
HARE++: Hardware Assisted Reverse Execution Revisited

Ioannis Doudalis
Georgia Institute of Technology

idoud@cc.gatech.edu

Milos Prvulovic
Georgia Institue of Technology

milos@cc.gatech.edu

Abstract
Bidirectional debugging is a promising and powerful debugging
technique that can help programmers backtrack and find the causes
of program errors faster. A key component of bidirectional debug-
ging is checkpointing, which allows the debugger to restore the pro-
gram to any previously encountered state, but can incur significant
performance and memory overheads that can render bidirectional
debugging unusable. Multiple software and hardware checkpoint-
ing techniques have been proposed. Software provides better mem-
ory management through checkpoint consolidation, while hardware
can create checkpoints at low performance cost which unfortu-
nately are not consolidation-friendly. HARE was the first hardware
technique to create consolidatable checkpoints in order to reduce
the overall performance and memory costs.

In this paper we are proposing HARE++, a redesign of the orig-
inal HARE that addresses the shortcomings of the original tech-
nique. HARE++ reduces the reverse execution latency by 3.5-4
times on average compared to HARE and provides the ability to
construct both undo and redo-log checkpoints allowing the seam-
less movement over the execution time of the program. At the same
time HARE++ maintains the performance advantages of HARE, in-
curring < 2% performance overhead on average across all bench-
marks, and allows the consolidation of checkpoints with memory
requirements similar to HARE.

Keywords Checkpointing, debugging, hardware-accelerators.

1. Introduction
Debugging is a time consuming, yet important, process during soft-
ware development. It has been estimated [11] that developers con-
sume 60%–70% of the development time in debugging and that
80% of project overruns are caused by software bugs. It has also
been estimated [1, 2] that fixing a bug in the early stages of devel-
opment has a cost of 50 to 200 times less than identifying and fix-
ing it at a later development stage, and that 80% of program code
rework is being caused by 20% of the bugs. Bidirectional debug-
ging [3, 9, 18] is one of the promising debugging techniques for
accelerating the debugging processes and assisting the program-
mer find the causes of bugs. Bidirectional debugging provides the
ability to execute the program both in forward and reverse program
order, allowing the user to trace back in time the sources of the dif-
ferent data values faster and more efficiently and isolate the cause
of a bug quicker.

Today’s systems cannot execute a program in reverse order, and
the illusion of “reverse” execution is provided by a combination
of checkpointing and deterministic replaying as shown in Figure 1.
For example, if the user wants to execute a “reverse step” command
to back-track a single instruction in the past, the system is going to
restore the program state to the closest checkpoint (Chpt 4) and
replay n-1 instructions. For the case of a watchpoint, where the
user wants to perform a “reverse continue” and find the last time
X is being modified, the system is going to search all previous

Chpt 1 Chpt 2 Chpt 3 Chpt 4

X=1 X=2

Crash

X=0

Figure 1. Reverse execution examples.

checkpoint intervals (by re-executing the program) until it finds the
last time X is modified (X=2), and replay the final interval a last
time until it reaches the point of interest.

A critical mechanism necessary for reverse execution is check-
pointing, whose performance and memory overheads affect the ap-
plicability and usability of reverse execution. Ideally, checkpoint-
ing for reverse execution should have the following two charac-
teristics: First, it should be frequent, e.g. every second, in order
to reduce the latency of reverse execution. Events such as “re-
verse step” should appear instantaneous to the user and the debug-
ging experience should be interactive. Second, the memory require-
ments should be tolerable during debugging and allow the user to
ideally debug long-running applications (hours of execution) for
which bidirectional debugging could prove most useful. There are
both software [3, 7, 8, 9, 14, 17, 18, 20] and hardware [15, 23]
supported implementations of checkpointing for bidirectional de-
bugging. The shortcoming of software solutions is the high per-
formance overhead when creating checkpoints at high frequen-
cies, an approach that is typically avoided, resulting in high re-
verse execution latencies. Software techniques, though, have man-
aged to overcome the memory overhead problem efficiently and
reduce the memory requirements of checkpointing through check-
point consolidation [3]. Checkpoint consolidation creates the union
of addresses of two checkpoints and removes any duplicate entries.
Hardware techniques [15, 19, 23] can deliver frequent checkpoint-
ing, by efficiently copying memory in parallel with the program
execution, and assist in the recording of thread interactions for re-
playing multi-threaded applications. Unfortunately, hardware tech-
niques do not create checkpoints which are amenable to consolida-
tion and as a result they suffer from high memory requirements for
the case of long running applications.

To overcome both the performance and memory overheads of
frequent checkpointing Doudalis et. al proposed HARE [6]. HARE
is a hardware assisted checkpointing technique that creates check-
points in a consolidation friendly format and uses a hardware en-
gine to allow frequent checkpoint creation and efficiently over-
lap the program execution with the checkpoint creation process.
HARE’s ability to consolidate checkpoints came at the cost of in-
creased reverse execution latency compared to other hardware tech-
niques. HARE selected to create redo-log checkpoints, which can
be efficiently consolidated, while prior hardware techniques [13,
15, 23] had selected undo-log checkpoints, which are not consoli-
dation friendly but allow the system to restore the program quickly

Milos Prvulovic
Typewritten Text
 Appears in the Workshop on Runtime Environments/Systems, Layering, and Virtualized Environments (RESoLVE), March 2011.

