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Abstract

As the scope and scale of network data grows, se-
curity practitioners and network operators are increas-
ingly turning to automated data analysis methods to ex-
tract meaningful information. Underpinning these meth-
ods are distance metrics that represent the similarity be-
tween two values or objects. In this paper, we argue
that many of the obvious distance metrics used to mea-
sure behavioral similarity among network hosts fail to
capture the semantic meaning imbued by network pro-
tocols. Furthermore, they also tend to ignore long-term
temporal structure of the objects being measured. To ex-
plore the role of these semantic and temporal character-
istics, we develop a new behavioral distance metric for
network hosts and compare its performance to a met-
ric that ignores such information. Specifically, we pro-
pose semantically meaningful metrics for common data
types found within network data, show how these met-
rics can be combined to treat network data as a unified
metric space, and describe a temporal sequencing algo-
rithm that captures long-term causal relationships. In
doing so, we bring to light several challenges inherent
in defining behavioral metrics for network data, and put
forth a new way of approaching network data analysis
problems. Our proposed metric is empirically evaluated
on a dataset of over 30 million network flows, with re-
sults that underscore the utility of a holistic approach to
network data analysis.

1 Introduction

Network operators face a bewildering array of secu-
rity and operational challenges that require significant
instrumentation and measurement of their networks, in-
cluding denial of service attacks, supporting quality of
service, and capacity planning. Unfortunately, the com-
plexity of modern networks often make manual exami-
nation of the data provided by such instrumentation im-
practical. As a result, operators and security practition-

ers turn to automated analysis methods to pinpoint in-
teresting or anomalous network activities. Underlying
each of these methods and their associated applications
is a fundamental question: to what extent are two sets of
network activities similar?

As straightforward as this may seem, the techniques
for determining this similarity are as varied as the num-
ber of domains they have been applied to. These range
from identifying duplicates and minor variations using
cryptographic hashes and edit distance of payloads, to
the use of distributions of features and their related
statistics (e.g., entropy). While each has been shown to
provide value in solving specific problems, the diversity
of approaches clearly indicates that there is no generally
accepted method for reasoning about the similarity of
network activities.

With this in mind, the goal of this paper is to make
progress in developing a unified approach to measur-
ing the similarity of network activities. In doing so, we
hope to encourage a more rigorous method for describ-
ing network behaviors, which will hopefully lead to new
applications that would be difficult to achieve otherwise.
While a complete framework for rigorously defining dis-
tance is beyond the scope of any one paper, we address
two key aspects of network similarity that we believe
must be considered in any such a framework. That is,
the spatial and temporal characteristics of the network
data.

Here, spatial characteristics refer to the unique se-
mantic relationships between the values in two identi-
cal or related fields. For example, if we wish to cluster
tuples of data that included IP addresses and port num-
bers, we would have two obvious ways of accomplish-
ing the task: (1) treat the IPs and ports as numeric val-
ues (i.e., integers) and use subtraction to calculate their
distance, or (2) treat them as discrete values with no re-
lationship to one another (e.g., in a probability distribu-
tion). Clearly, neither of these two options is exactly cor-
rect, since the network protocols that define these data
types also define unique semantic relationships.

Temporal characteristics, on the other hand, describe



the causal relationships among the network activities
over time. One way to capture temporal information is
to examine short n-grams or k-tuples of network activ-
ities. However, this too may ignore important aspects
of network data. As an example, changes in traffic vol-
ume may alter the temporal locality captured by these
short windows of activity. Moreover, network data has
no restriction on this temporal locality, which means that
activities can have long-term causal relationships with
each other, extending to minutes, hours, or even days.
Successfully building robust notions of similarity that
address these temporal characteristics mean addressing
similarity over large time scales.

Contributions. In this paper, we explore these spatial
and temporal properties in an effort to learn what im-
pact they may have on the performance of automated
network analysis methods. To focus our study, we ex-
amine the problem of classifying host behaviors, which
requires both strong notions of semantically-meaningful
behavior and causal relationships among these behav-
iors to provide a meaningful classification. Furthermore,
we develop an example unified metric space for network
data that encodes the unique spatial and temporal prop-
erties of host behavior, and evaluate our proposed met-
ric by comparing it to one that ignores those properties.
We note that it is not our intention to state that current
analysis methodologies are “wrong,” nor that we present
the best metric for computing similarity. Instead, we ex-
plore whether general metrics for network activities can
be created, how such metrics might lead to improved
analysis, and examine the potential for new directions
of research.

More concretely, we begin by defining metric spaces
for a subset of data types commonly found within net-
work data. We design these metric spaces to encode
the underlying semantic relationship among the values
for the given data type, including non-numeric types
like IP addresses and port numbers. Then, we show
how to combine these heterogeneous metric spaces into
a unified metric space that treats network data records
(e.g., packets, network flows) as points in a multi-
dimensional space. Finally, we describe host behaviors
as a time series of these points, and provide a dynamic
time warping algorithm that efficiently measures behav-
ioral distance between hosts, even when those time se-
ries contain millions of points. In doing so, we de-
velop a geometric interpretation of host behavior that is
grounded in semantically-meaningful measures of be-
havior, and the long-term temporal characteristics of
those behaviors. Wherever possible, we bring to light
several challenges that arise in the development of gen-
eral metrics for network data.

To evaluate our proposed metric, we use a dataset
containing over 30 million flows collected at the Uni-

versity of Michigan. Our experiments compare the per-
formance of our metric to that of the L1 (i.e., Manhattan
distance) metric, which ignores semantics and temporal
information, in a variety of cluster analysis tasks. The
results of these experiments indicate that semantic and
temporal information play an important role in captur-
ing a realistic and intuitive notion of network behaviors.
Furthermore, these results imply that it may be possible
to treat network data in a more rigorous way, similar to
traditional forms of numeric data. To underscore this po-
tential, we show how our metric may be used to measure
the privacy provided by anonymized network data in the
context of well-established privacy definitions for real-
valued, numeric data; namely, Chawla et al. ’s (c, t)-
isolation definition [6].

2 Related Work

There is a long, rich body of work related to de-
veloping automated methods of network data analy-
sis. These include, but are not limited to, supervised
[18, 8, 2, 30, 9, 31] and unsupervised [17, 15, 29, 14,
10, 32, 3] traffic classification, anomaly and intrusion
detection [11, 28, 27, 24, 13], and data privacy appli-
cations [7, 25, 16, 4]. Rather than attempt to enumer-
ate the various approaches to automated data analysis,
we instead point the interested reader to recent surveys
of traffic classification [22] and anomaly detection tech-
niques [5]. Also, we reiterate that the purpose of this
paper is to explore the role of semantics and temporal
information in developing a framework for defining sim-
ilarity among network activities – a task that, to the best
of our knowledge, has not been thoroughly examined in
the literature thus far.

Of the network data analysis approaches proposed
thus far, the work of Eskin et al. [11] is most closely
related to our own. Eskin et al. address the problem of
unsupervised anomaly detection by framing it as a form
of outlier detection in a geometric space. Their approach
uses kernel functions to map arbitrary input spaces to
a high-dimensional feature space that encodes the dis-
tances among the input values. They show how to use
these kernel functions to encode short windows of k sys-
tem calls for host-based anomaly detection, and fields
found within network data for network-based detection.

