
CANVuS: Context-Aware Network Vulnerability
Scanning

Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

Computer Science and Engineering, University of Michigan
2260 Hayward St., Ann Arbor, Michigan 48109, USA
{yunjing, mibailey, ericvw, farnam}@eecs.umich.edu

Abstract. Enterprise networks face a variety of threats including worms, viruses,
and DDoS attacks. Development of effective defenses against these threats re-
quires accurate inventories of network devices and the services they are running.
Traditional vulnerability scanning systems meet these requirements by periodi-
cally probing target networks to discover hosts and the services they are running.
This polling-based model of vulnerability scanning suffers from two problems
that limit its effectiveness—wasted network resources and detection latency that
leads to stale data. We argue that these limitations stem primarily from the use
of time as the scanning decision variable. To mitigate these problems, we in-
stead advocate for an event-driven approach that decides when to scan based on
changes in the network context—an instantaneous view of the host and network
state. In this paper, we propose an architecture for building network context for
enterprise security applications by using existing passive data sources and com-
mon network formats. Using this architecture, we built CANVuS, a context-aware
network vulnerability scanning system that triggers scanning operations based on
changes indicated by network activities. Experimental results show that this ap-
proach outperforms the existing models in timeliness and consumes much fewer
network resources.

1 Introduction

Users in modern enterprise networks are assailed with spyware that snoops on their
confidential information, spam that floods their e-mail accounts, and phishing scams
that steal their identities. Network operators, whose goal is to protect these users and
the enterprise’s resources, make use of intrusion detection/prevention systems [22, 23],
firewalls, and antivirus software to defend against these attacks. To be effective, the
deployment and configuration of these systems require accurate information about the
devices in the network and the services they are running. While both passive network-
based and host-based methods for building these inventories exist, the most prevalent
method of assessment continues to be active network-based vulnerability scanning. In
this model, a small number of scanners enumerate the potential hosts in a network by
applying a variety of tests to determine what applications and versions are being run
and whether these services are vulnerable. For very large networks, scanning can take a
significant amount of time (e.g., several weeks) and consume a large amount of network
resources (e.g., Mbps). As a result, network operators frequently choose to run these
scans only periodically.

2 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

Unfortunately, the dynamics of a hosts’ mobility, availability and service configura-
tions exacerbate the problem of when vulnerability scanning should take place. We de-
fine the knowledge of these changes as the context of the network. A context insensitive
model for vulnerability scanning suffers from wasted resources (e.g., time, bandwidth,
etc.) and the observation of stale data. For example, often the network operators who are
responsible for protecting the network do not have full control over the placement and
availability of hosts in the network. Addresses may be allocated to departments within
the organization who use the addresses in different ways, leaving the network operators
with little insight into what addresses are allocated or unallocated. Furthermore, these
departments themselves often have little control over how their users make use of these
resources and even known, allocated IP addresses and hosts may exhibit availability
patterns that are difficult to predict. As a result, network operators spend resources and
time scanning IP addresses that have not been allocated or for hosts that are unavailable.

In addition, network operators have limited visibility into what services are being
run on these hosts because they are typically managed by different administrators. With-
out the knowledge about the context, the accuracy of detecting these services and their
configurations is bound by the frequency of scanning. As a result, any change that oc-
curs since the last scan will obviously not be visible until the next scanning iteration.
The rapid occurrence of new, active exploits, announced vulnerabilities, and available
software patches, along with the dynamic nature of how users utilize the network, sug-
gest that even small drifts in these inventories may result in a large security impact for
the organization. Furthermore, the assumption that services remain relatively static over
a short period of time is increasingly flawed. The emergence of peer-to-peer, voice-over-
ip, messaging, and entertainment applications have led to a large number of dynamic
services on these hosts. Periodically scanning, by its very nature, only captures a snap-
shot of those services that are active at an instant in time and it may miss many other
important services.

To solve these problems, we introduce a context-aware architecture that provides a
uniform view of network states and their changes. The architecture makes use of exist-
ing sources of host behavior across a wide variety of network levels including the link,
network, transport, and application layers. Diverse data formats such as syslog, SNMP,
and Netflow representing activities at these layers are used to generate abstract views
that represent important network activities (e.g., a host connecting to the network, a new
subnet allocated, a new binary in use). Instead of scanning all the hosts in the network at
the same frequency, periodic scanning in our architecture selectively scans hosts based
on their availability patterns. Moreover, these abstract views are used to create events
about host configuration changes (e.g., users connecting to a new service, downloads
from update sites, and reboots) to trigger active scanning. Thus, this approach is inher-
ently interrupt driven and this event-based model, on top of the context-aware archi-
tecture, provides more timely and accurate results. In contrast, scanning periodically
at a higher frequency would be the alternative, but would require substantially more
resources.

To demonstrate the effectiveness of this architecture, a prototype system is con-
structed and deployed in a large academic network consisting of several thousand ac-
tive hosts distributed across a /16 and a /17 network. Evaluation of this architecture

CANVuS: Context-Aware Network Vulnerability Scanning 3

over a 16-day period in March of 2010 illustrates that CANVuS outperforms existing
techniques in detection latency and accuracy with a much fewer number of scans. The
experimental results also reveal several problems of the current methodology including
the lack of ground truth and the limited event types, both of which will be addressed in
future work.

The rest of this paper is organized as follows: § 2 discusses research papers and
commercial products that relate to enterprise network security, especially vulnerabil-
ity assessment, and how our system differs from existing solutions. § 3 discusses our
year-long evaluation of the university’s scanning activities that lead to our current re-
search. § 4 has an in-depth description of our context-aware architecture. Details of the
CANVuS system implementation on this architecture is presented in § 5. § 6 describes
the evaluation of CANVuS and the context-aware architecture. § 7 discusses the risks
involved in this project and our mitigation efforts. The limitations and future work are
explored in § 8. Finally, § 9 concludes the paper.

