
Small is Better: Avoiding Latency Traps in Virtualized Data
Centers

Yunjing Xu, Michael Bailey, Brian Noble, Farnam Jahanian
University of Michigan

{yunjing, mibailey, bnoble, farnam}@umich.edu

Abstract
Public clouds have become a popular platform for
building Internet-scale applications. Using virtualiza-
tion, public cloud services grant customers full con-
trol of guest operating systems and applications, while
service providers still retain the management of their
host infrastructure. Because applications built with pub-
lic clouds are often highly sensitive to response time, in-
frastructure builders strive to reduce the latency of their
data center’s internal network. However, most existing
solutions require modification to the software stack con-
trolled by guests. We introduce a new host-centric so-
lution for improving latency in virtualized cloud envi-
ronments. In this approach, we extend a classic schedul-
ing principle—Shortest Remaining Time First—from
the virtualization layer, through the host network stack,
to the network switches. Experimental and simulation
results show that our solution can reduce median latency
of small flows by 40%, with improvements in the tail of
almost 90%, while reducing throughput of large flows
by less than 3%.

Categories and Subject Descriptors: D.4.4 [Oper-
ating Systems]: Communications Management; D.4.8
[Operating Systems]: Performance
Keywords: cloud computing, virtualization, latency

1 Introduction
Large data centers have become the cornerstone of mod-
ern, Internet-scale Web applications. They are necessary
for the largest of such applications, but they also provide

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of the United States govern-
ment. As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
SoCC’13, October 01 - 03 2013, Santa Clara, CA, USA. Copyright is
held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2428-1/13/10$15.00.
http://dx.doi.org/10.1145/2523616.2523620

economies of scale for many others via multi-tenancy.
Such data centers must support significant aggregate
throughput, but also must ensure good response time for
these Web applications. This is easier said than done. For
example, fulfilling a single page request on Amazon’s
retail platform typically requires calling over 150 ser-
vices, which may have inter-dependencies that prevent
them from being requested in parallel [15]. For this class
of applications, latency is critical—and its improvement
lags behind other measures [34]. Worse, low average re-
sponse time is insufficient—the tail of the latency distri-
bution is a key driver of user perception [3, 4, 52].

We are not the first to recognize this, and progress
has been made in both data center networking [3, 44,
4, 52, 41, 23] and operating system support [37, 22, 32].
However, the increasing importance of public cloud ser-
vices like Amazon’s Elastic Compute Cloud (EC2) [6]
presents new challenges for latency-sensitive applica-
tions. Unlike dedicated data centers, a public cloud relies
on virtualization to both hide the details of the underly-
ing host infrastructure as well as support multi-tenancy.

In virtualized environments, control of the host in-
frastructure and the guest virtual machines (VMs) are
separate and tend to operate at cross purposes. This
well-known challenge of virtualization (i.e., the seman-
tic gap [13]) is exacerbated by multi-tenancy in the
cloud—cloud providers administer the host infrastruc-
ture, while disparate customers control guest VMs and
applications. Both virtualization and multi-tenancy cre-
ate significant challenges for existing latency reduction
methods because cloud providers must be host-centric.
That is, they should neither trust the guest VMs nor re-
quire their cooperation. For example, cloud providers
may wish to deploy new congestion control mechanisms
tailored for data center traffic [3, 4], but lack the abil-
ity to control a guest’s choice of TCP algorithms. Like-
wise, new packet scheduling mechanisms that rely on
applications to provide scheduling hints (e.g., priority or
deadline) [44, 41, 23, 52, 5] are untenable unless cloud
providers can fully trust guests to provide such informa-
tion honestly and correctly.

In this paper, we introduce a novel host-based solution
that tackles the need for improved latency in cloud en-
vironments. Our solution is surprisingly simple, though
it comes with a twist. We apply the Shortest Remaining
Time First (SRTF) scheduling policy—known to mini-
mize job queueing time [39]—to three different areas of
the system: the VM scheduler, the host network stack,
and the data center switches. Using this solution, we can
reduce mean latency of small flows by 40%, with im-
provements in the tail of almost 90%, while reducing
throughput of large flows by less than 3%.

Although these gains are significant, we expect that
more work is required. Much like the work of scaling
up to an ever larger number of shared-memory CPU
cores [12], there is no silver bullet that solves the “la-
tency problem.” Instead, it is death by a thousand cuts.
For example, we argue that the VM scheduler is biased
too far towards throughput rather than latency for this
workload mix, delaying interrupt processing by tens of
milliseconds in some cases. In the host network stack,
we uncover obscured short tasks by applying software
packet fragmentation earlier in the stack. On data cen-
ter switches, we prioritize flows of small size, which
is inferred in the host, much like CPU schedulers in-
fer short tasks. While finding each of these problems
takes time, solving each is relatively straightforward—a
few hundred lines of code in total for all three mecha-
nisms. However, once you remove one stumbling block,
another appears just down the road [27]. Despite this, we
believe that consistently applying latency-aware tech-
niques will continue to bear fruit.

2 Background and Related Work
Data center network latency Based on the design re-
quirements, we classify existing latency reduction so-
lutions as being kernel-centric, application-centric, or
operator-centric.

DCTCP [3] and HULL [4] are kernel-centric solu-
tions, because among other things, they both require
modifying the operating system (OS) kernel to deploy
new TCP congestion control algorithms. On the other
hand, applications can enjoy low-latency connections
without any modification.

D3 [44], D2TCP [41], DeTail [52], PDQ [23], and
pFabric [5] are application-centric solutions. While
some of them also require modifying the OS kernel or
switching fabrics, they share a common requirement.
That is, applications must be modified to tag the packets
they generate with scheduling hints, such as flow dead-
line or relative priority.

Operator-centric solutions require no changes to ei-
ther OS kernel or applications, but they do require op-
erators to change their application deployment. For ex-

ample, our prior work, Bobtail [51], helps operator de-
termine which virtual machines are suited to deploy
latency-sensitive workloads without changing the appli-
cations or OS kernel themselves.

In a virtualized multi-tenant data center, all of these
solutions are in fact guest-centric—they require chang-
ing the guest OS kernel, the guest applications them-
selves, or the way guest applications are deployed—
none of which are controlled by cloud providers. In con-
trast, the solution we propose is host-centric—it does not
require or trust guest cooperation, and it only modifies
the host infrastructure controlled by cloud providers.

EyeQ also adopts a host-centric design [26]. While it
mainly focuses on bandwidth sharing in the cloud, like
our work, EyeQ also discusses the trade-offs between
throughput and latency. In comparison, our solution does
not require feedback loops between hypervisors to co-
ordinate, and it does not need explicit bandwidth head-
room to reduce latency. Additionally, the bandwidth
headroom used by EyeQ only solves one of the three
latency problems addressed by our solution.

EC2 and the Xen hypervisor Amazon’s Elastic Com-
pute Cloud (EC2) [6] is a major public cloud service
provider used by many developers to build Internet-scale
applications. Measurement studies are devoted to under-
standing the performance of the EC2 data center net-
work [43] and applications [38, 30, 10]. These stud-
ies find that virtualization and multi-tenancy are keys
to EC2’s performance variation. In particular, workloads
running in EC2 may exhibit long tail network latency if
co-scheduled with incompatible VMs [51]. In this paper,
we consider this co-scheduling problem as one of three
major latency sources, and we design a holistic solution
to solve all three problems at the host level.

EC2 uses the Xen hypervisor [9] to virtualize its hard-
ware infrastructure [43]; thus, we also choose Xen to
discuss our problems and solutions. Xen runs on bare-
metal hardware to manage guest VMs. A privileged
guest VM called dom0 is used to fulfill I/O requests
for non-privileged guest VMs; other virtualization plat-
forms may have a host OS to process I/O requests for
guest VMs. Because Xen’s dom0 and the host OS are
functionally equivalent for the discussion in this paper,
we use these two terms interchangeably despite their
technical difference.

Virtual machine scheduling To improve Xen’s I/O
performance, new VM scheduling schemes, such as vS-
licer [49], vBalance [14], and vTurbo [48], are pro-
posed to improve the latency of interrupt handling by
using a smaller time slice for CPU scheduling [49, 48]
or by migrating interrupts to a running VM from a
preempted one. However, unlike our host-centric de-
sign, these approaches either require modifications to

the guest VMs [14, 48] or to trust the guests to specify
their workload properties [49], neither of which are eas-
ily applicable to public clouds. Similarly, the soft real-
time schedulers [31, 29, 47] designed to meet latency tar-
gets also require explicit guest cooperation. In addition,
by monitoring guest I/O events and giving preferential
treatment to the I/O-bound VMs, their I/O performance
can be improved without any guest changes [17, 28, 24].
In comparison, our design does not require such gray-
box approaches to infer guest VM I/O activities, and thus
avoids the complexity and overhead.

