated into 15 minute bins, giving
5,855 samples of time.

For HHH-wavelets, three weeks were used to collect the
HHHs, and each HHH was trained for a further three weeks,
starting from the time it was first observed. For entropy-PCA,
three weeks were used for training. In both cases, the last two
weeks were used for detection.

In order to confirm that the results in some scenarios
(portscan and DDoS) were free from biases on the data used,
we obtained a 2nd-fold of data by shuffling the training and
detection portions of the traces. To support the results in
the evaluation in Section V, we show the graphs obtained
for one anomaly instance in one fold only. Unless otherwise
mentioned, the trends in the graphs are representative of other
anomaly instances and other folds (where applicable).



B. Experimental Setup

The mode of operation for both of the methods consists
of training over a part of the given traffic trace, followed by
detection over the remaining part, resulting in a hypothesized
set of anomalies (hypos). The hypos depend on the method, the
method-specific parameters, and the detection threshold, and
may be either True Positives (TPs) or False Positives (FPs).

Our basic method of experimentation was trace-based
simulation—we injected events of network operator interest
onto the traffic-trace described earlier. We limit our interest
only to short-term, sudden changes, and as such, the injections
are of 15 min durations, and we look for corresponding
anomalies in the time-duration of 30mins/1hr only. First, the
methods were run over the base traffic without any synthetic
injections to obtain the default set of hypos (base anomalies)
detected by the particular method-parameter-configuration.
Next, anomalies (injs) of different rates were injected and the
corresponding hypos were identified. The identification of base
anomalies allowed us to isolate detections resulting from the
injections alone. For different parameters of a method and
different injection rates, separate injection experiments were
carried out.

Care was taken to ensure that injs did not overlap with base
anomalies or with themselves. During detection, the anomalies
corresponding to injs were identified by looking for an overlap
in time, and if applicable, attributes too.

C. Metrics for Comparing Detection Performance

We compare the detections of the methods by their sensi-
tivities as well as using Precision-Recall graphs.

In order to carry out a sensitivity analysis, we estimate the
TP-Rate (also known as Recall) for varying magnitudes of an
anomaly. This gives an idea of how sensitive the method is
towards detecting that anomaly. However, sensitivity analysis
by itself is insufficient to compare two methods.

Precision-Recall curves, which have been used to compare
the performances of classifiers [17], provide a better way
of comparison. In our context, Precision is the proportion of
alarms raised by the method that turn out to be true, and hence,
the higher the Precision, the lesser manual effort wasted on the
part of the operator in following up on the detections provided
by the method. Within our framework, we can now estimate
both Precision and Recall from the following definitions:

Precision =
# hypos corresponding to injs

# hypos
(1)

Recall =
# injs detected

#injs
(2)

Note that, in the injection framework, only estimates of
these values are obtained. Recall is an estimate because only
the information from injections is used while ignoring TPs
that may be detected in the base traffic. Similarly, Precision
is actually a lower bound because any TPs present in the
base traffic are ignored. In order to obtain the Precision-Recall
curves, all of the anomalies (and non-anomalies) were ranked

TABLE II
MAGNITUDES OF ANOMALIES FOR EACH SCENARIO

Scenario Parameter Range
Portscan scan-rate 50, 100, 250, 500, 1000 scans/s
DDoS bandwidth 100, 500, 1024, 2560, 5120, 10240 Kbps
Boost % increase 50, 100, 1000, 2500, 3000, 4000 %
Drop % drop 25, 50, 75, 100 %

using the ordered tuple (coverage, z), and the Precision-Recall
values were progressively calculated for the set of tuples.
Initially, the set consisted of only the highest-ranked tuple, and
then at each step, the next tuple in rank was added to the set
and the Precision-Recall values were recalculated. Coverage
lower than 99% wasn’t used because lower values can increase
the number of generated anomalies which are beyond the
capacities of network operators.

D. Injection Scenarios

We have modeled four scenarios that are of interest to
network operators: portscan, DDoS, boost and drop. While
portscan and DDoS are obvious scenarios, ‘boost’ models
an increase in a subset of the traffic (e.g., applications gain-
ing popularity, routing changes) and ‘drop’ models scenarios
where a subset of the traffic is dropped (e.g., network conges-
tion, new firewall rules for a specific service). All scenarios
except boost are modeled by generating/dropping relevant
flow records. DDoS and boost modify the byte counts in the
relevant flow records. Multiple injections of two anomaly in-
stances from each scenario were carried out and the magnitude
of each anomaly instance was varied as shown in Table II.

V. EVALUATION

We first present a comparison of the accuracy of the
two anomaly-detection methods and then comment on the
effectiveness of the parameters and other algorithmic design
considerations on the accuracy of the detection methods.

A. Comparison of Accuracy of Detection of HHH-wavelets
and Entropy-PCA

The accuracy of detection of the two methods were com-
pared using Precision-Recall graphs for each scenario. For
entropy-PCA, the ‘entropy w.r.t. packets’ metric did not yield
good results. For both methods, the respective parameters viz.
φ and topk were varied.

Under portscans (Figure 1(a)), neither method outperforms
the other consistently across different folds and anomaly-
instances: the best cases of HHH and entropy-PCA perform
roughly similarly. However, under DDoS (Figure 1(b)), HHHs
for all parameters generally perform better than entropy-PCA,
with some rare exceptions in the worst-case HHH methods.
Under ‘boost’ and ‘drop’, the Precision and Recall are so low
that no meaningful graphs can be generated.

These results demonstrate two points. First, no existing
method is consistently better than the other in detecting all
types of anomalies. Next, there are scenarios where neither
method does a good job of detecting anomalies.