Program Undo Log Redo Log

WR: A

WR: E

WR: A

WR: B

A

E

B

A

B

E

Oldest Value

Latest Value

In
te

rv
al

 N

T-1

T

Figure 2. Examples of undo and redo-log checkpoints.

to a past point in time. To implement reverse execution HARE has
to convert the redo-log checkpoints to undo-log, a process that re-
sults in increased latency.

In this paper we are proposing HARE++, a redesign of the orig-
inal HARE [6] technique and we make the following contributions:

• HARE++ constructs undo-log checkpoints, using meta-data
that allow checkpoint consolidation by hardware, and effi-
ciently reduces the latency of reverse execution.

• HARE++ exploits the synergies between undo and redo-log
checkpoints to also create redo-log checkpoints, while reducing
the associated performance cost and requiring no additional
memory modification tracking mechanism.

• HARE++ allows the creation of checkpoints at high frequen-
cies, e.g. every 0.1sec, at low performance cost, less < 2% on
average across all benchmarks, and outperforms hardware so-
lutions that combine HARE with other undo-log checkpointing
hardware techniques.

The rest of the paper is organized as follows: In Section 2 we de-
scribe existing checkpointing techniques, then we give an overview
of HARE++ (Section 3) and describe the implementation details
(Section 4). In Section 5 we discuss our performance evaluation re-
sults and finally we present our future work and conclusions (Sec-
tion 6).

2. Review of Checkpointing Techniques
Memory checkpoints are typically used for reliability [15, 19] and
debugging purposes [6, 18, 23] and can be constructed using 3
methods. The first, and most expensive, method for creating a mem-
ory checkpoint is to periodically stop the application’s execution
and make a full copy of the address-space of the application, a pro-
cess that clearly has high performance and memory overheads and
cannot be repeated often. The second checkpointing method that
can efficiently reduce the overheads and increase the checkpointing
frequency, is to create incremental checkpoints, also called redo-
log checkpoints (Figure 2). To create a redo-log checkpoint, we
keep track of the modified memory locations during interval N and
at the end of the interval we copy all modified memory locations
and store their latest values. Using redo-log checkpoints, we can
restore the program from a past state T-1 to a future one T, which
moves the program state forward in time. Finally, the third check-
pointing method is undo-log checkpointing, which records the old
value of a memory location when it is modified for the first time in
a given checkpoint interval. Undo-log checkpoints allow to restore
the program from the current point in time (T) to a past one (T-1).

The majority of prior work in bidirectional debugging and reli-
ability typically creates undo-log checkpoints for quick recovery to
a past state. Software techniques have implemented checkpointing
at the level of application [4], run-time library [14], operating sys-
tem [20], or virtual machine [18]. Software typically keeps track of
memory modifications at the level of a page, and leverages copy-
on-write in order to identify the memory locations that get modified
for the first time and checkpoint them. The coarse memory track-

ing granularity that software techniques are forced to use proves
especially problematic when trying to create checkpoints at a high
frequency, resulting typically at high performance overheads. As
demonstrated by the results of HARE [6], at high checkpointing
frequencies the application’s memory is often sparsely modified,
resulting in unnecessary blocks being checkpointed, which in turn
increase the performance overhead. Hardware techniques [15, 19]
can efficiently create checkpoints at high frequencies by keeping
track of memory modifications at a finer memory tracking granular-
ity, e.g. block, and they can overlap the checkpoint creation process
with the application execution.

Software techniques have proposed checkpoint consolidation [3]
as an efficient method to reduce the memory requirements of check-
pointing while maintaining the ability to reverse-execute at any
point in time. Consolidation creates the union of two checkpoints
and removes any duplicate entries. When undo-log checkpoints are
being created, their entries are inserted in the order of addresses
getting modified by the program, and consolidation would require
to search for every entry of checkpoint A, if there is the same ad-
dress in checkpoint B. Sorting the checkpoints by address and then
doing a merge of the two sorted lists would reduce the overall
consolidation cost. For the case of software techniques, which use
page granularity and have a small number of checkpoint meta-data
entries, this process has low cost. Hardware techniques, however,
track memory modifications at a memory block granularity and
have larger checkpoint meta-data, so they experience high perfor-
mance overheads [6] if they follow the same approach.

To overcome the high consolidation cost that the use of undo-
log checkpoints would entail, HARE [6] selected to use redo-log
checkpoints, which can be constructed to be sorted by address (at
checkpoint creation time, all addresses we are going to checkpoint
are known). Using a hardware engine, HARE managed to deliver
low performance overheads at high checkpointing frequencies and
enabled efficient checkpoint consolidation. As indicated before,
redo-log checkpoints restore the program from a past to a future
state, while reverse execution requires undo-log checkpoints which
can quickly restore to a past program state. For this reason, HARE
has to convert its redo-log checkpoints to undo-logs [6], a process
that increases the latency of reverse execution. Other design dis-
advantages of HARE are that it requires frequent intervention of
software during checkpoint creation, e.g. for generating the list of
pages to search for modified memory blocks, or to sort the collision
list.

