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Abstract

Highly modular data center applications such as Bing,
Facebook, and Amazon’s retail platform are known to
be susceptible to long tails in response times. Services
such as Amazon’s EC2 have proven attractive platforms
for building similar applications. Unfortunately, virtual-
ization used in such platforms exacerbates the long tail
problem by factors of two to four. Surprisingly, we find
that poor response times in EC2 are a property of nodes
rather than the network, and that this property of nodes is
both pervasive throughout EC2 and persistent over time.
The root cause of this problem is co-scheduling of CPU-
bound and latency-sensitive tasks. We leverage these ob-
servations in Bobtail, a system that proactively detects
and avoids these bad neighboring VMs without signifi-
cantly penalizing node instantiation. With Bobtail, com-
mon communication patterns benefit from reductions of
up to 40% in 99.9th percentile response times.

1 Introduction

Modern Web applications such as Bing, Facebook, and
Amazon’s retail platform are both interactive and dy-
namic. They rely on large-scale data centers with many
nodes processing large data sets at less than human-scale
response times. Constructing a single page view on such
a site may require contacting hundreds of services [7],
and a lag in response time from any one of them can
result in significant end-to-end delays [1] and a poor
opinion of the overall site [5]. Latency is increasingly
viewed as the problem to solve [17, 18]. In these data
center applications, the long tail of latency is of partic-
ular concern, with 99.9th percentile network round-trip
times (RTTs) that are orders of magnitude worse than
the median [1, 2, 29]. For these systems, one out of a
thousand customer requests will suffer an unacceptable
delay.

Prior studies have all targeted dedicated data centers.

In these, network congestion is the cause of long-tail be-
havior. However, an increasing number of Internet-scale
applications are deployed on commercial clouds such as
Amazon’s Elastic Compute Cloud, or EC2. There are
a variety of reasons for doing so, and the recent EC2
outage [21] indicates that many popular online services
rely heavily on Amazon’s cloud. One distinction between
dedicated data centers and services such as EC2 is the use
of virtualization to provide for multi-tenancy with some
degree of isolation. While virtualization does negatively
impact latency overall [24, 19], little is known about the
long-tail behavior on these platforms.

Our own large-scale measurements of EC2 suggest
that median RTTs are comparable to those observed in
dedicated centers, but the 99.9th percentile RTTs are up
to four times longer. Surprisingly, we also find that nodes
of the same configuration (and cost) can have long-tail
behaviors that differ from one another by as much as
an order of magnitude. This has important implications,
as good nodes we measured can have long-tail behav-
iors better than those observed in dedicated data cen-
ters [1, 29] due to the difference in network congestion,
while bad nodes are considerably worse. This classifica-
tion appears to be a property of the nodes themselves,
not data center organization or topology. In particular,
bad nodes appear bad to all others, whether they are
in the same or different data centers. Furthermore, we
find that this property is relatively stable; good nodes
are likely to remain good, and likewise for bad nodes
within our five-week experimental period. Conventional
wisdom dictates that larger (and therefore more expen-
sive) nodes are not susceptible to this problem, but we
find that larger nodes are not always better than smaller
ones.

Using measurement results and controlled experi-
ments, we find the root cause of the problem to be
an interaction between virtualization, processor sharing,
and non-complementary workload patterns. In particular,
mixing latency-sensitive jobs on the same node with sev-
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eral CPU-intensive jobs leads to longer-than-anticipated
scheduling delays, despite efforts of the virtualization
layer to avoid them. With this insight, we develop a sim-
ple yet effective test that runs locally on a newborn in-
stance and screens between good and bad nodes. We
measure common communication patterns [29] on live
EC2 instances, and we show improvement in long-tail
behavior of between 7% and 40%. While some limits
to scale remain, our system effectively removes this first
barrier.

2 Observations

Amazon’s Elastic Compute Cloud, or EC2, provides dy-
namic, fine-grained access to computational and storage
resources. Virtualization is a key enabler of EC2. We pro-
vide background on some of these techniques, and we de-
scribe a five-week measurement study of network latency
in several different EC2 data centers. Such latency has
both significant jitter and a longer tail than that observed
in dedicated data centers. Surprisingly, the extra long tail
phenomenon is a property of nodes, rather than topology
or network traffic; it is pervasive throughout EC2 data
centers and it is reasonably persistent.

2.1 Amazon EC2 Background
Amazon EC2 consists of multiple geographically sepa-
rated regions around the world. Each region contains sev-
eral availability zones, or AZs, that are physically iso-
lated and have independent failure probabilities. Thus,
one AZ is roughly equivalent to one data center. A ver-
sion of the Xen hypervisor [3], with various (unknown)
customizations, is used in EC2. A VM in EC2 is called an
instance, and different types (e.g., small, medium, large,
and extra large) of instances come with different perfor-
mance characteristics and price tags. Instances within the
same AZ or in different AZs within the same region are
connected by a high-speed private network. However,
instances within different regions are connected by the
public Internet. In this paper, we focus on network tail
latency between EC2 instances in the same region.

2.2 Measurement Methodology
Alizadeh et al. show that the internal infrastructure of
Web applications is based primarily on TCP [1]. But in-
stead of using raw TCP measurement, we use a TCP-
based RPC framework called Thrift. Thrift is popular
among Web companies like Facebook [20] and delivers a
more realistic measure of network performance at the ap-
plication level. To measure application-level round-trip-
times (RTTs), we time the completion of synchronous
RPC calls—Thrift adds about 60µs of overhead when

Figure 1: CDF of RTTs for various sized instances,
within and across AZs in EC2, compared to measure-
ments taken in a dedicated data center [1, 29]. While the
median RTTs are comparable, the 99.9th percentiles in
EC2 are twice as bad as in dedicated data centers. This
relationship holds for all types of EC2 instances plotted.

compared to TCP SYN/ACK based raw RTT measure-
ment. In addition, we use established TCP connections
for all measurement, so the overhead of the TCP three-
way handshake is not included in the RTTs.