Meanwhile, using hardware-based solutions like In-
tel’s Virtual Machine Device Queues (VMDq) [25],
guest VMs can bypass the host operating system to han-
dle packets directly and significantly improve their net-
work I/O performance. The deployment of such hard-
ware would eliminate the need to modify the host oper-
ating system to reduce the queueing delay in its software
queues, which solves one of three latency problems dis-
cussed in this work. On the flip side, our modification to
reduce the latency in the host network stack is software-
only so that it is also applicable to the physical machines
without the advanced hardware virtualization support.

Shortest remaining time first SRTF is a classic
scheduling policy known for minimizing job queueing
time [39] and widely used in system design. For net-
working systems, Guo et al. use two priority classes—
small and large flows—to approximate the SRTF pol-
icy for Internet traffic; it obtains better response time
without hurting long TCP connections [18]. Similarly,
Harchol-Balter et al. change Web servers to sched-
ule static responses based on their size using SRTF
and demonstrate substantial reduction in mean response
time with only negligible penalty to responses of large
files [20]. In addition, pFabric uses SRTF to achieve
near-optimal packet scheduling if applications can pro-
vide scheduling hints in their flows [5]. In this paper,
we apply SRTF holistically to three areas of virtualized
data center infrastructure by following the same princi-
ple as these existing systems. Importantly, we approxi-
mate SRTF without requiring guest cooperation or ex-
plicit resource reservation.

3 Motivation
This section motivates the work by demonstrating three
latency traps in a virtualized multi-tenant environment.
Using live EC2 measurement and testbed experiments,
we show that these problems not only have significant
impact on inter-VM network latency separately, but they
also affect different parts of the latency distribution or-
thogonally. Thus, we need a holistic solution to tackle
all three problems together.

Host OS

VM2 VM3VM1

Physical Machine

Switch

VM scheduling delay1

Host network
queueing delay

2

Switch
queueing

delay
3

Virtualization layer

Figure 1: Three possible latency sources.

3.1 Sources of latency
Figure 1 shows three possible latency sources. To un-
derstand them, consider a simple scenario where a client
VM sends queries to a server VM for its responses. The
time from the client to send a query and receive a com-
plete response is defined as flow completion time (FCT).

(1) VM scheduling delay. When query packets arrive
at the physical host running the server VM, that VM is
notified of the reception. But the server VM cannot pro-
cess the packets until scheduled by the hypervisor; this
gap is called scheduling delay [24]. While such delay is
usually less than one millisecond, it may occasionally
be as large as tens of milliseconds for Xen’s default VM
scheduler [46, 16], if there are many VMs sharing the
physical host with the server VM. This is a real problem
observed in EC2 and it causes large tail latency between
EC2 instances [51]. Such delay may also exist for ap-
plications running on bare-metal operating systems, but
the added virtualization layer substantially exacerbates
its impact [43].

(2) Host network queueing delay. After the server
VM processes the query and sends a response, the re-
sponse packets first go through the host network stack,
which processes I/O requests on behalf of all guest VMs.
The host network stack is another source of excessive
latency because it has to fulfill I/O requests for multiple
VMs, which may contend to fill up the queues in the host
network stack. In fact, reducing queueing delay in the
kernel network stack has been a hot topic in the Linux
community, and considerable advancements have been
made [22, 32]. However, these existing mechanisms are
designed without virtualization in mind; the interaction
between the host network stack and guest VMs compro-
mises the efficacy of these advancements.

(3) Switch queueing delay. Response packets on the
wire may experience switch queueing delay on con-
gested links in the same way as they do in dedicated data
centers. Measurement studies show that the RTTs seen

Cloud
Network

Server VM

Client VM

Good VM
Server VM

Bad VM
Physical Machine Physical Machine

Physical Machine

VMs of a second
account

Figure 2: The setup of the EC2 measurements.

on a congested link in dedicated data centers vary by two
orders of magnitude [3, 52]; virtualized data centers are
no exception. What makes this problem worse in public
clouds is that guest VMs on the same host may contend
for limited bandwidth available to that host without the
knowledge of each other. To continue our example, if
the client VM is sharing hardware with a neighbor that
receives large bursts of traffic, the response arriving to
the client VM may experience queueing delay on its ac-
cess link, even though the client VM itself is only using
a small fraction of the bandwidth assigned to it.

In our example, the queueing delay for the host net-
work stack and switches can occur for both query and
response messages, while the VM scheduling delay al-
most always happens to query messages. In the next few
subsections, we demonstrate these problems using live
EC2 measurements and testbed experiments.

3.2 EC2 measurements
In this subsection, we demonstrate VM scheduling delay
and switch queueing delay using live EC2 experiments.
Host network queueing delay is illustrated in the next
subsection by varying kernel configurations on a testbed.

Figure 2 shows the setup of our EC2 measurements.
We measure the FCT between a client VM and two
server VMs of the same EC2 account. In addition, a
second EC2 account is used to launch several VMs co-
located with the client VM on the same host; these
VMs are used to congest the access link shared with the
client VM. All VMs used in this experiment are standard
medium EC2 instances.

In prior work, we have already demonstrated VM
scheduling delay in EC2 [51]; relevant results are repro-
duced here only for completeness. For the same client
VM, we launch several server VMs and measure their
FCT distribution separately. The expectation is that the
FCT for some server VMs have much larger tail latency
(Bad VMs) than for others (Good VMs) if the former
are sharing CPU cores with certain VMs running CPU-
bound jobs on the same host.

For switch queueing delay, we use the VMs of the
second account to show that shared network links can
be congested by an arbitrary EC2 customer without vi-

100 101 102 103 104 105 106 107

RTT (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
o
f

R
T
T

EC2 good VM non-congested
EC2 good VM congested
EC2 bad VM congested

0.1 1 10 100 1000
RTT (ms)

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.0

C
D

F
o
f

R
T
T

EC2 good VM non-congested
EC2 good VM congested
EC2 bad VM congested

Figure 3: An EC2 experiment showing the VM scheduling de-
lay (bad VM vs. good VM) and switch queueing delay (con-
gested vs. non-congested). Network congestion impacts both
the body and tail distribution, while VM scheduling delay
mostly impacts the tail at a larger scale.

Scenarios 50th 90th 99th 99.9th
Good VM non-congested 1X 1X 1X 1X

Good VM congested 2.7X 12.9X 14.2 11.7X
Bad VM congested 2.6X 13.7X 18.5 27.7X

Table 1: The relative impact of switch queueing delay (con-
gested vs. non-congested) and VM scheduling delay (bad VM
vs. good VM).

olating EC2’s terms of use. Because it is hard to con-
trol the congestion level in the core EC2 network, our
demonstration aims to congest the shared access link
of the client VM. To do so, we launch 100 VMs with
the second account and keep the ones that are verified
to be co-located with the client VM on the same host.
The techniques for verifying co-location are well stud-
ied [36, 50], so we omit the details.

With enough co-located VMs, we can congest the ac-
cess link of the client VM by sending bulk traffic to the
co-located VMs of the second account from other unre-
lated VMs. This means that the client VM may suffer
from a large switch queueing delay caused by its neigh-
bors on the same host, even though the client VM itself
is only using a small fraction of its maximum bandwidth
(1Gbps). During the measurement, we observe that the
EC2 medium instances have both egress and ingress rate
limit of 1Gbps, and the underlying physical machines in
EC2 appear to have multiple network interfaces shared
by their hosted VMs; therefore, we need at least three
co-located VMs from the second account to obtain the
congestion level needed for the demonstration.

Figure 3 depicts the measurement results. There are
three scenarios with progressively worsening FCT distri-
butions to show the impact of individual latency sources:
one with no delay, one with switch queueing delay
only, and one with both switch queueing delay and VM
scheduling delay. The top figure shows the entire FCT
distribution, and the bottom one shows the distribution
from the 99th to 100th percentile. Switch queueing de-
lay has a large impact on both the body and the tail of the
distribution, while VM scheduling delay affects mostly
the tail of the distribution at a larger scale.

To make things clearer, Table 1 summarizes the rela-
tive impact of both latency sources on different parts of
the FCT distribution. The key observation is that while
switch queueing delay alone can increase the latency by
2X at the 50th percentile and cause a 10X increase at the
tail, VM scheduling delay can cause another 2X increase
at the 99.9th percentile independently. Thus, to avoid la-
tency traps in virtualized data centers, we must tackle
these problems together.

3.3 Testbed experiments

In this subsection, we demonstrate the impact of queue-
ing delay in the host network stack on a testbed. The
host network stack has at least two queues for packet
transmission: one in the kernel network stack that buffers
packets from the TCP/IP layer and another in the net-
work interface card (NIC) that takes packets from the
first queue and sends them on the wire. NICs may con-
tain many transmission queues, but we only consider the
simple case for this demonstration and discuss advanced
hardware support in § 6.

A packet may experience queueing delay in the host
network stack if either transmission queue is blocked
by large bursts of packets from different VMs. This
problem is not specific to virtualization-enabled hosts; a
bare-metal Linux OS serving multiple applications can
exhibit similar behaviors. Thus, we first discuss two fea-
tures introduced in Linux 3.3 that tackle this problem,
and then we explain why the interaction between the
host network stack and guest VMs compromises the ef-
ficacy of these features.