Clearly, Eskin et al. share our goal of describing a
unified metric (i.e., feature) space for measuring the sim-
ilarity of network data. However, there are two very im-
portant distinctions. First, while Eskin et al. show how to
map non-numeric types (e.g., IP addresses) to a common
feature space, they do so in such a way that all semantic
relationships among the values is removed. In particu-
lar, their kernel function treats each value as a discrete
value with a binary distance measure: either the value is
the same or it is different. Second, their approach for en-



coding sequences of activities (i.e., system calls in their
case) is limited to relatively short windows due to the ex-
ponential growth in dimensions of the feature space and
the sparsity of that space (i.e., the “curse of dimension-
ality”). By contrast, we seek to explore the semantic and
temporal information that is missing from their metrics
by developing semantically-meaningful spatial metrics
and long-term temporal metrics based on dynamic time
warping of time series data.

3 Preliminaries

For ease of exposition, we first provide definitions
and notation that describe the network data we analyze
in a format-independent manner. We also define the
concepts of metric spaces and product metrics, which
we use to create a foundation for measuring similarity
among network hosts.

Network Data Data describing computer network ac-
tivities may come in many different forms, including
packet traces, flow logs, and web proxy logs. Rather
than describe each of the possible formats individually,
we instead define network data as a whole in more ab-
stract terms. Specifically, we consider all network data
to be a database of m rows and n columns, which we
represent as an m × n matrix. The rows represent indi-
vidual records, such as packets or flows, with n fields,
which may include source and destination IP addresses,
port numbers, and time stamps. We denote the ith row
as the n-dimensional vector ~vi =< vi,1, . . . , vi,n >,
and the database as V =< ~v1, . . . , ~vm >T . For our pur-
poses, we assume a total ordering on the rows ~vi ≤ ~vi+1

based on when the record was added to the database by
the network sensor. Furthermore, we associate each col-
umn in the matrix (i.e., field) with an atomic data type
that defines the semantic relationship among its values.
More formally, we define a set of types T = {t1, . . . , t`}
and an injective function F : [1, n]→ T that maps a col-
umn to its associated data type.

Metric Spaces To capture a notion of similarity
among values in each column, we define a metric space
for each data type in the set T . A metric space is sim-
ply a tuple (X, d), where X is a non-empty set of val-
ues being measured and d : X × X → R+ is a non-
negative distance metric. The metric function must sat-
isfy three properties: (1) d(x, y) = 0 iff x = y; (2)
d(x, y) = d(y, x); and (3) d(x, y) + d(y, z) ≥ d(x, z).
We denote the metric for the type tj as (Xtj

, dtj
).

Given the metric spaces associated with each of the
columns via the data type mapping described above,
(XF (1), dF (n)), . . . , (XF (n), dF (n)), we can define a p-
product metric to combine the heterogeneous metric

spaces into a single metric space that measures simi-
larity among records as if they were points in an n-
dimensional space. Specifically, the p-product met-
ric is defined as (XF (1) × . . . × XF (n), dp), where
XF (1) × · · · × XF (n) denotes the Cartesian product of
the sets and dp is the p-norm:

dp(~x, ~y) = (dF (1)(x1, y1)p + · · ·+ dF (n)(xn, yn)p)
1
p

We note that metrics we propose are straightforward
generalizations of well-known metrics [19]; hence, the
proofs are omitted for brevity.

4 Metric Spaces for Network Data

To provide a foundation for measuring similarity
among network hosts, we define a metric space that cap-
tures both the spatial and temporal characteristics of the
host’s behaviors as follows. We begin by defining met-
rics spaces that capture semantically rich relationships
among the values for each data type found in the net-
work data. For the purposes of this initial study, we re-
strict ourselves to providing example metrics for four
prevalent data types: IP addresses, port numbers, time
fields, and size fields. Next, we show how to combine
these heterogeneous metric spaces into a single, unified
metric space using a p-product metric and a novel nor-
malization procedure that retains the semantic relation-
ships of the constituent metric spaces. This allows us
to treat each network data record as a point and cap-
ture the spatial characteristics of the host’s behavior in
a meaningful way. Finally, we model a host’s temporal
behavior as a time series of points made up of records
associated with the host (e.g., flows sent or received by
the host), and show how dynamic time warping may be
used to efficiently measure distance between the behav-
ior of two hosts.

4.1 Data Types and Metric Spaces

Network data may contain a wide variety of data
types, each with its own unique semantics and range of
possible values. That said, without loss of generality,
we can classify these types as being numeric (e.g., times-
tamps, TTL values, sizes) or categorical (e.g., TCP flags,
IPs, ports) in nature. The primary distinction between
these two categories of types is that numeric types have
distance metrics that naturally follow from the integer or
real number values used to represent them, while cate-
gorical types often do not maintain obvious linear rela-
tionships among the values. Here, we describe example
metric spaces for two data types in each category: time
and size as numeric types, and IP and port as categorical.

Numeric Types. The time and size data types contain
values syntactically encoded as 16 or 32 bit integers, and
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Figure 1. Distance metrics for categorical types of port and IP. Distances listed to the left
indicate the distance when values diverge at that level of the hierarchy.

have semantics that mirror those of the integers them-
selves. That is, a distance of ten in the integers is se-
mantically the same as ten bytes or ten seconds1. Both
types can be represented by metric spaces of the form
(X = {0, . . . ,M}, d(x, y) = |x− y|), where M is sim-
ply the largest value possible in the encoding for that
type. In most cases, that means that M = 232 − 1 for
32-bit integers, or M = 216 − 1 for 16-bit.

An obvious caveat, however, is that one must ensure
that values are encoded in such a way that they are rele-
vant to the analysis at hand. For example, when compar-
ing host behavior over consecutive days, it makes sense
to ensure time fields are made relative to midnight of the
current day, thereby allowing one to measure differences
in activity relative to that time scale (i.e., a day) rather
than to a fixed epoch (e.g., UNIX timestamps).

Categorical Types. While metric spaces for numeric
types are straightforward, categorical data types pose
a problem in developing metric spaces due to the
non-linear relationship between the syntactic encoding
(i.e., integers) and the underlying semantic meaning of
the values. Moreover, the unique semantics of each data
type prohibits us from creating a single metric for use by
all categorical types. Instead, we follow a general proce-
dure whereby a hierarchy is defined to represent the re-
lationships among the values, and the distance between
two values is determined by the level of the hierarchy at
which the values diverge. While this is by no means the
only approach for defining metrics for categorical types,
we believe it is a reasonable first step in representing the
semantics of these complex types.

1Note that we will address issues arising from different units of
measure in the following section.

