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Abstract. Many important decidability results in malware analysis are
based on Turing machine models of computation. We exhibit computa-
tional models that use more realistic assumptions about machine and
attacker resources. While seminal results such as [1–5] remain true for
Turing machines, we show that under more realistic assumptions impor-
tant tasks are decidable instead of undecidable. Specifically, we show that
detecting traditional malware unpacking behavior – in which a payload
is decompressed or decrypted and subsequently executed – is decidable
under our assumptions. We then examine the issue of dealing with com-
plex but decidable problems, and look for lessons from the hardware
verification community, which has been striving to meet the challenge of
intractable problems for the past three decades.

1 Introduction

In recent years, malware researchers have seen incoming malware rates multiply
by an order of magnitude [6]. By the numbers alone, manual analysis, which
takes a couple of hours per sample, will never be able to keep up. Thus, there
is a critical need to develop scalable, automated analysis techniques. Currently,
a wide variety of automated methods exist for unpacking, for malicious code
detection, for clustering related malware samples, and for reverse engineering.
Unfortunately, the possibility of complete, automated analysis has long been
impeded by theoretical results in Computer Science: we simply can’t design
algorithms clever enough to solve undecidable problems.

Although there are a variety of important malware analysis problems, pack-
ing is one which typifies the analysis challenges. In order to evade anti-virus
detection, malware authors obfuscate their code; packers are software programs
that automate obfuscation [7]. When the packed binary is executed, it unpacks
its original code and then executes that. Packers are indeed effective at avoiding
signature-based detection: signatures must be manually created, while packed
versions are produced automatically.

Recent papers on practical topics in malware analysis have included some
discouraging decidability results. For example, Christodorescu et al. [2] describe
a technique for matching malware samples against hand-constructed templates
of malicious behavior. A program matches a template if and only if the program
contains an instruction sequence that contains the behavior specified by the



template. Christodorescu et al. prove this matching problem is undecidable: the
proof exhibits a template that, if matched, solves the halting problem for Turing
machines.

This paper examines the standard approach to decidability and complexity
in the context of malware analysis. Specifically, we make the following contribu-
tions:

– We critically analyze theoretical models used to prove prominent undecid-
ability results. We thoroughly examine the widely-held assumptions [1–5]
behind these results, and find that the assumptions about time and space
constraints are unrealistic.

– We introduce a new theoretical model for malware analysis, based on the
existing concept of RASP machines [8]. In the general case, RASP machines
have the computational power of Turing machines. As an example of our
approach, we use RASPs to formalize the problem of detecting traditional
unpacking behavior. We prove that under certain very loose and realistic
time and space assumptions, detecting unpacking is not only decidable, but
NP-complete.

– We acknowledge that NP-complete does not mean tractable. For inspiration
in dealing with intractable problems, we look to the three-decade-long effort
in hardware verification.

2 Motivation

There isn’t (and never will be) a general test to decide whether a piece
of software contains malicious code.

— IEEE Security & Privacy magazine, 2005 [3]

The mantra that malicious code detection is undecidable has pervaded the com-
munity’s consciousness, as the quote above indicates. The article even explains
the halting problem reduction that is typically used to prove undecidability re-
sults.

Indeed, we find the literature littered with claims that various malware tasks
are undecidable. We give several examples. The purpose of these examples is not
to point out errors in the proofs (most results are claimed without proof) but
to illustrate how widespread the opinion is.

Jang et al. aver that “malware analysis often relies on undecidable ques-
tions” [9]. Moser et al. describe several attacks against static analyzers; they
motivate this work by claiming that “[static] detection faces the challenge that
the problem of deciding whether a certain piece of code exhibits a certain be-
havior is undecidable in the general case” [10].

The MetaAware paper describes a static analysis for recognizing metamor-
phic variants of malware [11]. The authors claim that “determining whether
a program will exhibit a certain behavior is undecidable” and that the task of
checking whether a virus is a polymorphic variant of another virus is undecidable.



In the context of botnet analysis, Brumley et al. have examined “trigger-based
behavior” – code paths that are triggered by environmental conditions, such as
the occurrence of a particular date. They make similar claims: “deciding whether
a piece of code contains trigger-based behavior is undecidable” [4]. Newsome et
al. consider the problem of replaying executions, which requires searching for
inputs satisfying a program’s control flow. According to them, “finding a sat-
isfying input can be reduced to deciding the halting problem” [5]. Sharif et al.
describe a system for analyzing virtualization obfuscators; they claim that “the-
oretically, precisely and completely identifying an emulators bytecode language
is undecidable” [12].

The PolyUnpack paper, by Royal et al., describes an automated unpacker
which works by comparing any executed code against the executable’s static
code model [1]. Appendix A in that paper proves that detecting unpacking be-
havior is undecidable by giving a formal reduction from the halting problem
for Turing Machines. Many later papers cite PolyUnpack for exactly this de-
cidability result [13–18]. We formally examine packed code analysis in the next
section.