Herbert et al. designed a new device driver interface
called Byte Queue Limits (BQL) to manage NICs’ trans-
mission queues [22]. Without BQL, the length of NICs’
transmission queues was measured by the number of
packets, which are variable in size; so, the queueing de-
lay for NICs is often unpredictable. BQL instead mea-
sures queue length by the number of bytes in the queue,
which is a better predictor of queueing delay. To reduce
queueing delay while still maintaining high link utiliza-
tion with BQL, one can now limit the queue length to
the bandwidth-delay product [7] (e.g., for a 1Gbps link

Scenarios 50th 99th 99.9th
Congestion Free 0.217 0.235 0.250

Congestion Enabled 16.83 21.57 21.73
Congestion Managed 0.808 1.21 1.26

Table 2: Ping latency (ms). Despite the improvement using
BQL and CoDel, congestion in the host network stack still in-
creases the latency by four to six times.

with 300us RTT, a queue of 37,500 bytes will suffice).
Now that NICs’ transmission queues are properly

managed, the queueing delay problem is pushed to the
software queue in the kernel. Nichols et al. designed a
packet scheduler called “CoDel” that schedules packets
based on the amount of time a packet has spent in the
queue and then compares it to a dynamically-calculated
target of queueing delay [32]. If queued packets have al-
ready spent too much time in the queue, the upper layer
of the network stack is notified to slow down, regardless
of the queue occupancy. Linux’s default behavior is to
use a large drop tail queue (e.g., 1,000 packets), which
incurs a large average queueing delay.

To use BQL and CoDel effectively, it is considered a
best practice [45] to disable the packet segmentation of-
fload (TSO and GSO) features offered by the NIC hard-
ware. With TSO and GSO enabled, a packet in either of
the transmission queues can be up to 64KB. Compared
to Ethernet’s MTU of 1,500 bytes, such large packets
would again make queue length unpredictable. By dis-
abling TSO and GSO, packets are segmented in software
before joining the transmission queues allowing BQL
and CoDel to have fine-grained control.

We set up controlled experiments to show the effec-
tiveness of BQL and CoDel by congesting the host net-
work queue and also to demonstrate why they are not
sufficient in the presence of virtualization. The testbed
has three physical machines running unmodified Xen
4.2.1 and Linux 3.6.6, and they are connected to a sin-
gle switch. To observe host queueing delay, physical
machine A runs two VMs, A1 and A2, that serve as
senders. Another two VMs, B1 and C1, run in the re-
maining two physical machines, B and C, and serve as
receivers. In this configuration, we make sure that none
of the VMs would suffer from VM scheduling delay or
switch queueing delay.

In the experiment, A2 pings C1 10,000 times every
10ms to measure network latency. The traffic between
A1 and B1 causes congestion. There are three scenarios:

1. Congestion Free: A1 and B1 are left idle.
2. Congestion Enabled: A1 sends bulk traffic to B1

without BQL or CoDel.
3. Congestion Managed: A1 sends bulk traffic to B1

with BQL and CoDel enabled.

For cases 2 and 3, A1 sends traffic to B1 using iperf,
which saturates the access link of physical machine A.

Table 2 shows the distribution of the ping latency in
milliseconds. Without BQL or CoDel, the contention for
host network resources alone increases the latency by
almost two orders of magnitude. While BQL and CoDel
can significantly reduce the latency, the result is still four
to six times as large when compared to the baseline. § 4.2
explains why the interaction between the host network
stack and guest VMs is the source of such latency.

3.4 Summary

Switch queueing delay increases network tail latency by
over 10 times; together with VM scheduling delay, it
becomes more than 20 times as bad. In addition, host
network queueing delay also worsens the FCT tail by
four to six times. Worse still, the impact of these latency
sources can be superimposed on one another. Therefore,
we need a holistic solution that tackles all of these prob-
lems together.

4 Design and Implementation
Applying prior solutions to reduce network latency
in virtualized multi-tenant data centers would require
guests to change their TCP implementation [3, 4], mod-
ify their applications to provide scheduling hints [5, 23,
41, 44, 52], or complicate their workload deployment
process [51]. Alternatively, network resources have to be
reserved explicitly [26]. Meanwhile, even a combination
of these approaches cannot solve all three latency traps
discussed in § 3.

Our solution has none of the preceding requirements
and yet it holistically tackles the three latency traps—we
only modify the host infrastructure in a way that is trans-
parent to the guests, and there is no need to explicitly
reserve network resources. The details of dealing with
individual latency traps are discussed in the subsequent
subsections, all of which follow the same principles:

Principle I: Not trusting guest VMs We do not rely
on any technique that requires guest cooperation. The
multi-tenant nature of public data centers implies that
guest VMs competing for shared resources are greedy—
they only seek to optimize the efficiency of their own re-
source usage. The prior solutions tailored for dedicated
data centers [3, 4, 5, 23, 41, 44, 52] have proven very
effective because the application stacks, operating sys-
tems, and hardware infrastructure are controlled by a
single entity in such environments. In public data cen-
ters, however, trusting guests to cooperatively change the
TCP implementation in the guest operating systems or

provide scheduling hints would reduce the effectiveness
or worse, the fairness of resource scheduling.

Principle II: Shortest remaining time first We lever-
age Shortest Remaining Time First (SRTF) to sched-
ule bottleneck resources. SRTF is known for minimizing
job queueing time [39]. By consistently applying SRTF
from the virtualization layer, through the host network
stack, to the data center network, we can eliminate the
need of explicit resource reservation, but still signifi-
cantly reduce network latency.

Principle III: No undue harm to throughput SRTF
shortens latency at the cost of the throughput of large
jobs; we seek to reduce the damage. Due to the funda-
mental trade-off between latency and throughput in sys-
tem design, many performance problems are caused by
the design choices made to trade one for another. Our so-
lutions essentially revisit such choices in various layers
of the cloud host infrastructure and make new trade-offs.

4.1 VM scheduling delay
§ 3.2 shows that VM scheduling can increase tail la-
tency significantly. Such delay exists because Xen fails
to allow latency-bound VMs to handle their pending in-
terrupts soon enough. We claim that Xen’s current VM
scheduler does apply the SRTF principle, but it is ap-
plied inadequately. That is, there exists a mechanism in
the scheduler to allow latency-sensitive VMs to preempt
the CPU-bound VMs that mostly use 100% of their al-
located CPU time, but it leaves a chance for the VMs
that use less CPU time (e.g., 90%) to delay the inter-
rupt handling of their latency-bound neighbors. Thus,
our solution is to apply SRTF in a broader setting by
allowing latency-sensitive VMs with pending interrupts
to preempt any running VMs.

To understand the preceding argument, one needs to
know Xen’s VM scheduling algorithm. Credit Sched-
uler is currently Xen’s default VM scheduler [46]. As the
name implies, it works by distributing credits to virtual
CPUs (VCPUs), which are the basic scheduling units.
Each guest VM has at least one VCPU. By default, a
VCPU receives up to 30ms CPU time worth of credits
based on its relative weight. Credits are redistributed in
30ms intervals and burned when a VCPU is scheduled
to use a physical CPU. A VCPU that uses up all its cred-
its enters the OVER state, and a VCPU with credits re-
maining stays in the UNDER state. The scheduler always
schedules UNDERs before any OVERs. Importantly, if a
VCPU waken up by a pending interrupt has credits re-
maining, it enters the BOOST state and is scheduled be-
fore any UNDERs.

The BOOST state is the mechanism designed to ap-
proximate SRTF: A VCPU that only spends brief mo-

ments handling I/O events is considered a small job;
hence it is favored by the scheduler to preempt CPU-
bound jobs as it stays in the BOOST state. Unfortunately,
latency-bound VMs may still suffer from large tail la-
tency despite the BOOST mechanism [51], and this is a
known limitation [16].

By analyzing Xen’s source code, we find that the
credit scheduler is still biased far towards throughput.
The BOOST mechanism only prioritizes VMs over oth-
ers in UNDER or OVER states; BOOSTed VMs cannot
preempt each other, and they are round-robin scheduled.
Thus, if a VM exhausts its credits quickly, it stays in the
OVER state most of time, and BOOSTed VMs can al-
most always preempt it to process their interrupts imme-
diately. However, if a VM sleeps to accumulate credits
for a while and then wakes up on an interrupt, it can mo-
nopolize the physical CPU by staying BOOSTed until its
credits are exhausted, which implies a delay of 30ms or
even longer (if more than one VM decide to do that) to
neighboring VMs that are truly latency-sensitive [51].

This problem can be solved by applying SRTF in
a broader setting. We deploy a more aggressive VM
scheduling policy to allow BOOSTed VMs to preempt
each other. This change is only made to the hypervi-
sor (one line in the source code!) and thus transparent
to guest VMs. As a result, true latency-bound VMs can
now handle I/O events more promptly; the cost is CPU
throughput because job interruption may become more
frequent under the new policy. However, such preemp-
tion cannot happen arbitrarily: Xen has a rate limit
mechanism that maintains overall system throughput by
preventing preemption when the running VM has run for
less than 1ms in its default setting.