To define the distance hierarchy for the port type, we
decompose the space of values (i.e., port numbers) into
groups based on the IANA port listings: well-known (0-
1023), registered (1024-49151), and dynamic (49151-
65535) ports. In this hierarchy, well-known and regis-
tered ports are considered to be closer to one another
than to dynamic ports since these ports are typically
statically associated with a given service. Of course,
ports within the same group are closer than those in
different groups, and the same port has a distance of
zero. The hierarchy is shown in Figure 1(a). More for-
mally, we create the metric space (Xport, dport), where
Xport = {0, . . . , 65535} and dport is an extension of the
discrete metric defined as:

dport(x, y) =


0 if x = y
1 if δport(x) = δport(y)
2 if δport(x) ∈ {0, 1} & δport(y) ∈ {0, 1}
4 if δport(x) ∈ {0, 1} & δport(y) ∈ {2}

δport(x) =

{
0 if x ∈ [0, 1023]
1 if x ∈ [1024, 49151]
2 if x ∈ [49152, 65535]

The choice of distances in dport is not absolute, but
must follow the metric properties from Section 3 and
also faithfully encode the relative importance of the dif-
ferences in groups that the ports belong to. One can also
envision extending the hierarchy to include finer grained
information about the applications or operating systems
typically associated with the port numbers. Many such
refinements are possible, but it is important to note that
they make certain assumptions on the data which may
not hold in all cases. For example, one could further
refine the distance measure to ensure that ports 80 and
443 are near to one another as both are typically used
for HTTP traffic, however there are clearly cases where
other ports carry HTTP traffic or where ports 80 and 443



carry non-HTTP traffic. One of the benefits of this ap-
proach to similarity measurement is that it requires the
analyst to carefully consider these assumptions when
defining metrics.

The metric space for IP addresses2 is slightly more
complex due to the variety of address types used in
practice. There is, for instance, a distinction between
routable and non-routable, private and public, broad-
cast and multicast, and many others. In Figure 1(b), we
show the hierarchy used to represent the semantic rela-
tionships among these groupings. At the leaves of this
hierarchy, we perform a simple Hamming distance cal-
culation (denoted as dH ) between the IPs to determine
distance within the same functional group. Due to the
complexity of the hierarchy, we do not formally define
its metric space here. We again reiterate that this is just
one of potentially many ways to create a metric for func-
tional similarity of IP addresses. Again, we may imag-
ine a more refined metric that further subdivides IPs by
autonomous system or CIDR block, and again we must
ensure that that assumptions made by these metrics are
supported by the data being analyzed.

4.2 Network Data Records as Points

Given the aforementioned distance metrics, the next
challenge is to find a way to combine them into a unified
metric space that captures the distance between records
(i.e., flows or packets) by treating them as points within
that space. At first glance, doing so would appear to be a
relatively simple procedure: assign one of the available
types to each field in the record, and then combine the
respective metric spaces using a p-product metric. How-
ever, when combining heterogeneous spaces it is impor-
tant to normalize the distances to ensure that one dimen-
sion does not dominate the overall distance calculation
by virtue of its relatively larger distance values. Typi-
cally, this is accomplished with a procedure known as
affine normalization. Given a distance metric d on val-
ues x, y ∈ X , the affine normalization is calculated as:

d(x, y) =
d(x, y)−min(X)
max(X)−min(X)

However, a naive application of this normalization
method fails to fairly weight all of the dimensions used
in the overall distance calculation. In particular, affine
normalization ignores the distribution of values in the
underlying space by normalizing by the largest distance
possible. As a result, very large and sparse spaces, such
as IPs or sizes, may actually be undervalued as a result.

To see why, consider a field containing flow size data.
In the evaluation that follows, the vast majority of flows

2The provided metric is for IPv4 addresses. IPv6 addresses would
simply require a suitable increase in distances for each level to retain
their relative severity.

have less than 100 bytes transferred, but the maximum
seen is well over ten gigabytes in size. As a result, affine
normalization would give extremely small distances to
the vast majority of flow pairs even though those dis-
tances may actually still be semantically meaningful. In
essence, affine normalization procedures remove or min-
imize the semantic information of distances that are not
on the same scale as the maximum distance. Yet another
approach might be to measure distance as the difference
in rank between the values (i.e., the indices of the val-
ues in sorted order). Doing so, however, will remove all
semantic information about the relative severity of the
difference in those values.

To balance these two extremes, we propose a new
procedure that normalizes the data according to common
units of measure for the data type. We begin by defining
the overall range of distances that are possible given the
values seen in the data being analyzed. Then, we divide
this space into non-overlapping ranges based upon the
unit of measure that most appropriately suits the values
in the range. In other words, the range associated with
a given unit of measure will contain all distances that
have a value of at least one in that unit of measure, but
less than one in the next largest unit. In this paper, we
use seconds, minutes, and hours for the time data type,
and bytes, kilobytes, and megabytes for size types. Cat-
egorical types, like IPs and ports, are assigned units of
measure for each level in their respective distance hier-
archies.

Once each distance range is associated with a unit
of measure, we can then independently map them into
a common (normalized) interval such that the normal-
ized distances represent the relative severity of each unit
of measure with respect to units from the same type, as
well as those from other data types that are being nor-
malized. It is this piecewise mapping to the normalized
distance range that allows us to maintain the semantic
meaning of the underlying distances without unduly bi-
asing certain dimensions in the overall distance calcu-
lation. For simplicity, we map all metric spaces with
three units of measure to the ranges [0, 0.25), [0.25, 0.5),
and [0.5, 1.0]. Types with four units are mapped as
[0, 0.125), [0.125, 0.25), [0.25, 0.5),[0.5, 1.0]. Figure 2
shows how this mapping is achieved for size and IP
types. Then, by denoting the function that produces
the normalized distance for type tj as dtj

(x, y), we can
use the p-product metric to define the distance between
records in the network data as:

dp(~x, ~y) =
(
dF (1)(x1, y1)

p
+ · · ·+ dF (n)(xn, yn)

p
) 1

p

The metric space is now (XF (1)×· · ·×XF (n), dp), and
we set p = 2 in order to calculate the Euclidean distance
between records.
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4.3 Network Objects as Time Series

Thus far, we have introduced distance metrics that
attempt to capture the semantics that underlie various
data types found in network data, and showed how that
semantic information may be propagated to metrics for
network data records by carefully normalizing and cre-
ating a unified metric space. The final step in our study
requires us to take these records and show how to use
the metrics we have developed to capture the similarity
in behavior between two hosts. In effect, we defined a
method for reasoning about the spatial similarity of in-
dividual records associated with a host, but must also
address the concept of temporal similarity to capture its
behavior in a meaningful way.

Common wisdom suggests that host similarity should
be calculated by independently evaluating records asso-
ciated with that host, or only examining short subse-
quences of activities. This is due primarily to the so-
called “curse of dimensionality” and the sheer volume of
behavioral information associated with each host. Our
assertion is that doing so may be insufficient when trying
to capture a host’s activities and behaviors as a whole,
since these behaviors often have strong causal relation-
ships that extend far beyond limited n-gram windows.

In order to capture the entirety of a host’s behav-
ior and appropriately measure similarity among hosts,
we instead model a host’s behavior as a time series of
points made up of the records embedded into the n-
dimensional metric space described in the previous sec-
tion. Given two hosts represented by their respective
time series, a dynamic programming method known as
dynamic time warping (DTW) may be used to find an
order-preserving matching between points in the two se-
ries which minimizes the overall distance. The DTW
approach has been used for decades in the speech recog-
nition community for aligning words that may be spo-
ken at different speeds. Essentially, the DTW procedure
“speeds up” or “slows down” the time series to deter-
mine which points should be aligned based on the dis-
tances between those two points, which in our case are
calculated using the p-product metric.

