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ABSTRACT
This study offers a first step toward understanding the ex-
tent to which we may be able to predict cyber security in-
cidents (which can be of one of many types) by applying
machine learning techniques and using externally observed
malicious activities associated with network entities, includ-
ing spamming, phishing, and scanning, each of which may
or may not have direct bearing on a specific attack mecha-
nism or incident type. Our hypothesis is that when viewed
collectively, malicious activities originating from a network
are indicative of the general cleanness of a network and how
well it is run, and that furthermore, collectively they exhibit
fairly stable and thus predictive behavior over time. To test
this hypothesis, we utilize two datasets in this study: (1) a
collection of commonly used IP address-based/host reputa-
tion blacklists (RBLs) collected over more than a year, and
(2) a set of security incident reports collected over roughly
the same period. Specifically, we first aggregate the RBL
data at a prefix level and then introduce a set of features
that capture the dynamics of this aggregated temporal pro-
cess. A comparison between the distribution of these feature
values taken from the incident dataset and from the general
population of prefixes shows distinct differences, suggest-
ing their value in distinguishing between the two while also
highlighting the importance of capturing dynamic behavior
(second order statistics) in the malicious activities. These
features are then used to train a support vector machine
(SVM) for prediction. Our preliminary results show that we
can achieve reasonably good prediction performance over a
forecasting window of a few months.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IWSPA’15, March 4, 2015, San Antonio, Texas, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3341-2/15/03 ...$15.00.
http://dx.doi.org/10.1145/2713579.2713582.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; C.2.3 [Network
Operations]: Network Monitoring; C.4 [Performance of
Systems]: Measurement techniques, modeling techniques

General Terms
Network Security, Measurement, Management

Keywords
Network security, Network reputation, Prediction, Temporal
pattern, Time-series data

1. INTRODUCTION
This study seeks to understand to what extent we can pre-

dict whether a network may suffer a cyber security incident
in the near future, by applying machine learning techniques
and using externally observed malicious activities associat-
ed with that network. Our prediction goal is quite broad, in
the sense that we are not targeting a specific type of secu-
rity incidents; it could range from data breach to webpage
defacement. At the same time, the external observation we
rely on is also quite broad, including spamming, phishing,
and scanning, each of which may or may not have direc-
t bearing on a specific attack mechanism or incident type.
Thus the fundamental underlying question is whether the
latter collectively could provide valuable information on the
overall security risk a network is facing.
Our hypothesis is that when viewed collectively, such ma-

licious activities originating from a network (a set of IP
addresses suitably defined, e.g., according to Autonomous
System (AS), prefix, or other administrative domain) are
indicative of the general cleanness of a network and how
well it is run, and that furthermore, collectively they exhib-
it fairly stable and thus predictive behavior over time. This
is because the factors influencing a network’s cleanness or se-
curity posture generally vary on a relatively slow time scale,
including various network policy related issues such as op-
erating systems and patch levels, firewall policies, password
strength checks, the expertise and training of IT personnel,
and even user awareness levels.
By contrast, the common used host reputation systems

or blacklists [1–3] collect and distribute information about
such externally observed malicious activities associated with
individual host IP addresses. These are routinely used in
filtering and blocking policies adopted by network operators.



The highly dynamic nature of IP addresses [17] can severely
limit the timeliness and accuracy of these lists.

To test our hypothesis, that network level malicious activ-
ities can reveal stable and predictable behavior which can be
used for incident prediction, we need to be able to describe
the network level malicious activities, a dynamic temporal
process, in an efficient and effective way. Toward that end,
we will utilize two unique datasets in this study. The first
consists of 11 commonly used IP address-based/host rep-
utation blacklists (RBLs) collected over more than a year
starting in January 2013. The second consists of a set of se-
curity incident reports collected over the same period. The
goal is to see whether by training a classifier using histori-
cal RBL data (January to September 2013) and the ground
truth incident data in October 2013, we can effectively pre-
dict the incidents reported in the future months starting in
November 2013.

