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ABSTRACT
Developers are increasingly deploying web applications which
require real-time bidirectional updates, a use case which
does not naturally align with the traditional client-server
architecture of the web. Many solutions have arisen to address
this need over the preceding decades, including HTTP polling,
Server-Sent Events, and WebSockets. This paper investigates
this ecosystem and reports on the prevalence, benefits, and
drawbacks of these technologies, with a particular focus on the
adoption of WebSockets. We crawl the Tranco Top 1 Million
websites to build a dataset for studying real-time updates in
the wild. We find that HTTP Polling remains significantly
more common than WebSockets, and WebSocket adoption
appears to have stagnated in the past two to three years. We
investigate some of the possible reasons for this decrease in
the rate of adoption, and we contrast the adoption process to
that of other web technologies. Our findings further suggest
that even when WebSockets are employed, the prescribed
best practices for securing them are often disregarded. The
dataset is made available in the hopes that it may help inform
the development of future real-time solutions for the web.
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1 INTRODUCTION
Websites are increasingly dependent on real-time commu-
nication between clients and servers. The modern web has
expanded to a broad range of applications that require bidirec-
tional updates between parties—online gaming, advertising,
and collaborative document editing are a few examples. For
years, the client-server model was stretched to provide these
capabilities to developers. Practices such as HTTP polling
enabled some real-time applications, but these stopgap solu-
tions present significant inefficiencies in the form of excessive
headers and wasted requests. HTTP polling gradually evolved
and optimized some of these pain points, but the fundamental
architectural challenge remained: receiving real-time updates
from a server which cannot initiate connections.

WebSockets were designed to offer developers a built-in,
performant solution for real-time applications. The Web-
Socket API directly addresses these needs, providing low
overhead and full duplex communication between web servers
and their clients, while avoiding large amounts of unneces-
sary traffic. Having been implemented in major browsers for
almost a decade, WebSockets are now a mature, widespread
part of the web landscape. Accordingly, it is important to
understand how this web technology is deployed and to what
degree WebSockets have been successful in improving the web
experience. By identifying WebSocket successes and failures,
and comparing WebSockets with their alternatives, we strive
to inform future efforts to improve WebSockets and similar
web technologies.

This paper is an empirical assessment of the real-time web.
We visit the Tranco Top 1M [46] websites, gathering data on
71,637 WebSocket connections across 55,805 websites which
use them. We make our full dataset available for download1.
Using this dataset, we study the types of sites that use real-
time technologies, with a particular focus on WebSockets, and
we characterize how these sites employ these various technolo-
gies. As expected, we find that WebSockets are being used for
a diverse set of use cases across popular websites, with some
of the most common being chat, analytics, and live updates
for sports scores and stock prices. We find that online chat
accounts form a majority of WebSocket connections across
top sites. Scripts which communicate via the WebSocket API
are almost exclusively third-party (94.9%), suggesting that

1https://bit.ly/2TeUpYx
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most websites do not implement their own WebSocket in-
frastructure. This is in line with previous work [44], which
detailed the increasing complexity of websites due to a grow-
ing number of third party inclusions, and particularly third
party scripts.

In order to assess how successful WebSockets have been,
we quantify the advantages they provide and identify real
scenarios where they could be employed to improve current
website implementations. We provide calculations on the
overhead and wasted request savings of switching from HTTP
polling to WebSockets, and we present real-world data to
support our calculations. The results suggest that there are
at least as many sites still using HTTP polling as there are
sites which use WebSockets. As a case study, we provide a
concrete example of the reduction of overhead that a website
achieves by deploying WebSockets. Our research points to
significant room for improvement on the web through the
further deployment of WebSockets.

Like many other technologies on the Internet, WebSockets
are commonly misconfigured and/or misused. While we did
not uncover any new vulnerabilities, our analysis reveals
shortcomings in third party libraries and other errors in
deployment that degrade the security and performance of
many applications which use WebSockets. We discuss several
of the best practices laid out in the WebSocket RFC [2] and
compare them to the ecosystem we observe. For example, we
find that 74.4% of WebSocket servers do not check/verify
the HTTP Origin header attached to requests to open a
connection. 14.1% of the WebSocket servers we observe are
accessible over unencrypted (ws://) channels, with 0.8%
of them using this configuration by default. While these
may not always result in blatant vulnerabilities, they are
indicators that developers are frequently failing to follow best-
practices, leading to a more risky environment overall. Beyond
misconfigurations, we uncover evidence that WebSockets are
regularly used to facilitate unsavory practices such as user
tracking, cryptojacking, and malware delivery. We provide
an empirical look at several malicious use cases we observed,
along with examples we observed in the wild. Our hope is that
this work serves to raise awareness about the importance
of real-time technologies such as WebSockets, while also
underscoring several problems to be corrected in current,
real-world deployments.

2 BACKGROUND
2.1 The Need for Real-Time Communication
The client-server model has long been the architectural back-
bone of the web: a client requests a resource, and that request
is subsequently serviced by a remote server. However, this
model has become increasingly inadequate for various appli-
cations. As web apps become more dynamic and interactive,
servers often require the ability to push messages to the
client at will. Examples of these use cases are numerous:
browser-based gaming, collaborative document editing such
as Google Docs, chat services, continuous updates to sports
scores and stock prices, and many more. In these applications,

servers may need to update clients multiple times per second,
but may also go without sending an update for minutes or
hours. Clearly, the web needs mechanisms for bidirectional
communication at unpredictable intervals. In this paper, we
examine a group of technologies that seek to enable this:
HTTP Polling/Streaming, Server-Sent Events (SSE), and
WebSockets.