2.3 Tail Latency Characterization
We focus on the tail of round-trip latency due to its dis-
proportionate impact on user experience. Other studies
have measured network performance in EC2, but they
often use metrics like mean and variance to show jitter
in network and application performance [24, 19]. While
these measurements are useful for high-throughput ap-
plications like MapReduce [6], worst-case performance
matters much more to applications like the Web that re-
quire excellent user experience [29]. Because of this, re-
searchers use the RTTs at the 99th and 99.9th percentiles
to measure flow tail completion times in dedicated data
centers [1, 29].
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We tested network latency in EC2’s US east region for
five weeks. Figure 1 shows CDFs for both a combina-
tion of small, medium, and large instances and for dis-
crete sets of those instances. While (a) and (b) show ag-
gregate measurements both within and across availability
zones (AZs), (c) shows discrete measurements for three
instance types within a specific AZ.

In Figure 1(a), we instantiated 20 instances of each
type for each plot, either within a single AZ or across two
AZs in the same region. We observe that median RTTs
within a single AZ, at ∼0.6ms, compare well to those
found within a dedicated data center at ∼0.4ms [1, 29],
even though our measurement method adds 0.06ms of
overhead. Inter-AZ measurements show a median RTT
of under 1ms. However, distances between pairs of AZs
may vary; measurements taken from another pair of AZs
show a median RTT of around 2ms.

Figure 1(b) shows the 99th to 100th percentile range of
(a) across all observations. Unfortunately, its results paint
a different picture of latency measurements in Amazon’s
data centers. The 99.9th percentile of RTT measurements
is twice as bad as the same metric in a dedicated data cen-
ter [1, 29]. Individual nodes can have 99.9th percentile
RTTs up to four times higher than those seen in such cen-
ters. Note that this observation holds for both curves; no
matter whether the measurements are taken in the same
data center or in different ones, the 99.9th percentiles are
almost the same.

Medium, large, and extra large instances ostensibly
offer better performance than their small counterparts.
As one might expect, our measurements show that ex-
tra large instances do not exhibit the extra long tail prob-
lem (< 0.9ms for the 99.9th percentile); but surprisingly,
as shown in Figure 1(c), medium and large instances are
susceptible to the problem. In other words, the extra long
tail is not caused by a specific type of instance: all in-
stance types shown in (c) are equally susceptible to the
extra long tail at the 99.9th percentile. Note that all three
lines in the figure intersect at the 99.9th line with a value
of around 30ms. The explanation of this phenomenon be-
comes evident in the discussion of the root cause of the
long tail problem in § 3.2.

To explore other factors that might create extra long
tails, we launch 16 instances within the same AZ and
measure the pairwise RTTs between each instance. Fig-
ure 2 shows measurement results at the 99.9th percentile
in milliseconds. Rows represent source IP addresses,
while columns represent destination IP addresses.

Were host location on the network affecting long tail
performance, we would see a symmetric pattern emerge
on the heat map, since network RTT is a symmetric mea-
surement. Surprisingly, the heat map is asymmetric—
there are vertical bands which do not correspond to re-
ciprocal pairings. To a large degree, the destination host

Figure 2: Heat map of the 99.9th percentile of RTTs,
shown for 16 small pairwise instances in milliseconds.
Bad instances, represented by dark vertical bands, are
bad consistently. This suggests that the long tail problem
is a property of specific nodes instead of the network.

controls whether a long tail exists. In other words, the ex-
tra long tail problem in cloud environments is a property
of nodes, rather than the network.

Interestingly, the data shown in Figure 2 is not entirely
bleak: there are both dark and light bands, so tail per-
formance between nodes varies drastically. Commonly,
RPC servers are allowed only 10ms to return their re-
sults [1]. Therefore, we refer to nodes that fulfill this ser-
vice as good nodes, which appear in Figure 2 as light
bands; otherwise, they are referred to as bad nodes. Un-
der this definition, we find that RTTs at the 99.9th per-
centile can vary by up to an order of magnitude between
good nodes and bad nodes. In particular, the bad nodes
we measured can be two times worse than those seen in
a dedicated DC [1, 29] for the 99.9th percentile. This is
because the latter case’s latency tail is caused by network
congestion, whose worst case impact is bounded by the
egress queue size of the bottleneck switch port, but the la-
tency tail problem we study here is a property of nodes,
and its worst case impact can be much larger than that
caused by network queueing delay. This observation will
become more clear when we discuss the root cause of the
problem in § 3.2.

To determine whether bad nodes are a pervasive prob-
lem in EC2, we spun up 300 small instances in each
of four AZs in the US east region. We measured all
the nodes’ RTTs (the details of the measurement bench-
marks can be found in § 5.1) and we found 40% to 70%
bad nodes within three of the four AZs.
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Figure 3: CDF for the time periods during which in-
stances do not switch status between good and bad. This
shows that properties of instances generally persist.

Interestingly, the remaining AZ sometimes does not
return bad nodes; nevertheless, when it does, it returns
40% to 50% bad nodes. We notice that this AZ spans a
smaller address space of only three /16 subnets compared
to the others, which can span tens of /16 subnets. Also, its
available CPU models are, on average, newer than those
found in any of the other AZs; Ou et al. present simi-
lar findings [16], so we speculate that this data center is
newly built and loaded more lightly than the others. We
will discuss this issue further in conjunction with the root
cause analysis in § 3.