Our methodology consists of first aggregating the RBL da-
ta to form a basic per-prefix temporal signal that represents
the presence of that prefix on the blacklists (in terms of the
total IPs or % of IPs belonging to that prefix being listed).
We then introduce a set of three features that capture the
dynamics of this signal. A comparison between the distribu-
tion of these feature values taken from the incident dataset
and from the general population of prefixes shows distinct d-
ifferences, suggesting that these features can indeed be used
to distinguish between the malicious behaviors of these two
datasets. This comparison also highlights the importance of
capturing dynamic behavior (second order statistics) in the
malicious activities. These features are then used to train
a support vector machine (SVM) [15], which is then used
to predict future incidents. Our preliminary results show
that we can achieve fairly good prediction performance over
a forecasting window of a few months.

This study serves as a first step toward the broader no-
tion of using advanced learning techniques to extract useful
information from large quantities of Internet measurement
data in the cyber security domain. Much more remains to
be explored, including collecting a higher qualify incident
dataset and using a more diverse set of maliciousness data.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the datasets this study is based upon and
provides a rationale for aggregating information at the BGP
prefix level. We then define a set of features and show why
they are relevant in predicting security incidents in Section
3. In Section 4 we describe how the classifier is constructed
and present prediction results. We conclude our paper in
Section 6.

2. THE DATASETS AND PRELIMINARIES

2.1 RBL dataset
Our RBL data consists of 11 IP address-based reputation

blacklists over more than a year starting in January 2013.
The sampling rate is once per day, i.e., the list content is
refreshed on a daily basis. Table 1 summarizes these lists
and the type of malicious activities they target. They collec-
tively target three major categories of malicious behaviors:
spam, phishing/malware, and active attacks/scanning. All
combined, this dataset includes 164 million unique IP ad-
dresses.

These lists indicate malicious activities seen by the outside
world, and are routinely used by spam filters. They are

Type Blacklist Name

Spam CBL [2], SBL [11], SpamCop [9],
WPBL [14], UCEPOTECT [12]

Phishing/Malware SURBL [10], Phish Tank [8],
hpHosts [6]

Active attack Darknet scanner list, Dshield [3],
OpenBL [7]

Table 1: The RBL datasets

obviously not perfect and contain both false-positives and
false negatives which are generally unknown. This however
does not prevent us from examining their effectiveness in
predicting security incidents in a network, which may or
may not be a function of these errors.

2.2 RBL data aggregation
The RBLs consist of individual IP addresses, which are

hard to use directly for prediction purposes. This is due
to two reasons. Firstly, as we detail next the incident re-
ports sometimes only identify an organization, not a precise
IP address to which the incident occur. Secondly, the in-
creasingly dynamic association between IP addresses and
physical machines (e.g., owing to human mobility) leads to
highly dynamic list content: these malicious activities origi-
nate from physical machines and as they move around they
get associated with different IP addresses. For these reason-
s, we postulate that it would be much more effective if we
consider malicious activities in the aggregate, for an entire
network (however defined). Intuition as well as the following
simple experiment appear to support this argument.
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Figure 1: Persistency of malicious IPs, the worst prefixes,
ASes.

We first combine lists within each type of malicious activ-
ities, resulting in a set of lists, or raw lists, more specifically
referred to as the spam list, the scan list and the phishing
list, respectively. An IP is included on a particular list on
a given day if it shows up on at least one of the individual
blacklists of that type. Combining all 11 lists results in a
union list, which we use in the illustration below. We then
combine entries on these lists according to their membership
in the same prefix or the same Autonomous System (AS).
This then allows us to rank the prefixes or ASes according
to their presence on a list as measured by the percentage of
its IPs being listed.
On a typical day, the 100 worst ASes have more than 70%

of their respective IP addresses blacklisted; at the prefix lev-
el, the worst 9,000 (resp. 15,000) prefixes have nearly 100%
(resp. 70%) of their IPs listed. Figure 1 shows the mali-
cious IPs (or worst ASes/prefixes) on a randomly selected
day (called the first day), which remains on the union list
on day x as a function of x. As can be seen, these worst
ASes/prefixes are much more persistent than individual IP
addresses; the latter appears highly dynamic: only 20% of



Month Oct. Nov. Dec. Jan. Feb.

Total 93 100 110 73 64
Identified 46 52 94 60 54

Table 2: Reported cyber crimes by month.

the IP addresses originally listed remain on the list during
the one-month period, while 75% of the 15,000 worst prefix-
es and more than 90% of the worst ASes persist during the
same period.