2.2 HTTP Polling
An early solution to server-initiated communication, known
as HTTP polling, has been around for more than two decades.
In HTTP polling, a client desiring near-real-time updates
sends frequent HTTP requests to a server, which usually
replies with a empty or baseline response. When an update
becomes available, the client receives it from the server with
a latency of roughly the time between requests. To further
optimize this solution, HTTP offers the keep-alive header.
This option allows the reuse of a TCP connection for multi-
ple HTTP requests, reducing the overhead of creating a new
TCP connection for each HTTP request. The problems with
this approach are straightforward and well known [1]. Even
with persistent connections, the server cannot push updates
to the client directly. While HTTP polling may be sufficient
for applications where data arrives at known times, it will
lead to many wasted client requests when servers need to
update clients at inconsistent intervals. Each of these requests
and responses contain HTTP headers, leading to significant
amounts of wasted network traffic. In addition, updates from
the server can only arrive at the frequency with which it
is polled. An optimization on polling, called “long polling”,
uses the ability of servers to hold client queries open until
data becomes available. This reduces the delay in delivering
updates to clients, since the server will respond to the re-
quest at the moment when the data becomes available. Since
requests need to be sent much less frequently (only when the
server sends data or when a request times out), this solution
offers a significant decrease in bytes on the wire.

2.3 HTTP Streaming and Server-Sent Events
A further optimization to long polling, known as “HTTP
streaming”, keeps the underlying TCP connection open even
after data is delivered in response to a request, meaning that
more data can be delivered to the client if/when it becomes
available. This is accomplished using a Transfer Encoding:
chunked HTTP header, which causes the browser to hold
open the TCP connection even as multiple responses are
received, eliminating the need for a reconnection whenever
the server sends data.

One particular variety of HTTP streaming, called Server-
Sent Events (SSE), are offered by the EventSource JavaScript
browser API. SSE essentially implements HTTP streaming in
an easy-to-use interface, with reconnection and event firing
built in. It sets the HTTP mimetype header to the value
text/eventstream, indicating to the browser that responses
should be delivered as JavaScript events. However, these
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solutions still suffer from added overhead due to connection
timeouts and HTTP headers attached to each message.

2.4 WebSockets
The WebSocket protocol was standardized in 2011 to ad-
dress many of the issues described above. WebSockets offer
a significant improvement over previous real-time update
mechanisms. A single HTTP request/response is required for
setup. Subsequently, a full-duplex communications channel is
available to both the client and the server. This means a client
can receive updates from a server (either text or binary data)
in real-time, without polling the server. WebSocket frames
sent over an existing connection do contain a header, but this
header is much smaller than an HTTP header (usually less
than 8 bytes total). Thus, WebSockets are valuable for two
main categories of use cases that are not sufficiently handled
by existing web technologies: 1) Small, frequent data ex-
changes between client and server which benefit from smaller
per-message overhead, and 2) Server-initiated communica-
tions with a client which no longer require the client to poll
the server.

A WebSocket connection begins when a client initiates
a connection by sending an HTTP GET request with the
header Upgrade: websocket. If the server is capable of serv-
ing a WebSocket connection, it responds with HTTP 101:
Switching Protocols, and the connection is established.
Both the client and the server may now send data frames at
will. According to the WebSocket RFC [2], WebSockets were
designed to be “as close to just exposing raw TCP to [a] script
as possible”. There is a small header (2 to 14 bytes) attached
to every WebSocket frame which contains an opcode, the pay-
load size, and a masking bit, but relative to HTTP headers,
the overhead of WebSocket frames is quite small. The browser
closes WebSocket connections automatically when the client
closes (or navigates away from) the page. Major browsers
began implementing experimental versions of WebSockets as
early as 2010, and since 2013, all major (desktop and mobile)
browsers provide full WebSocket support [13].

2.5 Excluded Technologies
There are a few notable techniques and technologies related
to real-time communication on the web which we purpose-
fully exclude from our analysis. We do not examine plugins
such as Microsoft Silverlight or Adobe Flash. While these
protocols do allow for sockets which can be used in websites,
we consider them to be end-of-life, as they are either no
longer supported by major browsers (Silverlight), or will be
phased out within a year (Flash). We also specifically exclude
WebRTC from our measurements. WebRTC is an important
protocol for real time communication on the web, but it
usually satisfies different requirements than the protocols we
study here. WebRTC is a peer-to-peer protocol which usually
uses UDP. In this paper, we are studying client/server inter-
actions, so we omit it from our analysis. Finally, we do not
investigate HTTP/2 Server Push. Server push is a technique
by which a server can initiate the sending of resources to

the client without a request. However, it is not meant as a
real-time communication mechanism, but rather as an opti-
mization technique to decrease the number of GET requests
the client needs to send on a page load. For this reason, we
do not discuss it in the paper.

3 MEASUREMENT
To gather data on the use of real-time technologies in the wild,
we crawled the Tranco Top 1M [46]2 using an instrumented
version of the Chromium browser. Our browser harness is
written in Go. It uses chromedp[15], a Go interface for the
Chrome DevTools Protocol, to drive the browser and collect
data. We use a full (non-headless) version of the browser in
an in-memory display, and we use a fresh browser instance
with a new user data directory for each website visit.

Our crawl of the Tranco Top 1M was conducted across 10
virtual machines, each running Ubuntu 16.04 and Chromium
version 81. Each crawler VM ran 12 browser instances simul-
taneously, and the crawl took approximately four days (8
thru 11 May 2020) in total. After retrying each failed crawl a
second time, we obtained data for a total of 88.1% of websites
in the top million. 7.7% of the listed domain names failed to
resolve, and the remaining 4.2% had web servers which failed
to respond or reset incoming connections. We remained on
each web page for 60 seconds, in order to ensure we could
observe real-time updates for a reasonable period of time.
We gathered metadata on all resources downloaded for each
site, including request initiators and timestamps for each re-
quest. We gathered data on each WebSocket and EventSource
(Server-Side Event) connection down to the data sent in each
individual frame. Our full dataset is available for download3.