3. Overview of HARE++
In Section 2 we described the shortcomings of the original HARE [6]
technique. The goals of our current work is to improve HARE: 1)
Reduce the reverse execution latency, 2) propose a hardware tech-
nique that is self-contained and requires fewer modifications to
hardware structures, e.g caches, and 3) does not require frequent
software intervention. To reduce the reverse execution latency we
want to extend HARE to directly construct undo-log checkpoints,
but still maintain the original memory benefits of checkpoint con-
solidation. At the same time, we want to extend HARE to provide
similar functionality as software techniques [18]: construct both
undo and redo-log checkpoints, but with limited additional perfor-
mance and memory costs.

3.1 Undo-Log Construction
The primary reason that HARE [6] chose the creation of redo-log
checkpoints over undo-logs was because redo-log checkpoints can
be constructed to be sorted by address (Figure 2), while the entries
of undo-log checkpoints are inserted by the order of modification,
resulting in unsorted checkpoints. Consolidating undo-log check-

Virtual Address

Block #Page Table offset

Page Table
Root Address

Block Offset

Checkpointed
Data

Header

056111220…

…

L4

L5

Figure 3. Trie data-structure used by HARE++ for representing
the undo-log checkpoints.

points would require them to be sorted first, resulting in high per-
formance overheads [6].

A solution to this problem is to use a data structure that can still
be updated at minimal cost and can return an ordered list of the
contained elements, instead of a contiguous log used in HARE.
For this purpose HARE++ uses a trie data structure (Figure 3).
This data structure is a simple extension of the existing page-
table structures used in today’s processors [10] for virtual address
translation. We extend this structure with an additional fifth level1,
that will store pointers to the checkpointed data for every memory
block (64 bytes) within a page. The advantages of using this data
structure are: it can easily be updated and traversed by hardware,
similar to existing page-tables, and we can generate a sorted list of
checkpointed blocks by traversing it in order.

Program Undo Log Redo Log

WR: A

WR: E

WR: A

WR: B

A

E

B

A

B

E

WR: A

WR: C

WR: A

WR: B

A

C

B

A

B

C

Oldest Value

Latest Value

Common Values

In
te

rv
al

 N
In

te
rv

al
 N

+1

T-1

T

T+1

Figure 4. Synergies that develop when both undo and redo-log
checkpoints are created.

3.2 Redo-Log Construction
To construct redo-log checkpoints, HARE++ could maintain the
original mechanism proposed in HARE [6], but that would increase
the overall implementation and performance costs. Instead, when
both undo and redo-log checkpoints are being created, the follow-
ing two properties apply (Figure 4):

• For the same checkpoint interval both the undo and the redo-
log checkpoint the same addresses, but they copy different data
values: the undo-log copies the oldest data value while the redo-
log copies the newest value seen during the checkpoint interval.

• For addresses that appear in both the redo-log checkpoint of in-
terval N (newest values) and the undo-log checkpoint of interval
N+1 (oldest values), they checkpoint the same data values.

These two properties allow us to leverage the existing undo-
log mechanism and reduce the redo-log construction cost using

1 The existing page table in x86 64 bit architectures has 4 levels.

T T+1 T+2
Interval N Interval N+1

Redo
Log

Undo
Log

Redo
Log

Undo
Log

L5 Nodes L5 Nodes

T T+1
Interval N

Redo
Log

Undo
Log

L5 Nodes

Redo-log Blocks

Undo-log Blocks

(A) (B)

Figure 5. Extended trie data-structure used in HARE++.

the following methods: First, we can use the undo-log meta-data
of interval N to identify the blocks to be checkpointed for the
redo-log. This approach allows us to remove the redo-log memory
modification tracking mechanism used in the original HARE [6].
We eliminate the performance cost of memory tracking, as well as
the additional cache design complexity necessary for establishing
the atomic read and write-back of both data and meta-data from
the L1 to the L2 cache2. Second, we can avoid copying the same
data value twice, once for the undo and once for the redo-log
checkpoint. Instead, we can identify the common blocks and copy
them only once when constructing either the undo or the redo-log
checkpoint.

To implement both methods we are extending the undo-log
meta-data (Figure 3) as shown in Figure 5. First, for every given
interval we maintain a single trie meta-data structure that holds
both the undo-log and the redo-log meta-data (Figure 5(A)). We
implement this by extending the L4 nodes of the trie to have
pointers to L5 nodes of both undo and the redo-log checkpoints3.
The undo-log construction process will update the L5 nodes of the
undo-log only, and at redo-log creation time we will walk through
the L5 undo-log nodes to find the blocks to be checkpointed by the
redo-log.