4.2 Host network queueing delay

§ 3.3 shows that guest VMs doing bulk transferring can
increase their neighbor’s host network queueing delay
by four to six times, even when BQL and CoDel are
both enabled. The root cause is that network requests
from bandwidth-bound guest VMs are often too large
and hard to be preempted in Linux kernels’ and NICs’
transmission queues. Thus, our solution is to break large
jobs into smaller ones to allow CoDel to conduct fine-
grained packet scheduling.

To understand the above argument, we need to explain
Xen’s approach to manage network resources for guest
VMs. Xen uses a split driver model for both network and
disk I/O. That is, for each device, a guest VM has a vir-
tual device driver called frontend, and the dom0 has
a corresponding virtual device driver called backend;
these two communicate by memory copy. A packet sent
out by guest VMs first goes to the frontend, which
copies the packet to the backend. The job for the

backend is to communicate with the real network de-
vice driver on dom0 to send out packets on the wire. To
do so, Xen leverages the existing routing and bridging
infrastructure in the Linux kernel by treating the virtual
backend as a real network interface on the host so that
every packet received by a backend will be routed or
bridged to the physical NICs. Packet reception simply
reverses this routing/bridging and memory copy process.

The overhead of packet copy between guest and host
may be prohibitive during bulk transferring. Thus, Xen
allows guest VMs to consolidate outgoing packets to up
to 64KB regardless of NICs’ MTU (e.g., 1,500 bytes for
Ethernet). Unfortunately, this optimization also exacer-
bates host network queueing delay. Recall that the key to
the success of BQL and CoDel is the fine-grained con-
trol of transmission queue length. By allowing bursts of
64KB packets, there are often large jobs blocking the
head of the line of host transmission queues. Thus, our
solution is to segment large packets into smaller ones
so that CoDel would allow packets of latency-sensitive
flows (small jobs) to preempt large bursts.

The question is when to segment large packets. Re-
call that to use BQL and CoDel effectively, best prac-
tice suggests turning off hardware segmentation offload-
ing to segment large packets in software [45]. Unfortu-
nately, it only works for packets generated by dom0 it-
self; traffic from guest VMs is routed or bridged directly,
without segmentation, before reaching the NICs. Thus, a
straightforward solution is simply to disallow guest VMs
to send large packets and force them to segment in soft-
ware before packets are copied to backend. However,
according to Principle I, we cannot rely on guests to
do so cooperatively, and it consumes guests’ CPU cy-
cles. Alternatively, Xen’s backend can announce to
the guest VMs that hardware segmentation offload is
not supported; then guests have to segment the packets
before copying them. While this approach achieves the
goal without explicit guest cooperation, it disables Xen’s
memory copy optimization completely.

Thus, the key to a practical solution is to delay the
software segmentation as much as possible—from guest
kernel to host device driver, earlier software segmenta-
tion implies higher CPU overhead. Our solution is to
segment large packets right before they join the software
scheduling queue managed by CoDel in the host network
stack. In order to give CoDel fine-grained jobs to sched-
ule, this is the latest point possible.

4.3 Switch queueing delay

§ 3.2 shows that switch queueing delay can increase me-
dian latency by 2X and cause a 10X increase at the tail.
This problem is not unique to public data centers but
also exists in dedicated data centers. However, the added

layer of virtualization exacerbates the problem and ren-
ders the solutions that require kernel or application co-
operation impractical because these software stacks are
now controlled by the guests instead of cloud providers.

Our host-centric solution approximates SRTF by let-
ting switches favor small flows when scheduling pack-
ets on egress queues. The key insight here is that we
can infer small flows like CPU schedulers infer short
tasks—based on their resource usage (e.g., bandwidth).
Importantly, we infer flow size in the host before any
packets are sent out. This design also avoids explicit
resource reservation required by alternative host-centric
solutions [26]. In order to realize this design, we need
to answer a few questions: a) How to define a flow? b)
How to define flow size? c) How to classify flows based
on their size?

To define what a flow is for the purpose of network re-
source scheduling, we first need to understand what the
bottleneck resource is. Because switch queueing delay
on a link is proportional to the occupancy of the switch
egress queue, any packet would occupy the queueing re-
source. Thus, we define a flow as the collection of any
IP packets from a source VM to a destination VM. We
ignore the natural boundary of TCP or UDP connections
because, from a switch’s perspective, one TCP connec-
tion with N packets occupies the same amount of re-
sources as two TCP connections with N/2 packets each
for the same source-destination VM pair.

By ignoring the boundary of TCP or UDP connec-
tions, the size of a flow in our definition can be arbi-
trarily large. Therefore, we adopt a message semantic
by treating a query or a response as the basic commu-
nication unit and define flow size as the instant size of
a message the flow contains instead of the absolute size
of the flow itself. In reality, it is also difficult to define
message boundaries. Thus, we measure flow by rate as
an approximation of the message semantic. That is, if a
flow uses a small fraction of the available link capacity
in small bursts, it is sending small messages and thus
treated as a small flow. In the context of SRTF policy, it
states that a flow at a low sending rate behaves just like
a short job with respect to the usage of switch queueing
resources.

Based on the preceding definitions, we classify flows
into two classes, small and large, as is done by sys-
tems that apply SRTF to Internet traffic [18] and Web
requests [20]. Bottleneck links can now service small
flows with a higher priority than the large ones. As in
the prior work, lower latency of small flows is achieved
at the cost of the throughput of large flows. To ensure
scalability and stay transparent to the guests, the classi-
fication is done in the host of the source VM of the target
flow. Each packet then carries a tag that specifies its flow
classification for bottleneck switches to schedule.

One important advantage of this rate-based scheme is
that it can avoid starving large TCP connections. Imag-
ine if we use TCP connection boundaries and define flow
size as the number of packets each TCP connection con-
tains. A large TCP connection may starve if the capacity
of a bottleneck link is mostly utilized by high-priority
small flows. This is because a large TCP connection low-
ers its sending rate for packet drops to avoid congestion,
but small flows often send all packets before reaching
the congestion avoidance stage. If we classify TCP con-
nections by their absolute size, the large ones are always
tagged as low priority and serviced after the small ones,
regardless of their instant bandwidth usage. However, if
classified by rate, a low priority flow may eventually be-
have just like a high priority one, by dropping its sending
rate below a threshold. It will then get its fair share on
the bottleneck link.

To implement this policy, we need two components.
First, we build a monitoring and tagging module in the
host that sets priority on outgoing packets without guest
intervention. Small flows are tagged as high-priority
on packet headers to receive preferential treatment on
switches. Second, we need switches that support basic
priority queueing; but instead of prioritizing by applica-
tion type (port), they can just leverage the tags on packet
headers. It is common for data center grade switches to
support up to 10 priority classes [44], while we only
need two. Moreover, if more advanced switching fabrics
like pFabric[5] become available, it is straightforward to
expand our solution to include fine-grained classification
for more effective packet scheduling.

In our current implementation, the monitoring and
tagging module is built into Xen’s network backend
running as a kernel thread in dom0. This is a nat-
ural place to implement such functionality because
backend copies every packet from guest VMs, which
already uses a considerable amount of CPU cycles (e.g.,
20%) at peak load; the overhead of monitoring and tag-
ging is therefore negligible. In addition, because the
overhead of monitoring and tagging is proportional to
packet count instead of packet size, retaining guest
VMs’ ability to consolidate small packets to up to 64KB
further improves this module’s performance.

Finally, the flow classification algorithm is imple-
mented using a standard token bucket meter. We assign
a token bucket to each new flow with a rate and a
burst parameter. Rate determines how fast tokens (in
bytes) are added to the bucket, and burst determines
how many tokens can be kept in the bucket unused. The
token bucket meters a new packet by checking if there
are enough tokens to match its size, and it consumes to-
kens accordingly. If there are enough tokens, the current
sending rate of the flow is considered conformant, and
the packet is tagged with high priority. Otherwise, it is

classified as bandwidth-bound and serviced on a best ef-
fort basis. Low priority flows are re-checked periodically
in case their sending rates drop. Similar to [18], flows are
garbage-collected if they stay inactive for long enough.
A flow may accumulate tokens to send a large burst, so
burst limits the maximum tokens that a flow can con-
sume in one shot.

4.4 Putting it all together

Our design revisits the trade-offs between throughput
and latency. For VM scheduling delay, we apply a more
aggressive VM preemption policy to Xen’s VM sched-
uler at the cost of the efficiency of CPU-bound tasks. For
host network queueing delay, we segment large packets
from guests earlier in the stack for fine-grained schedul-
ing with higher host CPU usage. For switch queueing de-
lay, we give preferential treatment to the small flows at a
low sending rate on switches with the loss of throughput
for large flows. The performance trade-offs of this de-
sign are evaluated in § 5, and the possibility of gaming
these new policies is discussed in § 6.