For the remainder of this paper we will use prefix as the
aggregation level, as it offers a good balance between sta-
bility in behavior (and thus expected predictive power) and
spatial as well as prediction resolution – after all, if we ag-
gregate over a sufficiently large part of the Internet then an
incident will happen with high probability, rendering any
prediction meaningless. We do note that other levels of ag-
gregation are also possible which remain to be investigated.

Once we aggregate at the prefix level over a particular
raw list, we obtain a discrete-time aggregate signal for each
prefix i denoted by ri(t), t = 0, 1, 2, · · · . There are two types
of aggregate one can define, the normalized version and the
un-normalized version. For the normalized version, ri(t) is
given by the fraction of the total number of IPs on the list
and belonging to prefix i on day t, over the total number
of addresses within prefix i. The un-normalized version of
ri(t) is simply defined as the total number of IPs on the list
and belonging to prefix i on day t. The dataset contains a
total of 363,667 prefixes.

2.3 Incident reports dataset
To determine the predictive power of the RBL dataset,

we shall rely on cyber attack incident reports from [13]. We
will focus on incident reports for the months October 2013 to
February 2014 to illustrate the training and testing process.

There are in all 93, 100, 110, 73, and 64 incidents in each
of these months, respectively, from which we extract and i-
dentify 46, 52, 94, 60 and 54 domain names with verifiable
prefix information and which are also represented in our R-
BL dataset. We will utilize this set, also referred to as the
set of incident prefixes for verifying the prediction results.
Some incidents have rather ambiguous description over its
targets and some have domain names that are hard to pin
down or have no records in our RBL database, in which case
we simply discard these entries.

The majority of the incidents in our dataset are reported
hacking events for websites of organizations, which further
lead to leak of confidential information. Specific types of
cyber attacks include website defacement and distributed
Denial of Service (DDoS) attacks etc. We summarize this
information in Table 2. In terms of region of origination,
the vast majority of the reported incidents originated from
the US; others cover fairly wide regions, including Canada,
Europe, India, Peru, and Australia.

Note that among these cyber crimes, falling victim to a
DDoS attack is not particularly correlated with the security
quality of a network, i.e., there is nothing a network can do
in terms of security practice to prevent itself from becom-
ing the target of a DDoS attack. It thus may be supposed
that including the DDoS incidents will not help build the
predictor or may even hurt its performance. Accordingly,
in the majority of our experiment reported in subsequent

sections we tested both cases with including and excluding
the DDoS incidents from this dataset; we did not observe
significant difference in the results. For this reason in the
results reported we have included the DDoS incidents.

3. FEATURE-BASED CHARACTERIZATION

3.1 Dynamics in the aggregate behavior
We start by looking into the dynamics of prefixes’ aggre-

gate signals. If these aggregate signals are to be used for
predicting security incidents, as we set out to examine, the
signals of the incident prefixes must in some way differ from
those of the non-incident prefixes (referred to as the clean
prefixes/set). The critical step is to determine whether there
is a difference and how to capture this difference. In what
follows we will first use entropy as a measure to directly
compare aggregate signals from the two sets; the compari-
son turns out to be unsatisfactory as there isn’t significant
difference. We then turn to feature extraction and define
several key features aimed at succinctly describing time se-
ries data. As we shall see this leads to significant observed
difference between the two data sets.

3.2 An Entropy Comparison
Entropy is a common metric for assessing the dynamics

embedded in a temporal signal, see e.g., studies on trending
of social media, change in wind power [16]. The entropy of
aggregate signal ri of prefix i is defined as

H(ri) = −
∑

j∈Ωi

pj log pj , (1)

where Ωi is the state space of ri, i.e., the possible number (or
percentage) of IP addresses being listed as malicious. Note
that this state space is finite as there is only a finite number
of IP addresses in a prefix. pj is the measured frequency of j
in ri. In general a higher entropy indicates a more dynamic
signal.
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Figure 2: Cumulative distribution of entropy.

The distributions of entropy calculated over the entire set
of 363, 667 prefixes and that calculated over the set of inci-
dent prefixes are plotted in Figure 2. We first observe that
a large portion (30%) of prefixes in either set are extremely
static in their malicious activities (with entropy close to 0).
Interestingly, the incident set contains a slightly larger por-
tion of low entropy prefixes, i.e., with more static signals.
On the whole, however, these two distributions do not ap-
pear significantly different. This motivates us to seek better
features to describe the aggregate signal.