We also want to explore whether the long latency tail
we observe is a persistent problem, because it is a prop-
erty defined by node conditions rather than transient net-
work conditions. We conducted a five week experiment
comprised of two sets of 32 small instances: one set
was launched in equal parts from two AZs, and one set
was launched from all four AZs. Within each set, we
selected random pairs of instances and measured their
RTTs throughout the five weeks. We observed how long
instances’ properties remain static—either good or bad
without change—to show the persistence of our measure-
ment results.

Figure 3 shows a CDF of these stable time periods;
persistence follows if a large percentage of total instance
time in the experiment is comprised of large time peri-
ods. We can observe that almost 50% of the total instance
time no change has been witnessed, 60% of time involves
at most one change per day, and 75% of time involves at
most one change per 12 hours. This result shows that the
properties of long tail network latency are generally per-
sistent.

The above observation should be noted by the follow-
ing: every night, every instance we observe in EC2 expe-
riences an abnormally long latency tail for several min-
utes at midnight Pacific Time. For usually bad instances
this does not matter; however, usually good instances are
forced to change status at least once a day. Therefore, the

figures we state above can be regarded as overestimating
the frequency of changes. It also implies that the 50% in-
stance time during which no change has been witnessed
belongs to bad instances.

3 Root Cause Analysis

We know that the latency tail in EC2 is two to four times
worse than that in a dedicated data center, and that as a
property of nodes instead of the network it persists. Then,
what is its root cause? Wang et al. reported that network
latency in EC2 is highly variable, and they speculated
that virtualization and processor sharing make up the root
cause [24].

However, the coexistence of good and bad instances
suggests that processor sharing under virtualization is
not sufficient to cause the long tail problem by itself. We
will show in this section that only a certain mix of work-
loads on shared processors can cause this problem, and
we demonstrate the patterns of such a bad mix.

3.1 Xen Hypervisor Background

To fully understand the impact of processor sharing and
virtual machine co-location on latency-sensitive work-
loads under Xen, we must first present some background
on the hypervisor and its virtual machine scheduler. The
Xen hypervisor [3] is an open source virtual machine
monitor, and it is used to support the infrastructure of
EC2 [24]. Xen consists of one privileged virtual machine
(VM) called dom0 and multiple guest VMs called do-
mUs. Its VM scheduler is credit-based [28], and by de-
fault it allocates 30ms of CPU time to each virtual CPU
(VCPU); this allocation is decremented in 10ms inter-
vals. Once a VCPU has exhausted its credit, it is not al-
lowed to use CPU time unless no other VCPU has credit
left; any VCPU with credit remaining has a higher prior-
ity than any without. In addition, as described by Dun-
lap [8], a lightly-loaded VCPU with excess credit may
enter the BOOST state, which allows a VM to automati-
cally receive first execution priority when it wakes due
to an I/O interrupt event. VMs in the same BOOST state
run in FIFO order. Even with this optimization, Xen’s
credit scheduler is known to be unfair to latency-sensitive
workloads [24, 8]. As long as multiple VMs are sharing
physical CPUs, one VM may need to wait tens of mil-
liseconds to acquire a physical CPU if others are using it
actively. Thus, when a VM handles RPC requests, certain
responses will have to wait tens of milliseconds before
being returned. This implies that any VM can exhibit a
high maximum RTT.
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Figure 4: CDF of RTTs for a VM within controlled
experiments, with an increasing number of co-located
VMs running CPU-intensive workloads. Sharing does
not cause extra long latency tails as long as physical cores
outnumber CPU-intensive VMs, but once this condition
no longer holds, the long tail emerges.

3.2 Root Cause Explained
If processor sharing under virtualization does not always
cause the extra long tail problem, when does it? To an-
swer this question, we conduct five controlled experi-
ments with Xen.

On a four-core workstation running Xen 4.1, dom0 is
pinned to two cores while guest VMs use the rest. In all
experiments, five identically configured domUs share the
remaining two physical cores; they possess equal weights
of up to 40% CPU utilization each. Therefore, though
domUs may be scheduled on either physical core, none
of them can use more than 40% of a single core even if
there are spare cycles. To the best of our knowledge, this
configuration is the closest possible to what EC2 small
instances use. Note that starting from Xen 4.2, a config-
urable rate limit mechanism is introduced to the credit
scheduler [28]. In its default setting, a running VM can-
not be preempted if it has run for less than 1ms. To obtain
a result comparable to the one in this section using Xen
4.2 or newer, the rate limit needs to be set to its minimum
of 0.1ms.

For this set of experiments, we vary the workload
types running on five VMs sharing the local workstation.
In the first experiment, we run the Thrift RPC server in
all five guest VMs; we use another non-virtualized work-
station in the same local network to make RPC calls to
all five servers, once every two milliseconds, for 15 min-
utes. During the experiment, the local network is never
congested. In the next four experiments, we replace the
RPC servers on the guest VMs with a CPU-intensive
workload, one at a time, until four guest VMs are CPU-
intensive and the last one, called the victim VM, remains
latency-sensitive.

Figure 4 shows the CDF of our five experiments’ RTT
distributions from the 99th to the 100th percentile for
the victim VM. While four other VMs also run latency-

sensitive jobs (zero VMs run CPU-intensive jobs), the
latency tail up to the 99.9th percentile remains under
1ms. If one VM runs a CPU-intensive workload, this re-
sult does not change. Notably, even when the victim VM
does share processors with one CPU-intensive VM and
three latency-sensitive VMs, the extra long tail problem
is nonexistent.

However, the 99.9th percentile becomes five times
larger once two VMs run CPU-intensive jobs. This still
qualifies as a good node under our definition (< 10ms),
but the introduction of even slight network congestion
could change that. To make matters worse, RTT dis-
tributions increase further as more VMs become CPU-
intensive. Eventually, the latency-sensitive victim VM
behaves just like the bad nodes we observe in EC2.