To identify the common blocks across consecutive redo and
undo-logs, we decided the L5 trie nodes of the redo-log meta-data
of interval N to be shared with the undo-log of interval N + 1
(Figure 5(B)). This solution allows us to delay the construction of
redo-log N and not begin it immediately after the end of checkpoint
interval N. Instead, we can allow the construction of undo-log
N+1 to commence and begin updating the common L5 meta-data
nodes with checkpointed blocks. When the redo-log N construction
eventually begins, e.g. at the middle of interval N+1, it will not have
to copy again blocks already checkpointed by undo-log N+1. This
approach also naturally eliminates block collisions, which HARE
defined as the redo-log blocks that had not been checkpointed yet
and were modified by the application4. HARE inserted the collision
blocks in an unsorted list, and at consolidation time the software
was responsible for sorting the collision list.

3.3 Checkpoint Consolidation
Consolidating the checkpoints of two intervals N and N+1 of
HARE++ requires the consolidation of both the undo and the redo-
logs of the two intervals. For the undo-logs we have to maintain

2 HARE extends the L1 caches to hold the memory tracking meta-data
together with the data, while in L2 the meta-data are cached separately from
the data.
3 The L5 nodes store the pointers to the checkpointed data.
4 The common blocks across checkpoints are the collision blocks.

the oldest data across the two checkpoints: if both intervals have
checkpointed the same address, we maintain the copy of interval
N, while unique addresses across checkpoints are inserted into the
final log. Conversely, when consolidating redo-log checkpoints we
have to maintain the newest value of a given address: for the com-
mon addresses across intervals we maintain the block checkpointed
by interval N+1.

The advantage of the original meta-data organization of HARE
was that consolidation just required the linear parse of the two lists
of addresses that represented the checkpoints. For HARE++, the
same process would require (e.g. for the case of redo-logs), for
every block of checkpoint N, to look-up the trie of interval N+1
and search if there is an entry, which overall is more expensive
than a simple linear list traversal. Two characteristics of HARE++
can accelerate the consolidation process: 1) the L5 meta-data nodes
are being shared between consecutive checkpoints, and 2) for a
given interval a block marked as redo-log checkpointed implies that
there is an undo-log block and vice-versa. Thus, by traversing only
the undo-log L5 nodes of interval N+15 we can consolidate the
checkpoints as follows:

• If a block is marked as both a redo-log block of interval N and
an undo-log block of N+1, it can be removed, because there
already exists an older undo-log block in interval N and a newer
redo-log block in interval N+1.

• If a block is marked only as undo-logged of interval N+1
(similarly if it was redo-logged in of interval N) then we have
to search the undo-log N (redo-log N+1) for an older (newer)
block, and if such a block is found then recycle the block. If no
such block is found, insert it in the respective tree.

4. HARE++ Implementation
For constructing the two types of checkpoints and for updating the
trie meta-data described in Section 3.1, we use a hardware engine
(Figure 6). In the rest of this Section we describe the functionality
of the engine and how it interacts with the rest of the system.

4.1 Undo Log Creation
For identifying the memory locations to be inserted into the undo-
log, we introduce checkpoint bits in the L1 and L2 caches. When a
block is written in L1 we check if the checkpoint bit is set, and if not
then the block has not been checkpointed in the current undo-log
interval: it is sent to the HARE++ engine and we set the checkpoint
bit. The checkpoint bit information functions as a first level filter-
ing of blocks to be checkpoint: without them every written block
would have to go to the HARE++ engine. When the block is writ-
ten back to L2 the checkpoint bit follows the data. If a checkpointed
block is replaced from L2 we lose the checkpoint bit information,
and if this block is written again in the future it is going to be sent
again to the HARE++ engine. This mechanism is similar to existing
hardware checkpointing techniques such as ReVive [15] and Safe-
tyNet [19]. Duplicate blocks in undo-logs are only a performance
and not a correctness concern, as undo-logs are restored in reverse
construction order and restored duplicates get overwritten with the
correct oldest values. Still, HARE++ performs a secondary filtering
of the blocks to be checkpointed by checking if the block is already
copied using the trie meta-data, and eliminates any duplicate entries
from the final undo-log.

Once a block reaches the HARE++ engine, it is inserted in
the Pending Block Queue (PBQ). If the PBQ is full then the core
sending the block to be checkpointed will have to delay the original
write until PBQ has available entries. Once the block reaches the
front of the queue it is inserted in the Tree Construction Engine,

5 The same nodes belong to the redo-log of interval N.

L1

HARE++
Engine

Probe

CPU

L2

Memory
Controller

DRAM

Tree
Construction

Engine

TLB

L5 MD
Cache

Pending
Block
Queue

Memory Interface

Blocks to
Checkpoint

Bus

Figure 6. The HARE++ hardware engine.

which updates the undo-log part of the trie meta-data for the current
checkpoint and checks if the block has already been checkpointed
for the current interval N+1. Then the engine checks if the L5 meta-
data node of the current undo-log has already been inserted as a
L5 redo-log node of the previous checkpointing interval N, and
if not it updates the trie meta-data of the previous interval. This
operation indirectly inserts the blocks already checkpointed by the
current undo-log in the previous redo-log, which is not going to
copy them again. The block is then sent to the Memory Interface of
the engine and written to memory. Once the write acknowledgment
is received, the block is marked as checkpointed and as an undo-log
block.