In our current implementation, we change a single
line in the credit scheduler of Xen 4.2.1 to enable the
new scheduling policy. We also modify the CoDel ker-
nel module in Linux 3.6.6 with about 20 lines to segment
large packets in the host. Finally, we augment the Xen’s
network backend with about 200 lines of changes to
do flow monitoring and tagging. Our code patch can be
found using the link [1].

5 Evaluation
We use both a small testbed and an ns-3-based [33]
simulation to do our evaluation. The testbed consists of
five four-core physical machines running Linux 3.6.6
and Xen 4.2.1. They are connected to a Cisco Catalyst
2970 switch, which supports priority queueing (QoS).
All NICs are 1Gbps with one tx ring. We start with a
setup that includes all three latency traps to provide a big
picture of the improvement our holistic solution brings
before evaluating them individually. In addition to eval-
uating all three problems on the testbed, we use ns-3 to
demonstrate the trade-off at scale for switch queueing
delay. The other two problems are local to individual
hosts, so no large-scale simulation is needed.

The workload for testbed evaluation models the
query-response pattern. As in § 3, client VMs measure
the round-trip times of each query-response pair as flow
completion times (FCTs). Because the size of a response
may range from a few kilobytes to tens of megabytes,
FCT serves as a metric for both latency-sensitive traf-
fic and bandwidth-bound traffic. This setup is similar to

Switch

B1 C1 D1

E1 E2

Client VMs

Server VMs

A1 A2

A3 A4

Server
VM

CPU-bound VMs

Client
VM

Figure 4: The testbed experiment setup.

prior studies [4, 52] for dedicated data centers. In addi-
tion, iperf is used when we only need to saturate a
bottleneck link without measuring FCT.

The parameters for flow classification include rate
and burst for the token buckets meters, and the timers
for cleaning inactive flows and re-checking low prior-
ity flows. We set the timers to be 10s and 100ms, re-
spectively, and use 30KB for burst and 1% of the
link capacity or 10Mbps for flow rate. Optimal val-
ues would depend on the traffic characteristics of the
target environment, so we use the preceding values as
our best guest for testbed evaluation and explore the pa-
rameter sensitivity using simulation. Meanwhile, mea-
surement studies for data center traffic may help nar-
row down parameter ranges. For example, Benson et al.
show that 80% of flows are under 10KB in various types
of data centers [11]. Others have reported that flows un-
der 1MB may be time sensitive, and such flows often
follow a query-response pattern [3, 44]. Thus, setting
burst anywhere between 10KB and 1MB would be a
reasonable choice.

5.1 Impact of the approach

We first evaluate the overall benefits of our host-centric
solution on the testbed by constructing a scenario with
all three latency traps enabled. As shown in § 3, this sce-
nario includes the typical network resource contention
that can happen in virtualized multi-tenant data cen-
ters. We compare three cases: the ideal case without any
contention, the fully contended case running unpatched
Linux and Xen, and the patched case with our new poli-
cies. In the unpatched case, BQL and CoDel are enabled
to represent the state-of-the-art prior to our solution.

Figure 4 shows the experiment setup. To create con-
tention, we have physical machine E running two VMs,
E1 and E2, that serve as clients to send small queries by
following a Poisson process and measure FCT. Physical
machine A runs four VMs—A1 through A4—with A1
serves small responses to E1, A2 sends bulk traffic using
iperf to B1 on machine B, and the others run CPU-
bound tasks. The query-response flows between E1 and
A1 will suffer VM scheduling delay caused by A3 and
A4, and host network queueing delay caused by A2.
Moreover, we use physical machine C and D, running
VM C1 and D1 respectively, to respond to E2’s queries

100 101 102 103 104 105 106

RTT (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
o
f

R
T
T

No Contention(ideal)
Typical Contention(unpatched)
Typical Contention(patched)

0.1 1 10 100 1000
RTT (ms)

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.0

C
D

F
o
f

R
T
T

No Contention(ideal)
Typical Contention(unpatched)
Typical Contention(patched)

Figure 5: A comparison of FCT distribution for three cases: an
ideal case without contention, the default unpatched case un-
der typical contention, and the case patched with our solution
under the same contention.

for large flows and congest E’s access link, and the re-
sponses sent to E1 will suffer switch queueing delay.
The small query flows generated by E1 expect 2KB re-
sponses with 5ms mean inter-arrival time. Queries gen-
erated by E2 expect 10MB large responses with 210ms
mean inter-arrival time, so E’s access link is 40% utilized
on average, which is more likely than full saturation [4].

Figure 5 depicts the results. Our solution achieves
about 40% reduction in mean latency, over 56% for
the 99th percentile, and almost 90% for the 99.9th per-
centile. While the alleviation of host and switch queue-
ing delay has a large impact on the 99th and lower per-
centiles, the improvement for the 99.9th percentile is
mostly attributed to the change in the VM scheduler.
However, compared to the baseline with no contention,
there is still room for improvement, which we discuss
when evaluating individual components. On the other
hand, the average throughput loss for large flows is less
than 3%. The impact on CPU-bound tasks and host CPU
usage is covered in detail in subsequent subsections.

5.2 VM scheduling delay

To evaluate the new VM scheduling policy, we use E1
to query A1 for small responses and keep A3 running a
CPU-bound workload to delay A1’s interrupt handling.
In order to cause scheduling delay, A1 and A3 need to
share a CPU core [51]. Thus, we pin both VMs onto one
CPU core and allocate 50% CPU cycles to each VM.
Note that the delay caused by VM scheduling happens
when a query flow from E1 arrives at A1 and before A1

Scenarios 99.9th Latency Avg. CPU Throughput
Xen Default 29.64ms 224.29 ops/s
New Policy 1.35ms 215.80 ops/s

Table 3: The trade-off between network tail latency and CPU
throughput measured by memory scans per second.

is allowed to process its (virtual) network interrupt.
Now the question is what CPU-bound workload we

use to demonstrate the trade-off between network tail
latency and CPU throughput. As explained in § 4.1, a
workload that always uses 100% CPU time cannot do
the job. Instead, we need a workload that follows the
pattern of yielding CPU briefly between CPU-hogging
operations in order to accumulate credits; then it can
get BOOSTed and delay its neighbors’ interrupt han-
dling [51]. For example, a workload can sleep 1ms for
every 100 CPU-bound operations. Note that this pattern
is not uncommon for real-world workloads, which often
wait for I/O between CPU-bound operations.

The next question is what operations we use to hog the
CPU and exhibit slowdown when preempted. We can-
not use simple instructions like adding integers because
they are not very sensitive to VM preemption: If such
operations are interrupted by VM preemption and then
resumed, the penalty to their running time is negligible.
We instead let the workload burn CPU cycles by scan-
ning a CPU-L2-cache-sized memory block repeatedly.
Such operations are sensitive to CPU cache usage be-
cause if certain memory content is cached, the read op-
erations finish much faster than the ones fetching from
memory directly, and the CPU cache usage is in turn sen-
sitive to VM preemption and context switching [36, 42].

In this experiment, trade-offs between tail latency
and CPU throughput are demonstrated for Xen’s default
scheduling policy and our new policy. To do so, we fix
both the number of network requests sent to A1 and the
number of memory scan operations conducted on A3 so
that each workload contains the same amount of work
in both scenarios. The number of memory scan opera-
tions per second measured on A3 is used to quantify the
throughput for the CPU-bound job.

Table 3 summarizes the results. Our new policy re-
duces network latency at the 99.9th percentile by 95%
at the cost of 3.8% reduction in CPU throughput. In
addition to the synthetic workload, we also tested with
two SPEC CPU2006 [21] benchmarks, bzip2 and mcf.
The difference of their running time under different
scheduling policies are less than 0.1%.

The new policy hurts CPU throughput because, while
the workloads generate the same number of I/O inter-
rupts in both scenarios, the CPU-bound job is more
likely to be preempted in the middle of a scan operation
under the new policy, which incurs the overhead of cache

Scenarios 50th 99th 99.9th
Congestion Free 0.217 0.235 0.250

Congestion Enabled 16.83 21.57 21.73
Congestion Managed 0.808 1.21 1.26

Our System 0.423 0.609 0.650

Table 4: The distribution of RTTs in millisecond. Our solu-
tion delivers 50% reduction in host network queueing delay in
addition to that achieved by BQL and CoDel.

eviction and context switching. In comparison, Xen’s de-
fault policy is more likely to allow I/O interrupts to be
handled when the CPU-bound job is in the sleep phase.

To understand why our new policy only introduces
low overhead, we record VCPU state-changing events in
the VM scheduler since the loss in throughput is mostly
caused by the extra VM preemption. We find that our
new policy does increase the number of VM preemption,
but the difference is only 2%. This is because the orig-
inal BOOST policy already allows frequent preemption,
and our change only affects the cases that correspond to
the tail latency (99.9th or higher).

Further improvement is possible. Xen has the default
policy that prevents VM preemption when the running
VM has run for less than 1ms. If we set it to be the mini-
mum 0.1ms, the 99.9th percentile latency can be reduced
even further. However, such change has been shown to
cause significant performance overhead to certain CPU-
bound benchmarks [46] and may compromise fairness.