Unfortunately, DTW runs in O(m1m2) time and
space for two time series of length m1 and m2, respec-

tively. Considering that most real-world hosts produce
millions of records per day, such an approach would
quickly become impractical. Luckily, several heuris-
tics have been proposed that limit the area of the dy-
namic programming matrix being evaluated. In particu-
lar, Sakoe and Chiba [26] provide a technique which re-
duces the computational requirements of the DTW pro-
cess by evaluating only those cells of the matrix which
lie within a small window around the diagonal of the
matrix. Despite only examining a small fraction of
cells, their approach has been shown to produce accu-
rate results in measuring similarity due to the fact that
most high-quality matches often occur in a small win-
dow around the diagonal, and that it prevents so-called
pathological warpings wherein a single point may map
to large sections of the opposite time series.

4.3.1 Efficient Dynamic Time Warping for Network
Data

Ideally, we would apply the Sakoe-Chiba heuristic to
make the DTW computation feasible even for very
large datasets. Unfortunately, the Sakoe-Chiba heuris-
tic makes assumptions on the time series that prevent its
direct application to network data. In particular, it as-
sumes that the points in the time series are sampled at
a constant rate, and so the slope of the diagonal that is
evaluated in the matrix depends only on the length of the
time series (i.e., the time taken to speak the word). For
network data, however, the rate at which records are pro-
duced is based on the traffic volumes sent and received
by the host, which are inherently bursty in nature and
dependent on the host’s activities. Consequently, a sin-
gle diagonal with a fixed slope would yield a warping
path that attempts to align points that may be recorded
at significantly different times, leading to a meaningless
measurement of behavior.

To address this, we propose an adaptation where we
break the two time series into subsequences based on
the time period those sequences cover, and calculate
individual diagonals and slopes for each subsequence.
The individual subsequences can then be pieced together
to form a warping path that accommodates the vari-
able sampling rate of network data, and from which we



B B B B B B B

A

B

A

A

A

A

A

1 2 3 4 5 6 7 8

1

2

3

4

5

6

(a) DTW with heuristic for constant sampling.

B B B B B B B

A

B

A

A

A

A

A

1 2 3 4 5 6 7 8

1

2

3

4

5

6

(b) DTW with heuristic for variable sampling.

Figure 3. Example dynamic programming matrices with the original Sakoe-Chiba heuristic (a)
and our adapted heuristic (b) for variable sampling rate time series. Gradient cells indicate the
“diagonals” and dark shaded cells indicate the window around the diagonal that are evaluated.
In the the variable rate example, points in the same subsequence are grouped together.

can extend a window to appropriately measure similar-
ity without evaluating the entire dynamic programming
matrix. Figure 3 shows an example of the traditional
Sakoe-Chiba heuristic and our adaptation for network
data.

Our extension of the Sakoe-Chiba heuristic for net-
work data proceeds as follows. Assume that we are
given two time series A and B, where |A| ≤ |B|. We
begin by splitting the two time series being aligned into
subsequences such that all points in the same subse-
quence were recorded during the same second (accord-
ing to their timestamps). The subsequences in the two
time series are paired if they contain points for the same
second. Any subsequences that have not been paired are
merged in with the subsequence in the same time series
that is closest to its timestamp. Thus, we have k subse-
quences A1, . . . , Ak and B1, . . . , Bk for the sequences
A and B, with Ai and Bi being mapped to one another.
Next, we iterate through each of the k subsequence
pairs and calculate the slope of the pair as Si = |Bi|

|Ai| .
The slope and subsequence mapping uniquely determine
which cells should be evaluated as the “diagonal” in our
variable sampling rate adaptation. Specifically, the jth

point in the ith subsequence (i.e., Ai,j) is mapped to
Bi,j′ where j′ = dj ∗ Sie.

With this mapping among points in hand, we then
place a window around each cell of length at least dSie
to ensure continuity of the path in the dynamic program-
ming matrix (i.e., a transition exists between cells). For
those points that occur at the beginning or end of a sub-
sequence, the window length is set based on the index of
the mappings for the adjacent points to ensure that the
subsequences are connected to one another. In order to
provide a tunable trade-off between computational com-
plexity and accuracy of the warping, we extend the win-
dow by a multiplicative parameter c so that c ∗ Si cells

Algorithm 1
Dynamic Time Warp (A,B,map, slope, c)
Require: |A| ≤ |B|
Require: c > 0

Initialize m as a |A| × |B| matrix
m[i][j]←∞ for all i, j
m[0][0]← 0.0
for i← 0 to |A| do
start← max(0,map[i]− slope[i] ∗ c)
end← min(|B|,map[i] + slope[i] ∗ c)
for j ← start to end do

if i 6= 0 and j 6= 0 then
distance← dp(A[i− 1], B[j − 1])
left← matrix[i][j − 1] + distance
up← matrix[i− 1][j] + distance
diag ← matrix[i− 1][j − 1] + distance
m[i][j]← min(left, up, diag))

end if
end for

end for
return m[|A|][|B|]/(|A|+ |B|)

on either side of the “diagonal” are evaluated.
Algorithm 1 shows the dynamic time warping pro-

cedure using the restricted warping path from our vari-
able sampling rate heuristic3. For ease of presentation,
we provide as input to the algorithm lists containing the
two time series A and B, the mapping between indices
in A and their “diagonal” mapping in B, a list contain-
ing the slope values to be used to ensure continuity of
the matrix slope4, and the multiplicative factor c that
controls the number of cells evaluated around the “di-
agonals.” As with any dynamic programming technique,
the minimum distance for the allowable warping path

3Note that this algorithm can be easily altered so that only two rows
in the matrix are maintained in memory at any given time, thereby
reducing the space complexity to O(|B|).

4In practice, there are actually two lists – a forward and backward
list – to accommodate for cases where the point is at the beginning or
end of a subsequence.



is given in the lower-right cell of the matrix. Further-
more, in order to ensure the computed warping distances
are comparable among time series of varying lengths,
we normalize the distance by dividing by the number of
cells in the longest possible warp path |A|+ |B|, which
also ensures that the distance remains symmetric. We
use this normalized distance to compare the behaviors
of hosts and determine their similarity. The computa-
tional complexity of our proposed heuristic isO(|B| ∗c)
in the worst case where both series A and B are of equal
length, which represents a significant reduction from the
quadratic complexity required when evaluating the en-
tire dynamic programming matrix.

5 Evaluation

The underlying hypothesis behind the behavioral dis-
tance metric proposed in the previous section is that the
semantics of the network data and long-term sequences
of activities provide a more robust notion of host behav-
ior than measures that ignore such information. To eval-
uate this hypothesis, we compare our proposed dynamic
time warp (DTW) metric to the well-known L1 distance
metric, which does not explicitly capture semantic and
sequencing information. The experiments in our evalu-
ation compare these two metrics using a broad range of
analysis methodologies on a large dataset collected on a
live network segment in an effort to pinpoint the benefits
of our approach over naive metrics.