To efficiently access and update the current and previous trie
meta-data structures, the HARE++ engine has a TLB to store the
translations for the last level L5 Nodes, and a L5 MD cache to store
the contents for the L5 Nodes which are frequently accessed.

4.2 Redo Log Creation
The sets of modified addresses of consecutive checkpointing in-
tervals do not overlap entirely, especially at high checkpointing
frequencies where the application does not have sufficient time to
modify its working set. For this reason, we have to start actively
copying blocks for the redo-log of the previous interval N by the
end of the current interval N+1. HARE++ starts the construction of
redo-log N in the second half of the current checkpointing interval,
e.g. for a checkpointing frequency of 0.1sec, redo-log construction
starts after 0.05sec.

To construct the redo-log checkpoint, the Tree Construction En-
gine of HARE++ starts walking the trie meta-data in order, and
checks if a block has been copied by the undo-log checkpoint in
interval N. If yes, then this address has also to be checkpointed by
the redo-log checkpoint in the same interval and the block is in-
serted into the redo-log part of the trie. Then the engine checks if
the L5 node is being shared by the undo-log of interval N+1. If the
node is not shared, which happens rarely, then it is inserted in the
trie of the current undo-log N+1. This step is necessary for ensur-
ing that all overlapping L5 nodes are shared between consecutive
tries, and improves performance by eliminating block copies by the
undo-log that have already been checkpointed by the redo-log6. Fi-
nally, the block address to be copied is forwarded to the memory
interface that reads and writes the data to memory. The data to be
checkpointed can reside in any level of the memory hierarchy and
for this reason the HARE++ engine, similar to HARE, has to probe
the caches. Once the write acknowledgment arrives, the trie meta-

6 In such a case the undo-log construction process will mark the block is
undo-log but will not checkpoint it.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

Pe
rf

or
m

an
ce

 O
ve

rh
ea

d Consolidation

Redo Log

Undo Log

Figure 7. Performance overhead of HARE++ for all simulated applications along with the averages for checkpointing frequency of 0.1
seconds. Breakdown of the performance overhead in: undo-log creation, redo-log creation and checkpoint consolidation costs.

data is updated with the address of the saved block and the block is
marked as redo-log and checkpointed.

4.3 L5 Node Meta-Data Organization
The L5 meta-data nodes store, for every memory block, the pointer
to the address where it is being checkpointed, and 3 bits describing
whether it is checkpointed and if it is part of an undo and or a redo-
log. Since these bits are accessed frequently during undo/redo-log
checkpoint creation and consolidation, we improve the data locality
of the L5 MD cache, by packing the bits of all blocks of the L5 node
inside a header (Figure 3). The location of the header within the L5
node is decided based on bits 12-18 of the virtual address, in order
to avoid possible address aliasing to the same cache sets and poor
L5 MD cache performance.

4.4 Interaction with the OS/VM
The HARE++ engine is managed by the OS/VM and is equipped
with the necessary registers to store, for every currently running
process on the processor, the roots of the trie meta-data structures,
as well as the core-id of the core where a given process is running.
An undo-log block to be checkpointed is accompanied by the id of
the core where it was modified and gets inserted in the appropriate
tree. The OS/VM is also responsible for providing and managing a
list of free memory blocks, similar to the original HARE [6].

5. Evaluation
In our evaluation, we use SESC [16], an open source execution
driven simulator, to model a four-core CMP system with Core2-like
parameters: 4-issue, out-of-order cores running at 2.93GHz. Each
core has a private dual-ported 32KB 8-way associative L1 data
cache. All cores share a 4MB, 16-way associative, single-ported
L2 cache. The block size is 64 bytes. We model a DDR3-1333-like
memory system, which provides ∼11.7GB/s and the DRAM aver-
age latency is 50ns, which corresponds to 150 cycles. The HARE++
engine we simulate has a 64 entry pending block queue, a 256 en-
try fully associative trie TLB, a 128KB 16-way associative single-
ported L5 MD cache, and the memory interface has a 32 entry read
queue and a 32 entry write queue. In our evaluation, we are using
the SPEC2006 [21] (Figure 7) benchmark suite, and we simulate
27 out of 29 benchmarks using the reference inputs. We omit perl
and tonto because of technical incompatibilities with our simula-
tor infrastructure. In our simulations we fast forward though 5%
of the simulation, with a maximum of 20 billion instructions, to
skip initialization, then simulate 10 billion instructions. For evalu-
ating multi-threaded applications we use the PARSEC [5] bench-
mark suite with the native input, except in the case of dedup where
we use the simlarge input, because the application allocates more
than 2GB of memory, and exceeds the 32-bit address-space simu-
lated by SESC. For PARSEC benchmarks, we skip to the beginning

of the parallel section, then skip an additional 21 billion instruc-
tions, and finally we simulate 20 billion instructions. For estimat-
ing the final checkpoint memory requirements of our technique,
we use PIN [12], where we profiled all SPEC2006 and PARSEC
applications to completion, using the reference and native inputs
respectively.