We emphasize that we do not mean that the respective authors are wrong in
their claims. We cite them to support the assertion that undecidability results are
a common thread in the automated malware analysis literature, common enough
to state without proof. They are part of the community’s collective consciousness
and thus potentially influence the work we pursue.

A ray of hope. Alongside the malware analysis community some decidability
results have slipped by. A small article appeared in 2003 that proved that a
bounded variant of Cohen’s decidability question is NP-complete [19]. Subse-
quently, another paper showed that detecting whether a program P is a meta-
morphic variant of Q is NP-complete, under a certain kind of metamorphic
transformation [20]. While their assumptions are somewhat restrictive, these
proofs should give us some hope – if, under suitable restrictions, these tasks
are decidable, can we use similar restrictions to obtain decidability for other
questions?

We believe so and exhibit proofs in this paper. Our key insight is that Turing
machines are too generous – they allow programs to use potentially infinite
amounts of time and space. But digital computers are not abstract; they are
limited along these most basic dimensions. We offer an example for comparison.
In the cryptographic literature, standard assumptions are much more realistic
than in most of the malware analysis literature. The attacker, Eve, is allowed
probabilistic polynomial time to accomplish her nefariousness [21]. By analogy,
we might consider malware models in which the malware is allowed polynomial
time to accomplish its malicious behavior.1

1 Some malware is persistent, so we might amend this analogy to say that the malware
is allowed polynomial time to accomplish its first malicious behavior.



3 RASP Model and Decidability Results

Proof roadmap. The following sections have a somewhat complex structure,
which we now explain.

3.1 We begin with a review of related work, including foundational models in
the theoretical malware analysis literature.

3.2 We introduce a Random Access Stored Program (RASP) machine that draws
heavily from prior work in algorithmic analysis [8, 22–24]. The RASP has the
same computational power as a Turing machine, but is more convenient for
formalizing unpacking behavior.

3.3 We introduce a novel element, the RASP interpreter. The interpreter is a
RASP program that interprets other RASP programs. It models a dynamic
analyzer and plays an important role in our reduction proofs.

3.4 We formalize the malware unpacking problem in terms of the RASP in-
terpreter. We prove that detecting unpacking is undecidable for RASPs –
complementing decidability results for Turing machines [1].

3.5 We show that if we restrict the space a RASP program is allowed, detecting
unpacking is decidable for RASPs.

3.6 We show that if we restrict the time a RASP program is allowed, detecting
unpacking is not only decidable, but NP-complete.

3.1 Related Work

The earliest decidability results for malware are found in Cohen’s classic work
on viruses [25, 26]. His work formalizes “viral sets,” pairs (M,V ) where M is
a Turing machine and for all v in V , there is a v′ in V that M can produce
when executed on v. Viral sets are clearly inspired by biological virus evolution.
Cohen proves a variety of theorems about viral sets. He proves, for instance, that
viral set detection is undecidable (Theorem 6), and that viruses are at least as
powerful as Turing machines as a means of computation (Theorem 7).

Shortly thereafter, Adleman’s work formalizes aspects of viruses and infection
using total recursive functions and Gödel numbering [27]. He shows that the virus
problems he considers are Π2-complete. Two years later, Thimbleby et al. [28]
describe a general mathematical framework for Trojans, also using recursion
theory; they show that Trojan detection is undecidable.

Chess and White [29] give an extension of Cohen’s Theorem 6; they show that
some viruses have no error-free detectors. They draw the conclusion that it is not
possible to create a precise detector for a virus even if you reverse engineer and
completely understand it. Filiol et al. [30] give a statistical variant of Cohen’s
result using his definitions. They show that the false positive probability of a
series of statistical tests can never go to 0, and thus that one can never write a
detector without some false positives.



3.2 RASP Machine

Elgot and Robinson [22] developed the RASP out of a desire to have a model of
computation more like a real computer than is a Turing machine, but with the
same computational power. Hartmanis [23] and Cook and Reckhow [8] proved a
number of fundamental results concerning RASPs. Aho et al. [24], in an early in-
fluential book on algorithms, promoted the RASP as a basic model for algorithm
analysis. Our treatment most closely follows Hartmanis [23].

The RASP is a von Neumann machine. It has an addressable memory that
stores programs and data, an instruction pointer ip that stores the address of the
current instruction, and a simple arithmetical unit – the accumulator register
ac. Our version of the RASP also has simple input/output operations.2

RASPs differ from real computers in two ways: they have infinitely many
memory locations M [i], where the addresses i are elements of N = {0, 1, 2, . . .},
and each M [i] stores an arbitrary integer from Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
There is no fixed word size. The RASP models program behavior in a natural
way, by reference to addresses and instructions. Unlike universal Turing ma-
chines, which must execute a large number of decoding instructions when they
emulate other Turing machines (particularly ones with a large tape alphabet), a
RASP interpreter emulates other RASPs in a straightforward manner (in fact,
in a manner similar to the operation of virtualization obfuscators [31]).