The results of the controlled experiments assert that
virtualization and processor sharing are not sufficient to
cause high latency effects across the entire tail of the RTT
distribution; therefore, much of the blame rests upon
co-located workloads. We show that having one CPU-
intensive VM is acceptable; why does adding one more
suddenly make things five times worse?

There are two physical cores available to guest VMs;
if we have one CPU-intensive VM, the latency-sensitive
VMs can be scheduled as soon as they need to be, while
the single CPU-intensive VM occupies the other core.
Once we reach two CPU-intensive VMs, it becomes pos-
sible that they occupy both physical cores concurrently
while the victim VM has an RPC request pending. Un-
fortunately, the BOOST mechanism does not appear to let
the victim VM preempt the CPU-intensive VMs often
enough. Resulting from these unfortunate scenarios is an
extra long latency distribution. In other words, sharing
does not cause extra long latency tails as long as physi-
cal cores outnumber CPU-intensive VMs; once this con-
dition no longer holds, the long tail emerges.

This set of controlled experiments demonstrates that
a certain mix of latency-sensitive and CPU-intensive
workloads on shared processors can cause the long tail
problem, but a question remains: will all CPU-intensive
workloads have the same impact? In fact, we notice
that if the co-located CPU-intensive VMs in the con-
trolled experiments always use 100% CPU time, the
latency-sensitive VM does not suffer from the long tail
problem—its RTT distribution is similar to the one with-
out co-located CPU-intensive VMs; the workload we use
in the preceding experiments actually uses about 85%
CPU time. This phenomenon can be explained by the
design of the BOOST mechanism. Recall that a VM wak-
ing up due to an interrupt may enter the BOOST state if it
has credits remaining. Thus, if a VM doing mostly CPU-
bound operations decides to accumulate scheduling cred-
its, e.g., by using the sleep function call, it will also get
BOOSTed after the sleep timer expires. Then, it may mo-
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Figure 5: The relationship between the 99.9th percentile
RTT for the latency-sensitive workload and the CPU us-
age of the CPU-bound workload in the neighboring VM.

nopolize the CPU until its credits are exhausted without
being preempted by other BOOSTed VMs, some of which
may be truly latency-sensitive.

In other words, the BOOST mechanism is only effec-
tive against the workloads that use almost 100% CPU
time because such workloads exhaust their credits easily
and BOOSTed VMs can then preempt them whenever they
want. To study the impact of lower CPU usage, we con-
duct another controlled experiment by varying the CPU
usage of the CPU-intensive workload from 10% to 100%
and measuring the 99.9th percentile RTT of the latency-
sensitive workload. We control the CPU usage using a
command-line utility called cpulimit on a process that
otherwise uses 100% CPU time; cpulimit pauses the
target process periodically to adjust its average CPU us-
age. In addition, based on what we learned from the first
set of controlled experiments, we only need to use one
latency-sensitive VM to share a single CPU core with
one CPU-intensive VM and allocate 50% CPU time to
each one respectively.

Figure 5 shows the relationship between the 99.9th
percentile RTT of the latency-sensitive workload and the
CPU usage of the CPU-bound workload in the neighbor-
ing VM. Surprisingly, the latency tail is over 10ms even
with 10% CPU usage, and starting from 30%, the tail
latency is almost constant until 100%. This is because
by default cpulimit uses a 10ms granularity: given X%
CPU usage, it makes the CPU-intensive workload work
Xms and pause (100− X)ms in each 100ms window.
Thus, when X < 30, the workload yields the CPU every
Xms, so the 99.9th percentiles for the 10% and 20% cases
are close to 10ms and 20ms, respectively; for X ≥ 30, the
workload keeps working for at least 30ms. Recall that the
default time slice of the credit scheduler is 30ms, so the
CPU-intensive workload cannot keep running for more
than 30ms and we see the flat line in Figure 5. It also
explains why the three curves in Figure 1(c) intersect at
the 99.9th percentile line. The takeaway is that even if a
workload uses as little as 10% CPU time on average, it
still can cause a long latency tail to neighboring VMs by

using large bursts of CPU cycles (e.g., 10ms). In other
words, average CPU usage does not capture the intensity
of a CPU-bound workload; it is the length of the bursts
of CPU-bound operations that matters.

Now that we understand the root cause, we will ex-
amine an issue stated earlier: one availability zone in the
US east region of EC2 has a higher probability of re-
turning good instances than the other AZs. If we break
down VMs returned from this AZ by CPU model, we find
a higher likelihood of newer CPUs. These newer CPUs
should be more efficient at context switching, which nat-
urally shortens the latency tail, but what likely matters
more is newer CPUs’ possessing six cores instead of
four, as in older CPUs that are more common in the
other three data centers. One potential explanation for
this is that the EC2 instance scheduler may not consider
CPU model differences when scheduling instances sen-
sitive to delays. Then, a physical machine with four cores
is much more likely to be saturated with CPU-intensive
workloads than a six-core machine. Hence, a data center
with older CPUs is more susceptible to the problem. De-
spite this, our root cause analysis always applies, because
we have observed that both good and bad instances oc-
cur regardless of CPU model; differences between them
only change the likelihood that a particular machine will
suffer from the long tail problem.

4 Avoiding the Long Tails

While sharing is inevitable in multi-tenant cloud com-
puting, we set out to design a system, Bobtail, to find
instances where processor sharing does not cause ex-
tra long tail distributions for network RTTs. Cloud cus-
tomers can use Bobtail as a utility library to decide on
which instances to run their latency-sensitive workloads.

4.1 Potential Benefits
To understand both how much improvement is possible
and how hard it would be to obtain, we measured the
impact of bad nodes for common communication pat-
terns: sequential and partition-aggregation [29]. In the
sequential model, an RPC client calls some number of
servers in series to complete a single, timed observation.
In the partition-aggregation model, an RPC client calls
all workers in parallel for each timed observation.