HARE++ requires approximately 146KB of on-chip memory
state, whereas the original HARE used 4KB, but is still lower
than 256KB needed by SafetyNet [19]. We used Cacti 5.3 [22]
to estimate the area cost for implementing HARE++, and found
that it is 20% smaller than the size of the L1 Data cache, because
HARE++’s hardware structures do not need to be optimized for
speed as the L1 Data cache does. We also used Cacti to estimate
the increase of access latency that the checkpoint bit will introduce
to the L1 and L2 caches, and we observed no difference compared
to the baseline.

Performance Overhead Figure 7 presents the performance over-
head of HARE++ for a checkpointing frequency of 0.1 sec. We
also show the breakdown of the performance overhead of HARE++
for constructing undo and redo-log checkpoints and consolidating
them. HARE++ has an average performance overhead < 2% across
all benchmarks, with the highest overheads being 16% for lbm,
∼13% for GemsFDTD and ∼8% for milc. In all three cases the
primary cause of the overhead is the redo-log creation, whose cost
can be explained for the following 3 reasons: 1) all three bench-
marks are memory intensive and they create big checkpoints, 2) the
HARE++ engine competes with the application for off-chip band-
width, and 3) only a limited number of redo-log blocks is syner-
gistically checkpointed by the undo-log creation process (< 10%).
Undo-log creation in general has low overheads, < 2% across all
benchmarks, with the exception of ferret which is memory inten-
sive. Finally the cost of checkpoint consolidation is < 2% across
all benchmarks.

In our evaluation, we are comparing HARE++ with a hard-
ware and a software scheme. The hardware scheme, labeled Re-
Vive+HARE, creates undo-log checkpoints using a hardware tech-
nique similar to ReVive [15] and redo-log checkpoints using the
original HARE engine implementation (with redo-log consolida-
tion enabled). The software technique, named TTVM, is similar
to the virtual-machine based checkpointing solution proposed by
King et al [18]. In TTVM a checkpointing thread executes in paral-
lel with the application and creates both undo and redo-log check-
points. TTVM uses memory protection and copy-on-write to iden-
tify the pages to be copied and checkpoint them. When simulating
multi-threaded applications, the checkpointing thread has higher
priority and de-schedules the application’s threads if no free core
is available.

Figure 8 shows the maximum and average performance over-
head for the simulated benchmark suites for checkpointing fre-

262%

0.1 sec 0.5 sec 1 sec

428% 228%

0%

20%

40%

60%

80%

100%

120%

140%

Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

CINT CFP PARSEC CINT CFP PARSEC CINT CFP PARSEC

Pe
rf

or
m

an
ce

 O
ve

rh
ea

d HARE++ ReVive+HARE TTVM

Figure 8. Maximum and average performance overhead of HARE++, compared to ReVive+HARE, and TTVM for checkpointing frequen-
cies of 0.1, 0.5 and 1 seconds.

80%

120%

160%

200%

240%

280%

H
++

 0
.1

R
H

 0
.1

H
++

1
R

H
 1

H
++

 0
.1

R
H

 0
.1

H
++

1
R

H
 1

H
++

 0
.1

R
H

 0
.1

H
++

1
R

H
 1

H
++

 0
.1

R
H

 0
.1

H
++

1
R

H
 1

H
++

 0
.1

R
H

 0
.1

H
++

1
R

H
 1

H
++

 0
.1

R
H

 0
.1

H
++

1
R

H
 1

mcf CINT lbm CFP freqmine PARSEC

Eng

Redo

Undo
Unec
Undo

App

Figure 9. Memory access break down of HARE++ (H++) and
ReVive+HARE (RH) for checkpointing frequencies of 0.1 and 1
seconds, for the worst performing benchrmark and the average for
each benchmark suite.

quencies of 0.1, 0.5 and 1 second. Both hardware techniques out-
perform TTVM, which suffers high performance overheads espe-
cially at high checkpointing frequencies, e.g. 0.1sec. The primary
cause of performance overhead is the pollution of the shared caches
with checkpointed data, and the competition between the applica-
tion and the checkpointing thread for cache space. Another source
of overhead for TTVM is the time the application is suspended for
servicing the page faults which comprises more than 20% on av-
erage (maximum 60%) of the overhead. The higher overhead of
ReVive+HARE compared to HARE++ can be attributed to the fol-
lowing reasons: 1) The competition between HARE’s checkpoint
memory tracking meta-data and application’s data in L2, 2) the lack
of synergistic copying between undo and redo-logs, which results
in the same data being copied twice, and 3) higher consolidation
cost, especially for applications which create big checkpoints (e.g.
lbm, GemsFDTD), because the size of HARE’s checkpoint meta-
data is 25% of the checkpointed data.