With RASPs it is easy to describe decidability and complexity results in
terms of asymptotic behavior as input size grows. In contrast, models of com-
putation with a fixed bound on memory size become obsolete when technology
changes because memory storage grows with each successive generation of digi-
tal computers. Sometimes word size also grows. Models of computation with a
fixed word size also require complicated (and usually irrelevant) multi-precision
arithmetic algorithms as input size increases. RASPs strike a balance between a
realistic model of computation and models suitable for asymptotic analysis.

In our instruction set architecture (ISA), an instruction consists of an opcode
and an operand. Opcodes are integers in the range 0 ≤ r < 16. To interpret any
integer n uniquely as an instruction, we write n = 16j + r, where r is the
opcode and j is the operand. Table 1 in Appendix A specifies a simple assembly
language for the 16 RASP instructions. The opcode associated with a particular
assembly language instruction is expressed as a mnemonic (such as load, stor,
etc.) and the addressing mode – either immediate, direct, or indirect addressing
– indicated by writing the operand j without brackets (j), within single angle
brackets (〈j〉), or within double angle brackets (〈〈j〉〉), respectively. For example,
the integer 39, viewed as an instruction, is 2 · 16 + 7: its operand is 2 and its
opcode is 7. Its assembly language representation is add 〈2〉. Thus, this is a direct
add instruction. We consult the operational semantics column in Table 1 to see
what should happen when this instruction executes. The table tells us that we

2 The RASP model we use differs from those in the works cited in one inessential
respect: program instructions take one word of memory rather than two; that is,
an instruction is a single integer. This design choice results in somewhat simpler
definitions of malware behavior.



must determine the r-value (denoted rval) of the operand. We find this in Table 2
(in Appendix A). Since j is 2, the rvalue of 〈j〉 is the value M [2]. The RASP
updates ac to be the value stored in M [2] plus the value in the ac register and
then increments the value in the ip register.

The Tables in Appendix A also specify the time cost for each instruction in
terms of the function l(i) defined by:

l(i) =

{
blg |i|c+ 1, if i 6= 0
1, if i = 0.

(1)

This is the approximate number of bits needed to represent i. Since the RASP
does not have a fixed word size, l(i) is roughly proportional to the time required
to process i during an instruction execution.

Continuing with our example, suppose that at some time during the execution
of a program, ac contains 128, ip contains 16, M [2] contains −8, and M [16]
contains 39. Since ip contains 16, the instruction stored in M [16] (viz., 39) is
executed. We have seen that this instruction is add 〈2〉. Its execution causes
rval (in this case, the value −8 at M [2]) to be added to ac, changing the value
stored there from 128 to 120. Finally, ip is incremented and its new value is 17.
Table 1 tells us that the cost of executing this instruction is l(ip) + l(ac) + rcost.
Table 2 tells us that rcost is l(2) + l(M [2]). Therefore, the cost of executing the
instruction is:

l(16) + l(128) + l(2) + l(−8) = 19.

We will say that the execution of an instruction takes one step, but this example
illustrates that the cost of an instruction step is variable.

The read instruction gets successive values from an input stream in and the
write instruction puts successive values into an output stream out. If the machine
reads and no input is available, it reads a 0.

A RASP program P is a pair (I,D), where I, the instruction set, is a partial
function I : N⇀ Z with finite domain dom(I), and D, the data set, is a partial
function D : N⇀ Z with finite domain dom(D). We also require that dom(I) ∩
dom(D) = ∅.

To begin executing a RASP program P = (I,D), the program is “loaded”
and the RASP initialized by setting M , ip and ac thusly:3

ip = 0 ac = 0 M [i] =

 I(i) i ∈ dom(I)
D(i) i ∈ dom(D)
0 otherwise

Executing P proceeds in a straightforward way. After loading, the RASP
enters a loop that fetches the next instruction M [ip] then decodes the instruction
and executes as specified in Tables 1 and 2. The machine halts if it reaches a

3 A more realistic initial value for M would not require zero content at locations outside
dom(I)∪dom(D) since a real computer typically runs many processes concurrently,
but this will suffice for our analysis.



halt instruction or if any memory operand references a negative address during
execution.

We may view a RASP program’s dynamic behavior as computing a partial
function that maps an input stream to an output stream. Alternatively, we may
think of a RASP program with read instructions as a nondeterministic machine.
Whenever a read instruction loads a value from the input stream in to a mem-
ory location, we view this as a nondeterministic choice. This nondeterministic
interpretation is apt if P is malware that initiates an undesirable computation
when it receives the appropriate external trigger.

RASP machines are equivalent in computational power to classical Turing
machines [22, 8]. This shows, in particular, that the halting problem for RASP
machines is undecidable. This will be important later.

Definition 1 (Time and space). The time for the execution of a RASP pro-
gram P = (I,D) on a particular input stream in is the sum of the costs of all
the instructions’ steps, or ∞ if the program does not halt.

The definition of space for an execution is slightly more subtle because we do
not include the space required for in or for dom(I)∪dom(D), unless one of these
locations is referenced.4 At any given step t of the execution, let A(t) be the set
of addresses that have been referenced by a stor or read instruction up to step t.
The space used at step t is:

s(t) = l(ip) + l(ac) +
∑
i∈A

(l(i) + l(M [i])).