For the sequential model, we simulate workflow com-
pletion time by sampling from the measured RTT distri-
butions of good and bad nodes. Specifically, every time,
we randomly choose one node out of N RPC servers to
request 10 flows serially, and we repeat this 2,000,000
times. Figure 6 shows the 99th and 99.9th percentile val-
ues of the workflow completion time, with an increasing
number of bad nodes among a total of 100 instances.
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Figure 6: Impact of bad nodes on the flow tail comple-
tion times of the sequential model. Bobtail can expect to
reduce tail flow completion time even when as many as
20% of nodes are bad.

Interestingly, there is no difference in the tails of over-
all completion times when as many as 20% of nodes are
bad. But the difference in flow tail completion time be-
tween 20% bad nodes and 50% bad nodes is severe: flow
completion time increases by a factor of three at the 99th
percentile, and a similar pattern exists at the 99.9th per-
centile with a smaller difference. This means Bobtail is
allowed to make mistakes—even if up to 20% of the in-
stances picked by Bobtail are actually bad VMs, it still
helps reduce flow completion time when compared to
using random instances from EC2. Our measurements
suggest that receiving 50% bad nodes from EC2 is not
uncommon.

Figure 7 shows the completion time of the partition-
aggregation model when there are 10, 20, and 40 nodes
in the workloads. At modest scales, with fan-outs of 10
or even 20 nodes, there are substantial gains to be real-
ized by avoiding bad nodes. However, there is less room
for error here than in the sequential model: as the system
scales up, other barriers present themselves, and avoid-
ing nodes we classify as bad provides diminishing re-
turns. Understanding this open question is an important
challenge for us going forward.

4.2 System Design and Implementation
Bobtail needs to be a scalable system that makes accurate
decisions in a timely fashion. While the node property
remains stable in our five-week measurement, empirical
evidence shows that the longer Bobtail runs, the more
accurate its result can be. However, because launching
an instance takes no more than a minute in EC2, we
limit Bobtail to making a decision in under two minutes.
Therefore, we need to strike a balance between accuracy
and scalability.

A naive approach might be to simply conduct network
measurements with every candidate. But however accu-
rate it might be, such a design would not scale well to

handle a large number of candidate instances in parallel:
to do so in a short period of time would require sending
a large amount of network traffic as quickly as possible
to all candidates, and the synchronous nature of the mea-
surement could cause severe network congestion or even
TCP incast [23].

On the other hand, the most scalable approach in-
volves conducting testing locally at the candidate in-
stances, which does not rely on any resources outside
the instance itself. Therefore, all operations can be done
quickly and in parallel. This approach trades accuracy for
scalability. Fortunately, Figures 6 and 7 show that Bob-
tail is allowed to make mistakes.

Based on our root cause analysis, such a method exists
because the part of the long tail problem we focus on is
a property of nodes instead of the network. Accordingly,
if we know the workload patterns of the VMs co-located
with the victim VM, we should be able to predict if the
victim VM will have a bad latency distribution locally
without any network measurement.

In order to achieve this, we must infer how often long
scheduling delays happen to the victim VM. Because the
long scheduling delays caused by the co-located CPU-
intensive VMs are not unique to network packet process-
ing and any interrupt-based events will suffer from the
same problem, we can measure the frequency of large
delays by measuring the time for the target VM to wake
up from the sleep function call—the delay to process
the timer interrupt is a proxy for delays in processing all
hardware interrupts.

To verify this hypothesis, we repeat the five controlled
experiments presented in the root cause analysis. But in-
stead of running an RPC server in the victim VM and
measuring the RTTs with another client, the victim VM
runs a program that loops to sleep 1ms and measures the
wall time for the sleep operation. Normally, the VM
should be able to wake up after a little over 1ms, but co-
located CPU-intensive VMs may prevent it from doing
so, which results in large delays.

Figure 8 shows the number of times when the sleep
time rises above 10ms in the five scenarios of the con-
trolled experiments. As expected, when two or more
VMs are CPU-intensive, the number of large delays ex-
perienced by the victim VM is one to two orders of mag-
nitude above that experienced when zero or one VMs are
CPU-intensive. Although the fraction of such large de-
lays is small in all scenarios, the large difference in the
raw counts forms a clear criterion for distinguishing bad
nodes from good nodes. In addition, although it is not
shown in the figure, we find that large delays with zero
or one CPU-intensive VMs mostly appear for lengths of
around 60ms or 90ms; these are caused by the 40% CPU
cap on each latency-sensitive VM (i.e., when they are not
allowed to use the CPU despite its availability). Delays
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Figure 7: Impact of bad nodes on the tail completion time of the partition-aggregation model with 10, 20, and 40 nodes
involved in the workloads. At modest scales, with fan-outs of 10 or even 20 nodes, there are substantial gains to be
realized by avoiding bad nodes.

Figure 8: The number of large scheduling delays experi-
enced by the victim VM in controlled experiments with
an increasing number of VMs running CPU-intensive
workloads. Such large delay counts form a clear criterion
for distinguishing bad nodes from good nodes.

experienced in other scenarios are more likely to be be-
low 30ms, which is a result of latency-sensitive VMs pre-
empting CPU-intensive VMs. This observation can serve
as another clue for distinguishing the two cases.

Based on the results of our controlled experiments,
we can design an instance selection algorithm to pre-
dict locally if a target VM will experience a large num-
ber of long scheduling delays. Algorithm 1 shows the
pseudocode of our design. While the algorithm itself is
straightforward, the challenge is to find the right thresh-
old in EC2 to distinguish the two cases (LOW_MARK
and HIGH_MARK) and to draw an accurate conclusion as
quickly as possible (loop size M).