5.3 Host network queueing delay
For host network queueing delay, our setup is similar
to the testbed experiment in § 4.2. Specifically, we use
A1 to ping E1 once every 10ms for round-trip time
(RTT) measurements and use A2 to saturate B1’s access
link with iperf, and we measure bandwidth. Because
E1 and B1 use different access links, there is no switch
queueing delay in this experiment. Throughout the ex-
periment, hardware segmentation offload is turned off in
order to use BQL and CoDel effectively [45].

Table 4 lists the results for the impact on ping RTTs.
Compared to the case that applies BQL and CoDel un-
modified (Congestion Managed), our solution can yield
an additional 50% improvement at both the body and
tail of the distribution because CoDel is more effective
in scheduling finer-grained packets (small jobs). Mean-
while, the bandwidth loss for breaking down large pack-
ets early is negligible.

However, we do trade CPU usage for lower latency.
When B1’s 1Gbps access link is saturated, our current
implementation increases the usage of one CPU core by
up to 12% in the host due to earlier software segmenta-
tion, and that amount is negligible for guest VMs. Com-

pared to the alternative that forces guest VMs to seg-
ment large packets without consolidation, hosts’ CPU
usage would increase by up to 30% from the overhead
of copying small packets from guests, and that for the
guest VMs would increase from 13% to 27% for its own
software segmentation. Thus, our solution is not only
transparent to users, but has less CPU overhead for both
host and guest. This is because our choice of software
segmentation is early enough to achieve low latency but
late enough to avoid excessive CPU overhead.

Again there is still room for improvement. We specu-
late that the source of the remaining delay is from NICs’
transmission queues. Recall that we set that queue to
hold up to 37,500 bytes of packets, which translates to
a 300µs delay on a 1Gbps link at maximum. To com-
pletely eliminate this delay, if necessary, we need higher-
end NICs that also support priority queueing. Then, the
NICs’ drivers can take advantage of the flow tagging we
assigned to the latency-sensitive flows and send them be-
fore any packets of large flows.

5.4 Switch queueing delay

To evaluate the flow monitoring and tagging module, we
leave VMs A2 through A4 idle. For the rest of the VMs,
E1 queries A1 and B1 in parallel for small flows, and E2
queries C1 an D1 for large flows to congest the access
link shared with E1 and cause switch queueing delay.

Similar to the “Dynamic Flow Experiments” used by
Alizadeh et al. [4], we set the utilization of the access
links to be 20%, 40%, and 60% in three scenarios, re-
spectively, instead of fully saturating them. To do so,
VM E2 runs a client that requests large response flows
from C1 and D1 in parallel; it varies query rate to control
link utilization. For example, this experiment uses 10MB
flows as large responses, so we approximate 40% link
utilization by using a Poisson process in E2 to send 5
queries per second on average. The case with the switch
QoS support enabled is compared against the one with-
out QoS support; QoS enabled switches can prioritize
packets tagged as belonging to small flows.

Table 5 summarizes the results. As expected, when
QoS support on the switch is enabled to recognize our
tags, all small flows enjoy a low latency with an order
of magnitude improvement at both the 99th and 99.9th
percentiles. As the link utilization increases, their FCT
increases only modestly. On the other hand, the average
throughput loss for large flows is less than 3% In fact, the
average throughput is not expected to experience a sig-
nificant loss under the SRTF policy if the flow size fol-
lows a heavy-tail distribution [20]. This is because under
such distribution, bottleneck links are not monopolized
by high priority small flows and they have spare capacity
most of time to service large flows with modest delay.

2KB FCT (ms) 10MB FCT (ms)
avg. 50th 90th 99th 99.9th avg. 50th 90th 99th 99.9th

20% Load
QoS Disabled 0.447 0.300 0.450 3.630 5.278 107.402 91.144 158.530 252.537 332.611
QoS Enabled 0.298 0.298 0.319 0.357 0.499 109.809 91.308 159.768 314.574 431.564

40% Load
QoS Disabled 0.779 0.304 1.845 5.155 5.437 134.294 99.497 217.031 392.592 539.759
QoS Enabled 0.305 0.301 0.333 0.441 0.533 138.002 104.164 222.907 419.591 639.909

60% Load
QoS Disabled 1.428 0.408 4.618 5.293 5.497 182.512 149.366 325.482 644.225 907.877
QoS Enabled 0.319 0.305 0.363 0.514 0.551 187.316 153.745 338.976 646.169 908.825

Table 5: The results for tackling switch queueing delay with flow tagging and QoS support on the switch. Both the latency-sensitive
flows and bandwidth-bound flows are measured by their FCT.

Benson et al. show that the flow size in various cloud
data centers does fit heavy-tailed distributions [11].

Meanwhile, the increase in FCT for 10MB flows at
the 99th and 99.9th percentiles can be as large as 30%,
which is comparable to HULL [4]. This is expected be-
cause for 1% or 0.1% of these low-priority flows, there
could be high-priority packets that happen to come as
a stream longer than average. Because a switch egress
queue has to service the high-priority packets first, be-
fore any best-effort packets, a few unlucky large flows
have to be stuck in the queue substantially longer than
average. In fact, the larger the flows are, the more likely
they are affected by a continuous stream of high priority
packets. On the other hand, larger flows are also less sen-
sitive to queueing delay, and tail FCT only has marginal
impact on their average throughput.

For testbed experiments, because the size of both
small and large flows is fixed, all flows are correctly
tagged. To demonstrate the sensitivity of the parameters,
we need to test the solution against dynamically gener-
ated flows that follow a heavy-tail distribution, which is
discussed in the next subsection.

5.5 Large-scale simulation

To explore the scalability and parameter sensitivity of
our solution for switch queueing delay, we use ns-3 to
simulate a multi-switch data center network. Because
only switch queueing delay is evaluated here, we install
multiple applications on each simulated host to mimic
multiple VMs. All applications have their own sock-
ets that may transmit or receive traffic simultaneously
to cause congestion. The flow monitoring and tagging
module also uses a 10Mbps rate 30KB burst token
bucket meter per flow to begin with, and we vary them
in the parameter sensitivity analysis.

Our simulated network follows the fat-tree topol-
ogy [2]. There are 128 simulated hosts divided into four
pods. In each pod, four 8-port edge switches are con-
nected to the hosts and to four aggregation switches. In
the core layer, 8 switches connect the four pods together.
The links between hosts and edge switches are 1Gbps,

and those between switches are 10Gbps, so that there is
no over-subscription in the core network. We set each
edge switch to incur a 25µs delay and for upper-level
switches, a 14.2µs delay. Thus, the intra-switch RTT
is 220µs, the intra-pod RTT is 276.7µs, and the inter-
pod RTT is 305.2µs. The routing table of the network is
generated statically during simulation setup, and we use
flow hashing to do load balancing.

The workload we use in the simulation is the same as
in a prior study [4]. Specifically, each host opens a per-
manent TCP connection to all other hosts and chooses
destinations at random to send flows to. Therefore, the
FCT here is the time to finish a one-way flow instead
of a query-response pair. The flows are generated by
following a Poisson process with 2ms inter-arrival time
on average. In addition, the flow size is generated using
a Pareto random variable with the same parameters as
in [4]: 1.05 for the shape parameter and 100KB mean
flow size. As result, the utilization of access links is ap-
proximately 40%. This flow size distribution is picked to
match the heavy-tailed workload found in real networks:
most flows are small (e.g., less than 100KB), while most
bytes are from large flows (e.g., 10MB and larger).

Figure 6 shows the FCT for small flows of range (0,
10KB] or (10KB, 100KB]; the flow size categorization is
also based on [4]. We can observe improvement for both
types of small flows at all percentiles, and the improve-
ment ranges from 10% to 66%. However, unlike the
testbed results, the FCTs with QoS enabled in the sim-
ulation result are not consistently low. While the 50th,
90th, and 99th percentile values are all comparable to
the testbed results, the 99.9th percentile is an order of
magnitude higher, and we only achieve 17% and 24%
improvement for both types of small flows, respectively.
This is an expected result because the flow sizes vary
in the simulation and the flow tagging module may not
be able to tag every flow correctly. More importantly,
our tagging algorithm has an implicit assumption that a
small flow stays small most of time, and a large flow also
stays large most of time, which is not unreasonable for
real world workload patterns. However, the simulated
workload maintains permanent TCP connections for ev-

(0, 10KB] (10KB, 100KB]
Flow Size

0

100

200

300

400

500

600

700

800

900
5
0
th

 P
e
rc

e
n
ti

le
 F

C
T
 (

u
s)

No QoS QoS

(a) 50th Percentile

(0, 10KB] (10KB, 100KB]
Flow Size

0

500

1000

1500

2000

2500

3000

9
0
th

 P
e
rc

e
n
ti

le
 F

C
T
 (

u
s)

No QoS QoS

(b) 90th Percentile

(0, 10KB] (10KB, 100KB]
Flow Size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

9
9
th

 P
e
rc

e
n
ti

le
 F

C
T
 (

u
s)

No QoS QoS

(c) 99th Percentile

(0, 10KB] (10KB, 100KB]
Flow Size

0

5

10

15

20

25

30

35

9
9
.9

th
 P

e
rc

e
n
ti

le
 F

C
T
 (

m
s)

No QoS QoS

(d) 99.9th Percentile

Figure 6: The 50th, 90th, 99th, 99.9th percentile FCT for small
flows of range (0, 10KB] and (10KB, 100KB].