3.1 Polling, Long Polling, and HTTP Streaming
Detecting HTTP polling and streaming is tricky because
there are many different techniques, intervals, and libraries
that are used to accomplish them in the wild. We take a
heuristic approach to the measurement of these techniques.
To be considered polling, a site must send three or more
requests to the same URL, although we allow the query and
fragment to differ. The requests must come from the same
initiating script. We also require that the time between these
requests remain consistent. To enforce this requirement, we
calculate the median time between polling requests for a site
and compare it to the number of requests and the amount of
time spent on the page. If polling is happening at a consistent
interval, we expect the product of median polling interval
and the number of requests to be near the time spent on the
page. We verify this methodology with manual inspection of
a sample of the instances identified, finding no false positives.

Our crawler remains on each page for 60 seconds during
our main crawl, but this is often is often too brief to detect
polling or streaming, given that default browser timeouts for
HTTP connections are now as high as five minutes[18]. To
address this, we conducted an additional crawl of a subset
2Top 1M List: https://tranco-list.eu/list/QJ94
3Dataset: https://bit.ly/2TeUpYx
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Figure 1: Polling Intervals—A CDF of the median intervals at
which sites send new polling requests. No standard interval
for long polling exists, and we see wide variation in how
developers implement their own polling solutions.

of websites, in which we remained on each page for one
hour, rather than one minute. Our subset of sites for this
crawl consisted of the top 1000 sites, along with a random
sample of 1000 sites from each of the top 10K, top 100K,
and top 1M, for a total sample size of 4000 websites. We
found that HTTP polling or long polling are in use on 14.8%
of these websites. Higher-ranked sites more commonly use
polling, with 19.8% of the top thousand sites leveraging the
technique compared to 9.2% of sites in the top million. We
observed varying polling intervals, shown in Figure 1. The
most common choice is an interval of 30 seconds, with the
median being 60 seconds. On some sites, JavaScript forces
full or near-full page refreshes periodically, which we consider
to be a particularly inefficient variety of polling.

To determine whether these instances were regular or
long polling, we examined the time between request and
response. In long polling, we expect the request/response
interval to be close to the interval between requests. In regular
polling, the server responds immediately, so the interval is
much shorter. We consider any group of polling requests in
which the median time for a response is greater than half
the median time between requests to be indicative of long
polling. Applying this methodology to our dataset, we find
long polling to be exceedingly rare in practice, occurring on
only a single website out of our 4000 site sample. This was a
surprise to us, as we found long polling discussed frequently
online as a real-time update technique. One explanation
for this is that while regular polling sacrifices latency in
updates, it also frees servers from the requirement to hold
open connections over a long period of time. As discussed
further in our limitations section, this finding is likely also
influenced by our data collection method, which only visited
the front pages of websites. Nonetheless, it was surprising
to find a lack of usage of this technique. HTTP streaming,
which can be identified by looking for a “Transfer-Encoding:
Chunked” HTTP header on polling requests, was present
on 4.5% of all pages, and roughly a quarter of the sites using
some form of HTTP polling/streaming.

3.2 Server-Sent Events
Like long polling, Server-Sent Events, which are implemented
using the JavaScript EventSource API, were much less preva-
lent than we expected. We find them in use on only 0.4% of
the top thousand and 0.05% of websites in the top million.
Of that small percentage in the top million sites, a single
advertising/tracking service (media.net) accounts for 62.8%
of those instances. Clearly, this is not a technology that has
found widespread adoption on the web. Usage of SSE and
WebSockets offer an intriguing case study into what happens
when a technology is not adopted by all major browsers.
Although the EventSource standard was adopted quickly
by Chrome (2010), Safari(2010), and Firefox (2012), it was
never added to Internet Exporer, and was only added to
Microsoft Edge in 2019[5]. Given that Internet Explorer still
has a market share of more than 2%, it is understandable
that developers have largely avoided this API in favor of
more widely supported real-time solutions. By contrast, In-
ternet Explorer (and all other major browsers) had added
support for WebSockets by 2012. As we show below, they
have become significantly more common than SSE. While
there are undoubtedly other contributing factors, it seems
clear that the decision not to add SSE to Internet Explorer
has had a significant adverse impact on SSE adoption.

3.3 WebSockets
We found WebSocket usage on 55,805 websites (6.3%) in
total. This is a substantial increase from a study in 2018 [22],
which found that only 1.6% to 2.5% of sites used WebSockets.
Figure 2 shows the prevalence of WebSocket usage relative
to site ranking. Extremely highly ranked sites tend to be
slightly more likely to use WebSockets (7.3% of the top 1000
sites), but this difference is marginal. WebSockets are clearly
favored by developers relative to SSE and the EventSource
API, but they continue to lag well behind polling in terms of
adoption.

The expanding usage of WebSockets across the Internet is
enabled by third party providers, who account for the vast
majority of WebSocket use. Across 71,637 WebSocket con-
nections we observed, 94.9% of connection-initiating scripts
and 92.1.% of the WebSocket servers to which they connect
are third-party (different second-level domain than the base
site). This large number of third party providers means that
there is less heterogeneity in deployments than one might ex-
pect based on the number of sites using WebSockets. Across
all the connections we observed, we find only 7,624 unique
WebSocket servers.

3.3.1 Who Uses WebSockets? Next, we investigated the
types of websites that use WebSockets and the types of ser-
vices that are being provided over WebSockets. To perform
website categorization, we use the WebShrinker API [19],
which provides a mapping from domain names to website
categories (Sports, Chat, News, etc.). As shown in Table 1,
live chat is the most common use case for WebSockets, ac-
counting for thirteen of the top twenty most common third
party providers. These products are designed to increase user
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Figure 2: WebSockets and polling by site popularity—We
track the cumulative frequency of WebSocket and HTTP
Polling use over the Tranco Top 1M. WebSockets are
marginally more common in the top 1K sites than the top
1M (7.3% vs. 6.3%), but polling is much more common over
those same intervals.