Our current policy is to reduce false positives, because
in the partition-aggregation pattern, reducing bad nodes
is critical to scalability. The cost of such conservatism is
that we may label good nodes as bad incorrectly, and as
a result we must instantiate even more nodes to reach a
desired number. To return N good nodes as requested by
users, our system needs to launch K ∗N instances, and
then it needs to find the best N instances of that set with
the lowest probability of producing long latency tails.

After Bobtail fulfills a user’s request for N instances
whose delays fall below LOW_MARK, we can apply the

Algorithm 1 Instance Selection Algorithm
1: num delay = 0
2: for i = 1→M do
3: sleep for S micro seconds
4: if sleep time ≥ 10ms then
5: num delay++
6: end if
7: end for
8: if num delay ≤ LOW MARK then
9: return GOOD

10: end if
11: if num delay ≤ HIGH MARK then
12: return MAY USE NETWORK TEST
13: end if
14: return BAD

network-based latency testing to the leftover instances
whose delays fall between LOW_MARK and HIGH_MARK;
this costs the user nothing but provides further value us-
ing the instances that users already paid for by the hour.
Many of these nodes are likely false negatives which,
upon further inspection, can be approved and returned to
the user. In this scenario, scalability is no longer a prob-
lem because we no longer need to make a decision within
minutes. Aggregate network throughput for testing can
be thus much reduced. With this optimization, we may
achieve a much lower effective false negative rate, which
will be discussed in the next subsection.

A remaining question is what happens if users run
latency-sensitive workloads on the good instances Bob-
tail picked, but those VMs become bad after some length
of time. In practice, because users are running network
workloads on these VMs, they can tell if any good VM
turns bad by inspecting their application logs without any
extra monitoring effort. If it happens, users may use Bob-
tail to pick more good VMs to take the place of the bad
ones. Fortunately, as indicated in Figure 3, our five-week
measurement shows that such properties generally per-
sist, so workload migration does not need to happen very
frequently. In addition, Figures 6 and 7 also indicate that
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Figure 9: Trade-off between false positive and false neg-
ative rates of the instance selection algorithm. Our sys-
tem can achieve a < 0.1 false positive rate while main-
taining a false negative rate of around 0.3. With the help
of network-based testing, the effective false negative rate
can be reduced to below 0.1.

even if 20% of instances running latency-sensitive work-
loads are bad VMs, their impact on the latency distribu-
tion of sequential or partition-aggregation workloads is
limited.

4.3 Parameterization
To implement Bobtail’s algorithm, we need to define
both its runtime (loop size M) and the thresholds for the
LOW_MARK and HIGH_MARK parameters. Our design in-
tends to limit testing time to under two minutes, so in
our current implementation we set the loop size M to be
600K sleep operations, which translates to about 100
seconds on small instances in EC2—the worse the in-
stance is, the longer it takes.

The remaining challenge we face is finding the
right thresholds for our parameters (LOW_MARK and
HIGH_MARK). To answer this inquiry, we launch 200
small instances from multiple availability zones (AZs)
in EC2’s US east region, and we run the selection al-
gorithm for an hour on all the candidates. Meanwhile,
we use the results of network-based measurements as the
ground truth of whether the candidates are good or bad.
Specifically, we consider the instances with 99.9th per-
centiles under 10ms for all micro benchmarks, which are
discussed in § 5.1, as good nodes; all other nodes are
considered bad.

Figure 9 shows the trade-off between the false positive
and false negative rates by increasing LOW_MARK from 0
to 100. The turning point of the solid line appears when
we set LOW_MARK around 13, which lets Bobtail achieve
a < 0.1 false positive rate while maintaining a false neg-
ative rate of around 0.3—a good balance between false
positive and false negative rates. Once HIGH_MARK is in-
troduced (as five times LOW_MARK), the effective false
negative rate can be reduced to below 0.1, albeit with the
help of network-based testing. We leave it as future work

to study when we need to re-calibrate these parameters.
The above result reflects our principle of favoring a

low false positive. Therefore, we need to use a relatively
large K value in order to get N good nodes from K ∗N
candidates. Recall that our measured good node ratio
for random instances directly returned by EC2 ranges
from 0.4 to 0.7. Thus, as an estimation, with a 0.3
false negative rate and a 0.4 to 0.7 good node ratio for
random instances from multiple data centers, we need
K ∗N ∗(1−0.3)∗0.4=N or K ≈ 3.6 to retrieve the num-
ber of desired good nodes from one batch of candidates.
However, due to the pervasiveness of bad instances in
EC2, even if Bobtail makes no mistakes we still need a
minimum of K∗N ∗0.4=N or K = 2.5. If startup latency
is the critical resource, rather than the fees paid to start
new instances, one can increase this factor to improve
response time.

5 Evaluation

In this section, we evaluate our system over two avail-
ability zones (AZs) in EC2’s US east region. These two
AZs always return some bad nodes. We compare the la-
tency tails of instances both selected by our system and
launched directly via the standard mechanism. We con-
duct this comparison using both micro benchmarks and
models of sequential and partition-aggregation work-
loads.

In each trial, we compare 40 small instances launched
directly by EC2 from one AZ to 40 small instances se-
lected by our system from the same AZ. The compar-
ison is done with a series of benchmarks; these small
instances will run RPC servers for all benchmarks. To
launch 40 good instances, we use K = 4 with 160 can-
didate instances. In addition, we launch four extra large
instances for every 40 small instances to run RPC clients.
We do this because, as discussed earlier, extra large in-
stances do not experience the extra long tail problem; we
therefore can blame the server instances for bad latency
distributions.