To gain better insight into the performance benefits of HARE++
compared to ReVive+Hare, in Figure 9 we are presenting the break-
down of the average memory accesses per checkpoint interval
which consist of: 1) the application memory accesses (App), 2)
the necessary undo-log writes (Undo), 3) the unnecessary check-
pointed undo-log blocks (Undo Unec), 4) the redo log read and
writes (Redo) and 5) rest of the memory access generated by the
checkpointing engines (Eng) (e.g. caches misses from HARE++’s
L5MD cache, or checkpoint meta-data reads/writes during check-
point consolidation). The accesses are normalized to the applica-
tion accesses of ReVive+HARE. The first observation we can make
is that HARE++’s engine generates less memory access than Re-
Vive+Hare. HARE++’s L5MD cache proves sufficient for caching
the trie meta-data structures during cache checkpoint creation. The
merge optimizations also assist, resulting in only 60-70% of trie

block pointers being updated on average and reducing the L5MD
cache pressure and associated memory accesses. On the other
hand, HARE during consolidation has to read the meta-data of
both checkpoints, which are lists of addresses/pointers the size of
which is 25% of the checkpointed data, and write the resulting con-
solidated list, resulting in more memory accesses than HARE++.
The second improvement is that HARE++ inserts a given address
in the undo-log only once, while ReVive may generate duplicate
checkpoint entries, as described in Section 4. This phenomenon
is especially pronounced in longer checkpointing intervals, e.g.
1sec, where the probability of a block being replaced from the L2
cache, and the associated checkpoint bit information to be lost, in-
creases. Finally, synergistic copying can reduce, if not eliminate
(e.g. for lbm), the number of blocks copied for constructing the
redo-log at low checkpointing frequencies (1sec). In such cases
redo-log checkpoints are created practically for free and HARE++
just needs to check the meta-data and verify that the block has been
copied.

Checkpoint Memory Requirements HARE++, compared to HA-
RE, checkpoints more data because it creates both undo and redo-
log checkpoints and some memory addresses are not shared be-
tween consecutive checkpoints. The level of sharing depends on
the application’s memory access behavior and the checkpointing
frequency. At high frequencies (e.g. 0.1 sec) the overlap between
consecutive checkpoints is lower, especially for applications which
allocate a lot of memory and the memory update period is higher
than the checkpointing interval (e.g. GemsFDTD, lbm, mcf). As
we consolidate checkpoints, overlap increases: eventually consol-
idated checkpoints contain almost the entire address space of the
application.

Figure 10 presents the maximum and average memory require-
ments for all benchmark suites, for frequencies of 0.1 and 1 sec, for
HARE++. HARE++ has similar memory requirements as HARE,
which can be explained by increasing overlap among consolidated
checkpoints in HARE++: practically all copied blocks belong to
both a redo and an undo-log checkpoint. Both HARE and HARE++
have one to two orders of magnitude less memory requirements
than a scheme that does not perform consolidation (please note
the logarithmic scale of the graph). To reduce the memory require-
ments of consolidation-less techniques, lower checkpointing fre-
quencies have to be selected (e.g. 1sec)7, which will result in in-
creased reverse-execution latency. If consolidation was applied to

7 The memory requirements of HARE and HARE++ are paradoxically
higher at 1sec compared to 0.1 sec, which can be explained by the fewer
number of consolidations performed (only one is performed after each
checkpoint construction) and the bigger size of the few non-consolidated
checkpoints.

1

10

100

1000

10000

Max Avg Max Avg Max Avg

C
he

ck
po

in
t S

iz
e

(G
B

) HARE++ 0.1 HARE++ 1 HARE 0.1 HARE 1 TTVM No Cons 0.1 TTVM No Cons 1

CINT 2006 CFP 2006 PARSEC

Figure 10. Maximum and average checkpoint memory requirements of HARE++ compared to HARE, and a software technique that does
not consolidate checkpoints, for checkpointing frequencies of 0.1 and 1 seconds.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2e+09 4e+09 6e+09 8e+09 1e+10

T
im

e
 (

s
e

c
)

Instructions

gcc

HARE

HARE++

Forward

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2e+09 4e+09 6e+09 8e+09 1e+10

Instructions

GemsFDTD

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2e+09 4e+09 6e+09 8e+09 1e+10

Instructions

sjeng

 0

 1

 2

 3

 4

 5

 6

 7

 0 2e+09 4e+09 6e+09 8e+09 1e+10

Instructions

xalancbmk

Figure 11. Latency (sec) of reverse executing a number of instruction for HARE++ compared to HARE and forward execution time.

TTVM the memory requirements would be similar (but slightly
higher) to HARE and HARE++.

HARE++ has maintained both advantages of the original HARE
compared to other techniques: it can deliver the performance ben-
efits of hardware techniques at high checkpointing frequencies and
achieve the memory efficiency of software techniques, while creat-
ing both undo and redo-log checkpoints.