WS Service Count Percentage Category
zopim.com 9640 13.5% Chat
tawk.to 8500 11.9% Chat
drift.com 5888 8.2% Tracking
intercom.io 4924 6.9% Chat
livechatinc.com 4448 6.2% Chat
visitors.live 3157 4.4% Tracking
jivosite.com 1847 2.6% Chat
hotjar.com 1803 2.5% Tracking
firebaseio.com 1799 2.5% Analytics
crisp.chat 1715 2.4% Chat
Others 27916 39.0% -

Table 1: Most Common WebSocket Services—The most com-
mon third party WebSocket service providers. The majority
of top services are live chat products, accounting for six of
the top ten. Tracking and analytics use cases are also quite
common, and are mostly provided as third party services.

engagement across many types of websites, especially for
online commerce or company product sites. We find that
WebSockets are also used to a lesser extent for ads, tracking,
and outright malicious purposes as well. We delve deeper
into who is using WebSockets in Section 4, focusing on mis-
configuration and malicious use.

3.3.2 How Have WebSockets Been Adopted Over Time? We
leveraged data from the HTTP Archive [16] to study Web-
Socket prevalence over the last three years—the oldest reliable
data on WebSocket use we could find. The HTTP Archive
publishes data from historical web crawls. While they do
not capture fine-grained information about WebSocket con-
nections such as opcodes and payload data, they have data
on WebSocket initiation requests for roughly the last three
years, which we plot in Figure 3. The data shows that the top
one thousand sites were slower, and perhaps more cautious,
in adopting the new technology. This could be because the
top thousand sites care more about compatibility with all

Category # Using WS % Using WS
Stocks 572 50.8%
Software 1959 29.0%
Gambling 847 25.0%
Shopping 3327 10.0%
Chat 907 10.0%
Real Estate 594 8.7%
Sports 566 6.3%
Adult 593 4.8%
Social 288 3.12%
News/Weather 2196 3.1%

Table 2: WebSocket Usage by Category—We list some inter-
esting website categories, along with the rate at which they
use WebSockets. WebSockets are deployed across many dif-
ferent types of websites, led by stock sites, which are often
updated in real time.
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Figure 3: WebSocket Adoption Over Time—The percent of
sites using WebSockets over the last three years. Perhaps
surprisingly, the top thousand sites were slower to adopt
WebSockets than the top million as a whole. As a whole,
WebSocket adoption has mostly leveled off over the last two
years—an indication that the technology is relatively mature.

browsers, including very old ones. The data also shows that
WebSocket adoption has been stagnant over the last year,
indicating that WebSockets are a mature technology and may
be reaching their “high-water mark” less than a decade after
their standardization.

In Figure 4, we compare the adoption rate of WebSockets
over the last three years to that of SSE and HTTP Strict
Transport Security (HSTS), a HTTP header which causes
browsers to enforce using HTTPS on a particular page. While
HSTS is not a real-time technology, we thought it worthwhile
to provide an adoption comparison since there are both op-
tional web improvements released as RFCs at approximately
the same time. All three of these technologies were introduced
in a three year period from 2010-2012, but they have seen very
different rates of adoption over the last decade. For reasons
explained above, SSE has remained almost nonexistent in the
wild. HSTS, on the other hand, has seen usage grow signifi-
cantly, even relative to WebSockets. We hypothesize that this
is attributable to the simplicity and ease-of-implementation
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Figure 4: Web Tech Adoption Over Time—The rates at which
WebSockets have been adopted over the last three years rela-
tive to Server-Side Events (SSE) and HTTP Strict Transport
Security (HSTS). SSE is barely visible on the x-axis here,
due to extremely low adoption. HSTS provides a contrast to
WebSockets in adoption rate, likely because of the ease and
simplicity of adoption relative to WebSockets and SSE.

of HSTS for web developers, but we leave investigation of
this for future work.

3.3.3 How Are WebSockets Used? To characterize how devel-
opers are using WebSockets today, we present some statistics
on the traffic we observed. Figure 6 shows the distribution
of the number of WebSocket messages sent over each con-
nection by clients and servers. This scatter plot shows that
while there is diversity in the way messages are sent, it is
clear that it is more common for servers to send multiple
messages for each client message than the reverse. In other
words, the directionality of WebSocket traffic leans towards
servers sending more messages to clients. This aligns with
our expectations, given that one of the primary motivations
for WebSockets was the ability for servers to push messages
to clients without a corresponding request. 3.1% of connec-
tions sent zero messages, and the median connection saw
between 7 and 8 messages exchanged over the 60 seconds
we remained on the page. Interestingly, there were multiple
connections that exchanged thousands of messages during
a single site visit. In the most extreme case, popsplit.us, a
web-based game, sent 31,324 messages (from server to client)
over the course of our visit, averaging an update every 1.4
milliseconds. While this particular case is extreme and is
likely the result of poor development or misconfiguration,
the fact that the site still functions highlights the ability
of WebSockets to facilitate high frequency communication
with websites. Despite this capability, only 2,512 connections
(2.9%) averaged more than a frame per second, suggesting
that cases requiring high frequency updates may actually be
relatively rare.