5.1 Micro Benchmarks
Our traffic models for both micro benchmarks and se-
quential and partition-aggregation workloads have inter-
arrival times of RPC calls forming a Poisson process. For
micro benchmarks, we assign 10 small instance servers
to each extra large client. The RPC call rates are set at
100, 200, and 500 calls/second. In each RPC call, the
client sends an 8-byte request to the server, and the server
responds with 2KB of random data. Meanwhile, both
requests and responses are packaged with another 29-
byte overhead. The 2KB message size was chosen be-
cause measurements taken in a dedicated data center in-
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Figure 10: Reduction in flow tail completion time in
micro benchmarks by using Bobtail in two availability
zones in EC2’s US east region. The mean reduction time
is presented with a 90% confidence interval.

dicate that most latency-sensitive flows are around 2KB
in size [1]. Note that we do not generate artificial back-
ground traffic, because real background traffic already
exists throughout EC2 where we evaluate Bobtail.

Figure 10 presents the reductions in completion times
for three RPC request rates in micro benchmarks across
two AZs. Bobtail reduces latency at the 99.9th percentile
from 50% to 65%. In micro benchmark and subsequent
evaluations, the mean of reduction percentages in flow
completion is presented with a 90% confidence interval.

However, improvements at the 99th percentile are
smaller with a higher variance. This is because, as shown
in Figure 1, the 99th percentile RTTs within EC2 are not
very bad to begin with (∼2.5ms); therefore, Bobtail’s im-
provement space is much smaller at the 99th percentile
than at the 99.9th percentile. For the same reason, net-
work congestion may have a large impact on the 99th
percentile while having little impact on the 99.9th per-
centile in EC2. The outlier of 200 calls/second in the
second AZ of Figure 10 is caused by one trial in the
experiment with 10 good small instances that exhibited
abnormally large values at the 99th percentile.

5.2 Sequential Model
For sequential workloads, we apply the workload model
to 20-node and 40-node client groups, in addition to the
10-node version shown in the micro benchmarks. In this
case, the client sends the same request as before, but the
servers reply with a message size randomly chosen from
among 1KB, 2KB, and 4KB. For each workflow, instead
of sending requests to all the servers, the client will ran-
domly choose one server from the groups of sizes 10, 20,
and 40. Then, it will send 10 synchronous RPC calls to
the chosen server; the total time to complete all 10 RPC
requests is then used as the workflow RTT. Because of
this, the workflow rates for the sequential model are re-
duced to one tenth of the RPC request rates for micro
benchmarks and become 10, 20, and 50 workflows per
second.

Figure 11 shows our improvement under the sequen-

Figure 11: Reduction in flow tail completion time for se-
quential workflows by using Bobtail in two availability
zones in EC2’s US east region. The mean reduction time
is presented with a 90% confidence interval.

tial model with different numbers of RPC servers in-
volved. Bobtail brings a 35% to 40% improvement to
sequential workloads at the 99th percentile across all ex-
periments, and it roughly translates to an 8ms reduction.
The lengths of the confidence intervals grow as the num-
ber of server nodes increases; this is caused by a rela-
tively smaller sample space. The similarity in the reduc-
tion of flow completion time with different numbers of
server nodes shows that the tail performance of the se-
quential workflow model only depends on the ratio of
bad nodes among all involved server nodes. Essentially,
the sequential model demonstrates the average tail per-
formance across all server nodes by randomly choosing
one server node each time with equal probability at the
client side.

Interestingly, and unlike in the micro benchmarks, im-
provement at the 99.9th percentile now becomes smaller
and more variable. However, this phenomenon does
match our simulation result shown in Figure 6 when dis-
cussing the potential benefits of using Bobtail.

5.3 Partition-Aggregation Model
For the partition-aggregation model, we use the same 10,
20, and 40-node groups to evaluate Bobtail. In this case,
the client always sends requests to all servers in the group
concurrently, and the workflow finishes once the slowest
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Figure 12: Reduction in flow tail completion time for
partition-aggregation workflows by using Bobtail in two
availability zones in EC2’s US east region. The mean re-
duction time is presented with a 90% confidence interval.

RPC response returns; servers always reply with 2KB of
random data. In other words, the RTT of the slowest RPC
call is effectively the RTT of the workflow. Meanwhile,
we keep the same workflow request rate from the micro
benchmarks.

Figure 12 shows improvement under the partition-
aggregation model with different numbers of RPC
servers involved. Bobtail brings improvement of 50% to
65% at the 99th percentile with 10 servers. Similarly to
the sequential workloads, the improvement at the 99.9th
percentile is relatively small. In addition, as predicted by
Figure 7, the reduction in tail completion time diminishes
as the number of servers involved in the workload in-
creases. To fully understand this phenomenon, we need
to compare the behaviors of these two workload models.

For sequential workloads with random worker assign-
ment, a small number of long-tail nodes have a modest
impact. Intuitively, each such node has a 1/N chance of
being selected for any work item and may (or may not)
exhibit long tail behavior for that item. However, when
this does happen, the impact is non-trivial, as the long de-
lays consume the equivalent of many “regular” response
times. So, one must minimize the pool of long-tail nodes
in such architectures but needs not to avoid them entirely.

The situation is less pleasant for parallel, scatter-
gather style workloads. In such workloads, long-tail
nodes act as the barrier to scalability. Even a relatively

low percentage of long-tail nodes will cause significant
slowdowns overall, as each phase of the computation
runs at the speed of the slowest worker. Reducing or even
eliminating long-tail nodes removes this early barrier to
scale. However, it is not a panacea. As the computation
fans out to more nodes, other limiting factors come into
play, reducing the effectiveness of further paralleliza-
tion. We leave it as future work to study other factors
that cause the latency tail problem with larger fan-out in
cloud data centers.