2 Related Work

A variety of security software solutions and appliances have been proposed to defend
against the threats faced by enterprise networks. These fall roughly into those focused
on real-time, reactive detection and prevention and those based on proactive risk iden-
tification and policy enforcement. Network-based, real-time detection and prevention
solutions, such as intrusion detection systems [22, 23] are deployed at natural aggrega-
tion points in the network to detect or stop attacks buried in network packets by applying
known signatures for malicious traffic, or by identifying abnormal network behaviors.
Host-based antivirus software [18, 32] is meant to protect hosts from being infected
by malicious programs before their binaries are executed and, like network-based ap-
proaches, may do so either through static signatures or anomaly detection.

In contrast, proactive approaches to network security seek to reason about risks be-
fore an attack event happens and to limit exposure to threats. To accomplish this form
of proactive assessment and enforcement, these approaches require accurate views of
the hosts, their locations, and the services running on them. One common way of de-
termining this information is through the use of a network-based vulnerability scanner.
Active network-based vulnerability scanners (e.g., Nessus [25], Retina [11]) operate
by sending crafted packets to hosts to inventory the targets, providing fingerprints of
the host operating systems and the host network services. Conversely, passive scan-
ners [8, 17, 26, 31] fingerprint software versions by auditing their network traffic and
matching them with the signature database. They can continuously monitor target net-
works and are less intrusive to the targets. However, their scope is limited by the traffic
they have access to and, as a result, passive scanners are usually deployed alongside ac-
tive scanners. In addition to these generic scanners, there has been a great deal of recent
work in specialized scanners that evaluate the security of popular applications such as
web applications [6, 15].

Once the accurate inventory and service data is acquired, it can be used for a va-
riety of tasks. For example, firewalls [9] are available to both networks and end hosts
to enforce administrator polices, to block unwanted services [1, 2], and to prioritize the

4 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

patching of vulnerable services [7, 19] before they are exploited. Often this reasoning
makes use of attack graph representations of this inventory and service data to make
their placement and configuration services. An attack graph is a graphical represen-
tation of all possible ways to compromise hosts in a network by taking advantage of
its vulnerabilities. Sheyner et al. did the early work of attack graph generation using a
model checking approach [27]. Subsequently, several improvements [5,13,20,21] have
been proposed to solve the scalability problem of the original attack graph approach.
Another improvement is the introduction of link analysis methods in attack graphs to
automate the analysis process [16, 24].

CANVuS varies from this existing work in that it does not provide new active or
passive tests to determine a host configuration, nor does it propose a new representation
or application of the host and service inventory data. Rather, the proposed architec-
ture seeks to provide more up-to-date data with fewer costs than existing approaches
by leveraging network context. In this sense, our work is relevant to other work in
utilizing context to improve the performance and accuracy of a variety of security tech-
niques [29]. For example, Sinha et al. leveraged the characteristics of the network work-
load to improve the performance of IDSes [30] and showed that building honeypots that
are consistent with the network could improve the resilience of honeypots to attacks and
improve their visibility [28]. Notions of managing numerous remote probing devices
through a middleware layer was explored, though only in the context of IDSes, in the
Broccoli system [14]. Cooke et al. built the Dark Oracle [10] that closely resembles
the work in this paper in terms of methodology by using context-aware information to
provide a database of network state, but it addressed primarily allocation information.
Allman et al. proposed a general framework that also uses a trigger-based approach
to do reactive network measurement [4]. While this is similar to our work in terms of
the high-level idea, it tries to solve a different problem, and it contains no implemen-
tation or evaluation to demonstrate the effectiveness of their approach. More generally,
to address the problems of comprehensive network visibility, a set of guidelines were
outlined in [3] for three broad categories — basic functionality, handling and stor-
age of data, and crucial capabilities. To our knowledge, no work has fully addressed
all of these guidelines, although some work has been attempted to address the storage
and querying of this ubiquitous visibility over time and space [34]. Our work makes
progress towards comprehensive network visibility with the goal of creating a flexible,
yet efficient unified network visibility system for CANVuS.

3 Motivation

The motivation for this work derives directly from our interactions with the University
of Michigan’s office of Information and Infrastructure Assurance (IIA) [33]. This group
is tasked with: “(i) Facilitating campus-wide incident response activities, (ii) Providing
services such as security assessments and consultation, network scans, education and
training, and (iii) Managing IT security issues at the university level.” As part of these
roles, this office engages in quarterly scans of seven /16 subnets belonging to the Uni-
versity of Michigan. As part of an effort to evaluate this process, we assisted the IIA
staff in analyzing several quarterly scans of this space by using both Nessus [25] and

CANVuS: Context-Aware Network Vulnerability Scanning 5

Retina [11]. The results of this analysis were kept private to assist the security operation
staff, but we were struck by several poignant observations from the experience:

– The scans generally take one and a half to two weeks to complete.
– In an effort to reduce the amount of time spent scanning, a significant number of

vulnerability signatures present in the tools were not used.
– With the exception of a handful of departments, the scans of the IP space proceeded

without knowledge of sub allocations in each department, scanning large blocks of
space in their entirety.

– Due to the impact of work day availability patterns, the operators schedule the scans
to occur only during working hours (i.e., 8 AM to 5 PM, Monday through Friday).

– Only 85% of the IP addresses in each scan were shared, the other 15% were unique.
– Only 85% of the total unique vulnerabilities discovered were present in both scans,

with 15% of each scan’s vulnerabilities appearing only in that scan.
– Only 56% of the configurations between two scans were unchanged for those IPs

in common between the scans.

While surprising to us, the IIA staff were keenly aware of the dynamic nature of their
network and the overhead imposed by the scanning activities. Although they deployed
several stop-gap measures to deal with the effect of this dynamic network context (e.g.,
scan during work hours), these operators simply lacked the platform with which to
achieve network-wide visibility.