On a frame-by-frame level, we observed that most mes-
sages are relatively small, with the median message size
being 85 bytes. However, more than 5% of the messages were
larger than a kilobyte, and there were rare instances of multi-
megabyte WebSocket frames. Manual inspection revealed that
some of these were the result of tracking/analytics scripts
sending the content of the DOM back to a server. Putting
aside the privacy concerns, which are discussed in more detail
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The overall median frame size is 85 bytes, while the largest
single message we captured was over 5 megabytes. The small
size of most messages underscores the value of the reduced per-
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headers are generally an order of magnitude smaller than
HTTP headers.
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Figure 6: Client and Server Messages per Connection—The
number of messages sent relative to the number of messages
received for each WebSocket connection. The size of each
mark scales with the number of connections with those partic-
ular x and y values. Although connections are quite diverse in
their patterns, it is clearly more common for server messages
to outnumber client messages.

in Section 4, this seems to be a highly inefficient method for
accomplishing the goals of these companies. Other sites use
large payloads for a variety of reasons. We observe instances
where sites use WebSockets to load resources which would
traditionally be loaded via normal HTTP GET requests. One
site, moviemovie.com.hk, achieved an ever-changing display
of movies by sending megabytes worth of movie poster images
over WebSockets. Sites which load many of their resources
over WebSockets may find an increase in efficiency, but there
is a danger of having to re-implement many features that
HTTP provides within the JavaScript handling these Web-
Socket connections.



WebSocket Adoption and the Landscape of the Real-Time Web WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

The structure of data flowing over WebSockets on the mod-
ern web is relatively homogeneous. WebSockets can trans-
mit data in text or binary. Clearly, it is more bandwidth-
efficient to transmit data in a binary format. However, we find
that 88.4% of messages, and 96.4% of total bytes, are made
up of text data. Further, the majority of this text data (69%)
is JSON, indicating that developers using WebSockets value
ease of development over optimization. We also observed that
some of this JSON contained re-implementation of features
already provided by the WebSocket protocol. We identify
433 sites which are sending PING/PONG messages enclosed in
JSON, even though the WebSocket protocol itself provides
dedicated opcodes specifically for this purpose. All of this
together serves to confirm the anecdote that web developers
often introduce inefficiencies in their code to ease develop-
ment, or because they simply lack a firm understanding of
the features and tools they use.

3.3.4 How Much Could WebSockets Improve Sites Currently
Using Polling? Previous work has studied the performance
benefits of WebSockets under controlled laboratory settings [52,
53]. Here, we focus on applying real-world data to under-
stand how changes could affect websites as they are currently
deployed. In schemes such as HTTP polling and long polling,
where a unique HTTP request is required for each mes-
sage, HTTP headers become a significant source of overhead.
Across our data, we find that the mean size of HTTP request
headers is 184.9 bytes. Response headers are more than twice
as large on average, at 403.1 bytes. Given that our crawls are
unauthenticated and thus our requests contain significantly
fewer cookies/tokens, these are definitely underestimates of
average header size. As a concrete example to demonstrate
the differences in traffic requirements between polling and
WebSockets, consider tradingview.com, a currency exchange
website. This website uses a single WebSocket connection to
push updated currency exchange rates to clients roughly once
per second. As WebSocket use cases go, this is not a particu-
larly high update frequency. We found that some WebSockets
deliver tens or hundreds of updates per second. However, the
bandwidth savings achieved through WebSocket usage here
are still significant. With WebSockets, updates require an
average of 82 bytes sent across the network (an 8 byte Web-
Socket header plus a variable sized binary payload averaging
74 bytes). No request is required—the update is delivered at
the moment it becomes available on the server. Using our
data on HTTP header sizes, we estimate that implementing
the same functionality with long polling would require an
average of 499 bytes on the network for each update, given
that both request and response headers would be required
and binary data would need to be base64 encoded at a 4:3
ratio. Therefore, we conservatively estimate that WebSockets
offer a decrease in network overhead of at least 417 bytes per
client per second. Given that tradingview.com is estimated
to have approximately 4,835 visitors on their page at a time
in September 2019 [10], WebSockets represent a decrease
of 16Mbps in required server bandwidth for this relatively
benign traffic load.

4 MISCONFIGURATION AND MISUSE
The security community has long known that misconfigura-
tion and unintended use of technologies can lead directly to
vulnerabilities [32, 48]. Given the diversity of applications
on the web, and the importance they hold for users, it is
valuable to periodically measure and understand misconfig-
uration and misuse of web technologies in the wild. This
section looks back at the WebSocket RFC and reflects on
how well real-world deployments have complied with some
best-practices and recommendations laid out in the original
standard.

4.1 Misconfiguration
4.1.1 Checking Origin Headers. Since WebSockets are not
restricted by the Same Origin Policy (SOP), a malicious
script can use existing cookies for a host to authenticate in
a manner similar to cross-site request forgery attacks [27].
Consequently, a WebSocket server should, for many typical
use cases, validate the HTTP Origin header, which is set by
the web browser based on the origin of the script opening
the connection. To facilitate this process, major WebSocket
libraries such as socket.io and sockjs provide a specific func-
tion for setting the allowed origins [11, 12]. However, the
default behavior of these libraries is to allow any origin to
access the server.

We measured whether WebSocket servers in the wild are
checking Origin headers by attempting to connect to each
of the WebSocket servers we observed using an arbitrary
HTTP Origin. To do this, we used a dedicated script as a
WebSocket client and used the applicable domain name as
the host, and specified arbitrary (incorrect, unrelated) do-
main as the HTTP Origin. We observed that of successfully
connect to (and receive data frames from) 74.4% of the 7,624
distinct WebSocket servers we encountered. While this wide-
spread lack of Origin header validation in initial WebSocket
requests might sound shocking at first. There is no doubt
that an overlooked Origin header check could jeopardize user
security and privacy. However, our analysis showed that the
scripts accepting these connections were mostly trackers, web
analytics, and advertising networks that were loaded during
a website visit. These entities operate more effectively when
they provide universal access to their servers and allow all in-
coming connections in order to attain more visibility over the
behavior of users across different websites. This behavior is
in line with well-known tracking methodologies such as pixel
tracking [30] where fetching a cross-origin request is necessary
to load a remote image. Servers are often configured to allow
cross origin requests using Cross-Origin Resource Sharing
(CORS) to allow the image fetching and complete the track-
ing process successfully. Trackers and analytics servers often
omit a check on the Origin header, but applications where
security is important to the provider, such as cryptomining
and gaming, tend to reject connections without the proper
header.