6 Discussion

Emergent partitions A naive interpretation of Bob-
tail’s design is that a given customer of EC2 simply
seeks out those nodes which have at most one VM per
CPU. If this were the case, deploying Bobtail widely
would result in a race to the bottom. However, not all
forms of sharing are bad. Co-locating multiple VMs run-
ning latency-sensitive workloads would not give rise to
the scheduling anomaly at the root of our problem. In-
deed, wide deployment of Bobtail for latency-sensitive
jobs would lead to placements on nodes which are ei-
ther under-subscribed or dominated by other latency-
sensitive workloads. Surprisingly, this provides value to
CPU-bound workloads as well. Latency-sensitive work-
loads will cause frequent context switches and reduc-
tions in cache efficiency; both of these degrade CPU-
bound workload performance. Therefore, as the usage
of Bobtail increases in a cloud data center, we expect
it will eventually result in emergent partitions: regions
with mostly CPU-bound VMs and regions with mostly
latency-sensitive VMs. However, to validate this hypoth-
esis, we would need direct access to the low-level work-
load characterization of cloud data centers like EC2.

Alternative solutions Bobtail provides a user-centric
solution that cloud users can apply today to avoid long la-
tency tails without changing any of the underlying infras-
tructure. Alternatively, cloud providers can offer their so-
lutions by modifying the cloud infrastructure and place-
ment policy. For example, they can avoid allocating more
than C VMs on a physical machine with C processors, at
the cost of resource utilization. They can also overhaul
their VM placement policy to allocate different types of
VMs in different regions in the first place. In addition,
new versions of the credit scheduler [28] may also help
alleviate the problem.

7 Related Work

Latency in the Long Tail Proposals to reduce net-
work latency in data centers fall into two broad cate-
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gories: those that reduce network congestion and those
that prioritize flows according to their latency sensitiv-
ity. Alizadeh et al. proposed to reduce switch buffer oc-
cupancy time by leveraging Explicit Congestion Notifi-
cation (ECN) to indicate the degree of network conges-
tion rather than whether congestion exists [1]. Follow-
up work further reduced the buffer occupancy time by
slightly capping bandwidth capacity [2]. Wilson et al.
and Vamanan et al. both argued that the TCP conges-
tion control protocols used in data centers should be
deadline-aware [26, 22]. Hong et al. designed a flow
scheduling system for data centers to prioritize latency-
sensitive jobs with flow preemption [10]. Zats et al. pro-
posed a cross-stack solution that combined ECN with
application-specified flow priorities and adaptive load
balancing in an effort to unify otherwise disparate knowl-
edge about the state of network traffic [29].

The above solutions focus on the component of long
tail flow completion times that is the result of the network
alone and, as such, are complementary to our approach.
We have shown that the co-scheduling of CPU-intensive
and latency-sensitive workloads in virtualized data cen-
ters can result in a significant increase in the size of the
long tail, and that this component of the tail can be ad-
dressed independently of the network.

The Xen Hypervisior and its Scheduler In § 3, we
discussed how Xen uses a credit-based scheduler [28]
that is not friendly to latency-sensitive workloads. Var-
ious characteristics of this credit scheduler have been
examined, including scheduler configurations [15], per-
formance interference caused by different types of co-
locating workloads [15, 12, 25], and the source of over-
head incurred by virtualization on the network layer [25].
Several designs have been proposed to improve the cur-
rent credit scheduler, and they all share the approach of
boosting the priority of latency-sensitive VMs while still
maintaining CPU fairness in the long term [9, 8, 11].
However, the degree to which such approaches will im-
pact the long tail problem at scale has yet to be studied.

Instead of improving the VM scheduler itself, Wood
et al. created a framework for the automatic migra-
tion of virtual machines between physical hosts in Xen
when resources become a bottleneck [27]. Mei et al.
also pointed out that a strategic co-placement of differ-
ent workload types in a virtualized data center will im-
prove performance for both cloud consumers and cloud
providers [14]. Our work adopts a similar goal of improv-
ing the tail completion time of latency-sensitive work-
loads for individual users while also increasing the over-
all efficiency of resource usage across the entire virtual-
ized data center. However, our solution does not require
the collaboration of cloud providers, and many cloud
customers can deploy our system independently.

EC2 Measurements Wang et al. showed that the net-
work performance of EC2 is much more variable than
that of non-virtualized clusters due to virtualization and
processor sharing [24]. In addition, Schad et al. found a
bimodal performance distribution with high variance for
most of their metrics related to CPU, disk I/O, and net-
work [19]. Barker et al. also quantified the jitter of CPU,
disk, and network performance in EC2 and its impact on
latency-sensitive applications [4]. Moreover, A. Li et al.
compared multiple cloud providers, including EC2, us-
ing many types of workloads and claimed that there is no
single winner on all metrics [13]. These studies only in-
vestigate the average and variance of their performance
metrics, while the focus of our study is on the tail of net-
work latency distributions in EC2.

Ou et al. considered hardware heterogeneity within
EC2, and they noted that within a single instance type
and availability zone, the variation in performance for
CPU-intensive workloads can be as high as 60% [16].
They made clear that one easy way to improve instance
performance is to check the model of processor assigned.
While selecting instances also represents the core of our
work, Bobtail examines dynamic properties of EC2 as
opposed to static configuration properties.

8 Conclusion

In this paper, we demonstrate that virtualization used in
EC2 exacerbates the long tail problem of network round-
trip-times by a factor of two to four. Notably, we find
that poor response times in the cloud are a property of
nodes rather than the network, and that the long latency
tail problem is pervasive throughout EC2 and persis-
tent over time. Using controlled experiments, we show
that co-scheduling of CPU-bound and latency-sensitive
tasks causes this problem. We present a system, Bobtail,
which proactively detects and avoids these bad neighbor-
ing VMs without significantly penalizing node instanti-
ation. Evaluations in two availability zones in EC2’s US
east region show that common communication patterns
benefit from reductions of up to 40% in their 99.9th per-
centile response times.
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