Flow Size No QoS (ms) QoS (ms)
(100KB, 10MB] 11.878 10.608

(10MB, ∞) 669.618 658.404

Table 6: The average FCTs for large flows.

ery pair of applications (VMs), and the flow size for each
connection alone follows the Pareto distribution. As a re-
sult, a connection may transmit a random mix of flows
with different sizes so that there is no correct label to be
assigned to any connection. The flow tagging module is
therefore more prone to making mistakes. As discussed
in § 6, evaluating with real world flow traces would give
us a better understanding of the problem.

Table 6 compares the average FCTs for large flows. To
some degree, the FCTs are similar regardless of whether
QoS is enabled or not, which is expected because when
all the access links are 40% utilized and the core net-
work is not over-subscribed, large flows are not ex-
pected to be starved by small flows. On the other hand,
however, the numbers with QoS enabled are slightly
smaller than that without QoS. This is the opposite of
the testbed results. There are at least two possible expla-
nations. First, our implementation of priority queueing
and buffer management on simulated switches is very
primitive compared to that in real Cisco switches. Thus,
certain performance-related factors associated with pri-
ority queueing may be missing in the simulation. Sec-
ondly, with QoS enabled, small and large flows are clas-
sified into two separate queues on simulated switches,
thus bandwidth-bound flows are protected from packet
drops caused by bursts of small flows and hence oper-

10 30 50 100 200
Burst Size (KB)

0

1

2

3

4

5

6

7

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s)

(0, 10KB] (10KB, 100KB]

(a) 99th Percentile

5 10 20 40 80
Maximum Flow Rate (Mbps)

0

1

2

3

4

5

6

7

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s)

(0, 10KB] (10KB, 100KB]

(b) 99th Percentile

Figure 7: The 99th percentile FCT for small flows with vary-
ing burst size and flow rates, respectively.

ate in a more stable environment. A similar speculation
is made in the study that applies SRTF to Internet traf-
fic [18]. Harchol-Balter et al. also find that for Web re-
quests of static files using a two-class SRTF scheduling
can benefit all requests [20].

Finally, we evaluate the sensitivity of burst and
rate for flow monitoring and tagging. The choices for
these parameters depend on the flow characteristics of
the target data center environment. According to recent
data center measurements [11, 3, 44], any value in the
range of [10KB, 1MB] may be reasonable for burst as
the size of a single message. Once burst is determined,
rate determines how many query-response pairs can
be exchanged per second before a flow is classified as
low priority. To demonstrate the sensitivity, we first fix
burst to be 10Mbps and vary burst to be {10, 30,
50, 100, 200}KB. Then, we fix burst to be 30KB and
use {5, 10, 20, 40, 80}Mbps as rate values.

Figure 7 shows the 99th percentile FCT for small
flows with varying burst sizes or flow rates. Overall, the
FCT improves as burst size increases until 100KB. It is
the mean size of all flows, and over 90% of the flows are
smaller than that. Given the workload distribution, this
is a good threshold to use to distinguish between small
and large flows. Meanwhile, increasing maximum flow
rate improves the FCT modestly because more flows are
tagged as high priority under a larger maximum flow
rate. However, in practice, a large maximum flow rate
may be abused by cloud guests to block the head-of-line
of switch priority queues. A similar trend is observed for
the 99.9th percentile, but to a lesser extent. Meanwhile,
the impact of these parameters on the FCT of small flows
at lower percentiles is even smaller, and the average FCT
of large flows does not exhibit any clear pattern. Thus,
both results are omitted here.

6 Limitations
Gaming the SRTF policies Our new policy for reduc-
ing host network queueing delay (§ 4.2) does not open

new windows for gaming since it only requires software
segmentation to be conducted earlier in the stack. How-
ever, it is possible to game our new policies for the VM
scheduler (§ 4.1) and data center switches (§ 4.3), al-
though doing so would either be very difficult or only
have limited impact.

There are two potential ways to exploit our new VM
scheduling policy (§ 4.1). First, a greedy VM may want
to monopolize the shared physical CPUs by accumulat-
ing credits as it does with Xen’s default policy. However,
our new policy is at least as fair as the default policy,
and it makes such exploitation more difficult because the
new policy allows BOOSTed VMs to preempt each other:
Every VM has the same chance of getting the physical
CPU, but other BOOSTed VMs can easily take the CPU
back. The second issue is that malicious VMs may force
frequent VM preemption to hurt overall system perfor-
mance. Fortunately, by default, Xen’s rate limit
ensures that preemption cannot happen more often than
once per millisecond. Moreover, § 5.2 shows the extra
preemption overhead introduced by our new policy is
rather limited because Xen’s BOOSTmechanism already
allows fairly frequent VM preemption and our change
only affects the tail cases.

For the two-class priority queueing policy (§ 4.3),
greedy guests may break a large flow into smaller ones
to gain a higher priority. However, because we define a
flow as a collection of any packets from a source VM to
a destination VM, creating N high priority flows would
require N different source-destination VM pairs. Using
parallel TCP connections to increase resource sharing on
bottleneck links is a known problem [19] regardless of
applying SRTF or not. Our new policy would only be
exploited when multiple pairs of VMs are colluding to-
gether, which is not necessarily unfair because the cus-
tomers have to pay for more guest VMs in this case. In
fact, the fairness consideration in this scenario is a re-
search problem by itself [40, 35, 8], which is out of the
scope of this paper.

10Gbps and 40Gbps networks While we impose no
requirement on the core cloud network, our solution
assumes 1Gbps access links. We segment large pack-
ets earlier in software to reduce host queueing delay.
However, using software segmentation is not a limita-
tion introduced by our solution; it is suggested to turn
off hardware segmentation to use BQL and CoDel ef-
fectively [45]. Host queueing delay may become less of
an issue with 10Gbps and 40Gbps access links because
transmitting a 64KB packet only takes about 52.4µs at
10Gbps and 13.1µs at 40Gbps, in which case software
segmentation may no longer be necessary.

Hardware-based solutions Hardware-based solu-
tions may be needed to cope with higher bandwidth.

As discussed, Intel’s VMDq [25] may reduce host
network queueing delay without any modification to
the host kernel. In addition, monitoring and tagging
of flows and transmission queue scheduling can also
be implemented in the NIC hardware. Because these
algorithms rely on standard constructs (e.g., token
bucket), and some of them are specifically designed to
be hardware friendly [32], the added complexity may
not be prohibitive.

Real-world workloads in public clouds To system-
atically determine the optimal settings for flow tagging,
a detailed flow level measurement in the target public
cloud is needed. It would be ideal to collect a set of
flow level traces from real-world public clouds and make
it available to the public so that research results may
become more comparable and easier to reproduce. In
lieu of such authentic workloads or traces, our synthetic
workloads must suffice.

7 Conclusion
In this paper, we explore network latency problems in
virtualized multi-tenant clouds. Using EC2 measure-
ment and testbed experiments, we explain why existing
solutions designed for dedicated data centers are ren-
dered impractical by virtualization and multi-tenancy. To
address these challenges, we design a host-centric solu-
tion that extends the classic shortest remaining time first
scheduling policy from the virtualization layer, through
the host network stack, to the network switches with-
out requiring or trusting guest cooperation. With testbed
evaluation and simulation, we show that our solution can
reduce median latency of small flows by 40%, with im-
provements in the tail of almost 90%, while reducing
throughput of large flows by less than 3%.

8 Acknowledgments
This work was supported in part by the Department
of Homeland Security Science and Technology Direc-
torate under contract numbers D08PC75388, FA8750-
12-2-0314, and FA8750-12-2-0235; the National Sci-
ence Foundation (NSF) under contract numbers CNS
1111699, CNS 091639, CNS 08311174, CNS 0751116,
CNS 1330142, and CNS 1255153; and the Department
of the Navy under contract N000.14-09-1-1042. This
material was based on work supported by the National
Science Foundation, while working at the Foundation.
Any opinion, finding, and conclusions or recommenda-
tions expressed in this material are those of the author
and do not necessarily reflect the views of the National
Science Foundation.

References
[1] Code patch for this paper. http://goo.gl/yYjU9.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In Pro-
ceedings of the ACM SIGCOMM 2008 conference, Seat-
tle, WA, USA, August 2008.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 conference, New Delhi, India, August
2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a lit-
tle Bandwidth for Ultra-Low Latency in the Data Center.
In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation (NSDI’12),
San Jose, CA, USA, April 2012.

