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Abstract—USB-based attacks have increased in complexity in
recent years. Modern attacks now incorporate a wide range
of attack vectors, from social engineering to signal injection.
To address these security challenges, the security community
has responded with a growing set of fragmented defenses. In
this work, we survey and categorize USB attacks and defenses,
unifying observations from peer-reviewed research and industry
solutions. Our systematization extracts offensive and defensive
primitives that operate across layers of communication within
the USB ecosystem. Based on our taxonomy, we discover that
USB attacks often abuse the Trust-by-Default nature in the
ecosystem, and transcend different layers within a software stack;
none of the existing defenses provides a complete solution, and
solutions expanding multiple layers are most effective. We then
turn to the first formal verification of the recently released USB
Type-C Authentication specification, and uncover fundamental
flaws in the specification’s design. We further evaluate the spec
using findings from our systematization, and find that while the
spec has successfully pinpointed an urgent need to solve the
USB security problem, those flaws render its goals in vain. We
conclude by outlining future research directions to ensure a safer
computing experience with USB.

I. INTRODUCTION

Since the early 2000s, USB devices have increased in
popularity, with new features paving the way for widespread
adoption in nearly every computing device [35]. The newest
iteration of USB, USB Type-C, has strong support from
popular vendors, for example, Type-C is now the exclusive
means of peripheral interaction with Apple MacBooks and
new Google smartphones [76].

Unfortunately, USB innovation has largely left security as an
afterthought. New specifications rarely mention security, and
until recently, USB designers placed the onus of security onto
the consumers and vendors of USB devices [117]. As a result,
USB devices are often a ripe target for attackers. We begin
this work with a systematic analysis of the attacks present in
the USB ecosystem. We find that many USB attacks appear
at varying communication layers, ranging from the human
layer (social engineering) down to the physical layer (signal
injection). In addition, all attacks abuse the “trust-by-default”
nature of the USB ecosystem.

In spite of the evolving USB threat landscape, defenses
against such attacks are fragmented and not widely adopted.
In systematizing the defenses present in the USB ecosystem,
we find that most defenses often focus on protecting a single
layer, which proves ineffective against a suite of attacks that
appear at many communication layers. In addition, misaligned
goals between industry and academia further fragment the
defense space. Commercial solutions focus on the prevention

of data loss and anti-malware without regard for emerging
attack vectors, while research prototypes vary in are hamstrung
by the lack of built-in security building blocks in the existing
USB specifications. As a result, research solutions often rely
on new host and peripheral architectures that are unlikely to
be incorporated into commercial systems.

After years of USB insecurity, the USB Implementers
Forum (USB-IF) incorporated security features into the most
recent specification, USB Type-C. The new specification en-
ables Type-C authentication, which is intended to provide a
way to authenticate a USB device before interacting with
it. However, it is unclear whether authentication is suffi-
cient to defend against all existing attacks, and what can
be done for legacy devices which do not support the new
spec. To investigate these questions, We formally verify the
USB Type-C authentication protocol. Though the spirit of the
specification highlights long-awaited attention to security by
USB designers, we find multiple attacks that can break the
security guarantees provided by the specification. We argue
that had the USB Type-C designers learned from the attacks
and defenses of the past, many specification flaws could have
been mitigated. We further leverage our systematization to
pinpoint what security issues the new protocol addresses, and
more importantly, where it still fails.

We conclude with a discussion of future directions for USB
security, leveraging our taxonomy and systematization to focus
attention on the problems that remain. We hope our results
prove useful to the security community as we work towards a
safer USB computing ecosystem.

II. BACKGROUND

We first outline the evolution of the USB specification and
highlight key features that inform the present state of USB
security.

A. The Evolution of USB

Introduced in 1996, USB 1.0 [31] was designed to replace
disparate peripheral connecting interfaces and reduce the com-
plexity of both hardware design and software configuration.
USB 1.x [31], [32] features a polled bus, meaning that the
USB host controller initiates all data transfers. It provides two
data transfer rates, which are known as Low Speed (1.5 Mbit/s)
and Full Speed (12 Mbit/s). USB 1.x additionally provides a
limited amount of power of over the cable for “bus-powered”
devices. The term “security” does not appear at all in the USB
1.x specification; the closest related topic is error detection in
the cable during transmission.



In 2000, the USB 2.0 protocol specification was released.
USB 2.0 provided increased peripheral support and a High
Speed (480 Mbit/s) data transfer rate. Peripheral support was
expanded to include digital cameras, video cards, CD writers,
and network adapters (in particular, 802.11 and Bluetooth).
USB 2.0 also paved the way for the popularity of “flash
drives”—portable devices that enabled physically transferring
data on the go. Like the 1.x specifications, the security of
USB devices is not stressed in the 650 page document. The
lone exception is the introduction of a new peripheral class
called Content Security [46], which attempts to provide limited
support for securing sensitive content, for example, readings
from fingerprint scanners.

USB 3.0 [55] was published in 2008, and offers a Super-
Speed (5 Gbit/s) data transfer rate. Like 2.0 before it, USB
3.0 offered expanded support for new classes of peripherals,
such as USB Vision [9] for controlling cameras and external
USB-based graphics processing [36]. USB 3.0 also replaced
the downstream traffic broadcast mechanism used with a
unicast protocol, enabling internal routing within hubs. The
2013 release of USB 3.1 [56] brought about SuperSpeed+
(10 Gbit/s) as well as an updated USB Power Delivery
(PD) specification [47]. This specification, which supports
up to a 100W power supply over USB, paved the way for
laptop charging via USB. Unfortunately, security continued to
remain absent from the 3.x specification. USB Type-C [57]
was introduced as a part of USB 3.1 as a new connector
type, unifying PD, USB 3.x, Thunderbolt, DisplayPort and
HDMI using a 24-pin connector/cable. In 2017, USB 3.2 [14]
was released, and doubles the data transfer rate of previous
generations (20 Gbit/s).

Throughout the evolution of the USB protocol, security
was rarely given consideration. As recently as 2014, the USB
Implementors Forum (USB-IF) explicitly stated that security
falls outside the scope of the USB specification. In an official
statement [117], the USB-IF asserted that security is not a
legitimate concern because “In order for a USB device to be
corrupted, the offender would need to have physical access
to the USB device.” They continue by placing the onus of
security onto onto both the consumers of USB products and
the original equipment manufacturers (OEMs).

They state:
1) “OEMs decide whether or not to implement these

[security] capabilities in their products.”
2) “Consumers should always ensure their devices are

from a trusted source and that only trusted sources
interact with their devices.”

However, the USB-IF could not ignore security for much
longer. In response to the threat of rogue power chargers and
cables enabled by the USB Type-C specification, the USB 3.0
Promoter Group and the USB-IF introduced the USB Type-C
Authentication specification [116] to Type-C products in 2016.

B. USB Protocol

The true flexibility of USB comes from composite devices,
which can contain multiple configurations and interfaces, each
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Figure 1: A USB device containing two configurations. Con-
figuration 1 contains two interfaces, and configuration 2 con-
tains one interface. Each interface supports two unidirectional
communication channels (In/Out) with the host machine. Each
channel may contain more than one endpoint (EP), which is
the sink of the communication.
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Figure 2: USB Enumeration Procedure.

of which is a standalone entity. For instance, a USB headset
may contain one configuration, which contains four interfaces,
including a keyboard (for volume control), a microphone,
and two speakers. An example of a two-configuration USB
device is shown in Figure 1. Two mechanisms are necessary
to accomplish composite devices, one to define different kinds
of peripherals, and another is to connect to them.