3.3 Dynamic feature extraction
To strike a good balance between feature richness and

complexity, we consider the following two-step approach.
We start by value-quantizing the aggregate signal of a partic-
ular prefix into three regions: “good”,“normal”and“bad”, on
a scale relative to that prefix’s average magnitude. Specifi-
cally, the average magnitude of the aggregate signal is given
by (for simplicity in the following we have suppressed the
subscript i with the understanding that it applies to any

prefix i): rave =
∑T

t=1 r(t)

T
with T being the time horizon

under consideration. A point at t belongs to the “normal”
region if r(t) ∈ [(1− δ)rave, (1+ δ)rave], the “good” region if
r(t) < (1− δ)rave, and the “bad” region if r(t) > (1+ δ)rave,
where 0 < δ < 1 is a constant1.

Our second step is to associate each region with three
features: intensity, duration, and frequency, where intensity
is the average magnitude of the aggregate signal within that
region, duration is the average amount of time the signal
remains in that region upon each entry (measured in days),
and frequency is the rate (measured in number of times per
day, a fraction since our sample rate is once per day) at
which the aggregate signal enters that region. As there are
three regions, each feature is a triple/vector, formally given
as follows, with the indices 0, 1, and -1 denoting the normal,
good and bad regions, respectively.

intensity λ = [λ(0), λ(1), λ(−1)] (2)

duration d = [d(0), d(1), d(−1)] (3)

frequency f = [f(0), f(1), f(−1)] . (4)

We now examine whether the feature values extracted
from the two datasets, the general prefix set and the in-
cident prefix set, exhibit statistically significant differences.
The distribution comparison is shown in Figure 3. As each
feature vector contains three values, each comparison con-
sists of six cdf curves, three from the general dataset and
three from the incident dataset.

Looking across all three features, we observe that for the
incident data, regardless of the feature (with the exception
of the un-normalized intensity), the values representing the
three regions are much closer together. This is evidenced
by the closer “bundling” of the three red curves in all but
the second figures. By contrast, there is a much clearer sep-
aration between the values from the good region and the
bad region within the general dataset, as evidenced by the
larger distance between the “good” and “bad” (or “normal”)
blue curves in the figures. This observation is particular-
ly prominent in the duration and frequency features. This
means that a non-incident prefix likely has a much longer
good duration than a bad or normal one, whereas for an
incident prefix its good and bad durations are much more
similar in lengths. Likewise, a non-incident prefix exhibits
much higher frequency entering its good region than its bad
or normal region, whereas an incident prefix shows these two
as much closer in value.

More interestingly and perhaps a bit surprisingly, whereas
the difference between the two sets of distributions is clear-

1Selecting the right value for such constants is in general
non-trivial and typically done experimentally. We have used
the value 0.2 in this study. This choice, while not insignif-
icant in our method, is however not the sole determining
factor of the subsequent performance, since we also sepa-
rately assess the magnitude within each type of region.

ly seen in the duration and frequency features, it is much
less so in the un-normalized intensity feature and not at all
distinct in the normalized intensity feature – there is even
a higher portion with smaller normalized intensity within
the incident set in their respective bad regions. In other
words, an incident prefix and a non-incident prefix tend to
have similar % of their IPs listed on average. Compared to
the duration and frequency features, this also suggests that
the magnitude of maliciousness as a measure alone, which is
what most studies focus on, see e.g., [4, 5], is insufficient in
distinguishing between the two datasets. What appears to
matter more is the persistence in and recurrence of a good or
bad region captured by the duration and frequency features.

4. FEATURE-BASED INCIDENT PREDIC-
TION

The significant difference in the feature vector distribu-
tion shown in the previous section suggests that it could be
utilized to distinguish one from the other; by doing so, we
may be able to predict future incidents given the historical
RBL data of a network entity. In this section we present a
prediction method based on the above observation and the
use of Support Vector Machine (SVM) [15]. We show that
this method achieves reasonably good prediction results for
a forecast window as small as two months.

4.1 Prediction methodology
Following our observations in the previous section we will

now focus on the duration and frequency features d, f to
build a predictor. This consists of a training step and a
testing step. The training dataset consists of the following
two sets of subjects.

1. The set of incident prefixes from the month of October
2013. This will be referred to as Group(1), or the
incident group or incident prefixes.