We begin by measuring the trade-off between speed
and accuracy of our dynamic time warping-based dis-
tance calculation under varying settings of the multi-
plicative window parameter c. Using the results from
this experiment, we choose a window that provides a
balance between fidelity and speed, and show that our
approach is feasible even on datasets containing mil-
lions of flows. Next, we compare our approach to a met-
ric that ignores semantics and sequencing. In particular,
we examine the clusters produced by a variety of clus-
ter analysis techniques when using L1 distance and our
proposed DTW metric. Moreover, we look at the con-
sistency of these behaviors across consecutive days of
observation to show that our approach captures the most
robust notion of network behaviors. Finally, we exam-
ine a concrete application of our metric to the problem
of quantifying privacy of network hosts, and show how
it enables application of well-known privacy definitions,
such as the notion of (c, t)-isolation defined by Chawla
et al. [6].

Data. In our evaluation, we make use of a dataset con-
taining uni-directional flow records collected within the
Computer Science and Engineering department of the
University of Michigan. The CSE dataset, as we refer to
it throughout this section, was collected over two con-

secutive twenty-four hour periods, and captures all local
and outbound traffic from a single /24 subnet. The data
contains 137 active hosts that represent a broad mix of
network activities, including high-traffic web and mail
servers, general purpose workstations, and hosts running
specialized research projects. The relatively small num-
ber of hosts allows us to manually verify the behavioral
information with system and network administrators at
the University of Michigan. Table 1 provides a summary
of the traffic within the CSE dataset on each of the ob-
served days.

Day 1 Day 2
Number of Hosts: 135 137

Total Flows: 14,400,974 16,249,269
Avg. Flows per Host: 106,674 118,608

Median Flows per Host: 4,670 2,955
Max Flows per Host: 6,357,810 6,620,785

Table 1. Traffic properties for both days of
the University of Michigan CSE dataset.

Throughout all of our experiments, we consider six
fields within the flow log data: start time, flow size,
source IP and port, and destination IP and port. These
fields are associated with the appropriate distance met-
rics and used to measure behavioral distance according
to the dynamic time warping procedure outlined in the
previous section, except for instances where we explic-
itly make use of an alternate distance metric. Further-
more, we remove all non-TCP traffic from the dataset in
an effort to minimize noise and backscatter caused by
UDP and ICMP traffic. We note that since we are ex-
amining flow data, the use of TCP traffic should not un-
fairly bias our analysis since causal relationships among
the flows will likely be dictated by application-layer pro-
tocols or other higher-order behaviors of the host.

Finally, we performed an initial analysis of the data
using k-means clustering in combination with our DTW
metric to pinpoint a variety of scanning activities, in-
cluding pervasive Nessus scans [21] from two hosts
within the CSE network and several IPs from China per-
forming fingerprinting on CSE hosts. These scanning
hosts were removed from the data to ensure that we fo-
cus our analysis on legitimate forms of network behav-
iors that may be verified via the University of Michigan
CSE department’s system and network administrators.
The specifics of this technique are discussed in Section
5.2, but the fact that our method was able to pinpoint
these scanning activities is interesting in and of itself.

5.1 Efficiency

Network datasets collected on real-world networks
may contain millions of records. As such, it is important
to understand the efficiency of our proposed metric and



Window Parameter c Avg. Time per Warp Avg. Distance Increase
in seconds (σ) in percentage (σ)

25 1.0 (5.5) 5.0% (6.2%)
50 1.8 (10.1) 3.3% (4.5%)
100 3.2 (19.3) 1.9% (3.1%)
200 5.5 (36.2) 0.9% (1.9%)
500 11.1 (79.7) 0.0% (0.0%)

Table 2. Time vs. accuracy comparison, including averages and standard deviations for each
window parameter tested. Accuracy measured as percentage increase in distances from win-
dow parameter c = 500.

its ability to reasonably operate on large datasets. More-
over, we must also understand the impact of choosing
the window parameter c on the accuracy of the resultant
distance and the speed with which it is calculated. To
do so, we choose five settings of the window parame-
ter (25, 50, 100, 200, 500) and run distance measures
among a random subset of 50% of the hosts from each
day of the CSE dataset. The hosts in the sample se-
lected for our experiment had an average of 63,984 flows
each, with the largest host having 6,357,811 flows. For
each of the window parameter settings, we measure the
time it takes to perform the DTW procedure on a sin-
gle 3.16GHz processor and the increase in distance from
that which was calculated by the largest parameter set-
ting (i.e., c = 500), which are shown in Table 2.

The results of our efficiency experiments show that
most parameter settings can perform DTW-based behav-
ioral distance measures in a few seconds with relatively
small changes to the overall distance, even when cal-
culating distances among hosts with thousands or mil-
lions of flows. For example, with a parameter setting
of c = 100, the DTW metric takes an average of only
3.2 seconds with an increase in the calculated distance
of just under 2%. For the remainder of our evaluation,
we fix the window parameter c = 100 since it appears to
provide an appropriate trade-off between distance calcu-
lation accuracy and speed.

5.2 Impact of Semantics and Causality

To evaluate the potential benefits of semantics and
long-term causal information in behavioral metrics, we
compare the performance of our DTW metric to the L1

distance metric. In our experiments, the L1 metric op-
erates by creating distributions of values for each of the
six fields, calculating the L1 distance between the two
hosts’ respective distributions, and summing the dis-
tances. The DTW metric operates exactly as discussed
in Section 4.

Our evaluation is broken into three parts. In the first,
we use single-linkage agglomerative (i.e., hierarchical)
clustering to visualize and examine the behavioral sim-
ilarity among all hosts in our experiments. The second
experiment uses k-means clustering to explore the abil-

ity of the two metrics to produce clusters with coherent
semantics. The final experiment compares the consis-
tency of the clusters produced by the above techniques,
as well as the similarity of the hosts across consecutive
days to measure the robustness of the behavioral infor-
mation captured by the two metrics. In the first two ex-
periments, we examine only the first day of traffic from
the CSE dataset, while both days are used in the final
experiment.

In all of these experiments, we make use of infor-
mation obtained from the University of Michigan CSE
system and network administrators about the known us-
age of the hosts in our analyses to provide a general no-
tion of the correctness of the clustering and to highlight
specific cases for deeper inspection. This information
allows us to label the hosts in our data with one of ten
labels that describe the stated usage of the host when its
IP was registered with the computer support staff. These
labels include: web server (WEB), mail server (SMTP),
DNS server (DNS), a variety of host types involving
general client activities (LOGIN, CLASS, DHCP), spe-
cialized research hosts for PlanetLab (PLANET), an ar-
tificial intelligence research project (AI), and auxiliary
power units (APC). For the purposes of these clustering
experiments, we only examine the subset of hosts that
we have labels for (76 of the 137 hosts).

Agglomerative Clustering. The agglomerative clus-
tering of hosts using the DTW and L1 metric are shown
as dendrograms in Figures 4 and 5, respectively. The
dendrograms visualize the agglomerative clustering pro-
cess, which begins with each host in its own cluster and
then merges clusters iteratively with their nearest neigh-
bor. The leaves in the dendrogram are labeled with the
stated usage of the host obtained from system admin-
istrators and a unique identifier to facilitate comparison
between dendrograms. The branches of the dendrogram
illustrate the groupings of hosts, with shorter branches
indicating higher levels of similarity.