1) Common Class Specifications: Beginning in USB 1.0,
the notion of Common Class Specifications [34], [111] is
introduced to codify different kinds of peripherals. A USB
class is a grouping of one or more interfaces that combine to
provide a more complex functionality. Examples of classes that
feature a single interface include the Human Interface Device
(HID) class that enables the USB host controller to interact
with keyboards and mice, and the USB Mass Storage Class
[119], [118] that defines how to transfer data between the host
and storage devices. A composite device can then combine
different classes to create a useful product, such as a USB
headset leveraging both the HID class and Audio class. As
we will see, the notion of designing USB peripherals through
a composition of multiple functionalities continues to bear on
the state of USB security today.
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Figure 3: USB vulnerabilities can be classified by the ab-
stracted communications layer at which they operated. A
successful attack involves violating an design assumption or
implementation error at a given layer.

2) Device Enumeration: After a device is plugged into
the host machine, the USB host controller detects its pres-
ence and speed by checking the voltage change on data
pins. Enumeration then begins as shown in Figure 2 with
the GetDeviceDescriptors command, which asks the
device for its identifying information including manufac-
turer, Vendor ID (VID), Product ID (PID), and serial num-
ber. The host controller then resets the device and as-
signs an address to the device for future communica-
tion. A GetConfigDescriptors request then obtains
all configurations available within the device. A USB de-
vice can have one or more configurations, though only one
may be active at a time. Each configuration then can in-
clude one or more interfaces, which are obtained with the
GetInterfaceDescriptors request and represent the
essential function entities served by different drivers within
the operating system. After GetInterfaceDescriptors
is done, drivers are loaded on behalf of the device and class-
specific subsets of the USB protocol (e.g., HID, Storage)
begin.

III. UNDERSTANDING USB ATTACK VECTORS

In this section, we explore the current attacks against USB.
Given the myriad of work in this space, we first classify
existing work via abstract communication layers. As seen in
Figure 3, our layers represent the various entities involved
across both the host and peripherals. At the highest level, the
human layer involves actions and communications between
human stakeholders. The application level layer represents
user-level programs on the host and capabilities on the device.
The transport layer encompasses both device firmware and
host operating systems containing the USB stack. Finally, the
physical layer represents the communication over the USB
bus.

By grouping research into layers, we can more easily iden-
tify commonalities in approaches and derive sub-groupings,
called primitives. In the case of attacks, these primitives

encompass both the mechanism (i.e., how the attack is ac-
complished) and the outcome (e.g., forgery, eavesdropping,
or denial of service). In the case of defenses, discussed in
Section IV, these primitives likewise encompass mechanism,
but instead highlight security guarantees (e.g., integrity, con-
fidentiality, or availability).

A. Abuse of Human Layer

Abuse at the human layer involves social engineering or
human error, as leveraged by outsiders as well as privileged
members in an organization.

1) Outsider Threats: All USB attacks rely on the plugging
in of a peripheral in order to damage a host or use, leading
security practitioners to warn of the dangers of inserting sus-
picious devices into computers. Social engineering frequently
involves tricking a user into plugging an untrusted device into
their machine and interacting with its contents; in practice, this
is not a challenging task. Stasiukonis reports that in a 2006
penetration test, compromise of the organization was made
easy as 75% of USB drives scattered near the workplace had
been plugged into company computers within three days [107].
The US Department of Homeland Security [89] replicated
this result in a similar experiment where 60% of drives
dropped found their way onto a government computer; this
number increased to 90% when drivers were branded with a
government logo, suggesting that users’ low bar for electronic
trust can be manipulated by attackers.

Wagenaar et al.’s 2011 “USB Baiting” experiment [122],
also demonstrated that users plugged in USB drives and
explored their reasons for doing so. Though one would expect
general security awareness to increase over the years, recent
work demonstrates empirically that users are still plugging in
the USB drives they find [115], [61]. Extending other exper-
iments, Tischer et al. planted appearance-modified drives to
instigate different human motivation, such as altruism or self-
interest. The researchers found 98% of drives were picked up
from the drop site and that files on 45% of drives were actually
opened. The ease of executing such attacks make USB-based
social engineering attacks both realistic and dangerous.

2) Insider Threats: The ease and rapidly declining cost of
USB drives enables both companies and consumers to leverage
USB devices to store and transfer sensitive data. USB drives,
like any physical device, can be damaged, or worse, lost, due
to human error. Such mishandling can often lead to detrimental
results. In 2011, Ponemon Institute released a study that
documented 400 different companies; they found that these
companies have lost >2.5 million dollars per company because
of misplaced USB drives [75]. Later in 2011, an Australian
defense aid lost top secret documents stored on a USB drive
in transit through Kuwait [37]. Humans are error prone, and
even honest parties can make mistakes that can heavily cost
companies and even countries.

USB devices such as portable media also enable an easy
avenue for inside attackers to leak sensitive information. In
2010, Private Chelsea Manning was arrested in violation of
the Espionage Act, for leaking private U.S. army footage to
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Wikileaks [69]. Manning used portable storage, for which exit
restrictions were lax, in order to breach the air-gap in the
army’s network and leak information to the outside world.
Edward Snowden used similar techniques to siphon top-secret
NSA data from his Hawaii base [10]. These are only a few
cases that we as a security community know of—it is possible
and highly probable that USB storage has been used to conduct
similar attacks in many different scenarios.

The ubiquity and portability of USB devices are both a
challenge and an opportunity. On the one hand, their ease
of use greatly aid consumers and companies in day to day
tasks. On the other, USB devices are the de facto method of
bypassing technical and personal security precautions and can
lead to large, detrimental effects to organizations.

B. Abuse of Application Layer

Application layer attacks involve user-space processes on
the host and their interactions with the functionality of a
device. Attacks in this layer typically fall in two categories:
code injection attacks, where the attacker injects malicious
code into the host, and data exfiltration attacks, in which the
device exfiltrates data from the host.

1) Code Injection: USB storage has been used by several
high-profile malware attacks. Stuxnet [44], [30] allegedly at-
tacked nuclear centrifuge equipment in an airgap environment
after infection via USB storage drives. Duqu [109] uses a user-
mode rootkit to hide malicious files on the USB storage device.
Conficker [104], [45], [92] and Flame [127], [128], [123]
used zero-day exploits and malicious autorun.inf files
to automatically execute the malware when a storage device
was connected to the host. Although the auto-run feature
was restricted after it became one of the top threats for the
Windows platform [78], similar functionality remains available
due to bugs in the operating system [71].

2) Data Exfiltration: Since the USB device often does not
authenticate the communicating application on the host, the
device may send or receive sensitive data from an unintended
application. This is particularly problematic for sensory de-
vices that can be used to perform surveillance on an unsus-
pecting user. For example, webcam access has been leveraged
by both government agencies [85] and malware [1], [98] to
obtain information about the computer’s user and environment.
In the case of malware, the attackers can then demand a
ransom payment from the user. Web pages may request
that a vulnerable browser enable the microphone without the
user’s permission, allowing the site to capture audio from the
system [110]. Portnoff et al. found that less than half of people
noticed that their webcam indicator light illuminated during
computer-based tasks [93]. Even worse, USBee [51] permits
the exfiltration of data from the host system by turning any
USB device connected with the machine into a RF transmitter.
Similarly, an exploitation on Linux resource manager [29]
allows arbitrary users to bypass system restrictions and access
any USB devices on the system.

C. Abuse of Transport Layer

Attacks on the USB transport layer fall into two general
categories: those that perform privilege escalation through
additional interfaces and those that send maliciously crafted
packets/messages to compromise the host operating system.