[5] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker. Deconstructing Datacenter Packet
Transport. In Proceedings of the 11th ACM Workshop
on Hot Topics in Networks (HotNets’12), Redmond, WA,
USA, October 2012.

[6] Amazon Web Services LLC. Amazon Elastic Compute
Cloud (EC2). http://aws.amazon.com/ec2/.

[7] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
Router Buffers. In Proceedings of the ACM SIGCOMM
2004 conference, Portland, OR, USA, August 2004.

[8] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawar-
dena, and G. O’Shea. Chatty Tenants and the Cloud
Network Sharing Problem. In Proceedings of the 10th
USENIX Symposium on Networked System Design and
Implementation (NSDI’13), Lombard, IL, April 2013.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP’03),
Bolton Landing, NY, USA, October 2003.

[10] S. K. Barker and P. Shenoy. Empirical Evaluation of
Latency-sensitive Application Performance in the Cloud.
In Proceedings of the 1st annual ACM SIGMM con-
ference on Multimedia systems (MMSys’10), Scottsdale,
AZ, USA, February 2010.

[11] T. Benson, A. Akella, and D. A. Maltz. Network Traf-
fic Characteristics of Data Centers in the Wild. In Pro-
ceedings of the 2010 Internet Measurement Conference
(IMC’10), Melbourne, Australia, November 2010.

[12] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An Anal-
ysis of Linux Scalability to Many Cores. In Proceed-
ings of the 9th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI’10), Vancouver,
BC, Canada, October 2010.

[13] P. Chen and B. Noble. When Virtual Is Better Than Real.
In Proceedings of the 8th Workshop on Hot Topics in

Operating Systems (HotOS’01), Washington, DC, USA,
May 2001.

[14] L. Cheng and C.-L. Wang. vBalance: Using Interrupt
Load Balance to Improve I/O Performance for SMP Vir-
tual Machines. In Proceedings of ACM Symposium on
Cloud Computing 2012 (SoCC’12), San Jose, CA, USA,
October 2012.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-Value Store. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
(SOSP’07), Stevenson, WA, USA, October 2007.

[16] G. W. Dunlap. Scheduler Development Update. In Xen
Summit Asia 2009, Shanghai, China, November 2009.

[17] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and
A. Sivasubramaniam. Xen and Co.: Communication-
Aware CPU Scheduling for Consolidated Xen-based
Hosting Platforms. In Proceedings of the 3rd inter-
national conference on Virtual execution environments
(VEE’07), San Diego, CA, 2007, June 2007.

[18] L. Guo and I. Matta. The War Between Mice and Ele-
phants. In Proceedings of the Ninth International Con-
ference on Network Protocols (ICNP’01), Riverside, CA,
USA, November 2001.

[19] T. J. Hacker, B. D. Noble, and B. D. Athey. Improv-
ing Throughput and Maintaining Fairness Using Parallel
TCP. In Proceedings of the 23rd conference on Infor-
mation communications (INFOCOM’04), Hong Kong,
China, March 2004.

[20] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-Based Scheduling to Improve Web
Performance. ACM Transactions on Computer Systems,
21(2):207–233, May 2003.

[21] J. L. Henning. Spec cpu2006 benchmark descrip-
tions. ACM SIGARCH Computer Architecture News, 34,
September 2006.

[22] T. Herbert. bql: Byte Queue Limits. http://lwn.
net/Articles/454378/.

[23] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing
Flows Quickly with Preemptive Scheduling. In Proceed-
ings of the ACM SIGCOMM 2012 conference, Helsinki,
Finland, August 2012.

[24] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/O Schedul-
ing Model of Virtual Machine Based on Multi-core Dy-
namic Partitioning. In Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed
Computing (HPDC’10), hicago, IL, USA, June 2010.

[25] Intel LAN Access Division. Intel VMDq Technology.
Technical report, Intel, March 2008.

[26] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,
C. Kim, and A. Greenberg. EyeQ: Practical Network
Performance Isolation at the Edge. In Proceedings of
the 10th USENIX Symposium on Networked System De-
sign and Implementation (NSDI’13), Lombard, IL, April
2013.

[27] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable Low Latency for Data
Center Applications. In Proceedings of ACM Sympo-
sium on Cloud Computing 2012 (SoCC’12), San Jose,
CA, USA, October 2012.

[28] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. Task-aware
Virtual Machine Scheduling for I/O Performance. In
Proceedings of the 5th international conference on vir-
tual execution environments (VEE’09), Washington, DC,
USA, March 2009.

[29] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh,
and S. Yajnik. Supporting Soft Real-Time Tasks in the
Xen Hypervisor. In Proceedings of the 6th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (VEE’10), Pittsburgh, PA, USA,
March 2010.

[30] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
Comparing Public Cloud Providers. In Proceedings of
the 2010 Internet Measurement Conference (IMC’10),
Melbourne, Australia, November 2010.

[31] B. Lin and P. A. Dinda. VSched: Mixing Batch And
Interactive Virtual Machines Using Periodic Real-time
Scheduling. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing (SC’05), Seattle, WA,
November 2005.

[32] K. Nichols and V. Jacobson. Controlling Queue Delay.
Queue, 10(5):20:20–20:34, May 2012.

[33] NS-3. http://www.nsnam.org/.

[34] D. A. Patterson. Latency Lags Bandwidth. Communica-
tion of ACM, 47(10):71–75, Oct 2004.

[35] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. FairCloud: Sharing the Net-
work in Cloud Computing. In Proceedings of the ACM
SIGCOMM 2012 conference, Helsinki, Finland, August
2012.

[36] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, You, Get Off of My Cloud! Exploring Information
Leakage in Third-Party Compute Clouds. In Proceedings
of the 16th ACM Conference on Computer and Commu-
nications Security (CCS’09), Chicago, IL, Nov. 2009.

[37] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum,
and J. K. Ousterhout. It’s Time for Low Latency. In Pro-
ceedings of the 13th Workshop on Hot Topics in Operat-
ing Systems (HotOS XIII), Napa, CA, USA, May 2011.

[38] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
Measurements in the Cloud: Observing, Analyzing, and
Reducing Variance. In Proceedings of the 36th Interna-
tional Conference on Very Large Data Bases (VLDB’10),
Singapore, September 2010.

[39] L. E. Schrage and L. W. Miller. The Queue M/G/1 with
the Shortest Remaining Processing Time Discipline. Op-
eration Research, 14(4):670–684, July–August 1966.

[40] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and
B. Saha. Sharing the Data Center Network. In Pro-
ceedings of the 8th USENIX conference on Networked

Systems Design and Implementation (NSDI’11), Boston,
MA, USA, March 2011.

[41] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-
Aware Datacenter TCP (D2TCP). In Proceedings of
the ACM SIGCOMM 2012 conference, Helsinki, Finland,
August 2012.

[42] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and
M. M. Swift. Resource-Freeing Attacks: Improve Your
Cloud Performance (at Your Neighbor’s Expense). In
Proceedings of the 19th ACM Conference on Computer
and Communications Security (CCS’12), Raleigh, NC,
USA, October 2012.

[43] G. Wang and T. S. E. Ng. The Impact of Virtualization
on Network Performance of Amazon EC2 Data Center.
In Proceedings of the 29th conference on Information
communications (INFOCOM’10), San Diego, CA, USA,
March 2010.

[44] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.
Better Never than Late: Meeting Deadlines in Datacenter
Networks. In Proceedings of the ACM SIGCOMM 2011
conference, Toronto, ON, CA, August 2011.

[45] www.bufferbloat.net. Best Practices for Benchmarking
CoDel and FQ CoDel. http://goo.gl/2RhwY.

[46] xen.org. Xen Credit Scheduler. http://wiki.xen.
org/wiki/Credit_Scheduler.

[47] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: Towards
Real-time Hypervisor Scheduling in Xen. In Proceed-
ings of the 11th International Conference on Embedded
Software (EMSOFT’11), Taipei, Taiwan, October 2011.

[48] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu.
vTurbo: Accelerating Virtual Machine I/O Processing
Using Designated Turbo-Sliced Core. In Proceed-
ings of the USENIX 2013 Annual Technical Conference
(ATC’13), San Jose, CA, USA, June 2013.

[49] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. Kom-
pella, and D. Xu. vSlicer: Latency-Aware Virtual
Machine Scheduling via Differentiated-Frequency CPU
Slicing. In Proceedings of the 21st ACM International
Symposium on High Performance Distributed Computing
(HPDC’12), Delft, The Netherlands, June 2012.

[50] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen,
and R. Schlichting. An Exploration of L2 Cache Covert
Channels in Virtualized Environments. In Proceedings
of the 3rd ACM Cloud Computing Security Workshop
(CCSW’11), Chicago, IL, USA, October 2011.

[51] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding Long Tails in the Cloud. In Proceedings of
the 10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI’13), Lombard, IL, April
2013.

[52] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz.
DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In Proceedings of the ACM
SIGCOMM 2012 conference, Helsinki, Finland, August
2012.