The space for the execution is the maximum value of s(t) taken over all steps
t of the execution. It is not difficult to show that the space for an execution is
always bounded above by the time of that execution.

Careful readers will have noted that space is determined in terms of time
cost. This is done because our ISA uses simple operations (addition and sub-
traction) that run quickly relative to the input size. If we had chosen more
complex operations, our time and space characterization would change.

3.3 RASP Program Interpreter

In order to formulate our main results, we require a RASP interpreter, which
we dub Rasputin. Rasputin is a RASP program (IR, DR) that reads an integer
sequence 〈P,w〉 encoding a RASP program P = (I,D) and a finite input w for
P , then emulates P ’s execution on input w. Recall that if P were loaded directly
into a RASP, location j0 gets I(j0), j1 gets I(j1), and so on; and location k0
gets D(k0), k1 gets D(k1), and so on. 〈P,w〉 is simply a sequence of these pairs;
specifically, it is a listing of the pairs in the graph5 of I,

j0, I(j0), j1, I(j1), . . . , jr, I(jr)

4 This allows us to consider sublinear space bounds.
5 The graph of a function is the set of all of the pairs that define it.



followed by a delimiter −1. That is then followed by a listing of the pairs in the
graph of D,

k0, D(k0), k1, D(k1), . . . , ks, D(ks)

followed by a delimiter −1, followed by a listing of the integers w0, w1, . . . , wu

in w.
Rasputin uses three special memory locations in dom(DR): sip, the stored

instruction pointer address; sac, the stored accumulator address; and sopr, the
stored operand address. The data values are DR(sip) = b, DR(sac) = 0, and
DR(sopr) = 0, where b is a base offset larger than any address in dom(IR) ∪
dom(DR).

We describe Rasputin’s instructions in English, but they are straightforward
to implement as a RASP program. Rasputin first reads the initial part of 〈P,w〉,
specifying the graph pairs of I and D. As it reads, it stores them relative to its
base address b: thus, M [b+ j]← I(j) for every j ∈ dom(I) and M [b+ j]← D(j)
for every j ∈ dom(D).

Next, Rasputin enters a fetch-decode-execute loop. During each cycle, it trans-
fers the instruction j whose address is in sip to the accumulator. It then decodes
j into an opcode r and operand q, where j = 16q+ r, and stores these values in
the accumulator and sopr.6 Next, by alternately executing bpa instructions and
decrementing the value in the accumulator, Rasputin finds the section in its pro-
gram that will execute instruction j. At this point, it carries out the operational
semantics in Tables 1 and 2, with sip and sac substituted for ip and ac, and with
offset addresses whenever they are needed. It then repeats the cycle.

We offer this drawn-out description to emphasize that Rasputin is a well-
behaved program. Whatever the input 〈P,w〉 may be, Rasputin will not execute
an instruction outside of those in IR or modify any of the instructions inside IR.
Rasputin is not malware.

Below, we use Rasputin to represent a dynamic analyzer. Rasputin observes
RASP code as it executes, and it may modify its behavior in response to what
it sees.

3.4 Formalizing Unpacking Behavior

We begin by using the RASP model to exhibit a version of the undecidability
result of the PolyUnpack paper [1]. Our proof improves upon previous work by
providing a precise and intuitive characterization of unpacking behavior (Defi-
nition 2). It also justifies the fact that our model is just as general as a Turing
machine. The basic fact we need is the undecidability of the following problem.

Theorem 1 (Halting Problem for RASPs). Given: RASP program P =
(I,D) and finite input sequence x. Question: Does P halt when it executes with
input x?

6 The RASP code required to do this when j is positive involves generating powers of 2
by repeated doubling until one at least as large as j is generated, using these powers
of 2 to determine the binary representation of j, and then from this computing r
and q. The procedure when j is negative is similar.



Proof. We have immediately that this problem is undecidable by the Elgot-
Robinson [22] result giving an effective transformation from Turing machines into
equivalent RASP programs and from the undecidability of the Halting Problem
for Turing Machines. ut

Now we come to the main definition of this section.

Definition 2 (Unpacking Behavior). Let P = (I,D) be a program and x a
sequence of inputs. P is said to exhibit unpacking behavior (or to unpack) on x
if, at some point during execution, ip 6∈ dom(I) (data-execution) or P stores to
an address in dom(I) (self-modification).

From this, we formalize the problem of detecting unpacking. We demonstrate
two independent results. Theorem 2 mirrors Royal et al. [1]. Theorem 3 is the
general case of the problem of greatest import.

Definition 3 (Special Unpacking Problem). Given: RASP program P =
(I,D) and finite input sequence x. Question: Does P unpack on input x?

Theorem 2. The Special Unpacking Problem is undecidable.

Proof. Reduce the Halting Problem for RASP machines (Theorem 1) to the
Special Unpacking Problem.