1) Protocol Masquerading: These devices provide addi-
tional, obscured interfaces to the host operating system lever-
aging the host’s full trust of any connected device. When a de-
vice such as the Rubber Ducky [52], [53] or USBdriveby [66]
connects to the host system, all of its interfaces – some of
which are not known to the user – are enumerated. Such
functionality can be hidden from the user by embedding
additional functionality into an otherwise innocuous device
(e.g., a network adapter in an audio headset). TURNIP-
SCHOOL [5] is a modified USB cable that contains an RF
transmitter in the plastic around the connector. When the
device is connected to a host, the transmitter is enumerated
along with the user’s expected interfaces. Software running
on the host can then exfiltrate data or receive commands via
the RF interface. Identifying and mitigating these additional
interfaces has traditionally been difficult as an adversary can
simply reprogram any USB descriptive data (e.g., VID and
PID) to evade device whitelisting or blacklisting rules in the
operating system. Furthermore, mitigation is complicated by
the legitimate use of composite devices such as audio headsets
with both input and output.

Devices do not have to be equipped with new hardware
components to be evil. The lack of authentication for firmware
in USB devices allows attackers to overwrite the firmware with
malicious code [15]. Devices infected with BadUSB [83], for
example, can present malicious interfaces as simple as a HID
interface or as complex as a network adapter. iSeeYou [24]
modifies a webcam’s firmware to disable the indicator light.
Psychson [27] modifies the firmware of a USB storage device
by adding a keyboard functionality, which can run the mali-
cious script automatically. These attacks are invisible to the
user and the resulting modified device can be moved between
hosts, leaving a number of host machines exploited.

2) Protocol Corruption: The host’s USB software stack
generally expects devices to conform to the USB standard.
Fuzzing techniques using FaceDancer [49], [101], [64] and
debuggers [16] have led to the discovery of a number of
kernel-mode arbitrary code execution vulnerabilities, e.g., in
the Windows USB drivers [2], [3], [4], FreeBSD [23], Linux
kernel USB subsystem [11], [97], [20], and all other operating
systems [38]. In 2017, syscall fuzzer syzkaller also found more
than 40 bugs in different Linux kernel USB drivers [50]. In
some cases, exploitation of these vulnerabilities can occur
during the host’s device enumeration, making the physical
connection of the device the only barrier to compromise.
Man-in-the-middle devices such as embedded systems running
USBProxy [41] can manipulate legitimate protocol traffic from
devices to inject malicious content.
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D. Abuse of Physical Layer

Physical layer attacks consist of attacks against confidential-
ity and integrity in the communication across the USB bus.

1) Signal Eavesdropping: In signal eavesdropping attacks,
sensitive data is recovered through physical observation of
messages moving between the host and peripheral. Keyloggers
are miniature, inconspicuous shim devices that are placed be-
tween the host port and peripheral to record keystroke packets,
e.g., KeyGrabber [68]. Shah et al. present JitterBug [102],
a single trip keylogging attack that exfiltrates keystrokes
from the target over a timing-based network side channel.
Neugschwandtner et al. demonstrate that, prior to USB 3.0, a
malicious peripheral can eavesdrop on the downstream traffic
of all connected devices [81]. USB snooping [108] attacks
leverage current leakage on the power line of the USB bus
to infer the USB data traffic. There have also been in-the-
wild appearances of malicious USB peripherals and cables that
use network connectivity to eavesdrop and exfiltrate sensitive
messages, such as CottonMouth [6], [7] and GPS locator [77],
[12]. Of particular concern is the fact that many hosts contain
internal USB hubs which are often reprogrammable [82],
allowing for a persistent bus eavesdropping compromise via
firmware rewriting regardless of BIOS or UEFI integrity
defenses.

A variety of fingerprinting attacks have also been demon-
strated in which low layer messages are shown to leak signifi-
cant information about host characteristics. Wang and Stavrou
demonstrate that USB Request Blocks leak information about
the host operating system [125], which can be used by a ma-
licious smart phone to compose a targeted malware payload.
Davis observes that variations in the implementation of USB
enumeration protocol can be used to identify the operating
system, e.g., Windows 8 is the only common operating system
to issue 3 GetConfiguration descriptor requests [39]. A
more resilient approach to host fingerprinting relies on timing
side channels (e.g., inter-packet gaps) to infer host machine
characteristics. Letaw et al. [72] employ a USB protocol
analyzer [43] to extract timing features of bus states and use
machine learning classification to infer the operating system
of the host.Bates et al. present a timing-based fingerprinting
scheme that can be launched from a commodity smart phone.
They show that specific operating system versions and model
numbers can be inferred with upwards of 90% accuracy,
that inter-packet gaps can be used by devices to detect
the presence of virtualized environments [17]. While timing-
based fingerprinting significantly raises the bar for evasion, it
seems likely that resource-rich hosts could modify their timing
characteristics to evade detection, although this has not been
demonstrated in the literature.

2) Signal Injection: Analog signals are used to convey sen-
sitive data, leaking information to the outside of the machine,
where an adversary is able to receive the signal, decode it,
and recover the sensitive data. For USB, the most common
covert channels are based on electromagnetic emission [106]
and power analysis. Unlike USB bus eavesdropping mentioned

above, USBee [51] does not require any specific devices or
cables to leak the data from the host machine. Instead, it
uses connected USB devices as an RF transmitter to emit
electromagnetic emissions that encode sensitive data. Where
there is no ”victim” RF transmitter available on the laptop,
the adversary can touch the exposed metal part of the machine
with a plain wire, the signal of which can be used to extract
secret keys [48]. Similarly, Oswald and etc. [87] show how
to extract AES 128-bit keys from Yubikey 2 based on power
consumption and electromagnetic emanation.

The ability to inject analog power has also been used to
cause physical damage to the host machine. USB Killer (and
USB Kill 2.0) [120] embeds a number of capacitors on the
two sides of the PCB board of the USB key. Once connected
with the host machine, USB Killer draws the power from the
host USB bus, charging the capacitors. Once fully charged, a
negative 200VDC is discharged over the USB data lines of the
host machine. This charge/discharge cycle keeps going until
the USB Killer is removed or the host machine is damaged. In
newer releases of USB Power Delivery and Type-C connector
standards, device are able to draw and transmit so much power,
e.g., up to 100W, that they can irreparably damage the host.
The use of poor quality USB Type-C cables have already led
to benign circumstances that resemble this attack [19], where
a cable has damaged a Pixel book and two USB PD analyzers.

USB ATTACK VECTOR SUMMARY

Based on this survey, we identify several offensive primitives
that are being leveraged in USB-based attacks. Table I provides
a mapping of notable attacks surveyed above to the layer and
primitive to which they correspond. From the above taxonomy
of attacks, the following findings can be drawn.
F1. Trust by Default: Across all communications layers,
a common characteristic of attacks is that they abuse the
trust-by-default assumption that pervades the USB ecosystem.
This trust model is inextricably linked to the “Plug & Play”
philosophy that led to USB’s ubiquity, making popular the
notion that peripherals should work instantly upon connection
without any additional configuration. At the physical layer,
USB 1.x and 2.x broadcast downstream messages assuming
they would only be read by the recipient. At the transport
layer, USB protocols assume that kernel drivers will only
be requested for legitimate purposes. Within the application
layer, host machines blindly trust the integrity of the contents
of portable media and devices assume that all transactions
emanate from a trustworthy agent. Violations at the human
layer are the result of misplaced trust in the intentions of
devices and other humans.