4 Architecture and Design

In this section, we describe a context-aware architecture that provides a uniform view
of network states and their changes for security applications. The architecture consists
of three major components. The first component is a set of network monitors that are
distributed over many network devices. The list of network devices to monitor could
include switches, routers, and servers, but the architecture allows for other similar de-
vices as well. The second major architectural component is a Context Manager, which
converts data from network monitors to a network state database. The third and final
component is the network state database that provides a uniform model for context-
aware vulnerability scanning. Other context-aware applications may be built upon this
database as well. A high-level diagram with the major components of the architecture
is illustrated in Figure 1.

The design of this context-aware architecture is informed strongly by the design
principles outlined in Allman et al. [3], especially those basic guidelines of scope, in-
cremental deployability, and operational realities. We aim for a system that built for
an individual enterprise and utilizes existing sources of data collected from infras-
tructure and services already deployed in the network. We utilize the existing com-
mon data formats (e.g., syslog, SNMP, Netflow) and store and access this data through
common, extensible mechanisms (e.g., databases, SQL). Where necessary, we support
probe-based mechanisms for extracting similar data from network data streams in the
event that existing hardware is overloaded or does not support data export. With re-
spect to the outlined data-oriented goals, we opt to focus on exploring data breadth over

6 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

Switches

Routers

Access Point

Syslog

SNM
P

Netflow

DNS Server

DHCP Server

Kerberos Server

Bro

Infrastructure
 Devices

Network
Services

Network State Database

Context M
anagem

ent M
iddleware

Network
Probes Other Context Aware

Applications

Syslog
Syslog

CANVuS: Context-Aware
Network Vulnerability

Scanning

Vuln.
DB

Scanning
Subsystem

Query

Trigger

Active
Scanning

Context Aware Architecture

Fig. 1. Our context-aware network vulnerability scanning (CANVuS) architecture. The enterprise
network is monitored by using data from existing physical infrastructure devices, network service
appliances, and generic network probes. These heterogeneous sources of data are combined into
a unified view of the network context which can be queried by context-aware applications or
can have triggers automatically executed in response to certain contextual changes. In the case
of CANVuS, contextual changes that indicate possible configuration changes are used to more
efficiently scan network devices.

long term storage, smart storage management, graceful degradation, etc. The CANVuS
application does not require extensive historical data, although we acknowledge that
other context-aware applications will indeed require these functionalities and we look
to leverage existing work in this direction for future versions of our architecture [34].

In the next three subsections, we first describe categories of monitoring points or
data sources, from which creates a view of network context. Using this understanding,
we then present the design of the Context Manager, which converts data from network
monitors to the network state database in a uniform representation. Finally, we pro-
vide an example of what the network state database would look like for context-aware
applications.

4.1 Sources of Data

Inferring network states and state changes is a challenging problem because the re-
quired information is distributed across many devices, network services, and applica-
tions. Thus, the key to capture the states and changes is to monitor the targets from a
network perspective and approximate the context by aggregating network events from
various data sources, which may lay in different layers of the network stack. To de-
termine what data sources to use for event collection and integration, we first need to
understand what types of network activities could be monitored and how they relate to
changes in the network.

In this architecture, the monitors distributed across the network fall into three cate-
gories. The first category is monitors deployed in infrastructure devices, such as switches,

CANVuS: Context-Aware Network Vulnerability Scanning 7

routers and wireless access points. The advantage of having these types of monitors is
that they provide detailed knowledge about the entire network, as well as the host infor-
mation, with high resolution. This is a direct result of these devices providing the core
hardware infrastructure for the network. For example, by querying the switches with
SNMP, the system knows exactly when a particular physical machine is plugged into
the network and when it leaves. However, because of the importance of these devices,
tradeoffs are involved between the fidelity of data and the overhead (or difficulty) of the
data collection.

The second category of monitors is for network services, which may include DNS,
DHCP and even Kerberos services. The data observed by this second category of mon-
itors provides additional detailed states about the hosts. Services in this class are the
ones that are deployed in almost every enterprise and are critical to the operation of
the network. For example, the data generated for DHCP service helps to distinguish
between configuration changes for the same host and MAC-to-IP binding changes for
different hosts. Depending on the types of the network, monitors in this category may
require access to the syslog that are local to each service.

The final category consists of passive probes, which are deployed along with packet
taps. These probes perform realtime analysis of network traffic that can be either generic
TCP/UDP flows or application/OS specific to generate events. By monitoring TCP/UDP
flows, the system gains the knowledge of which hosts are available and what services
are running and being used by clients. In addition, using Deep Packet Inspecting (DPI)
for an application protocol or OS fingerprint helps inventory the specific versions of
applications (e.g., HTTP, SSH) or operating systems running in the network. Deviating
version information for the same host directly indicates configuration changes for that
host. For example, one could use Bro’s protocol analysis to do connection reconstruc-
tion and application version fingerprinting [22] (which we used in our implementation
of CANVuS). However, the visibility of passive probes is limited to the network traffic
they have access to. In other words, silent applications/services will be missed, which is
also the limitation of passive vulnerability scanners [8, 17, 26]. Thus, the passive probe
is merely an additional type of monitor for collecting context data for observing a com-
plete view of the network.

We acknowledge that host-based monitors exist for clients, but we decided that
they are beyond the scope of this work. Intuitively, host-based monitors can provide
the most accurate inventory information that effectively renders vulnerability scanning
useless. Unfortunately, they are very difficult, if not impossible, to be enforced in large
enterprise networks due to scalability and administrative reasons. However, as some
traditional host-based programs, like antivirus software, are moved into the cloud [18],
we may be able to build another type of monitors for potential in-cloud security ser-
vices. The key advantage is that the in-cloud version of the services already have the
visibility into the end hosts because they provide functionalities that used to be local to
the hosts. Thus, the system will be able to obtain more fine-grained information about
host activities without unacceptable modifications or performance penalties to the end
hosts.

8 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

4.2 Context Manager
The Context Manager, a layer between data monitors and the network state database,
infers network context (states and state changes) from aggregated data collected from
various monitors and translates this to a uniform model. Specifically, the network states
are a collection of simple facts about the target network, and they keep evolving as
underlying hosts and services change. For example, these facts may include what hosts
are available at the moment, what are the MAC addresses for a set of IPs in a certain
period of time, or when is the first time a particular host connected to the network.