At first glance, we see that both DTW and L1 metrics
group hosts with the same label in fairly close groups.
In fact, it appears as though L1 distance actually pro-
duces a better clustering according to these labels, for



Figure 4. Dendrogram illustrating agglomerative clustering using DTW-based metric on hosts
in the first day of the CSE dataset.

instance by grouping SMTP servers, PlanetLab hosts,
and VM servers in very tight groupings. However, there
are two subtle shortcomings that require deeper investi-
gation. First, the L1 dendrogram clearly indicates that
there is relatively little separability among the various
clusters, as evidenced by the small differences in branch
lengths in the dendrogram from distances of 5 to 6.5.
The impact of this is that even small changes in the un-
derlying distributions will cause significant changes to
the groupings. We will investigate this particular short-
coming during our consistency experiments. The sec-
ond shortcoming is that while the labels provide a gen-
eral idea of potential usage of the hosts, they say noth-
ing about the actual activities being performed during
recording of this dataset. As such, it is quite possible
that hosts with the same labels can have wildly different
behaviors.

To more closely examine the clustering provided by
DTW and L1 metrics, we manually observe two groups
of hosts (highlighted in Figures 4 and 5): virtual ma-
chine hosts (VM) and major servers (SMTP and WEB).
In the L1 dendrogram, all VM hosts are grouped to-
gether, whereas in the DTW dendrogram the hosts are
grouped into pairs. Moreover, these pairs are on oppo-
site sides of the dendrogram indicating significant dif-
ferences in behavior. When we manually examine these
hosts’ activities, we see that one pair (127,128) appear
to be performing typical client activities, such as outgo-
ing SSH and web connections, with only approximately

2,000 flows each. The other pair (183,184), however,
had absolutely no client activities, and instead most of
the approximately 6,000 flows consisted of VMWare
management traffic or Nagios system monitoring traffic
[20]. Clearly, these are very distinct behaviors – client
activity and basic system management activity – and yet
the L1 metric was unable to distinguish them.

For the primary servers in the dataset, the L1 distance
metric groups the two SMTP servers together, however
our DTW metric ends up grouping one of the SMTP
servers (18) with the web server while the second SMTP
server is much further away. Upon closer examination,
the SMTP servers are differentiated by the fact that one
server (18) is the primary mail server that receives about
five times the amount of the traffic as the second server
(27). In addition, the first server (18) receives the ma-
jority of its connections from IPs external to the CSE
network, while the second server (27) receives many of
its mail connections from hosts within the CSE IP prefix
and has a significant number of connections from hosts
performing SSH password dictionary attacks. It is this
local vs. external preference that causes the first server
(18) to be grouped with the web server, since the web
server also has a significant amount of traffic, almost all
of which is associated with external hosts. Naively, the
L1 clustering appears to make the most sense given these
labels, but again its lack of semantic and causal informa-
tion has caused it to ignore the actual behaviors.

As a side effect of our close examination of some



Figure 5. Dendrogram illustrating agglomerative clustering using L1 distance on hosts in the
first day of the CSE dataset.

hosts within the dendrogram, we also gained some in-
sight into the general structure of the dendrogram in the
case of the DTW metric. That is, the DTW metric pro-
duced a dendrogram where the hosts on the right side of
the dendrogram perform general client activities, while
most hosts on the left side act as servers. This separa-
tion is illustrated by vertical dotted lines in Figure 4. The
DTW dendrogram is further refined by the type of hosts
(internal vs. external) that they communicate with, the
volume of traffic, and other interesting behavioral prop-
erties.

k-Means Clustering. Another way to evaluate the
performance of the DTW and L1 metric is to consider
if the clusters produced maintain some level of behav-
ioral coherence, and whether the groupings are similar
to those that might be produced by a human network an-
alyst looking at the same data. To examine these prop-
erties, we use k-means++ clustering [1] to produce clus-
ters from each of the distance metrics and then exam-
ine the properties of the resultant clusters. In particu-
lar, we use the dominant state analysis technique of Xu
et al. [32] to characterize the dominant behaviors in each
cluster, examine the distribution of host labels in each
cluster, and manually examine a random sample of each
cluster to determine the overall behavior being captured.

While a full discussion of the Xu et al. dominant state
algorithm is beyond the scope of this evaluation, we pro-

vide a high-level notion of its operation and how we ex-
tend it to capture behaviors of groups rather than indi-
vidual hosts. The algorithm begins by calculating the
normalized entropy of each field being analyzed, and
then ordering those fields from smallest entropy value to
greatest. The algorithm then selects all values from the
smallest entropy field whose probability are greater than
a predetermined threshold t, thereby creating “profiles”
for each value. Then, each of those profiles is extended
by examining values in the next smallest entropy field
whose joint probability of occurrence with the profile
values is above the threshold t. The profiles are extended
iteratively until no new values may be added from the
current field, at which point they are considered to be
final profiles.

In the original paper, Xu et al. defined the distribu-
tion of values on a per-host basis to quickly determine
host activities. To apply the same procedure to groups
of hosts, we apply the dominant state algorithm in two
levels. At the first level, we run the algorithm on dis-
tributions of values for each host in the cluster. This
produces dominant state profiles for each of those hosts.
From these profiles, we extract the values for each of the
present fields to create new distributions. These distri-
bution represent the probability of a value occurring in
the dominant state profiles for the hosts in the current
cluster. Finally, we apply the dominant state algorithm
to these cluster-wide distributions to extract out the pro-
files that occur most consistently among all hosts in the



DTW Metric L1 Distance

Cluster 1

Hosts/Flows: 25 hosts/139.2 flows 12 hosts/165.8 flows

Host Types: APC 72%, DHCP 24%, CLASS 4% APC 50%, DHCP 41%, CLASS 9%

Activities: < SPORT = {22, 6000} > < SPORT = {22, 6000} >
< SPORT = 21, DADDR =Chinese IP> < SPORT = 21, DADDR =Chinese IP>

< SPORT = 443, DADDR =UMich DNS>

Cluster 2

Hosts/Flows: 25 hosts/1,166.0 flows 18 hosts/908.2 flows

Host Types: DHCP 72%, CLASS 16%, VM 8%, AI 4%, DHCP 89%, CLASS 11%

Activities: < SPORT = {22, 80} > < SPORT = 22 >

Cluster 3

Hosts/Flows: 26 hosts/539,438 flows 46 hosts/305,211 flows

Host Types: LOGIN 46%, PLANET 11%, CLASS 11%, APC 26%, LOGIN 26%, CLASS 10%,
VM 8%, SMTP 8%, WEB 4%, AI 4%, DHCP 8%, VM 8%, PLANET 6%, AI 4%,

DNS 4%, DHCP 4% SMTP 4%, WEB 2%, DNS 2%

Activities: < SPORT = {22, 25, 80, 111, 113, 993} > < SPORT = {21, 22, 80, 111} >
< SPORT = 5666, DADDR =UMich DNS> < SPORT = 5666, DADDR =UMich DNS>

< SPORT = 443, DADDR =UMich DNS>

Table 3. k-Means clustering of hosts in the first day of the CSE dataset using DTW and L1

metrics. Activities represent the dominant state profiles obtained from applying our extension
to the Xu et al. dominant state algorithm [32].

clusters.