Unfortunately, trust-by-default is not strictly a legacy prob-
lem. As recently as late 2014, the USB-IF stated that “con-
sumers should always ensure their devices are from a trusted
source and that only trusted source interact with their de-
vices” [117]. The assertion that the consumer is responsible for
the integrity of the USB interaction is problematic; consumers
have no means of establishing the identity or provenance of a
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Layer Offensive Primitive Attack

Human Layer Outsider Threats Social Engineering USB [107], U.S. Government [89], USB Attack Vector [61], Users Really Do [115]
Insider Threats Ponemon Study [75], Australian Defense Loss [37], Manning Infiltration [69], Snowden Documents [10]

Application Layer Code Injection Brain [58], Stuxnet [30], Conficker [104], Flame [127], User-mode rootkit [109]
Data Extraction Webcam Extraction [85], [1], Audio Extraction [110], USBee [51]

Transport Layer Protocol Masquerading Rubber Ducky [52], USBdriveby [66], TURNIPSCHOOL [5], USB Bypassing Tool [15], BadUSB [83], iSeeYou [24]
Protocol Corruption FaceDancer [49], Syzkaller [50]

Physical Layer
Signal Eavesdropping Smart Phone USB Connectivity [125], USB Stack Interaction Intelligence [39], Host Identification by USB Fingerprinting [72], [17]

USB Eavesdropping [81], USB Snoop [108], CottonMouth [6], [7], USB GPS locator [77], [12], BadUSB Hubs [82]
Signal Injection USBKiller [120], Cable Quality [19], Power and EM Covert Channels [106], [87], USBee [51], Plain Wire Signal Attacks [48]

Table I: Notable real-world attacks on the peripheral ecosystem, grouped by the layer at which they operate and the offensive
primitive of which they are an instance.

device, making it impossible to determine if it originates from
a trusted chain of custody.
F2. Attacks Transcend Layers: As demonstrated through
the survey of attacks, attacks that exploit hosts or exfiltrate
data from them appear to demonstrate correct operation to
the layer they are communicating with. For example, attacks
such as USBee allow the passing of messages that look for
all intents and purposes like legitimate traffic, or at least
traffic that is allowable within the USB standard, while the
actual exfiltration is a physical layer activity based on RF
or GSM emanations. Similarly, attacks such as BadUSB and
TURNIPSCHOOL are not subverting the USB protocol itself,
but exploiting its inherent openness to augment functionality
that users would not think to look for. The consequence of this
is that solutions that simply consider one particular segment of
USB activity without adopting a more holistic approach to the
entire USB stack, both in terms of its hardware and software,
will be necessarily incomplete and potentially susceptible to
these cross-layer attacks.

IV. SECURING USB

Defenses are organized based on the layer at which attacks
target, not on the layer of the system that they modify to
provide the defense. For example, on-device encryption is a
low-layer solution to defending against a human-layer problem
(data loss). In some cases, individual systems feature defen-
sive mechanisms for multiple operational layers; we discuss
these in multiple subsections below. As mentioned earlier,
the derived defensive primitives describe both the mechanism
employed as well as the security properties guaranteed.

A. Defense of Human Layer

For defenses targeting the human layer, we divide solutions
into those that impact the capabilities of human stakeholders,
mechanisms that operate on device (such as encryption and
authentication), and auditing mechanisms either on the host
or the device itself.

1) Security Training: Perhaps the most difficult challenge
to USB-based attacks is mitigating attempts to “hack the
human.” A necessary first step to prevent peripheral attacks
in security-sensitive organizations is extensive and frequent
security training. In 2012, NIST set out standards for using
portable devices including USB [124], and these standards
are also making their way into many organizations’ security
education programs. Increasingly, employees are made aware
of the dangers of social engineering [8]. After security training

sessions, lessons are commonly reinforced through mounting
informational security posters around the workplace that warn
of social engineering tactics, e.g., [28]. Still, in a survey done
by CompTIA, 45% of employees report having received no
corporate security training whatsoever [33]. To make matters
worse, empirical evaluation has shown that security training is
not a panacea for security illiteracy [70], [103], and anecdotal
evidence indicates that skilled social engineers are capable of
assuaging the reservations of their targets even after security
training [42].

2) On-Device Data Encryption: Encrypted USB devices
(e.g., IronKey [60] and Kanguru [67]) provide data confiden-
tiality through on-device encryption and user authentication,
and employ tamper-resistant hardware to prevent physical
extraction of data or keys. By encrypting data stored on
removable media, these devices prevent the loss of data
through physical theft of the device. While relatively costly in
comparison to standard USB storage devices, these have seen
considerable industry adoption, at the price of complicated
device enrolling and key management processes. Even when
encrypted, however, on-device encryption can not prevent
data loss due to insider attacks. Diwan et al. [40] achieve
functionally equivalent properties to on-device encryption by
instrumenting the Windows USB subsystem to perform on-the-
fly encryption of outbound I/O request packets. This approach
requires invasive modifications to the host operating system
and lacks the portability of secure flash drives, but can prevent
data exfiltration via USB as hosts outside of the organizational
boundary will be unable to read the device.

3) On-Device Host Authentication: In response to emerging
peripheral attack vectors, recent proposals have sought to bind
device functionality to particular machines rather than specific
users. The Kells system [25] extends USB enumeration to
support host identification via trusted hardware. Kells assumes
the presence of a TPM on the host as well as a custom TPM
daemon, and introduces a custom smart USB device. Follow-
ing the end of standard enumeration, a full TPM attestation
is performed over the USB interface using Acceptance Device
Specific Command (ADSC). If the device successfully verifies
the host TPM’s quote result then all partitions are mounted,
otherwise only a public partition is mounted. This approach to
host identification is also used in the ProvUSB system [113].
Host-identifying smart devices can therefore prevent data loss
due to both device theft and insider attacks, as in either case
the attacker will be unable to access the data partition on an
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unauthorized host. However, these systems require a number
of extensions to the standard connectivity model including
modifications to both the host and the device, trusted hardware,
and a security policy for whitelisting host access.

4) Host- or Device-Based Auditing: In the absence of a
foolproof method for securing the human layer, a viable alter-
native is auditing peripheral usage. Auditing provides system
administrators an opportunity to reason about how peripherals
are being used within the organization, e.g., allowing them to
monitor the flow of data via flash storage drives in much the
same way that network monitoring software grants the ability
to track data entering and exiting the organization over the In-
ternet. Techniques have been demonstrated to recover evidence
of portable media usage from the host in spite of the anti-
forensic properties of USB flash drives [22], [74], although
these approaches are susceptible to false evidence presented
by malicious peripherals [95]. Extending the host operating
system with provenance-based auditing capabilities [18], [65]
has been shown to be useful when attempting to identify the
root cause of data exfiltration attacks. By recording when data
is written to storage device, data provenance can narrow the list
of suspects if sensitive data is discovered in a public forum.
The ProvUSB system permits fine-grained audit data to be
collected on board [113].

B. Defense of Application Layer

Defenses targeting attacks at the application layer focus
primarily on the host, and include modifications to the OS
and its drivers.

1) System Hardening: Host systems can also be hardened
through enabling safer default behaviors. Pham et al. [90]
inspect Windows OS families and re-configure the system to
disable auto-run-like functionality and block the execution of
unsigned executables or drivers carried on portable media.
Antivirus software can also be used to prevent application
layer attacks over USB storage. Composite anti-virus systems
such as Metascan [86] and OLEA [84] offer not only standard
malware scans for host machines, but also sell scanning kiosks
in which sacrificial VMs are used to ensure containment
of any malware. These kiosks are commonly deployed near
the entrances of security-sensitive organizations to prevent
infected peripherals from entering the facility. The Windows
Embedded platform [79], TMSUI [126] and USB Unix Smart
Blocker [40] attempt to mediate USB connectivity for Win-
dows CE, Industrial Control and GNU/Linux Systems respec-
tively, but all base their device recognition mechanism on
unreliable information reported by the device during enumer-
ation. USBFILTER [112] instruments the upper layers of the
USB stack, modifying device drivers in order to identify the
processes interactive with the device. USBFILTER can thereby
pin devices to specific process ID’s, creating a novel defense
against application-layer attacks in which malware eavesdrops
on USB device traffic to obtain sensitive information (e.g.,
keystrokes, webcam images).