First, we describe a modification of Rasputin we will call Evil Rasputin. Evil
Rasputin is a RASP program (IE , DE) obtained from Rasputin by replacing Ras-
putin’s halt conditions (viz. emulation of a halt instruction or an attempt by the
emulated program to reference a negative address) with a jmp instruction to an
address not in dom(IR). (This involves inserting checks for negative addresses
and branches at appropriate points in IR.)

Now, P halts on input w if and only if Evil Rasputin unpacks on input x =
〈P,w〉. This reduces the Halting Problem for RASPs to the Special Unpacking
Problem. If there were a decision algorithm for the latter problem, there would be
one for the former problem, as well. This would be a contradiction to Theorem 1.

ut

Definition 4 (Unpacking Problem). Given: RASP program P = (I,D).
Question: Is there a finite input sequence x such that P unpacks on x?

Theorem 3. The Unpacking Problem is undecidable.

Proof. The proof is very similar to the proof of Theorem 2. Reduce the Halting
Problem for RASPs to the Unpacking Problem.

Let P be a RASP program and x an input (i.e., a finite integer sequence) for
P . We describe a modified version of Evil Rasputin called Evil RasputinP,x, which
has no read instructions. Instead, P and x are preloaded in the data section
section, DE . Rather than reading 〈P, x〉 from an input stream, Evil RasputinP,x

transfers values from its data section to the appropriate locations. In all other
respects, it behaves in the same way as Evil Rasputin. In particular, Evil Raspu-
tinP,x unpacks (irrespective of its input since it has no reads) if and only if P



halts on input x. Thus, the mapping from 〈P, x〉 to Evil RasputinP,x is a reduction
from the Halting Problem for RASPs to the Unpacking Problem. If there were
a decision algorithm for the latter problem, there would be one for the former
problem, as well. Again, this would be a contradiction. ut

3.5 Space bounded RASP

The undecidability results of the previous section do not address the real issue of
malware detection because no real machine looks like our RASP. Real machines
cannot store arbitrary sized integers in every memory location. Real machines do
not have an infinite set of memory registers. Real machines have fixed resources.
We therefore present a restriction of the RASP model by bounding space in
terms of input size. This is analogous to the restriction used for Linear Bounded
Automata [32].

Definition 5 (Space bounded RASP). A Γ -space bounded RASP program
is a RASP program that uses space at most Γ (n) on all inputs of size n. A
Γ -space bounded RASP is one that executes only Γ -space bounded programs. It
executes programs in exactly the same way as a RASP, except that on inputs
of size n, if a program ever attempts to use more than space Γ (n), the Γ -space
bounded RASP will halt.

The following problem is a step toward formulating a more realistic goal for
static malware detection.

Definition 6 (Space Bounded Unpacking Problem). Given: Computable
function Γ , Γ -space bounded RASP program P , and integer k > 0. Question:
Is there an input x with l(x) ≤ k such that P unpacks on input x?

Theorem 4. The Space Bounded Unpacking Problem is decidable.

Proof. We describe an algorithm to decide the Space Bounded Unpacking Prob-
lem. Let the size of a finite integer sequence w be l(w) =

∑
i∈w l(i).

First, consider a specific x with n = l(x) ≤ k. P is restricted to space at
most Γ (n) = s on input x. A configuration for P at any step of its execution
is a list of all of the information needed to determine future actions of P . More
precisely, the configuration at a given step is a list of the following:

1. the contents of ac;
2. the contents of ip;
3. a list of all of the addresses that have been referenced up to this step, and

their contents; and
4. the number of integers in the input sequence x that remain to be read.

From this, we will determine an upper bound for the total possible number of
configurations.

First, note that there are precisely 2s nonnegative integers i with l(i) ≤ s, viz.,
the integers in A = {0, 1, . . . , 2s − 1}. Also, there are precisely 2s+1 − 1 integers



i with l(i) ≤ s, viz., the integers in B = {−(2s − 1),−(2s − 2), . . . , 2s − 1}. The
contents of ip must be from A. The contents of ac must be from B. When P
executes on input x, every address in A has either never been referenced, or
its contents are in B. Moreover, only addresses in A could possibly have been
referenced. Thus, for item 1 above, there are at most 2s+1 − 1 possibilities; for
item 2, there are at most 2s possibilities; for item 3, there at most (2s+1)2

s

possibilities; and for item 4, there are at most n + 1 possibilities. Therefore,
there are at most the following possible configurations:

b(n) = (2s+1) · 2s · 2(s+1)2s · (n+ 1)

Now to see if P unpacks on a given x, use an augmented Rasputin to emulate
P ’s execution on x. After each step, check to see if P has unpacked, and if it
has, report the result. If, at some point, P halts and no unpacking behavior
has occurred, report that result. Keep a tally of the number of emulated steps.
When the tally exceeds b(n), we know that we are in an infinite loop, so if no
unpacking behavior has been observed up to that point, it never will be. Report
that result.