For this experiment, we manually examined a sam-
ple of hosts throughout the entire dataset and deter-
mined that there were, roughly, three high-level classes
of activities: server activities, client activities, and
noise/scanning activities. This manual classification was
supported by the results of our agglomerative clustering
analysis, which showed several levels of increasingly
subtle behavioral differences within each of these three
classes. Given this rough classification of behavior, we
set k = 3 and see if the resultant clustering indeed cap-
tured the intuitive understanding of the activities as de-
termined by a human analyst. Table 3 shows the break
down of the three clusters produced by the k-means++
algorithm using DTW and L1 metrics. The results of
the DTW metric clustering shows that the clusters are
indeed broken into the three classes of activity found via
manual inspection. Cluster 1, which contains primar-
ily the power supply devices (APC) and DHCP hosts,
had significant scanning activity from IP addresses in
China, and relatively low traffic volumes indicating only
sporadic use. By comparison, hosts in Cluster 2 exhibit
traditional client behaviors of significant SSH and web
browsing activities. Finally, Cluster 3 contains hosts
with significant server-like activities. For instance, the
hosts related to the artificial intelligence research project
(AI) were found to be running web servers that provide
statistics to participants in the project, and most of its
activity is made up of web requests.

The L1 metric, on the other hand, produced some-
what incoherent clusters. While there is some overlap
in the clusters and observed behaviors, it is clear by the
distribution of host types that these clusters mix behav-
iors. The most prominent example of this is that many

of the power supply hosts (APC) that we verified as have
low traffic volumes and scanning activity were grouped
in with the server cluster (Cluster 3). Moreover, the
client cluster (Cluster 2) contains many of the DHCP
hosts with scanning activity, which in turn alters the be-
havioral profile for that cluster to remove web activities.
The results of this experiment certainly indicate that the
L1 metric simply does not capture a coherent notion of
behavior. Moreover, when the number of clusters is in-
creased, the differences between the DTW and L1 met-
rics become more significant. That is, theL1 metric con-
tinues to mix behaviors, while the DTW metric creates
clusters that represent increasingly fine-grained behav-
iors, such as the preference for communicating with in-
ternal versus external hosts.

As mentioned earlier in this section, this clustering
approach was also used to filter a large portion of the
scan traffic found in the dataset. Specifically, when we
first ran this experiment, we found that the behavioral
profiles produced by Cluster 1 were consistent with a
wide range of scan traffic, and that the number of hosts
in that cluster were significantly larger than expected.
We were then able to use the behavioral profiles to re-
move traffic from scanning IPs and produce a much
cleaner clustering without most of the initial scanning
activity. As you can see by the scanning IP from China
found in the profile of Cluster 1, it appears that we can
continue performing this clustering approach to itera-
tively identify increasingly subtle scanning activity.

Changes in Behavior Over Time. Perhaps one of the
most important properties of any behavioral metric is its
robustness to small changes in underlying network activ-
ity. That is, we want any changes in the measured dis-



DTW Metric L1 Distance
Host Type Num. Hosts Num. Perfect Avg. Rank Num. Perfect Avg. Rank

Consistency Consistency
WEB 1 1 1.0 1 1.0
DNS 1 1 1.0 0 17.0

PLANET 3 2 1.3 3 1.0
VM 4 2 1.5 0 41.3

LOGIN 12 8 2.1 8 14.2
SMTP 2 1 3.5 2 1.0
APC 18 2 16.2 0 39.9
AI 2 0 41.5 0 40.5

DHCP 24 2 48.4 1 31.8
CLASS 8 1 54.4 0 31.1
TOTAL 75 20 17.1 15 21.9

Table 4. Host behavioral consistency for hosts occurring in both days of the CSE dataset.

tance to be related to some high-level behavioral change
and not minute changes in the specifics of the traffic. As
our final experiment, we use both days of traffic in the
CSE dataset to determine the sensitivity of the DTW and
L1 metrics to changes in behavior over time. To do so,
we take the set of all hosts that occur in both days (as
determined by IP address), and compare their day one
time series to those of all hosts in day two. This pro-
duces a list of distances for each host in the day one data
to the day two hosts. With consistent behavior and a a
behavioral metric that is robust to minute changes in ac-
tivity, we would expect to find that each day one host
is closest to itself in the day two data. Of course, there
are also instances where host behavior did significantly
change between the two observation periods. Therefore,
our analysis looks at both the number of hosts within
each label class whose behaviors appear to remain the
same and the reasons that some hosts’ behaviors appar-
ently change.

To begin, we provide a summary of the above con-
sistency experiment for each host label when using the
DTW and L1 metrics in Table 4. The table shows two
values: the number of hosts with perfect consistency and
the average consistency rank of all hosts in the group.
By perfect consistency, we mean hosts in day one whose
closest host in day two is itself. Consistency rank refers
to the rank of the day one host in the sorted list of day
two distances. Ideally, if the behaviors of the hosts in
the group are exactly the same we would have all hosts
with perfect consistency and an average rank of 1.0. The
most obvious observation we can make from the results
of this experiment is that the L1 metric appears to be
more brittle than DTW with a significantly greater av-
erage rank and fewer perfect consistency hosts overall.
What is more interesting, however, are the cases where
DTW indicates change in behavior and L1 does not, and
vice versa.

For the case where DTW indicates change and L1

does not, we again examine the two SMTP servers found
in our data. Recall from the previous clustering experi-
ments that one SMTP server in the first day of data acts
as the primary server with many connections to external

hosts, while the other receives many fewer connections
and those are primarily to internal hosts. Upon closer
inspection of the two servers’ behaviors in day two, we
find that the primary SMTP server’s (18) activities are
effectively unchanged. The secondary server (27), how-
ever, has a significant increase in the proportion of traffic
that is related to mail activities. In particular, the sec-
ondary SMTP server (27) in the first day of data has a
roughly even split between general mail traffic and an
SSH password dictionary attack (i.e., hundreds of con-
secutive SSH login attempts), while in the second day
the SSH attacks stop almost completely and the gen-
eral mail traffic to both internal and external hosts in-
crease significantly. Intuitively, this does indeed indicate
a change in behavior due to the presence of the SSH at-
tack and change in mail activity, although the L1 metric
indicates that no such change took place.

Next, we look at the group of VM servers for the case
where the L1 metric indicates a change and the DTW
metric does not. In this case, manual inspection of all
four VM hosts indicates that there were no significant
changes in traffic volume or activities for any host. The
only noticeable change was that one of the client-like
VMs (127) was port scanned for a few seconds late at
night on the second day. Given this information, our
DTW metric’s ranking makes perfect sense – the two
VMs running management protocols (183,184) were ex-
actly the same as their previous day’s activity, while the
client-like VMs (127,128) got confused for one another
in the previous day which is evidenced by the average
ranking of 1.5 for that group (i.e., rank of 1.0 for the
management VMs, 2.0 for the client VMs). With the L1

metric, not only did it confuse the VM behaviors for one
another in the previous day, but it also confused it with
dozens of other client-like hosts (i.e., DHCP, LOGIN,
etc.) and management hosts (i.e., APC), thereby caus-
ing the significantly higher average rank for that group.
In fact, the L1 metric only seems to achieve a lower av-
erage rank in groups where changes in behavior are ex-
pected, such as the DHCP, APC, or CLASS groups, and
where the the rankings are likely to improve by chance
due simply to tiny changes in activities.
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Figure 6. Privacy neighborhood sizes for different distance radius settings.