2) Driver-Based Access Controls: Treating USB drivers as
“capabilities”, GoodUSB [112] system attempts to constrain

malicious peripherals through incorporating elements of user-
driven access control [96] for driver loading. Prior to the
completion of enumeration, GoodUSB reports the device’s
claimed identity to the user via a pop-up notification. Based
on the user’s expectations of device functionality, GoodUSB
then permits all or some of the requested driver’s to be loaded
on behalf of the device; for example, when the user expects
a peripheral to be a flash drive, the peripheral will not be
able to request the Human Interface Device driver during
enumeration. Because authorization is based on requested
behaviors instead of reported identity, GoodUSB cannot be
circumvented by a malicious device, thus defeating BadUSB
attacks. However, it cannot prevent peripherals from making
malicious use of their natural drivers (e.g., a malicious key-
board injects keystrokes).

3) Device-Emulating Honeypots: Various strains of ad-
vanced malware are now known to attempt to propagate to
and from hosts and storage devices. Frequently, the malware
will wait for a peripheral connection and then attempt to
propagate to the other end of the connection shortly thereafter.
As a result, honeypots have been demonstrated to be an
effective means of detecting the presence of an infection. Host-
emulating honeypots such as Ghost can detect the propagation
of malicious USB storage payloads [91], which it accom-
plishes through emulating a storage device that periodically
connects to potentially infected machines. If the host initiates
any file I/O with the emulated device, this is likely evidence
of malicious activity. as under benign circumstances the host
will not interact with the dummy device after SCSI scanning.

C. Defense of Transport Layer

Defenses against attacks in the transport layer are broken
down by firmware verification, USB stack fuzzing, USB
packet firewall, and host-emulating honeypots.

1) Firmware Verification: Secure USB devices such as
IronKey purport to prevent BadUSB attacks [59] by using
signed firmware, provided that the device manufacturer is
trusted and the signing key is kept safe. While signed firmware
is a sound practice, the introduction of a trusted third party
expands the attack surface of the system. When the device
firmware is accessible, e.g., via Device Firmware Update
(DFU), FirmUSB [54] applies symbolic execution to find
hidden and malicious functionalities inside the firmware. Un-
fortunately, FirmUSB only supports 8051 architecture, leaving
ARM Cortex-M and AVR based firmware uncovered. Also,
the firmware is often not available, even in binary format.
Another way to verify the firmware is via attestation, where
the host verifies the correctness of device firmware by es-
tablishing tight timing bounds on its response to a series
of challenges. VIPER [73] presents a software-based timed
challenge-response protocol for verifying peripheral firmware
over the system bus that precludes the possibility of proxy
attacks by leveraging the asymmetry of the latencies from
CPU-to-peripheral and from peripheral-to-proxy. In spite of
the known difficulty of performing software-based attestation
on embedded devices [26], this approach is practical for
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Layer Defensive Primitive Defense

Human Layer

Security Education NIST Standards [124], Education Materials [8]
On-Device Data Encryption IronKey [60], Kanguru [67]
On-Device Host Authentication Kells [25], ProvUSB [113]
Host- or Device-Based Auditing System Provenance [18], Transient Provenance [65], ProvUSB [113]

Application Layer
System Hardening Disabling Autorun [90], Metascan [86], OLEA [84], WindowsCE [79], TMSUI [126], Smart Blocker [40], USBFILTER [114]
Device-Emulating Honeypots Ghost [91]
Driver-Based Access Controls GoodUSB [112]

Transport Layer

Firmware Verification IronKey [59], FirmUSB [54], VIPER [73]
USB Stack Fuzzing USB Fuzzing [80], [121], Hardware-based Fuzzing [62], vUSBf [100], Syzkaller [50], POTUS [88]
USB Packet Firewall USBFILTER [114], USBFirewall [63]
Host-Emulating Honeypots GoodUSB [112], Cinch [13]

Physical Layer Anti Fingerprinting USB Host Fingerprinting [17]
Secure Channel Cinch [13], UscramBle [99]

Table II: Proposed defenses for the peripheral ecosystem, grouped by the layer at which they defend and the primitive of which
they are an instance. Note that many solutions employ multiple defensive primitives.

pluggable peripherals due to the physical connection between
the challenger and responder, as long as the timing profile for
each device exits and is trusted.

2) USB Stack Fuzzing: USB fuzzing has long been incorpo-
rated into security consultants’ threat assessments [80], [121].
Jodiet et al. present a mutation-based USB fuzzing approach
that is conducted on hardware using a PCI evaluation board
and the Linux USB Gadget API [62]. Schumilo et al. present
a QEMU-based, parallizable virtual USB fuzzer (vUSBf) that
makes use of USB redirection to inject arbitrary noise into
different GetDescriptor requests [100] Leveraging KCOV
feature within the Linux kernel and QEMU, Syzkaller [50] is a
coverage-guided syscall fuzzer, and has shown its usefulness
to find bugs in the USB subsystem. POTUS [88] combines
fault injection, fuzzing, and symbolic execution to detect bugs
in USB kernel drivers. While fuzzing can improve the code
quality and raise the bar for attackers, it cannot defend against
attacks abusing the USB protocol itself, such as BadUSB
attacks.

3) USB Packet Firewall: As network firewalls are a pow-
erful primitive for minimizing the potential actions of would-
be attackers on the Internet, firewall-driven protocol access
controls for USB peripherals intuitively provide similar pro-
tections. Tian et al. present USBFILTER/usbtables [114], a
netfilter/iptables-like stack for filtering USB traffic. Where
iptables enforces rules by pattern matching over IP addresses
and port numbers, usbtables can pattern matches USB buses
and ports, among other fields; these correspond to physical
locations on the host machine that cannot be spoofed by
a malicious peripheral. USBFILTER can then apply rules
that constrain permissible protocol activities in much the
same way as GoodUSB. USBFirewall [63] is another USB
packet firewall implementation upon FreeBSD. Unlike US-
BFILTER, USBFirewall focuses on protecting the host USB
stack by detecting malformed USB packets, e.g., generated by
FaceDancer. We believe the combination of USBFILTER and
USBFirewall should provide a stronger protection for USB
host security.

4) Host-Emulating Honeypots: In contrast with device hon-
eypots, which can only detect malware propagating from a
host to portable storage, emulating the host machine allows
for the detecting of malicious peripheral activity at both the
application and transport layers. To examine a suspicious

device, GoodUSB [112] redirects it to a QEMU-KVM virtual
machine using USB pass-through. The VM completes the
USB enumeration and then monitors the device for evidence
of malicious activity. The Cinch system [13] also leverages
virtualization to decrease the host’s attack surface – the host
operating system is hoisted into a VM to isolate it from the
USB host controller, and then all USB traffic via is tunneled
via IOMMU through a sacrificial gateway VM. Within the
sacrificial VM, a variety of the application and transport layer
defenses techniques can be deployed including signature-based
antivirus, protocol compliance, and user-drive access control.
While host honeypots are able to detect both application
and transport layer attacks, the VM dependency and device
operation interruption make them impractical for normal users.

D. Defense of Physical Layer

Defenses against physical layer attacks are organized by anti
fingerprinting as well as implementing confidential communi-
cation over the USB bus.