Apply the algorithm outlined above for every x such that l(x) ≤ k. There
are only finitely many such x’s, so we can decide if unpacking behavior ever
occurs. ut

Real computers are all space bounded, in fact, constant space bounded.
Therefore, detecting unpacking behavior for real computers is decidable. Unfortu-
nately, for real computers the algorithm given in the proof above has an execution
time many orders of magnitude greater than the lifetime of the universe, so the
result appears to be of only theoretical interest. But all is not lost. Researchers in
areas of computer security, such as cryptography, have long recognized that even
malevolent adversaries must have bounded computational resources, particularly
time resources.

3.6 Time Bounded RASP

Our formalization is similar to the space bounded case.

Definition 7 (Time bounded RASP). Let ∆ : N → N be a computable
function. A ∆-time bounded RASP program is a RASP program that uses time at
most ∆(n) on all inputs of size n. A ∆-time bounded RASP is one that executes
only ∆-time bounded programs. It executes programs in exactly the same way as
a RASP except that on inputs of size n, if a program ever attempts to use more
than time ∆(n), the ∆-time bounded RASP will halt.

Definition 8 (Time Bounded Unpacking Problem.). Given: ∆-time bounded
RASP program P and integer k > 0. Question: Is there an input x with l(x) ≤ k
such that P unpacks on input x?

Theorem 5. The Time Bounded Unpacking Problem is decidable.



Proof. The proof is completely trivial. P is always guaranteed to halt within
time ∆(n) for all x of size n = l(x) ≤ k. Run P on all such x’s to see if it
exhibits unpacking behavior. ut

Why should we bother to include such an obvious result? The reason is that
the restricted version of this very question is the one that the malware analysis
community should be considering.

So far we have shown that, when suitably restricted, detecting unpacking for
RASP machines is decidable. The restrictions we imposed are realistic: in reality,
the attacker has a finite amount of space or time to do damage.

It is difficult to grasp how these results can be applied. Malware does not
come with a computable function ∆ and it would be time consuming to express
the cost of each instruction on a real architecture, such as the x86. We also do
not generally know the input size. Therefore, we formulate a restricted version
of Theorem 5 that is in terms of the number of steps (i.e., machine instructions)
used.

Here t is an integer, rather than a function of the input size. It is customary
in complexity theory to express results of this type using unary notation for the
bound. That is, the integer t is represented as

11 · · · 1︸ ︷︷ ︸
t times

or, more succinctly, 1t. The reason we use this is so that algorithms of polynomial
time complexity in t are expressed asymptotically as O(tk) instead of O((lg t)k)
for some k > 0.

Definition 9 (Time Guarantee Unpacking Problem). Given: RASP pro-
gram P and unary integer 1t. Question: Is there an input x with such that P
unpacks on input x within time t?

Notice that we may also assume that l(x) ≤ t in this problem since input
cost is one of the terms summed to derive execution time for P .

Theorem 6. The Time Guarantee Unpacking Problem is NP-complete.

Proof. The proof has two steps: we show that the bounded unpacking problem
is in NP and exhibit a reduction from 3-sat to it.

Bounded unpacking behavior is in NP. We simply execute P under Rasputin for
up to time t. Whenever Rasputin requires an input integer, we nondeterminis-
tically generate an integer j with l(j) ≤ t. After each step of the emulation,
we check for unpacking behavior. This is a nondeterministic polynomial time
algorithm.



Bounded unpacking behavior is NP-hard. We reduce (in polynomial time) 3-sat
to the Time Guarantee Unpacking Problem. 3-sat is the problem of deciding if a
given 3-cnf Boolean formula ϕ is satisfiable. A conjunctive normal form (CNF)
formula is a conjunction of clauses; a clause is a disjunction of literals; a literal
is a Boolean variable x or its negation ¬x. In a 3-cnf formula, each clause has
exactly three disjuncts.

In order to satisfy a 3-sat formula ϕ, we need an assignment. An assign-
ment α is a function from ϕ’s variables into {0, 1}. A negative literal ¬x is
satisfied if α(x) = 0, and unsatisfied otherwise. A positive literal x is satis-
fied if α(x) = 1, and unsatisfied otherwise. A clause is satisfied if any of its
literals are satisfied. And a formula is satisfied if all of its clauses are satis-
fied. For example, a satisfying assignment of the following Boolean formula is
α(x1) = 1, α(x2) = 0, α(x3) = 0, α(x4) = 1.

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) (2)

Let ϕ be an arbitrary 3-sat formula whose variables are x1, x2, . . . , xn. We
can encode ϕ as follows:

– Each variable xi is represented as a positive integer i.
– Each negated variable ¬xi is represented as a negative integer −i.
– A 3-cnf formula is represented by a sequence of integers representing its

literals in the order they occur in the list of clauses, followed by a terminating
0. For example, formula 2 above is represented as

1, 2,−3,−1, 3, 4, 2, 3, 4, 0.

Since each clause has exactly three literals, this is an unambiguous represen-
tation.