Existing libraries are used to read data from syslog, SNMP and Netflow that then get
filtered and processed into a uniform representation of the network’s state that is then
inserted into the network state database. These modules can come from a programming
languages standard library (e.g., Python’s syslog module) or from third party libraries
(e.g., PySNMP [12]). Additionally, the Context Manager supports a flexible framework
for adding additional plugins to read input from new data monitoring sources and trans-
late this data into a uniform model. These plugins can be thought of as data adapters
that convert the source inputs canonical data format into a representation used in our
architecture.

4.3 Network State Database
The network state database provides underlying model for which context-aware appli-
cations are written upon. The applications use standard database triggers or the pro-
grammable querying interfaces to interact with the database. The types of data that
may be represented can be found in Table 1. This table shows how for that the data
is uniformly represented across typical network abstraction layers, sources, and their
respective data formats.

Network Layer Data Source Data Format Description
Switch SNMP Mapping between a MAC address and a Physical Switch Port

Link Layer Switch SNMP Mapping between a MAC address and an IP address
Bro Ethernet Mapping between a MAC address and an IP address

Network Layer Router SNMP Network allocation
Transport Layer Router Netflow New connection established

Bro TCP/IP New connection established
DNS Server Syslog Name resolution

Bro UDP/IP Name resolution
Application Layer DHCP Server Syslog Mapping between a MAC address and an IP address

Bro UDP/IP Mapping between a MAC address and an IP address
Bro TCP/IP Application version fingerprint

Table 1. Example contents of the network state database

5 CANVuS

In this section, we describe the implementation of CANVuS, a vulnerability scanning
system, based on our context-aware architecture. It was implemented in Python to con-
nect the network state database and a vulnerability scanner. In our implementation, we

CANVuS: Context-Aware Network Vulnerability Scanning 9

used Nessus [25]. Ideally, if all host configuration changes produce network artifacts,
the need for network vulnerability scanning of these events would be straightforward.
However, not all host changes have network evidence that can be captured by at least
one of the monitors. Thus, CANVuS uses both query and callback interfaces from the
network state database to leverage the context information and to maintain a history of
scanning results in its own vulnerability database.

During the initialization phase, CANVuS queries the database for all available hosts
as scanning candidates. Due to the constraints in hardware and network resources, all
hosts are not scanned concurrently. Instead, candidates are queued for pending scans,
whose size depends on the network conditions, the configured policies, and the amount
of available physical resources. A scheduling strategy is needed here to select the
next candidate to scan. For example, each candidate could be weighted based on their
triggering events and scheduled accordingly. In the current implementation, a simple
FIFO strategy is applied. At the same time, CANVuS registers a callback function with
database triggers so that a new candidate will be appended to the pending queue when a
change happens, unless the same target is already in the queue. To conduct actual scan-
ning operations, Nessus is used, yet is modified to change its target pool from a static
configuration file to the queue discussed above.

Conversely, if a scanned host has no events fired after N seconds since its last scan,
and there is no evidence (including both the context information and former scanning
results) indicating that it becomes unavailable, it will be added to the queue for another
scan. Thus, each host is effectively equipped with its own timer. Once it expires, CAN-
VuS will query the network state database and its vulnerability database to determine
if further scanning is necessary. Clearly, the value of the timer is a configurable policy
up to the decision of the operators. In addition, when registering callback functions,
instead of simply subscribing all possible changes in the database, CANVuS defines a
set of event-specific policies to filter the ones that are less relevant to host configuration
changes.

The choices of polices involve tradeoffs and depend on the objectives of the admin-
istrators who manage this system. The purpose of our current implementation is not to
provide a reference system for production use. Instead, we aim to figure out what events
are more effective in detecting changes and what policies are more appropriate with the
given network conditions and administrative requirements. Therefore, the policies used
for our experiment were set to be as aggressive as possible so that an optimal solution
could be determined by filtering unnecessary scans after the experiment was complete.
More specifically, the default policy is that every single events triggers a scan. The only
exception is the TCP event, since there are too many of them for each host, an active
timeout is enforced to prevent them from overwhelming the system. On the other hand,
if scans are being constantly triggered by inbound connections to ports that scanners fail
to discover, a negative timeout is also enforced to suppress this type of event being fired
over and over again. Further details regarding the revision of our trigger implementation
and policy decisions are presented in the evaluation.

The vulnerability database is the central storage of vulnerability data for all of the
hosts in the network. It keeps track of the result for every scan conducted against each

10 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

host. In addition to the raw results generated by our modified Nessus scanner, each scan
record contains following information:

– The time when this scan is triggered.
– The time when the backend scanner starts and finishes the scan.
– A list of open ports and the vulnerabilities on each port.
– A map from open ports to services.
– Operating system fingerprint (optional).
– The type of triggering event.

As more results are inserted into the vulnerability database, the information can be used
in policy evaluation for further scans. Additionally, this information may be queried by
administrators at any time for risk assessment or used by other security applications.

6 Evaluation

In this section, we evaluate CANVuS in a large academic network. The basic metrics
used throughout this section is the number of scans conducted, which represents the re-
source consumption or overhead, and the latency of detecting configuration changes,
which represents the system efficacy. Ideally, CANVuS should outperform periodic
scanning with fewer number of scans by implicitly avoiding examining unallocated
IP addresses and unavailable hosts. Moreover, CANVuS should also achieve lower de-
tection latency as many host configuration changes create network evidence that trigger
scans timely in our architecture.

We begin by discussing our experimental methodology. Then we show how CAN-
VuS outperforms existing models in terms of the number of scans required and the de-
tection latency. Next, we explore the impact of timeout values to the CANVuS system.
The following section evaluates the contribution of various data sources to CANVuS
and their correlations with observed changes on the hosts. We conclude the evaluation
by discussing the scalability requirements of the context-aware architecture.