4.1.2 Unencrypted Connections. The large number of track-
ing and analytics scripts we found emphasizes the fact that
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WebSocket connections often transmit sensitive data to re-
mote servers. In this section, we seek to understand whether
the adoption of WebSockets aligns with the push in the
web community to move the web traffic to TLS-protected
channels. WebSockets can use unencrypted (ws://) or TLS-
protected (wss://) connections [2]. However, in all modern
browsers, if a website is served over an HTTPS connection,
an attempt to open a non-TLS-protected WebSocket connec-
tion will fail [8], so unencrypted WebSocket connections can
only be initiated by websites who are served over HTTP. Of
the 55,805 websites we observed using WebSockets, 438 of
them (0.8%) used unencrypted WebSockets by default. We
also attempted to create unencrypted connections to each
of the WebSocket servers using HTTP WebSockets solely
with the goal of locating servers that do not enforce a secure
WebSocket communication on the incoming requests. This
analysis showed that 14.1% of the servers allowed WebSockets
upgrade request over clear text communication channel. In
the best case, these are unnecessary services exposed on the
Internet, exposing additional attack surfaces without confer-
ring any apparent benefits. In the worst case, they represent
a vulnerability in that sensitive user data may be sent across
the web unencrypted without users ever knowing.

4.2 Malicious Use
In the course of our study, we found that a significant per-
centage of WebSocket use in the wild was related to tracking,
analytics, and even worse, scams and malware delivery. To
be clear, we do not assert that these practices would not be
possible without WebSockets. However, WebSockets clearly
make these harmful practices easier and more discreet. This
section outlines our findings on the darker side of WebSocket
use.

4.2.1 Data Leaks. The topic of web tracking has been well
studied, and the pervasiveness of trackers and their privacy
implications have been extensively documented [26, 31, 34,
37, 42, 43]. Trackers are known to use intrusive techniques
to gather information about online users and their behavior
patterns. Examples include the use of HTML5 APIs such as
Canvas, Battery Status, and Audio context [31] for device
fingerprinting [35, 45, 51], cross-device tracking [25], and even
exfiltrating user data from unsubmitted forms [55].

We extended our experiments in Section 3 to investigate
how WebSockets, as an efficient data transmission mechanism,
are used by trackers. Personally Identifiable Information (PII)
is a blanket term describing information about users that
could be used to trace an individual’s identity. PII includes
first and last names, email address(es), phone number(s), and
IP addresses. We define a PII leak as any instance in which
this information is transmitted to a third-party without user
consent. Beyond PII, there is a wide variety of information
that scripts can collect which might be considered objection-
able to users on privacy-related grounds. Session recording,
for example, is the process of deep copying the DOM objects
and serializing those objects to a specific format (e.g., JSON)
for transmission to a remote server. In addition to sending a

full snapshot of the DOM tree at the start of a site visit, the
JavaScript code periodically records the interaction of the
user as a set of snapshots that contain mouse coordinates and
keyboard strokes. Session recording has been studied by other
researchers [29] and is considered by many to be a serious
privacy violation. Session recorders, PII leakers, and other
unsavory (but increasingly common) scripts use WebSockets
as an efficient way to extract the data they collect.

We find that leaked data in the frames’ payloads is usually
sent in a structured format (i.e., key/value pairs) such as
password=mypass or email=reg@example.com. Accordingly,
we performed simple string matching to identify PII being
sent inside of WebSocket payloads. Although values such
as username, password, and email address were often not
present because this was an automated crawl, we were able
to measure PII leakage based on clearly-named keys. Ta-
ble 3 illustrates the type of information sent over WebSocket
channels. While we observed the use of unique identifiers
across third-party code, the data frames also included key/-
value pairs such as locations and email address. As an ex-
ample, https://vapesociety.com, an online shopping website,
loads a script that establishes a WebSocket connection to
zopim.com—a marketing automation entity. The code sent 21
frames (approximately one frame every two seconds) to the
server during the site visit. The exchanged frames contained
information about website visitors (e.g., mouse movements,
client IP, and geolocation data). Note that PII leakage was
not seen in every instance of the third-parties listed in Table
5. For example, hotjar.com, one of the most frequently con-
tacted domains, leaked user data in only 79 out of 2,337 cases.
It was also common that these third parties received more
than one tracking parameter (e.g., visitor ID, phone number).
The analysis on the type of PII data sent over WebSockets
shows that visitor ID, email address, and IP address were
the most common PII data extracted among the five libraries
listed in Table 3. We identified 211 unique incidents where
PII data was extracted as key/value pairs, and 160 (76%) of
these cases contained information about the visitor ID, email
address, or IP address of the visiting user.

4.2.2 Web Tracking. Web tracking has become a well-known
practice in recent years. The canonical web tracking tech-
nique assigns an identifier to the user’s browser for a third-
party domain, say tracker.com, and generates a request to
tracker.com using that identifier when the user visits a web-
page that contains a resource from tracker.com. Figure 7
illustrates a real-world example of cross-site web tracking
based on WebSockets. The third-party code belonging to
truconversion.com, a web tracking entity, collects information
about device properties, the IP address, and the geograph-
ical location of the user. It sends this information (via a
WebSocket) to a remote server. The server sends a periodic
heartbeat which contains a unique 16 digit user ID to check
whether the browser tab is still open on user’s machine. We
identified 54 websites which were using the same script from
truconversion.com. We tested all 54 websites using the same