Now it is a fairly simple task to write a polynomial time RASP program, which
we dub Raspberry, to check satisfiability of 3-cnf formulas. Raspberry takes as
input a sequence 〈ϕ,w〉 consisting of the representation of ϕ, followed by a 0,
followed by a sequence of n 0s and 1s representing an assignment to the Boolean
variables x1, x2, . . . , xn, followed by a −1. Raspberry stores these integers in con-
secutive memory locations and then cycles through the integers representing ϕ
to verify that in each clause at least one literal is satisfied.

Just as we turned Rasputin to the dark side by transforming it into Evil
Rasputin, we transform Raspberry, an innocent program, into Wild Raspberry, a
program that unpacks if it determines that w is a satisfying truth assignment
for ϕ. Finally, for each Boolean formula ϕ, we create a RASP program Wild
Raspberryϕ, where ϕ is hard coded into the data set. The mapping from ϕ to
Wild Raspberryϕ is polynomial time computable, and ϕ is satisfiable if and only
if Wild Raspberryϕ exhibits unpacking behavior within time t, where t is deter-
mined by the polynomial time bound for Raspberry. This is a reduction from an
NP-complete problem 3-sat to the Time Guarantee Unpacking Problem, thus
proving NP-completeness of that problem. ut



We have shown that the bounded unpacking problem is not only decid-
able, but NP-complete. A natural reaction to these results is, “Undecidable,
NP-complete – doesn’t matter. Either way we can’t solve it!” The next section
challenges this idea by reviewing approaches to intractable problems from other
disciplines.

4 Approaching the Intractable

Intractable problems are encountered in many disciplines; we might therefore
expect a large diversity of approaches to solving these problems. Indeed, there
are many different algorithms and models, but effective approaches exploit a
combination of optimization and parallelism. Important recent breakthroughs
in computer science and computational science are made possible by exactly
these techniques:

– Special-purpose hardware was built for Anton, a molecular dynamics simu-
lation machine [33].

– Stevens et al. demonstrate chosen-prefix collisions in the MD5 cryptographic
hash algorithm, computed in 6 months with thousands of machines [34].

Problems from many disciplines have been proven NP-complete [35]. In the
particular domain of hardware verification, NP-complete problems have been a
central topic of investigation for the past three decades. The focus of much of the
work has been in increasingly clever search strategies. In the following section,
we examine this field in depth in order to gather some lessons learned.

4.1 Formal Hardware Verification and the Intractable

Formal modeling and verification of complex hardware and software systems has
advanced significantly over the past three decades, and formal techniques are
increasingly seen as a critical complement to traditional verification approaches,
such as simulation and emulation. The foundational work was established in the
early 1980s with the introduction of model checking (MC) as a framework for
reasoning about the properties of transition systems [36, 37]. A model checker’s
fundamental goal is to prove that states that violate a given specification f
cannot be reached from M ’s initial (reset) states or to provide a counterexample
trace (a state sequence) that serves as a witness for how f can be violated.
Computationally, to verify the query “does M satisfy f” a model checker needs
to perform some sort of (direct or indirect) reachability analysis in the state
space of M . Since a transition system with n state elements (e.g., flip-flops) has
2n states, model checkers have had to cope with the so-called state explosion
problem, and much of the research in MC over the past thirty years has been
primarily focused on attacking this problem [38]. MC for these properties (e.g.,
“X is true in all states” or “we shall not reach state Y”) is NP-complete [39].
The next few paragraphs review some significant milestones along this journey.



The EMC model checker [40], developed in the early 1980s, was based on an
explicit representation of the state transition system. This system was able to
handle up to about 105 states or roughly 16 flip-flops. The system was based on
a naive enumeration of each state.

Subsequent checkers leveraged the key insight of implicit state representa-
tions. The use of binary decision diagrams (BDDs) to represent sets of states
by characteristic Boolean functions enabled MC to scale to about 1020 states or
about 66 flip-flops [41]. The key insight here was to reason about sets of related
states as a unit, rather than as individuals.

The development of modern conflict-driven clause-learning (CDCL) Boolean
satisfiability (SAT) solvers in the mid 1990s [42–44] provided another opportu-
nity to scale model checkers to larger design sizes. This use of SAT solvers to
perform MC was dubbed bounded model checking (BMC) [45] to contrast it
with the unbounded BDD-based MC and it proved extremely useful for finding
“shallow bugs.” BMC extended the range of designs that could be handled to
those containing several hundred flip-flops and relatively short counterexamples
(10 steps or less) [46]. The key insight of this approach was to trade completeness
(it would miss bugs) for scalability (it would find shallow bugs quickly).

An orthogonal attack on complexity was based on abstracting the underly-
ing transition system. Abstraction methods create an over-approximation of the
transition relation with the hope of making it more tractable for analysis. The
technique was popularized by Clarke et al. [47, 48] who showed its effectiveness
in scaling symbolic MC by verifying a hardware design containing about 500 flip-
flops. The key insight was a system absent of some of its details was sometimes
sufficient for proving the properties of interest.