1) Anti Fingerprinting: Solutions for physical layer attacks
have received only limited consideration within the literature.
The most straightforward means of mitigating inferences from
fingerprinting attacks is to further randomize the USB stack
behavior in hardware and software. A technique for defeating
message-based fingerprinting is demonstrated in [17] by in-
troducing additional GetDescriptor requests to confuse
the attacker; generalized, this result indicates that uniform
appearance and ordering of control transfers during USB
enumeration will make it more difficult to distinguish between
operating system families. Timing randomization is also possi-
ble to defeat timing-based fingerprinting. As a host/device can
arbitrarily speed up or slow down USB transfers, it could con-
fuse would-be attackers by varying its timing characteristics.
However, as the USB spec imposes requirements regarding
message ordering and timing, extreme behavior randomization
may break the normal operation of the device.

2) Secure Channel: To defend against USB bus eaves-
dropping, Cinch [13] considers adapting encryption and au-
thentication schemes to the physical peripheral connections.
A Cinch gateway is used as an encryption and decryption
proxy on the host side, and a small crypto adapter (similar
to a keylogger) to act as the peripheral’s encryption and
decryption proxy. As a result, a malicious USB bus or other
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USB devices would only have access to encrypted traffic
and could not produce authenticated messages. Similarly, the
UScramBle [99] system defends against eavesdropping of
downstream traffic by instructing the host to negotiating an
encryption key with the host during USB enumeration.

SECURING USB SUMMARY

Based on this survey, we identify several defensive primi-
tives that are being leveraged in USB security solutions. Table
II provides a mapping of notable defenses to the layer and
primitive to which they correspond. Further, from the above
taxonomy of defenses, the following findings can be drawn.
F3. Trust Anchors represent a Design Tradeoff: The
intrinsic flaw enabling all offensive primitives uncovered by
our analysis was the misguided trust-by-default property un-
derlying the USB ecosystem – both the host and the device
are assumed to be benign and expose all functionality to one
another after enumeration. It is therefore not surprising that the
majority of viable defensive primitives require the introduction
of a trust anchor in order to enable their security properties.
Smart device prototypes such as Kells [25] and ProvUSB
[113] propose the use of host-side trusted hardware for au-
thentication, while commercial solutions like IronKey [60]
verify user-presented credentials. One notable consequence of
the trust placement design tradeoff is that the placement of
the trust anchor (host vs. device) informs the directionality
of the defense. Smart devices seeking to defend themselves
from malicious actors on the host leverage host-side trusted
hardware prior to granting access. Host machines, in turn,
anchor trust in the intrinsic physical properties of USB device
firmware in order to defend against malicious peripherals.
Based on this observation, it is clear that a complete solution
to USB security will likely require trust anchors on both the
host and device sides.
F4. Single-Layer Solutions Are Not Effective: An emerging
trend [13], [114], [63] in the recent literature is that threats
in the USB peripheral space can be understood through the
lens of network security – by presenting peripherals to the
host as untrusted network endpoints, the host will be able
to defend itself from attack. The primary examples of this
primitive are USBFILTER [114] and USBFirewall [63]. As
shown in Table III, this primitive is proven to be the most
powerful solution, covering attacks across different layers.
Similar to the firewall primitive, host-emulating honeypots,
such as GoodUSB [112] and Cinch [13] also expand their
defense into different layers. The power of these solutions is
rooted in the fact that they are a composition of protection
mechanisms within different layers that provide different op-
erational semantics. Based on our analysis of the USB defense
space, we conclude that a complete solution must be able to
centralize context from all operational layers prior to issuing
security decisions.
F5. Defenses for Signal Injection Are Still Missing: As
shown in Table III, there is still no defense primitive avail-
able to defend against signal injection attacks based on our
analysis. These attacks usually leverage the intrinsic nature

of hardware as side channels to emit analog signal, such as
USBee [51], or require hardware changes for power attacks,
such as USBKiller [120]. It is natural to see why software-
based solutions could not mitigate these attacks. While USB
hardware design improvement is definitely the right direction
in the long run, we need a way to establish trust with USB
devices before fully enabling them in the short term, such as
disabling bad-quality charging cables [19].

V. IS USB TYPE-C THE ANSWER?

As we have explored, the research community has proposed
many different solutions for addressing weaknesses in USB
security, however none have reached widespread, commercial
adoption. In this section, we evaluate the industry’s pro-
posed solution, USB Type-C Authentication [116]. Type-C
Authentication (TCA) is the first attempt by the USB 3.0
Promoter Group and USB-IF to address issues related to
security. However, the security properties of TCA are not yet
widely understood by the security community1. We begin with
a description of the features and assumptions of TCA. Then,
using the Type-C Authentication revision 1.0 specification
(released on Feb 2, 2017), we formally model and verify the
protocol using ProVerif [21], demonstrate multiple attacks, and
discuss other issues within the spec. We finally evaluate TCA
using findings we have learned through the systematization,
and show that TCA is on the right direction to solve USB
security in general, but the design flaws and the ignorance of
modern USB attacks render its efforts in vain.

A. TCA Description

1) USB Certificate Authorities: The TCA protocol is built
upon a certificate authority (CA) hierarchy, mimicking the
current CA model used with SSL/TLS connections on the
Internet. However, in this case, the USB-IF owns the default
self-signed root certificate, and permits other organizations to
use their own root certificates. The specification makes no
requirements on third-party roots (e.g., organizational vetting
or issuance processes). USB device manufacturers provide
intermediate certificates signed by the USB-IF, and devices are
issued their own certificates by the manufacturers. Certificates
follow the X.509v3 format with DER encoding. The final USB
product is capable of storing at most 8 certificate chains and
associated private keys, each with separate roots.

2) Authentication Protocol: In this protocol, the initiator is
the USB host controller and the responder is the USB device.
The protocol defines three operations the initiator can perform,
shown in Figure 4:
Digest Query: In this operation, the host controller issues
a GetDigest request to the device. The device responds
with digests for all its certificate chains. According to the
specification, the intent of this operation is to accelerate the
certificate verification process in cases where the certificate
chain has already been cached and verified.

1At the time of writing, the only commercial products supporting TCA are
software from Siliconch [105] and a USB PD controller from Renesas [94].
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Human Layer Application Layer Transport Layer Physical Layer

Security Training G# G# – – – – – –
On-Device Data Encryption G# – – – – – – –
On-Device Host Authentication G# 2 – – – – – –
Host- or Device-Based Auditing – 2 2 2 – – – –

System Hardening – – G# G# – – – –
Driver-Layer Access Controls – – G# G# – – – –
Device-Emulating Honeypots – – – 2 – – – –

Firmware Verification – – – – G# G# – –
USB Stack Fuzzing – – – – – G# – –
USB Packet Firewall – – G# G#   – –
Host-Emulating Honeypots – – � – � � – –

Anti Fingerprinting – – – – – – – G#
Secure Channel – – – – – – –  

Type-C Authentication – 2 2 – – 2 G# –

Table III: Comparative evaluation of defensive primitives for securing the USB stack. Columns represent offensive primitives
as organized by the communications layer. Defensive primitives are marked with  if they provide a complete defense, G# if
they provide a provide a partial defense, � if they can reliably detect that an attack has taken place, and 2 if they provide
detection under limited conditions.

Host Device
Digest Query 

GetDigest 

Certificate Read 
GetCertificate

Authentication Challenge 
Challenge

Figure 4: The USB Type-C Authentication Protocol.

ReqHeader Nonceslot#

ResHeader slot# Others CertCh
ainHash Salt Context

Hash Sig

Figure 5: The USB Type-C Authentication challenge (request)
and response messages with payloads.