2. A randomly selected set of prefixes (< 1, 000) that are
not associated with any incident in the month of Octo-
ber 2013. This will be referred to as Group(-1), or the
clean group or clean prefixes. The random selection
is due to the large size of our dataset. As mentioned,
our overall RBL dataset includes the record of 363, 667
prefixes; compared to this, the size of verified incident
dataset is very insignificant. Therefore simply com-
bining the two sets of data would leads to the common
problem of unbalanced training data in machine learn-
ing. The random selection thus serves as a subprocess
to remedy this issues of imbalance. We will however
repeat the random selection, each time training a new
predictor/classifier.

For a prefix i belonging to either of the above two group-
s, we use its RBL data collected from January-September
2013 (using the union list) to calculate its feature values
λi,di, fi, i.e., using the data collected prior to the reported
incident(s). Each prefix i also comes with a known label (or
ground truth or group information): ti = 1 if i belongs to
the incident set and ti = −1 if it belongs to the clean set.
Collectively the above data constitutes the training dataset
for each random trial, denoted as {xi, ti}Ni=1, where

xi = [λi,di, fi] , (5)



0 0.01 0.02 0.03 0.04 0.05 0.060

0.2

0.4

0.6

0.8

1

Intensity

C
D

F Normal�Overall
Bad�Overall
Good�Overall
Normal�Incident
Bad�Incident
Good�Incident

(a) Intensity (normalized) feature distribution

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

Un�normalized intensity

C
D

F Normal�Overall
Bad�Overall
Good�Overall
Normal�Incident
Bad�Incident
Good�Incident

(b) Intensity (un-normalized) feature distribution

20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Duration

C
D

F Normal�Overall
Bad�Overall
Good�Overall
Normal�Incident
Bad�Incident
Good�Incident

(c) Duration feature distribution

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Frquency

C
D

F

Normal�Overall
Bad�Overall
Good�Overall
Normal�Incident
Bad�Incident
Good�Incident

(d) Frequency feature distribution

Figure 3: CDF distribution of the feature vector values.

and N is the size of training set (the number of prefixes com-
bining the two groups). In our experiments shown below we
also show results obtained using other combination of the
features, e.g., xi = [di, fi], xi = [λi, fi], and so on. However
for the intensity feature we will only use the un-normalized
version following observations from the previous section that
the normalized intensity appears to provide little useful in-
formation in separating the two sets.

4.2 Prediction result
Our test dataset again consists of two sets of subjects:

1. The set of incident prefixes identified for the months
of November and December 2013.

2. A randomly selected 1,000 prefixes that are not associ-
ated with any incident in the months of November and
December 2013. As in training, this set is repeatedly
selected and the final result is the average over these
random trials.

The resulting average true positives and false positives are
calculated and plotted in Figure 4 under different combina-
tions of the features used for training. As detailed earlier,
this figure is generated by training on RBL data collected
from Jan. to Sep. and incident data collected in Oct., and
the prediction is for incidents occurring in Nov. and Dec..
Each point on a curve is the average over random selections
of the clean set used for prediction. Different points on a
curve correspond to different versions of the classifier gen-
erated by the random selections of the clean set used for
training (recall for each random selection of the clean prefix
set we obtain a different classifier). One of the best choic-
es appears to be around (62%, 20%) for instance, on the
duration-frequency feature curve. It is worth noting that the
actual false positive rate at any operating point is likely to be
lower than what is shown here as our incident dataset is by
no means complete due to reasons such as under-reporting
or delayed reporting of security incidents.
There is some difference between the prediction perfor-

mance of classifiers trained using different combinations of
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Figure 4: Incident prediction result. Training is based on
the RBL data from Jan. to Sep. 2013 and incident data in
Oct. 2013, using both clean and incident sets; prediction is
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features. In particular, using only duration and intensity
(un-normalized) appear to perform poorly, but the other
combinations have very close performance. Using all fea-
tures also appear to hold negligible advantage over these
other combinations. This suggests that there is certain re-
dundancy in what these features reveal. To avoid repetition,
for the rest of this section we will only focus on the duration-
frequency combination.