6.1 Experimental Methodology

The target network for the experiment is a college-level academic network with one
/16 and one /17 subnet. There are two measurement points for the experiments. One is
the core router for the entire college network. Because it has the access to the traffic
between the Internet and the college network, there were two monitors built on it:

– TCP connection monitor: records the creation of new TCP connections.
– Application version monitor: records the version strings in protocol headers.

The second measurement point is a departmental network within the college that has
the visibility into both the inbound/outbound traffic and more fine-grained inter-switch
traffic. As result, the following monitors were deployed:

– ARP monitor: records the ARP messages probing for newly assigned IPs.
– DHCP monitor: records DHCP acknowledgment events.

CANVuS: Context-Aware Network Vulnerability Scanning 11

– DNS monitor: records queries to certain software update sites.
– TCP connection monitor: as described above.
– Application version monitor: as described above.

This choice of measurement points and event monitors enables CANVuS to cover the
network stack from the link layer to the application layer. Moreover, it also allows us to
analyze the effectiveness of individual monitors with different visibility.

Based on these event monitors, CANVuS was deployed to scan the college net-
work using a 12-hour active/inactive timeout and 1-hour negative timeout. In addition,
another instance of a Nessus scanner was deployed for comparison purposes. It was
configured to constantly enumerate the entire college network (a.k.a. the loop scanner).
Both scanners were restricted to allow a maximum of 256 concurrent scans. The exper-
iment lasted for 16 days in March, 2010, during which time the loop scanner completed
46 iterations. And it was interrupted by a power outage for a couple of hours at the
end of the first week. Since we expect the system to be running long term, occasional
interrupts would not have a major impact to the experiment results.

We performed a direct comparison between CANVuS and the loop scanner across
both dimensions of resource consumption and detection latency. During the current
exceptionally aggressive experiment, the loop scanner took less then 9 hours to finish
one iteration. In realistic deployments, we envision using larger values and scanning less
aggressively. Thus, the result of the loop scanner is only considered to represent the best
performance that traditional periodic scanning systems can achieve in detection latency.
More realistic values are represented below by sampling multiple 9-hour periods.

Ground truth for the experiments was established by identifying the period in which
an observable network change occurred. Specifically, the scanning records from both
scanners are first grouped together based on the MAC (if available) or IP address of
each target host, and then each group of records are sorted by the time when each
scan started. In each sorted group, a change is defined as two consecutive scan records
(scans of unavailable hosts are ignored) with different sets of open ports. In addition,
we assume that the change always happens immediately after the former scan finishes.
Subsequent discussions that require the knowledge about ground truth are all based
on this model unless otherwise noted. We approximated the ground truth in this way
because it is infeasible to gain the local access to a large number of hosts in the target
network to collect the real ground truth. As a result, we will not be able to analyze the
true positive rate of CANVuS, and the average latencies for both scanners represent the
upper bound, or the worst case.

6.2 CANVuS Evaluation

Table 2 lists the number of scans conducted by CANVuS with a break down by event
types and the total for the loop scanner. The loop scanner has an order of magnitude
more scans than CANVuS because only about 20% of the IP addresses in the target
network are known to be allocated, and at any instant of time, the number of available
hosts are even less than that. However, the loop scanner has to exhaust the entire IP
blocks unless the address allocation and host availability information can be statically
encoded, which is rarely the case in enterprise networks [10].

12 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

CANVuS Loop Scanner
Total 534,717 4,355,624
ARP 1.55%

DHCP 17.37%
TCP 38.33% N/A
DNS 10.28%

App. Protocol 0.03%
Timeout 32.44%

Table 2. The numbers of scans conducted by CANVuS and the loop scanner

In addition, the average detection latencies for changes discovered by CANVuS
is 22,868.751 seconds versus 26,124.391 seconds for the loop scanner. Please recall
that our assumption says the evidence of configuration changes will trigger scans in-
stantaneously. However, the latency for CANVuS here is far from zero. This anomaly
is caused by the fact that we used the combined scanning results to approximate the
ground truth and timeout-based scanning was still applied in some situations when no
network network changes occurred.

100 1 2 3 4 5 6 7 8 9

110,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Sampling Rate

La
te

nc
y

(s
)

Loop

CANVuS

Fig. 2. A comparison of the detection latency
with sampled results for the loop scanner.

100 1 2 3 4 5 6 7 8 9

4,500,000

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

Sampling Rate

of

 S
ca

ns

Loop

CANVuS

Fig. 3. A comparison of the number of scans
with sampled results for the loop scanner.

Moreover, the latency for CANVuS is not significantly better than that of the loop
scanner. This is because the configuration for the loop scanner is already very aggres-
sive and represents the best performance that traditional periodic scanning systems can
achieve in detection latency. To make the loop scans less aggressive and to demonstrate
the tradeoff in scanning costs, the data set is sampled with a rate from 1 to 10 to in-
clude both the original case and the case that both scanners have a comparable number
of scans. Figure 2 illustrates the result. The curve for the loop scanner goes up almost
linearly because of the linear sampling, while the curve for CANVuS goes slightly up
and down because the approximated ground truth has been changed after sampling. In
addition, Figure 3 shows the corresponding changes for the number of scans.

CANVuS: Context-Aware Network Vulnerability Scanning 13

6.3 Timeout-Based Scanning In CANVuS

As discussed previously, a timeout-based scanning approach is used along with the
trigger-based scanning as many configuration changes are not observable through net-
work events. However, unlike traditional periodic scanning, which randomly picks scan-
ning targets in a large pool with fixed cycles, the timeout mechanism in CANVuS is still
context-aware. Specifically, the system uses the context data to infer IP allocation in-
formation and host availability patterns so that only the hosts that are believed to be
connected to the network will be scanned. These timeouts are assigned per-host timer
and are based on the network state, scanning history, and administrators’ policy deci-
sions. As a result of these approach, fewer scans are “wasted” on hosts that don’t exists
or are unavailable. Taken another way, given the same number of scans, CANVuS is
more likely to examine a larger number of active hosts and detect host changes with
lower latency than the periodic scanning system.