Certificate Read: This operation allows the host to retrieve
a specific certificate chain using the GetCertificate
request.
Challenge: As shown in Fig 5, this operation defines a
challenge-response protocol where the host initiates by send-
ing a Challenge request. The request contains a slot iden-
tifier in the request header and a 32-byte nonce. The response
echoes the same slot identifier in the response header and
contains a 32-byte SHA256 hash of the chosen certificate
chain, a 32-byte salt, a 32-byte SHA256 hash of all USB

Firmware

Certificate Chains

Private Keys

EC
DSA

SH
A256

TRN
G

slot0

slot1

slot7

slot0

slot1

slot7

C
onfig

MCU

Figure 6: USB device internal architecture with secure storage
and hardware to support Type-C Authentication.

descriptors for USB devices and all zeros for PD devices, and
a 64-byte ECDSA digital signature on the challenge message
and the response message using the corresponding private key
of the device.

3) Secure Key Storage and Processing: To protect certifi-
cates’ private keys, a non-volatile secure enclave is needed,
shown in Figure 6. As discussed above, this storage is
partitioned into 8 slots supporting 8 private keys. Similarly,
the certificate chain region also has 8 slots, containing the
corresponding certificate chain if there is a private key in
the associated slot. The TCA specification does not specify
whether certificate chains should also be secured.

To support the authentication protocol, a hardware crypto-
graphic engine supporting ECDSA is also required. Presum-
ably, this should be the only component which can access
the secure storage. Other hardware components, besides the
basic MCU, may be needed for both security and performance
reasons, including TRNG and SHA256.

4) Security Policy: Following device authentication, the
TCA specification suggests the introduction of a policy mech-
anism for peripheral management. The specification explains
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that “Policy defines the behavior of Products. It defines the ca-
pabilities a Product advertises, its Authentication requirements,
and resource availability with respect to unauthenticated Prod-
ucts” (Page 14, Section 1.4) and “USB Type-C Authentication
allows an organization to set and enforce a Policy with regard
to acceptable Products.” (Page 11, Section 1). Unfortunately,
beyond this description a concrete definition for policy is not
provided; all implementation details are left to the OEM.

B. Formal Verification

To discover possible vulnerabilities in the design, in this sec-
tion we formally verify the TCA protocol using ProVerif [21].
ProVerif uses the concept of channels to model an untrusted
communication environment (e.g., the Internet) where adver-
saries may attack the protocol. However, because the USB
communication channel does not provide confidentiality by
default and is trusted in most cases2, we instead model
the device firmware as our channel. This accurately models
attacks such as BadUSB [83], where the attacker is either a
malicious USB device or a non-root hub trying to spoof the
authentication protocol. In ProVerif, we define this firmware
channel as free fw:channel.

We also need to define the security properties we wish to
prove. For example, since the private keys inside USB devices
should never be leaked, we seek to understand if attackers
can learn the key from eavesdropping or participating in the
protocol. The Type-C authentication spec also says clear that
“it permits assurance that a Product is

1) Of a particular type from a particular manufacturer with
particular characteristics

2) Owned and controlled by a particular organization”.
The means the authentication protocol should guarantee both
the original configuration and the true identity of the device.
The original configuration should be the one designed by the
vendor for this product (e.g., a webcam). The true identity
combines the usage of certificate chains (tying to a particular
organization) and private keys baked into the device to provide
the ability to cryptographically verify the original configura-
tion We abstract these security goals in ProVerif:
free slot_key:pri_key [private].
free slot_cert_chain:cert_chain.
free orig_conf:usbpd_config.
query attacker(slot_key).
query d:usbpd; event(goodAuth(d, true)) ==>

event(useConfig(d, orig_conf)).
query d:usbpd; event(goodAuth(d, true)) ==>

(event(useCert(d, slot_cert_chain)) &&
event(usePrivkey(d, slot_key))).

To simplify the abstraction, we model one private key and
the corresponding certificate chain rather than implementing
all 8 slots. We also make the following assumptions:

• We ignore the verification process for a certificate chain,
which is critical to the security of the entire protocol but
out of the scope of the protocol.

• We assume the verification process to be successful by
default.

2We do not consider side-channel or hardware attacks against the USB bus.

Our modeling is based on the communication between the
USB host and the USB device. PD products share the same
procedure via different signaling mappings. To mimic the
caching behavior involved in the protocol, we use a “table”
in the host side, supporting reading and writing a certifi-
cate chain: table cert_chain_cache(cert_chain,
digest).

C. Results

Unsurprisingly, attackers cannot obtain the private key in-
side the USB device by protocol messages alone since none
of these messages are designed to transmit the key. However,
this protocol fails to meet its goals; neither the original
configuration nor the true identity of the device could be
guaranteed even if the authentication protocol succeeds, due
to the usage of certificate chain cache inside the USB host:
get cert_chain_cache(chain, =dig) in known_device(config)

else new_device(config).

Since the certificate chains are not secret, a malicious device
can compute the digest of the expected chain. This digest
can be sent as a response to the GetDigest request and
impersonate the legitimate device. Unless the configuration
of the legit device is saved and checked by the host, a
malicious device can claim any functionalities it wants. Thus,
the certificate chain cache is vulnerable to spoofing attacks.

We then remove the certificate chain cache from the host,
forcing every device to go through a complete certificate
request. Again, the private key is secure. Unfortunately, the
authentication can still be spoofed as shown in this attacking
trace:
attacker(sign((non_1883,hash(chain_1877),sal_d_1881,

config_d_1879),prik_1876)).

To exploit this vulnerability, the attacker hardcodes a certificate
chain and a private key in the firmware rather than using the
ones in the slot and modifies the original configuration (e.g.,
by adding a malicious HID functionality). This means that
without firmware verification to prevent BadUSB attacks,
these also allow circumventing the TCA protocol, rendering
it useless for its stated goals.

To demonstrate how firmware verification corrects this
issue, we then assume firmware is trusted (e.g., signed by
the vendor and verified by the MCU before flashing). We
model this in ProVerif by marking the firmware channel as
private: free fw:channel [private] We assume that
valid, legitimate firmware will use the certificate chains and
private keys inside the slots during authentication and that the
original configuration of the device does not contain malicious
functionality.

Using this model, ProVerif confirms that successful authen-
tication guarantees both the original configuration and the true
identity of the device:
RESULT event(goodAuth(d,true)) ==>

(event(useCert(d,slot_cert_chain[])) &&
event(usePrivkey(d,slot_key[]))) is true.

RESULT event(goodAuth(d_2076,true)) ==>
event(useConfig(d_2076,orig_conf[])) is true.

RESULT not attacker(slot_key[]) is true.
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These results show that correct authentication using the
TCA protocol is possible only when the firmware is verified.

D. Other Issues

While out formal verification of the authentication protocol
uncovered major flaws, our manual analysis of the TCA
specification uncovered other serious and systemic design
flaws. These flaws reflect both a lack of understanding of
secure protocol design and a lack of awareness to the present
state of threats to peripheral devices. Responsibility for solving
the most difficult security challenges raised by Type-C, such
as a USB Certificate Authority system or a rich language
for expressing security policies, is delegated wholesale to the
OEMs. As a result, we are left to conclude that Type-C is
based on an intrinsically broken design. Below, we catalog
these issues:
1) No Binding for Identification with Functionality: In

addition to the VID, PID, and serial number of the device,
a device’s leaf certificate also carries Additional Certificate
Data (ACD). ACD contains physical characteristics of
PD products (e.g., peak current and voltage regulation)
but no functionality (interface) information for other USB
products. One explanation is that the protocol was designed
to address bad-quality Type-C cables that were damaging
host machines [19] but was later extended to support other
USB products. For PD, the specification clearly states
that it does not consider alternative modes. As a result,
a successful authentication does not specify the device’s
original configuration (e.g., storage device, keyboard, nor-
mal charging cable).