5.3 Applications

To conclude our evaluation of the proposed DTW
behavioral metric, we discuss its potential applications.
Certainly, the fact that our proposed metric provides a
robust, semantically meaningful notion of host behav-
ioral similarity means that it may be a good foundation
for a number of network analysis tasks, such as anomaly
detection or host classification. In fact, the cluster anal-
ysis technique described above can be thought of as a
form of host classification and an anomaly identification
method. There are, however, some non-obvious forms of
network data analysis which may benefit from our more
formalized approach. One such application is the use of
the DTW metric as the basis for analyzing the privacy of
hosts within anonymized network data.

Roughly speaking, anonymized network data is sim-
ply a transformation of data collected on a computer net-
work such that certain sensitive information is not re-
vealed to those who use the data, but the data remains
generally useful to researchers and network analysts.
This sensitive information includes learning the real
identities of hosts found within the data despite those
identities being replaced with a pseudonym (e.g., prefix-
preserving anonymization [23, 12]). One of the most
difficult parts of achieving network data anonymization
is the lack of applicable privacy definitions upon which
these transformations can be based, due primarily to the
fact that rigorously defining the behavior of hosts and
the ways these behaviors may change remains an open
problem. Although prior works (including our own)
have attempted to define privacy analysis techniques for
anonymized data [7, 25], their methods have been based
upon techniques like the L1 distance metric evaluated
above, and consequently are likely to provide a rather
loose privacy analysis. We argue that given the DTW
metric’s unique ability to capture a robust notion of

host behavior and the fact that it embeds this behavior
in a well-defined metric space, it holds good promise
in bringing formal privacy definitions to the field of
anonymized network data.

We illustrate this point by examining one way in
which a privacy analysis for network data may be built
around the definition of (c, t)-isolation put forth by
Chawla et al. in the context of multidimensional, real-
valued spaces [6]. This privacy notion essentially states
that any “anonymized” point should have t real points
from the original data within a ball of radius propor-
tional to c centered at the anonymized point. That is,
each anonymized point should have a conserved neigh-
borhood of real points that it may “blend in” with,
and therefore provide the potential adversary with some
level of uncertainty about the point’s real identity. The
definition can be used as the basis of an analysis method-
ology simply by looking at the distribution of neigh-
borhood sizes for each anonymized point at increasing
radius sizes – such information may be used by a data
publisher to, for instance, determine the relative risk of
publishing the anonymized data in its current form. The
distribution may be visualized via a cumulative distribu-
tion function that shows the percentage of points with a
number of neighbors (i.e., neighborhood size) less than
the given value for a specified radius.

To adapt the definition and analysis methodology for
network hosts, we simply consider the entire time series
for the hosts to be a “point” and use the DTW metric
to calculate the radius. Figure 6 shows examples of this
privacy analysis methodology applied to hosts within the
the two days of our CSE dataset under the assumption
that none of the six fields in our metric have been altered
by the anonymization process. One way of interpreting
this analysis is that the radius bounds the potential er-
ror in the adversary’s knowledge of the host’s behaviors,
while the number of hosts within the neighborhood pro-



vides a sense of the privacy of that host. Therefore, if a
data publisher assumes the adversary could gain signifi-
cant knowledge of a host’s behaviors, perhaps derived
from publicly available information, it would be pru-
dent to consider the neighborhood sizes when the radius
is relatively small. As Figure 6(a) shows, for example,
even for a radius of 0.5, well over 80% of the hosts in the
data have neighborhoods of size 20 or greater, thereby
indicating potentially significant privacy for those hosts.
Of course, as discussed earlier in Section 4.1, this is
contingent upon the assumptions made about the adver-
sary’s “view” of the data via the metric definitions.

An obvious downside of this approach is that it is
difficult to interpret the semantics of the overall DTW
distances. That is, understanding what exactly a radius
of 0.5 means with respect to the underlying behaviors
may be difficult. One way to address this issue is to pro-
vide distributions of distances for each dimension com-
puted during the time warping process, in addition to
the Euclidean distance. Additionally, the semantically-
meaningful metric spaces for each field may also need
to be altered to accommodate for measuring behav-
ioral distance between fields that have been altered by
the anonymization process in the anonymized network
data and those in the original (e.g., comparing prefix-
preserving IP pseudonyms to the original IPs). However,
we believe that the fact that our approach allows for such
changes to the underlying semantics is a contribution in
and of itself.

6 Conclusion

Many types of network data analysis rely on well-
known distance metrics to adequately capture a mean-
ingful notion of the behavioral similarity among network
hosts. Despite the importance of these metrics in ensur-
ing sound analysis practices, there has been relatively
little research on the impact of using generic distance
metrics and ignoring long-term temporal characteristics
on analysis tasks. Rather, distance metrics used in prac-
tice tend to take a simplistic view of network data by as-
suming they inherit the semantics of its syntactic repre-
sentation (e.g., 16- or 32-bit integers), or that those val-
ues have no relationship at all. Moreover, they examine
network activities in isolation or within short windows
(e.g., n-gram distributions), which removes much of the
long-term causal information found in the data. Conse-
quently, these approaches are likely to provide brittle or
unrealistic metrics for host behavior.

In this paper, we explored an alternative approach
to defining host similarity that attempts to incorporate
semantically meaningful spatial analysis of network ac-
tivities and long-term temporal sequencing information
into a single, unified metric space that describes host be-
haviors. To accomplish this goal, we developed metric

spaces for several prevalent network data types, showed
how to combine the metric spaces to measure the spatial
characteristics of individual network data records, and
finally proposed a method of measuring host behavior
using dynamic time warping (DTW) methods. At each
stage in the development of this framework, we brought
to light potential pitfalls and attempted to explain the
unique requirements surrounding the analysis of net-
work data, including the need to carefully define nor-
malization procedures and consider assumptions about
the data made in developing the metrics. Our proposed
metric was evaluated against the well-known L1 dis-
tance metric, which ignores both semantic and temporal
characteristics of the data, by applying cluster analysis
techniques to a dataset containing a variety of realistic
network host activities. Despite the admitted simplic-
ity of our example metrics, the results of these experi-
ments showed that our approach provides more consis-
tent and useful characterizations of host behavior than
the L1 metric.

As a whole, these results indicate that it is useful to
consider long-term temporal characteristics of network
hosts, as well as the semantics of the underlying net-
work data when measuring behavioral similarity. Fur-
thermore, our results point toward several potentially in-
teresting areas of future work. In the short term, one
may consider the development of more refined distance
metrics, including fine-grained metric spaces for a wider
range of data types and time warping methods that al-
low for localized reordering of points. The results also
call for a study of the performance of our DTW metric
when applied to non-TCP protocols and to network ob-
jects other than hosts, such as web pages. More gener-
ally, a more formal method for characterizing behaviors,
which may be used as the basis for provable network
data anonymization techniques or robust traffic genera-
tion methods, seems warranted.

Data Access To encourage continued research on gen-
eral network data similarity metrics, we have made
the complete dataset used in our study available to
the public via the PREDICT data repository [24] as
“Departmental-Netflow-Trace-1” (Hosted By: Merit
Network, Inc., Keywords: NetFlow).
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