10000 100000 1x106

Change intervals in log scale (seconds)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

Fig. 4. The CDF for the intervals of detected changes.

Figure 4 depicts the distribution of intervals between all detected changes the val-
ues ranging between hours and days. The bias demonstrated in the middle of the graph
is the result of our experimental methodology and the choice of 12 hours for our ac-
tive/inactive timeout.

Thus, in practice, we determining the timeout value based on operators’ adminis-
trative requirements. For example, using a timeout value at the order of a week, which
covers the changes on the tail of the curve in Figure 4, would be reasonable. An al-
ternative strategy is to halve the timeout value if a change is detected accordingly, but
otherwise double it adaptively modifying a host’s timeout value. In either case, there is
clearly a tradeoff between the number of scans and the detection latency, which is also
the case for normal periodic scanning.

14 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

6.4 Exploring the Impact of Various Data Sources and Triggers

In this subsection, we study the relationship between triggering events and the captured
configuration changes. Specifically, the study is focused on their temporal correlations
instead of causalities, which requires detailed control over the target hosts.

To do this, two problems need to be addressed. First, since most subnets in the tar-
get network use DHCP to assign IP addresses (despite whether the address mapping
is dynamic or static), the changes witnessed may actually be mapping changes instead
of changes in configuration. To eliminate the negative impact of dynamic address as-
signment, which would obscure the analysis results, the discussion in this subsection is
confined to the 535 hosts that were assigned exactly one unique IP address during the
experiment period. They are extracted from the 1,691 scanned IP addresses in the nine
/24 departmental network subnets for which we have complete DHCP message logs.

Among these 535 hosts, 1,985 changes were detected by CANVuS during the ex-
periment. After merging with the results from the loop scanner, the number of detected
changes becomes 2,145, where the increase is an artifact of the method used to generate
the approximated ground truth. However, many changes are considered to be ephemeral
or short-lived, which is the second problem that must be handled. In other words, certain
ports appear for a short while and then disappear without exhibiting real configuration
changes. Many client programs may exhibit this behavior. For example, the client side
of Apple’s iTunes uses port 5353 to communicate with each other for sharing. P2P
download software is another example. This type of changes provide little value in re-
vealing the temporal correlations between changes and triggering events, due to their
short lifetime.

Triggering Event Count With network evidence
ARP 1 1

DHCP 15 10
TCP 2 2
DNS 3 1

Timeout 4 0
Table 3. Permanent changes categorization

As a result, we only consider those long-term or permanent changes to study their
temporal correlations with triggering events. However, the word ‘permanent’ is not well
defined, given the limited experiment period. Thus, for the simplicity of analysis, we
only examine hosts that had exactly one change during the entire 16-day period because
these changes are most likely to be permanent unless they were detected at the very end
of the experiment. Among the 535 hosts, 25 of them fall into this category. Though this
is not statistically significant, they still provide important clues for us to find appropriate
policy setting for the target network. Recall that our conjecture is that most permanent
changes have network evidence that can be witnessed and used for creating triggers to
achieve timely detection. By manually going through all these changes and analyzing all
logged events that happened around the time when the changes were detected, we find

CANVuS: Context-Aware Network Vulnerability Scanning 15

56% of them have network evidence that has strong temporal correlation with changes,
which means they either have triggered or could have triggered scans to detect the
changes.

Table 3 is a summary of the analysis results in detail. Several things should be noted
here. First, all the permanent changes we studied that were captured by timeout exhib-
ited no network evidence at all. This is a limitation of our system using pure network
events. Unless some level of host information is monitored, this timeout-based method
cannot be completely replaced with the trigger-based approach. In addition, a signifi-
cant portion of changes were detected via DHCP and ARP events, which corresponded
to hosts reboots. This is reasonable because many configuration changes may not take
effect until the host is restarted. Finally, the rest of the changes corresponded to activi-
ties on the service or process level.

Moreover, we argue that although ephemeral changes may not be helpful in studying
the temporal correlations, they are still relevant to risk assessment. Despite the possi-
bility of being exploited by sophisticated attackers, many short-lived but well-known
ports may be used to tunnel malicious traffic for cutting through firewalls. For exam-
ple, the TCP event monitor captured some occasional events through port 80 for certain
hosts, while the application event monitor failed to fingerprint any version informa-
tion for them, which means the traffic did not follow the HTTP protocol. Thus, in both
cases, it is valuable to detect these short-lived changes, but there is no guarantee for the
loop scanner to achieve this goal. In fact, the loop scanner tends to miss most of these
changes once its scanning period greatly increases (e.g., in the order of weeks). With
the help of TCP events, CANVuS can fire scans immediately after there is traffic going
through these ports. And there are 35 changes exclusively captured by CANVuS that
fall in this category. Conversely, if there is no traffic ever going through the short-lived
ports, while CANVuS may also miss them, the resulting risk is much lower because
attackers have no chance to leverage them either.

6.5 Scalability Requirements of the Context-aware Architecture

Figures 5 and 6 constitute a summary for the scale of the data from the departmen-
tal monitors done in hour intervals. The number of raw packets or flows per hour is
counted in Figure 5. This raw data was observed at the various network monitors and
probes before being converted by the Context Manager into the network state database.
We note that the first three days worth of data are missing in our graph due to the mis-
configuration of the monitoring infrastructure. For the duration of our experiment, we
observed flows on the order of 16 million per hour at its peak and on average around 4
million per hour. Other noticeable observations include a typical average of 1 million
DNS packets per hour and about 12 thousand ARP packets per hour. These four graphs
in Figure 5 show that this system must handle adequately large volumes of traffic due
to its distributed nature.