The latest development to address the state explosion problem in MC is a
clever deployment of incremental SAT solving to check the property f without
the need to unroll the transition relation. The original idea was described by
Bradley et al. [49, 50] and implemented in the IC3 tool. IC3 is able to solve
systems with around 5,000 flip-flops. The key insight here was to summarize
important facts about program state transitions on demand as the search pro-
gresses.

We have seen a variety of clever search strategies that help increase the de-
sign sizes for which we can prove properties. Implicit and over-approximate state
representations, more intelligent underlying solvers, and on-demand characteri-
zation of important facts all contributed to current methods that can precisely
analyze systems with thousands of flip-flops.

5 Malware analysis, Reprise

We have shown, under realistic assumptions about victim machines and attacker
resources, that several important malware analysis questions are decidable rather
than undecidable, as previously thought. The above example in hardware verifi-
cation highlights a sequence of approaches for dealing with intractabile problems.



In general, when optimization [51] and parallelization [52] reach their limits, we
employ a variety of approaches to coping with intractability [53]:

– Finding good average case algorithms rather than worse case algorthims (i.e.,
those algorithms which are fast most of the time);

– Using approximate algorithms (i.e., algorithms that provide bounds on qual-
ity and speed, but are not optimal);

– Qualitatively changing the amount of computation available (i.e, using FP-
GAs and GPUs or more radically, and more speculatively, quantum comput-
ing);

– Examining parameterization of the problems for which solutions are possible
(i.e., acknowledging that an algorithm may not need to work on all inputs);

– The use of heuristics (i.e., algorithms that find solutions which are “good
enough”).

An important consequence of our results is the ability to derive ground truth
for the community. Even if precise systems do not scale to realistic malware
rates (tens of thousands per day), they still can be used to evaluate more scalable
techniques by providing ground truth. It should be possible to construct a system
where, if malware A and B are variants of one another, the system always tells
you so. It might take an inordinate amount of time to do so, but, when it finally
does, one has very high confidence in the result. We are investigating exactly
this question.

Limitations. It is important to note that we do not address virtualization ob-
fuscators [31, 54]; we only address traditional unpacking mechanisms. We have
not found a crisp definition of what it means for a program to be virtualization-
obfuscated that does not depend on the particular details of the obfuscation
mechanism. If we address a particular virtualization obfuscator, we may be able
to formulate detection problems that are decidable under assumptions similar
to those presented here.

Conclusion. We have shown that by either restricting the space or the time
that a program is allowed, we can decide whether a program unpacks; indeed,
it is NP-complete. A natural question to ask is: for how many steps should
we execute? While we do not yet have a definitive answer for the question,
we instead offer the following vision of the future. Imagine a world where you
download an untrusted executable and your personal anti-virus (AV) product
performs a combined static and dynamic analysis on your laptop. In a minute or
two, the AV product says, “Program this-is-definitely-not-a-virus.exe

will not unpack, nor does it evolve into a known virus for the next 6 months.”
This would be a fantastic guarantee!

Although this situation seems far from reality, it is not out of the question.
If – with a combination of abstraction, refinement, clever search strategies, and
perhaps even special purpose hardware – we can produce time-based guarantees
of (a lack of) malicious behavior, we will have reached an important milestone
in the automated analysis of malicious software.
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A Appendix – RASP Tables



Table 1. Operational semantics and time cost for the sixteen RASP instructions. Most
mnemonics are obvious; one that isn’t is bpa, which stands for “branch on positive ac-
cumulator.” Instructions have several addressing modes. The instruction cost depends
on the addressing mode; see Table 2 for details. (The definition of l(·) is equation 1 on
page 6.) This ISA allows direct formalization of unpacking behavior.

Mnemonic Operand Opcode Operational Semantics Time Cost

halt 0 halt 1

load j 1 ac← rval; ip++; l(ip) + rcost

〈j〉 2

〈〈j〉〉 3

stor 〈j〉 4 M [lval]← ac; ip++; l(ip) + l(ac) + lcost

〈〈j〉〉 5

add j 6 ac← ac + rval; ip++; l(ip) + l(ac) + rcost

〈j〉 7

sub j 8 ac← ac− rval; ip++; l(ip) + l(ac) + rcost

〈j〉 9

jmp j 10 ip← rval; rcost

〈j〉 11

bpa j 12 if (ac > 0) then ip← rval; l(ip) + l(ac) + rcost

〈j〉 13 else ip++;

read 〈j〉 14 M [lval]← in; ip++; l(ip) + l(in) + lcost

write 〈j〉 15 out← rval; ip++; l(ip) + rcost

Table 2. Values and costs for the three addressing modes. The costs allow us to analyze
asymptotic behavior as machine word and input size grow, and allow us to formulate
the restrictions on time and space crucial for our decidability results.

Mode Operand rval rcost lval lcost

immediate j j l(j)

direct 〈j〉 M [j] l(j) + l(M [j]) j l(j)

indirect 〈〈j〉〉 M [M [j]] l(j) + l(M [j]) + l(M [M [j]]) M [j] l(j) + l(M [j])