WebSocket Adoption and the Landscape of the Real-Time Web WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Library PII Location Fingerprint Session
Recording

cux.io ∙ ∙ ∙ ∙
beusable.com ∙ ∙ ∙
hotjar.com ∙ ∙ ∙ ∙
inspectlet.com ∙ ∙ ∙ ∙
webspectator ∙ ∙ ∙
colpirio.com ∙ ∙ ∙
firecrux.com ∙ ∙ ∙ ∙
zopim.com ∙ ∙

Table 3: Prevalent third-party trackers—Some of the most
common third party trackers, along with the types of data
they export. We observe that many scripts export data at
regular intervals. WebSockets allow them to accomplish this
less conspicuously, since they avoid sending frequent HTTP
requests, especially in cases like session recording.

browser profile and confirmed that the assigned user ID ex-
changed over WebSockets was identical in all the websites. If
the remote server receives heartbeat responses from different
websites for the same user ID at the same time, it allows the
tracker to create a list of websites that a user has visited in
a specific time period. We extend this experiment by delet-
ing all cookies of the browser profile used in the previous
experiment, and run the experiment again while monitoring
the assigned user ID of the device. Our analysis showed that
clearing cookies would not prevent trackers from identifying
the same device because the same user ID was assigned to
the visiting device across each of the 54 websites.

io.truconversion.com

wss://io.truconversion.com/?
token=4603-www.guardianfall.com

wss://io.truconversion.com/?
token=10235-bestseekers.com

wss://io.truconversion.com/
?token=3907-www.birchgold.com
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Figure 7: Example: Cross-Site Tracking—An example where
WebSockets are used to track users across multiple sites. By
correlating user IDs sent at aligning times, a third party
script provider can build lists of websites which users have
visited.

In this experiment, we observed that truconversion.com
uses persistent browser-based fingerprinting to make defend-
ing against online tracking more difficult. WebSockets make
this possible by allowing remote servers to push low-cost

heartbeat requests across different websites. Real-time cross-
site tracking can have significant monetary value [23] due to
the rise of Real-Time Bidding (RTB), in which advertising
and tracking companies are incentivized to collaborate in
order to exchange real-time data about users and facilitate
bidding on impressions [23, 33]. Bashir et al. [24] studied
this behavior by implementing a simulation of an online ad
ecosystem, demonstrating how online tracking and analytics
incorporate various techniques to collect users’ browsing pat-
terns and use them that in the RTB market. We found five
other tracking companies that were using similar techniques
for real-time cross-site web tracking.

4.2.3 Exposing Users to Malicious Pages. Prior work [49, 50,
57, 59] has discussed various techniques that adversaries use
to distribute malicious links across websites, luring users to
visit their scam pages. However, this approach lends itself
to rapid identification and removal of these malicious pages,
as discussed in prior work on emerging online scams [39, 49].
An alternative for adversaries is to expose users to mali-
cious content via real-time notifications – a form of server
to client messaging often built on WebSockets. Open source
PushWoosh [9], Google Firebase notification [6], and Amazon
Simple Notification Service (SNS) [3] are just examples of
implementations which are widely deployed. Using such a
service, web applications can send data to thousands of re-
mote user devices with relatively small server-side overhead.
Real-time notifications are deployed on top of this service
to provide publishers with a flexible notification platform
that is supported across a variety of end-user devices. Since
WebSockets work on all major browsers [14], they allow for
broad code reuse across many browser versions and device
types.

The ability to send real-time notifications to remote targets
and avoid leaving evidence of malicious activity in website
source code allows adversaries to hide from search engines
and active web scans by security researchers. We identified
1,466 websites that were using third-party libraries to deliver
WebSocket-based notifications. Visitors to the corresponding
websites are encouraged to register for real-time notifications
to receive special discounts on products or software.

We performed an experiment on 400 websites which used
these third-party libraries. Inside of a dedicated virtual ma-
chine, we registered for notifications and monitored traffic
from these sites for 30 days. Of these 400 websites, we identi-
fied 32 cases where push notifications were used to deliver
Potentially Unwanted Programs (PUPs), scam pages, adult,
or affiliated websites. Across these 32 websites, we logged 123
individual payloads.

Table 4 shows the types of malicious payloads distributed
by WebSocket push notifications. While we observed multiple
types of malicious practices, a large number of collected sam-
ples (52.7%) were distributing PUPs such as Amonetize, Mac
Keeper, and TotalAV. While the number of identified cases
is not huge, the finding is in line with prior work [50] where
the authors analyzed a large number of social engineering
and web-based attacks and found that PUPs and extensions
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Categories Dist.
Adult pages 12 (10%)
Affiliate Programs 33 (27%)
Malware 3 (2.5%)
PUPs 42 (34%)
Malicious Extensions 23 (18.7%)
Technical Support Scams 10 (8%)
Total 123 (100%)

Table 4: Malicious payloads delivered by push notifications—
The distribution of malicious payloads we observed being
delivered during our notification experiment. Across 32 out
of 400 websites which delivered unwanted content, we ob-
served 123 total payloads. Among these payloads were scams
and malware which could have serious negative impacts on
individual users.

Binary Type Dist. Type
Installcore 3 PUP
Speed Dial 12 Extension
Mac Keeper 20 PUP
Easy Convert 11 Extension
Search Defender 10 PUP
TotalAV 9 PUP
Flash update 3 Malware
Total 69 (100%) -

Table 5: List of unique downloaded binaries distributed via
WebSocket-based notifications—We observed these down-
loads as part of our 30-day experiment on WebSocket-based
push notifications. While most of these downloads simply
cause annoyance for users, there are a handful of examples
of actual malware being distributed through these channels.

are the most common forms of malicious payloads. We also
found 10 cases where pop-up widgets claimed that the visi-
tor’s computer was infected with malware. These websites are
entry points to technical support scams, an ongoing problem
recently explored by other researchers [49].