Figures 6 shows the number of events per hour that triggered scans after being
converted by the Context Manager. Compared to the graphs in Figure 5, the volume
of events generated from the raw data was greatly reduced. To highlight the number
of flows and DNS packets went from the order of millions to the low hundreds. ARP
packets when from the order of thousands to tens. This shows that our Context Manager

16 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

0

4e+06

8e+06

12.e+07

1.6e+07

of

 fl
ow

s

0

1e+06

2e+06

3e+06

4e+06

of

 D
N

S
pa

ck
et

s

35,000

0

5000

10,000

15,000

20,000

25,000

30,000

of

 D
H

CP
 p

ac
ke

ts

4000 50 100 150 200 250 300 350

0

4e+04

8e+04

1.2e+05

1.6e+05

Time (hours)

of

 A
RP

 p
ac

ke
ts

Fig. 5. The scale of the raw data.

0

200

400

600

800

of

 T
CP

 e
ve

nt
s

500

0

100

200

300

400

of

 D
N

S
ev

en
ts

0

200

400

600

800

1000

1200

of

 D
H

CP
 e

ve
nt

s

4000 50 100 150 200 250 300 350

0

20

40

60

80

Time (hours)

of

 A
RP

 e
ve

nt
s

Fig. 6. The scale of the events.

is able to greatly reduce large volumes of data to something manageable for our event-
based vulnerability scanning.

In addition, the cumulative number of unique MAC addresses in the departmental
network is shown in Figure 7, which quantifies the scale of the physical boxes within
the department (only for the second measurement point) that should be audited. We
observed that slight bumps indicate new observances of MAC addresses over the course
of a day while plateaus occurred over the weekends. We speculate that the observance
of new, unique MAC addresses will level off if given a longer period of time to run our
experiments. This graph also gives insight in bounding to the amount of raw and event-
generated traffic that would be observed by the detection of fewer and fewer unique
MAC addresses.

7 Risk Mitigation and Analysis

In this section, we examine our efforts in minimizing the harm to users, services, hosts,
and network infrastructure while performing our experiments. We understand that ac-
tive probing involves the use of network resources and interaction with product services.
In consultation with the Computer Science and Engineering Departmental Computing
Office, the College of Engineering Computer Added Engineering Network, and the Uni-
versity of Michigan office of Information and Infrastructure Assurance, we developed

CANVuS: Context-Aware Network Vulnerability Scanning 17

4000 50 100 150 200 250 300 350

4000

0

500

1000

1500

2000

2500

3000

3500

Time (hours)

Ac
cu

m
ul

at
ed

 n
um

be
r

of
 M

AC
s

Fig. 7. The accumulated number of unique MAC addresses in the departmental network.

the following research plan to mitigate the impact on hosts, services, and network in-
frastructure: (i) to minimize the effect of network scanning, we limited the bandwidth
available to our scanning devices, (ii) We implemented a whitelisting feature to our
scanning, and the engineering computer organization broadcasted an opt-out message
to all departmental organizations prior to our experiment (along with the complete re-
search plan), (iii) We applied only those polices consistent with the Nessus “Safe Check
Only” label.

Acknowledging that a network’s security context is considered sensitive informa-
tion and data such as MAC addresses and IP addresses have been viewed as personally
identifiable information in several contexts, we took steps to assure that the “research
records, data and/or specimens be protected against inappropriate use or disclosure, or
malicious or accidental loss or destruction” according to our IRB guidelines. This in-
cludes, but is not limited to the following official categories: Locked office, Restricted
access, Restrictions on copying study-related materials, Access rights terminated when
authorized users leave the project or unit, Individual ID plus password protection, En-
cryption of digital data, Network restrictions, No non-UM devices are used to access
project data, Security software (firewall, anti-virus, anti-intrusion) is installed and regu-
larly updated on all servers, workstations, laptops, and other devices used in the project.
Due to the technical nature of the work, we did not seek IRB approval for the project
as we did not feel they were prepared to understand the risks of this work. The pro-
posed research plan was instead approved through the College of Engineering Dean of
Research, and additionally approved by the departmental, college, and university com-
puting organizations specified above.

8 Limitations and Future Work

While our initial evaluation demonstrates the promise of a context-aware approach to
vulnerability scanning, it does highlight several limitations which form the foundation
for future work in this area. First, the accuracy of our evaluation is hampered by the
use of network vulnerability scanning results as the sole ground truth for measuring

18 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

host configuration changes. In addition to the previously discussed limitation that a
network-based scanner provides only an approximate view of a host changes, this ap-
proach also limited the granularity of our measurements to the polling frequency of the
network scanner. To overcome this issue, we plan on developing a host agent that is
capable of collecting fine-grained information on local changes and deploying it on a
network with a large number of different hosts (e.g., end hosts vs. application servers).
A second rich area for future work is the exploration of new triggers (either new events
or combinations of these events) for host configuration changes. Currently, the most ef-
fective events were generated by the DHCP monitor and corresponded to host reboots.
In the future, we plan to increase the diversity of trigger events and explore other types
of network evidence for host changes.

9 Conclusion

In this paper, we proposed a context-aware architecture that provides information about
the network states and their changes for enterprise security applications. We described
how this architecture converts network data from infrastructure devices, network ser-
vices, and passive probes to a uniform representation stored in the network state database.
Then we introduced CANVuS, a context-aware vulnerability scanning system built
upon this architecture that triggers scanning operations based on changes indicated by
network activities. We experimentally evaluated the system by deploying it in a college-
level academic network and comparing CANVuS against an existing system. We found
that this approach outperforms existing models in low detection latency, while consum-
ing fewer network resources.

Acknowledgments

The authors wish to gratefully acknowledge the following colleagues at the University
of Michigan for their assistance in performing this work: Paul Howell, Kirk Soluk,
Dawn Isabel, Dan Maletta, Kevin Cheek, and Donald Winsor. This work was sup-
ported in part by the Department of Homeland Security (DHS) under contract numbers
NBCHC080037, NBCHC060090, and FA8750-08-2-0147, the National Science Foun-
dation (NSF) under contract numbers CNS 091639, CNS 08311174, CNS 0627445, and
CNS 0751116, and the Department of the Navy under contract N000.14-09-1-1042.

References

1. Muhammad Abedin, Syeda Nessa, Ehab Al-Shaer, and Latifur Khan. Vulnerability analysis
for evaluating quality of protection of security policies. In Proceedings of the 2nd ACM
workshop on Quality of protection (QoP’06), Alexandria VA, October 2006.