2) Volatile Context Hash: As shown in Fig 5, the challenge
response contains the context hash, which is all zeros for
PD products but a SHA256 hash of all descriptors for USB
products. This seems intended to solve the functionality
binding issue for USB products mentioned above but is
broken when the firmware is not trusted. However, the
firmware can provide its own set of USB descriptors, and
feed them into the hardware ECDSA signing module to
generate the challenge response, as shown in Fig 6. As a
result, BadUSB attacks are still possible.

3) Unidirectional Authentication: For PD products, either a
PD sink or a PD source can initiate an authentication chal-
lenge. This means the authentication between PD devices
is mutual. However, the TCA specification only allows for
USB host controllers to initiate an authentication challenge
for USB devices. This is unfortunate, as our survey of
defensive solutions demonstrates that host authentication
is an essential feature for device self-protection. As a
result, the TCA specification does not provide a way for
smart devices such as cellphones to make informed trust
decisions.

4) Nebulous Policy Component: Following device authen-
tication, the TCA specification calls for the creation of
a security policy in order to handle different connected
products, but does not adequately describe what a policy is
or how to create one. The specification does not define the

security policy language, encoding, installation method, or
how it interacts with the USB host controller. Policies are
only described anecdotally, indicating a lack of forethought
as to how TCA policy can be used to appreciably enhance
security.

5) Impractical Key Protection Requirement: The private
keys in the slots are the most important property a prod-
uct needs to protect besides the firmware. Although the
specification does not detail how to secure private keys, it
does list more than 10 attacks a product needs to defend
against from leaking keys, including side-channel attacks,
power analysis, micro-probing, etc. It is unlikely that a $10
USB product [94] could stop advanced invasive attacks,
e.g., using Focused Ion Beam (Appendix C, TCA Spec),
which makes certificate revocation critical when a private
key is leaked. . .

6) No Revocation: The specification states that the validity
time of a product certificate is ignored, suggesting that once
the certificate is loaded onto the device, there is no way to
revoke it. The usage of certificate chain cache to accelerate
the authentication process is also based on the fact that all
certificates along a chain stay legit forever once the chain
is verified.

7) No Support for Legacy Products: With the help of
converters, Type-C can be fully compatible with legacy
USB devices, and leaves it to the end user to set a security
policy that blacklists devices that cannot participate in the
authentication protocol. As breaking backwards compat-
ibility is in direct conflict with the USB’s core design
principle of universality, very few organizations will elect
to set such a policy. As a result, TCA is likely to be trivially
bypassable by applying a converter to a Type-C device.

We map TCA as a new defense primitive against all attack
primitives in Table III, which shows the limitation of TCA as a
complete USB security solution. Not surprisingly, TCA works
best for signal injection attacks since it was designed to solve
bad-quality charging cables. All other limited defense effects
are the results of trusting the identity and the firmware once
the device passes the authentication protocols, and assuming
some security policies deployed on the host machines using
the identity of the device.

We then evaluate TCA using all the findings based on our
systematization, as shown in Table IV. One one hand, TCA
is aware of some urgent issues in USB security, takes initial
steps, and tries to fix them. For instance, TCA introduces the
CA model and certificates providing a way to build trust for
USB products, and embeds private keys into USB products
providing trust anchors. On the other hand, as we show in
the TCA weakness column, the design flaws and limitations
makes TCA a vulnerable and incomplete solution for USB
security.

VI. FUTURE DIRECTIONS

Through systematization, we have demonstrated that a
complete solution requires a system that composes multiple
defensive primitives, across different communication layers.
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Finding TCA Strength TCA Weakness
F1. Trust by Default CA model & Certificates 1. Certificate chain cache; 2. Firmware implementation; 3. No support for legacy devices

F2. Attacks Transcend Layers N/A 1. Depending on nebulous “Policy”
F3. Trust Anchors As Design Tradeoff Private keys 1. Unidirectional authentication; 2. Key protection requirement; 3. No revocation

F4. Single-Layer Solutions Are Not Effective N/A 1. Depending on nebulous “Policy”
F5. Defenses for Signal Injection Are Missing Charging profiles 1. No binding for identification with functionality; 2. Volatile context hash

Table IV: TCA evaluation using findings based on our systematization – While TCA has successfully pinpointed some urgent
needs to solve the USB security problem, the design flaws and limitations render its goals in vain.

Although flawed, TCA is a promising start, since authentica-
tion is a necessary prerequisite to providing further security
guarantees. We sketch several future research thrusts covering
all findings from systematization to solve the USB security
problem.
• Solution Integration Because most existing USB defense

solutions focus on a single layer, it is natural to investigate
how to combine different solutions covering multiple layers.
For instance, ProvUSB+GoodUSB+FirmUSB expands the
defense from Human Layer to Transport Layer, defeating
most software-based attacks. USBFirewall is also a missing
front-end for USBFILTER. Together, they produce a pow-
erful USB packet firewall to control USB device behaviors
while defending against exploitations from malformed pack-
ets. This will address our findings F2 and F4 the same time.

• Type-C Authentication Products Evaluation While we
have shown design flaws of TCA, it is unlikely to see a new
version of the spec in the near future, given that the spec
has just been finalized. There is therefore an urgent need
to evaluate the security of these new products, since real-
world attacks might be the best push for a spec update. 3 It
is also possible that vendor-specific implementations have
considered those pitfalls in the spec, and offered some
mitigations, which, once verified, provide convincing fixes
to the spec. This will further improve the security guarantee
of TCA on F1 and F5.

• Bi-directional Authentication and Mutual Authentica-
tion While the trust anchor for USB hosts is missing in
TCA, a short-term fix is to leverage the trusted hardware
available on the host, such as TPM, and implement a
host authentication protocol like Kells and ProvUSB. The
possibility of doing bidirectional authentication also opens
a door to mutual authentication, where the USB host and
peripheral authenticate each other. This will also be the
ultimate solution for F3.

• Legacy Device Authentication To authenticate legacy de-
vices, two techniques are promising, and solve the problem
in different ways. USB host fingerprinting has shown the
possibility to fingerprint host machines via the USB in-
terface using machine learning algorithms. The same idea
could be applied to USB device fingerprinting, although with
pitfalls of building a robust machine learning system in an
adversarial environment. FirmUSB is able to understand the
USB device firmware behavior, and thus provides a stronger
security guarantee than fingerprinting when the firmware is

3Just like how Type-C Authentication spec was triggered by bad-quality
charging cables.

available. We believe the combination of fingerprinting and
firmware verification can mitigate most attacks from legacy
devices. Together with TCA, this will provide a complete
solution addressing issues in F1.

• Policy Instantiation Although security policies have been
designed and used in existing solutions such as USBFILTER
and Cinch, we need a new policy design that is general
enough to be adopted by most vendors and expressive
enough to ease creating rich rules. The new design should
enumerate a set of subject, object, and access primitives to
provide an intuitive mediation abstraction, define a common
data marshaling format (e.g., XML, JSON) through which
policies can be shared between deployments. It should also
describe best practices for policy design, including how
policies can preserve security in the presence of legacy
devices. This will not only concrete TCA on F2 and F4,
but also promote USB security as part of systems security
solutions, such as SELinux.

VII. CONCLUSION

USB, after three generations and a recent connector change,
remains woefully problematic. In this work, we present a
structured methodology for reasoning about the nature of USB
attacks and defenses. In so doing, we discover that these vul-
nerabilities harken back to the core trust-by-default principle
of the USB specification, and identify design tradeoffs and
principles that inform the properties of proposed defensive
solutions. Finally, we formally verify the new USB Type-C
Authentication specification, and uncover design flaws and
implementation pitfalls. We conclude with future research
directions. It is our intent that this systematization will guide
future research efforts and ultimately improve the security of
USB ecosystem.
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