(a) Portscan (b) DDoS

Fig. 1. The Precision vs. Recall graphs for the DDoS and Portscan scenarios, with different parameterizations, for both compared methods. For Portscans,
both methods are comparable, while for DDoS, HHH-wavelets is clearly better than entropy-PCA.

TABLE III
BEST AND WORST CASE MAGNITUDES OF ANOMALIES DETECTED BY THE

DIFFERENT METHODS. (N.D. = NOT DETECTED)

Scenario HHH Entr-PCA
Attr Best Worst Best Worst

Portscan (scans/s) srcip 50 250 50 250

DDoS (Mbps) dstp 0.5 2.5 5 ≥10dstip 2.5 2.5

Boost (%) dstip 2500 N.D. N.D. N.D.dstp N.D. N.D.

Drop (%) srcip ≥100 N.D. N.D. N.D.dstp N.D. N.D.

B. Parameterization and Algorithmic Design Considerations

In this section, we explore a few questions that operators
interested in deploying these methods might ask. First, we
present a comparison of the methods based on their sen-
sitivities towards detection of anomalies. Next, we try to
understand the effectiveness of the method-specific parameters
with respect to the detection performance.

1) Sensitivity Analysis: Figures 2-4 show the variation of
TP rate of HHHs with the threshold-parameter φ as well as
the magnitudes of the anomalies, for some of the scenarios,
with coverage fixed at 99%. We see that in general, at any
threshold, as the magnitude of the anomaly increases, the TPs
detected increase. After the magnitude of the anomaly crosses
a certain value, nearly all injections are detected irrespective
of the threshold used. In such cases, the anomalies are large
enough to be detected by the root HHH, and hence essen-
tially correspond to detections by wavelets on the complete
aggregation of the traffic.

Figures 5(a) and 5(b) also show the variation of TP rate of
entropy-PCA with the magnitudes of anomalies, for different
topk and metrics, for some of the scenarios. Note that entropy-
PCA with ‘entropy w.r.t. packets’ detects next to nothing in
all the scenarios.

The best and the worst magnitudes of the anomalies at
which the methods provide significant (i.e., ≥ 50%) detection
rates are summarized in Table III. We see that HHH-wavelets
can match the sensitivity of entropy-PCA for portscan, and is
the more sensitive of the two for DDoS.

2) Effectiveness of φ w.r.t. Detection Performance of HHH-
wavelets: Intuitively, the aggregation-threshold φ provides a
parameter with which to tune the behavior of HHH-wavelets.
Here, we study its effectiveness with respect to the sensitivity
as well as the detection performance of the method.

From Figures 2-4 which show the sensitivity analysis of
HHHs, we observe that lowering φ can enable detection
of anomalies of lesser magnitudes i.e., the detection can
become more sensitive. However, this is possible only if a
HHH corresponding to the anomaly is present lower down in
the hierarchy, which cannot always be guaranteed by simply
lowering the threshold.

Next, we consider the scenario-wise Precision-Recall graphs
(Figures 1(a) and 1(b)) to get a closer look at the performance
of the HHH methods at different φ-s. While the lowest
threshold (0.05) generally performs better, there are exceptions
and even opposing trends, with lower thresholds performing
relatively better in some instances, and higher thresholds
performing relatively better in others. However, this can be
explained in terms of the presence of HHHs corresponding to
the injected anomalies.

First, we observed that the number of hypos and hence,
base anomalies tends to decrease as φ increases. Hence, if
different thresholds have the same HHH relevant to the inj
in the hierarchy, then the method with the higher threshold
will perform better because of the resultant higher precision.
Second, lower thresholds have a better chance of maintaining
a HHH corresponding to the injected anomaly deeper down
in the hierarchy, and if such low HHHs exist, then even
though the time series of such HHHs are expected to be
noisy, the anomalies corresponding to the injections detected
in them seem to have higher ranks than base anomalies, as
well as higher ranks than anomalies detected higher up in
the hierarchy. The higher ranks of the anomalies in the low
HHHs leads to higher precision values in the beginning of
calculation of precision-recall values, as well as better recall
later and hence, better overall performance of the lower φ-s.
Thus, lower thresholds can lead to better performance, if there
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Fig. 2. Portscan: TP Rate vs. Anomaly Rate
vs. Threshold
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Fig. 3. DDoS(flows): TP Rate vs. Anomaly
Rate vs. Threshold
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Fig. 5. Sensitivity analysis of entropy-PCA for different parameters and metrics, for the DDoS and Portscan scenarios.

exist corresponding HHHs lower down in the hierarchy.
3) Effectiveness of topk w.r.t. Detection Performance of

Entropy-PCA: From the entire evaluation, we can see that the
performance of entropy-PCA, both in terms of the sensitivity
and the precision-recall graphs, is sensitive to small changes
in the topk parameter; this is an extension of the result from
[4], which observed that the false-positive rate was sensitive
to changes to this parameter.

VI. CONCLUSIONS

In this work, we have compared one promising anomaly de-
tection method each from the classes of temporal analysis and
spatial correlation: HHH-wavelets, which is a new algorithm
that combines the existing techniques of HHHs and wavelets,
and entropy-PCA, which is an algorithm already described in
the literature. A comparison of the detection accuracy of the
methods for different anomaly scenarios shows that: (i) for
portscan, no method is better than the other, (ii) for DDoS,
HHH-wavelets is better than entropy-PCA and (iii) neither of
the methods have significant detections under boost and drop.
Additionally, we explore the pragmatic design considerations
of the algorithms and obtain the following set of results:
(i) under portscan, HHH-wavelets can match the sensitivity
of entropy-PCA while under DDoS, HHH-wavelets are more
sensitive, (ii) we show how lowering φ for HHH-wavelets
can lead to better detection and (iii) we confirm that the
effectiveness of entropy-PCA depends strongly on topk (as
was shown in [4]).
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