2. Mohammad Salim Ahmed, Ehab Al-Shaer, and Latifur Khan. Towards autonomic risk-aware
security configuration. In Proceedings of the 11th IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS’08), Salvador, Bahia, Brazil, April 2008.

CANVuS: Context-Aware Network Vulnerability Scanning 19

3. Mark Allman, Christian Kreibich, Vern Paxson, Robin Sommer, and Nicholas Weaver. Prin-
ciples for developing comprehensive network visibility. In Niels Provos, editor, 3rd USENIX
Workshop on Hot Topics in Security, July 29, 2008, San Jose, CA, USA, Proceedings.
USENIX Association, 2008.

4. Mark Allman and Vern Paxson. A reactive measurement framework. In Proceedings of
the ninth Passive and Active Measurement conference (PAM’2008), Cleveland, Ohio, April
2008.

5. Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network
vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security (CCS’02), Washington DC, November 2002.

6. Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art: Automated
black-box web application vulnerability testin. In Proceedings of the 31st IEEE Symposium
on Security & Privacy (S&P’10), Oakland, CA, May 2010.

7. Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, Chris Wright, and Adam Shostack.
Timing the application of security patches for optimal uptime. In Proceedings of the 16th
Annual LISA System Administration Conference, Philadelphia, PA, USA, November 2002.

8. Edward Bjarte. Prads - passive real-time asset detection system. http://gamelinux.
github.com/prads.

9. W. R. Cheswick and S. M. Bellovin. Firewalls and Internet Security; Repelling the Wily
Hacker. Addison Wesley, Reading, MA, 1994.

10. Evan Cooke, Michael Bailey, Farnam Jahanian, and Richard Mortier. The dark oracle:
Perspective-aware unused and unreachable address discovery. In Proceedings of the 3rd
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’06), May
2006.

11. eEye Digital Security. Retina - network security scanner. http://www.eeye.com/
Products/Retina.aspx.

12. Ilya Etingof. Pysnmp. http://pysnmp.sourceforge.net/.
13. Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph generation

for network defense. In Proceedings of the 22nd Annual Computer Security Applications
Conference (ACSAC’06), Miami Beach, FL, December 2006.

14. Christian Kreibich and Robin Sommer. Policy-controlled event management for distributed
intrusion detection. In ICDCS Workshops, pages 385–391. IEEE Computer Society, 2005.

15. Sean McAllister, Engin Kirda, and Christopher Kruegel. Leveraging user interactions for
in-depth testing of web applications. In Proceedings of the 11th International Symposium on
Recent Advances In Intrusion Detection (RAID’08), Boston, MA, September 2008.

16. Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke, and Jeannette Wing.
Ranking attack graphs. In Proceedings of the 9th International Symposium On Recent Ad-
vances In Intrusion Detection (RAID’06), Hamburg, Germany, September 2006.

17. Microsoft. Watcher - web security testing tool and passive. http://websecuritytool.
codeplex.com.

18. Jon Oberheide, Evan Cooke, and Farnam Jahanian. Cloudav: N-version antivirus in the
network cloud. In Proceedings of the 17th USENIX Security Symposium (Security’08), San
Jose, CA, July 2008.

19. Jon Oberheide, Evan Cooke, and Farnam Jahanian. If It Ain’t Broke, Don’t Fix It: Challenges
and New Directions for Inferring the Impact of Software Patches. In 12th Workshop on Hot
Topics in Operating Systems (HotOS XII), Monte Verita, Switzerland, May 2009.

20. Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to attack graph
generation. In Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS’06), Alexandria, VA, October 2006.

20 Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian

21. Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. Mulval: A logic-based net-
work security analyzer. In Proceedings of the 14th USENIX Security Symposium (USENIX
Security’05), Baltimore, MD, August 2005.

22. Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer
Networks, 31(23-24):2435–2463, 1999.

23. M. Roesch. Snort: Lightweight intrusion detection for networksx. In Proceedings of the 13th
Systems Administration Conference (LISA), pages 229–238, 1999.

24. Reginald E. Sawilla and Xinming Ou. Identifying critical attack assets in dependency attack
graphs. In Proceedings of the 13th European Symposium on Research in Computer Security
(ESORICS’08), Malaga, Spain, October 2008.

25. Tenable Network Security. Nessus - vulnerability scanner. http://www.nessus.org.
26. Tenable Network Security. Nessus passive vulnerability scanner. http://www.nessus.

org/products/pvs/.
27. Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M. Wing. Au-

tomated generation and analysis of attack graphs. In Proceedings of 2002 IEEE Symposium
on Security and Privacy (S&P’02), Oakland, CA, May 2002.

28. Sushant Sinha, Michael Bailey, and Farnam Jahanian. Shedding light on the configuration
of dark addresses. In Proceedings of Network and Distributed System Security Symposium
(NDSS ’07), February 2007.

29. Sushant Sinha, Michael D. Bailey, and Farnam Jahanian. One Size Does Not Fit All: 10
Years of Applying Context Aware Security. In Proceedings of the 2009 IEEE International
Conference on Technologies for Homeland Security (HST ’09), Waltham, Massachusetts,
USA, May 2009.

30. Sushant Sinha, Farnam Jahanian, and Jignesh M. Patel. Wind: Workload-aware intrusion
detection. In Symposium on Recent Advances in Intrusion Detection (RAID’06), Hamburg,
Germany, September 2006.

31. Sourcefire. Sourcefire rna - real-time network awareness. http://www.sourcefire.com/
products/3D/rna.

32. Sourcefire, Inc. Clamav antivirus. http://www.clamav.net/, 2008.
33. University of Michigan. University of Michigan — ITS — Safe Computing — IT Security

Services Office. http://safecomputing.umich.edu/about/, April 2010.
34. Matthias Vallentin. VAST: Network Visibility Across Space and Time. Master’s thesis,

Technische Universitat Munchen, Jan 2009.