5 DISCUSSION AND LIMITATIONS
Many of the canonical difficulties in measuring website func-
tionality apply to this study. In particular, WebSockets are
difficult to measure in full for two main reasons. First, initiat-
ing WebSocket connections may require specific interactions
with a website, such as pressing a “connect to updates” button.
Predicting these interactions heuristically, either beforehand
or during site visits, is quite difficult, and we do not attempt
it in this work. Second, many of the more interesting Web-
Socket applications sit behind some form of authentication, or
simply deeper than the front pages of websites. Measurement
of authenticated services is a long standing problem in the

community, and finding ways to effectively measure authenti-
cated WebSockets at scale remains an interesting topic for
future research. In particular, we believe that incorporating
a server-side vantage point into measurements could shed
additional light on the value of various real-time technologies
on the modern web.

Adoption of HTTP/2.0 is currently at about 45% among
the top million websites [7] and rising. It is interesting to
consider how this will impact WebSocket usage, given that
HTTP/2.0 includes server push, a feature whereby servers
can asynchronously send data to clients without an explicit
request. WebSocket usage is still much more common than
server push. This is not surprising, given that server push
is not supported on older desktop browsers such as Internet
Explorer, or on common mobile browsers such as iOS Safari
(both of which support WebSockets) [4]. WebSockets and
server push fill slightly different roles as well. Server push
does not offer a truly bidirectional channel, and the data it
sends is not always directly accessible to scripts. In fact, in
late 2020, Google announced the removal of HTTP/2.0 and
gQUIC server push due to high maintenance costs and low
usage [17]. Considering all of this, our assessment is that while
the proliferation of HTTP/2.0 may replace WebSockets for
some specific use cases, it is unlikely to significantly impact
the amount of WebSocket deployments in the foreseeable
future.

There is clearly room for improvement in terms of best
practices in the WebSocket ecosystem, but we do not believe
this to be principally (or even primarily) the responsibility of
first-party developers. We fear that web developers are often
forced to learn how to implement security in WebSockets
via online forum posts and other non-official sources. Cur-
rent documentation for popular third party libraries such as
socket.io and sockjs lacks clear explanations on how to
implement security features such as rate limiting, logging,
and authentication. Consequently, developers are often left
with powerful functionality features but a sparse knowledge
base on creating hardened applications. This seems to be a
recipe for dangerous deployments, and we encourage code
providers to improve documentation related to securing their
WebSocket implementations.

This study follows in the footsteps of numerous efforts to
understand how new standards and technologies are changing
the web. Given the complexity of modern browsers and web-
sites, it is essential that additions to the ecosystem are both
motivated by and evaluated with empirical, evidence-based
investigations to understand the need for new features and
the impact of those features once they have been deployed.
Based on our findings, it is clear that the WebSocket API is
providing substantial benefits to developers and users across
a broad range of applications. However, it is important to
constantly weigh benefits of a technology with the negative
effects it generates. In Section 4, we presented evidence of
less-than-desirable uses of WebSockets, which should be mon-
itored by the security and privacy community going forward.
In particular, WebSockets significantly increase the potency
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of tracking and analytics scripts, and we highlight them in
particular as a subject for continued research.

6 RELATED WORK
Although the WebSocket protocol was added to major browsers
almost a decade ago, empirical analyses focusing specifically
on the WebSocket ecosystem in the wild remain relatively
sparse. Snyder et al. [54] measured WebSocket usage over
the Alexa Top 10K websites, finding that 5.4% of them used
WebSockets, with 64.6% of those usages being blocked by anti-
tracking software. Bashir et al. [22] showed how trackers and
advertisers could use WebSockets to elude ad blockers. In the
process, they also measured WebSocket prevalence and found
less WebSocket usage, stating that only about 2% of sites
used WebSockets. This disagreement on the commonality of
WebSockets is notable. Our data shows a larger WebSocket
ecosystem, with 6.3% of WebSockets in the Tranco Top 1M
using WebSockets. This makes the misuse and vulnerabilities
in the WebSocket ecosystem all the more concerning.

In recent years, browser API usage has become a prevalent
way to study various phenomena on the web. Researchers
have used traces of these browser API calls to forensically
reconstruct web-based attacks [47, 57], analyze malicious
extensions [21], better understand anti-ad and anti-tracking
extensions [54], and more. We see this measurement technique
as extremely potent for understanding dynamic phenomena
on the web, and we expect researchers to continue to expand
the applications of these traces. We utilize the powerful
Chrome DevTools protocol interface to drive the browser and
gather fine-grained data.

Our work exists in a larger context of research which tracks
abuse of emerging web technologies. Recent work has studied
online scams [49], scareware [40, 60], PUPs [41, 50, 56], and
the identification of risky websites [36, 58]. Online tracking
and privacy violations have been studied extensively in recent
years [20, 28, 30, 38]. In particular, Bashir et al. explored how
WebSockets can assist trackers in bypassing ad blockers. We
expand on this work by studying a broader set of troubling
use cases for WebSockets and offering a methodology to
automatically identify abuse of the API. We believe that our
work informs web developers and other researchers of the
problems with WebSockets, and equips them with techniques
to counter malicious usage.

7 CONCLUSION
This study examined the modern real-time web ecosystem,
offering an up-to-date picture of how WebSockets and other
real-time protocols are currently being used in the wild. Re-
flecting on the goals of the WebSocket protocol designers a
decade ago, we provided an assessment of the successes and
failures of these technologies from an empirical perspective.
We compared WebSocket use with the use of other real-time
solutions, showing tangible benefits of switching to WebSock-
ets and highlighting some remaining room for improvement.
When websites do adopt WebSockets, they should be mindful

of best practices which will create safer, more stable appli-
cations. We show that web developers are often failing to
follow these practices and, in some cases, using WebSockets
in questionable or malicious ways. We believe WebSockets
provide significant overall benefit to users on the web, and
we advocate for expanded adoption, along with improved
documentation.
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