We see that different versions of the classifier present dif-
ferent combinations of true positive and false positive rates.
The difference is attributed to the relationship between the
randomly selected clean set and the incident set. For in-
stance, if the clean set of prefixes happen to have a signif-
icant portion with feature values similar to those from the
incident prefix set, then the resulting classifier will have high
false positive, and by extension a relatively high true pos-
itive; the opposite is also true leading to combinations of
low false positive but also low true positive. This is a con-
sequence of the fact that the population of “clean” prefixes
overwhelms the incident set, and that ours is a binary classi-
fier that assigns two labels to a very wide range of behavioral
patterns. To gain more insight into how likely each of these
operating points is generated with a random selection of the
clean prefixes, we plotted the distribution of the true and
false positive rates in Figure 5 (using only the duration and
frequency features). We see that the majority of these trials
(random selection of clean training sets) have true positive
larger than 60% (more than 70% of all trials) while the false
positive mostly falls between 20% and 40% (around 65% of
all trials). One advantage of this spectrum of possible oper-
ating regimes is that the random selection of the clean prefix
set during the training phase can serve as a sub-process for
finding the most desirable operation point depending on how
risk-averse one prefers to be.

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1

Prediction rate

C
D

F

False positive
True positive

Figure 5: Distribution of the incident prediction perfor-
mance of the classifiers. Each point corresponds to a random
selection trace.

4.3 Forecast window size
We further examine the effect of the forecasting window

size on the prediction accuracy. To do so we use the same
set of classifiers trained using the union RBL list (from Jan-
Sep’13) and the incident data from Oct’13, but perform test-
s for the three months (Nov’13-Jan’14) and four months
(Nov’13-Feb’14), respectively. These results are added to
the earlier curve and shown together in Figure 6. Clear-
ly we see there is a significant performance improvemen-
t (with best operation point being around (69%, 20%) or
(65%, 15%)) when the forecasting window is extended to in-
clude Jan’14. As mentioned earlier, this is to be expected
because the likelihood of something happening over a longer
period of time is greater. However when we further extend
to Feb’14 we see a decrease in performance. The main reason
is by then the RBL dataset used for training (Jan-Sep’13)
is somewhat outdated (temporal features become more and
more outdated over time), and the classifier would need to
be retrained (e.g., using RBL data from Mar’13 to Dec’13).

4.4 Specific incident case study
We now take a closer look at a recent major case of se-

curity breach that occurred at the University of Maryland
in February 2014. Since the incident occurred recently, we
extracted the duration and frequency features by using the
RBL dataset over the period Mar-Dec’13, and trained the
classifier using the January 2014 incident reports. The ag-
gregated signal (normalized) for the Univ. of Maryland (pre-
fix 128.8.0.0/16 which is used by its College Park campus)
is shown in Figure 7. First again from Figure 7 we easily see
a unclean network spanning the observation horizon.
We see an average short duration in the good region (3

days) while a high frequency into the bad region (0.29, or
once every 3 days). These are negative signs of recurring
malicious activities, despite its extremely low average (nor-
malized) intensity. These are first pass evidence showing
the network is likely to be maintained badly, despite its ex-



Samples Reported time Average Duration Frequency

U. Maryland Feb-14 8.7 · 10−5 [3.0, 3.9, 2.9] [0.30, 0.29, 0.40]

Table 3: Profiling statistics of selected samples : U. Maryland
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Figure 6: Incident prediction result over different forecast
window sizes: two, three, and four months.

tremely low average intensity. According to our classifier,
Univ. of Maryland again has been successfully indicated as
being risky in the near future (Group 1).
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Figure 7: Univ. of Maryland’s temporal evolution of mali-
ciousness (Mar. - Dec. 2013). Prefix : 128.8.0.0/16.
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6. CONCLUSION AND FUTURE WORK
In this paper we applied a simple machine learning tech-

nique SVM to a set of reputation blacklists (RBLs) to gener-
ate predictions for future security incidents that may happen
to a network. The key to our approach is to aggregate the

RBL data at the network (prefix) level and use a set of dy-
namic features to succinctly capture the dynamic behavior
exhibited in the malicious activities. We showed that the
resulting classifier is able to produce fairly accurate predic-
tion results over a forecasting window of 2-3 months. These
results have wide applications in for example providing risk
evaluations, network management feedbacks etc. Further
development includes building a higher-resolution classifier
(as opposed to binary) that could generate prediction on
the actual likelihood of an incident occurring, using more
sophisticated machine learning techniques.
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