Reverse Execution Latency The major motivation for improving
the original HARE technique was the increased reverse execution
latency, because HARE creates redo-log checkpoints which have to
be converted to undo-log checkpoints at the beginning of reverse-
execution. The conversion processes requires, for a given address
in a redo-log checkpoint, a search of previous redo-log checkpoints
to find the oldest value. The latency of reverse executing x instruc-
tions includes the cost of restoring to the closest checkpoint and
deterministically re-executing to the point of interest. We assume
that the re-execution latency is a function of the average IPC of the
application, as we estimated it in our performance evaluation. Re-
garding the checkpoint restoration cost, we profiled, using our sim-
ulator, the time it takes for both the HARE and HARE++ engines to
restore checkpoints of different sizes, and we profiled the average
software search time for checkpoints of different sizes, necessary
for the redo to undo-log conversion.

Figure 11 shows the time (seconds) that is required for reverse
executing x instructions for the first time. The plots show the la-
tency of HARE++ compared to the original HARE and the time it
takes to forward execute an equal number of instructions, for the
benchmarks with the highest latencies. As we can see, HARE++’s
reverse execution time follows closely the forward execution time,
because HARE++ just needs to restore the necessary undo-log
checkpoint, while HARE suffers higher latencies because of the
additional cost of converting the redo-log checkpoints. Figure 12
shows the maximum and average speed-up of reverse execution la-
tency of HARE++ compared to HARE for checkpointing frequen-
cies of 0.1, 0.5 and 1 second. HARE++ can reduce the reverse exe-
cution time up to four times on average when we checkpoint at high
frequencies (0.1 sec). At high checkpointing frequencies the check-

0

5

10

15

20

Max Avg Max Avg Max Avg

Sp
ee

du
p

0.1 0.5 1

CINT 2006 CFP 2006 PARSEC

Figure 12. Reverse execution latency speedup of HARE++ com-
pared to HARE.

point conversion cost of HARE is higher because of lower over-
lap between consecutive checkpoints which results in more check-
points being searched. Conversely, at low frequencies we observed
that fewer checkpoints are being searched.

A solution to HARE’s checkpoint conversion cost would be to
checkpoint less frequently, but such option would affect directly
the reverse execution latency. Figure 13 presents the reverse exe-
cution time of HARE++ for checkpointing frequencies of 0.1, 0.5
and 1 second, when reverse executing only a limited number of
instructions. Decreasing the checkpointing frequency increases the
number of instructions we have to re-execute at reverse execution
time, resulting in higher latencies.

Overall, HARE++ has further reduced the reverse-execution
time, rendering it directly comparable to forward execution time
and improving the interactivity of our technique.

6. Conclusions and Future Work.
In this paper we described HARE++, a redesign of the origi-
nal HARE technique. HARE++ supports consolidatable undo-log
checkpoints which improve the reverse execution latency by four
times on average. HARE++ also provides the functionality to create
redo-log checkpoints as well, by efficiently exploiting the synergies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
im

e
 (

s
e
c
)

Instructions

gcc

Reverse 1

Reverse 0.5

Reverse 0.1

Forward

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2e+08 4e+08 6e+08 8e+08 1e+09

Instructions

GemsFDTD

Figure 13. Forward and Reverse execution time of HARE++ for
checkpointing frequencies of 0.1, 0.5 and 1 seconds.

that develop when both undo and redo-log checkpoints are being
created. These synergies allow HARE++ to eliminate the need for
a second memory tracking mechanism for redo-log checkpoints, as
well as exploit already checkpointed data and avoid copying them
multiple times. These optimizations allow HARE to deliver perfor-
mance overheads < 2% on average across all benchmarks and out-
perform combinations of HARE with undo-log checkpointing tech-
niques which would deliver the same functionality as HARE++.
HARE++ preserves the checkpoint consolidation functionality of
HARE and delivers the same checkpoint memory requirements.
Finally, HARE++ introduces minor modifications to the caches (a
single checkpoint bit), and efficiently creates checkpoints using a
hardware accelerator.

As part of our on-going work we are planning to reduce the
hardware requirements of the HARE++ checkpointing engine, by
decreasing the size of the used structures (caches, TLB, queues)
and study the effects they would have on the performance over-
head of checkpointing. Moreover, the trie meta-data structure used
by HARE++ provides the opportunity to store more information,
e.g. have finer memory tracking granularity, which we can lever-
age to further improve the bidirectional debugging speed and pro-
vided functionality. Finally, we are planning to examine uses of our
checkpointing mechanism for improving the reliability and avail-
ability of systems.

7. Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grants No. 0916464, 0964647, and 1017638.

References
[1] B. Boehm and V. Basili. Software Defect Reduction Top 10 List.

Computer, 34(1):135–137, 2001.

[2] B. Boehm and P. Papaccio. Understanding and Controlling Software
Costs. Soft. Eng., IEEE Trans. on, 14(10):1462–1477, 1988.

[3] B. Boothe. Efficient Algorithms for Bidirectional Debugging. In ACM
SIGPLAN 2000 Conf. on Prog. Lang. Design and Impl., pages 299–
310, 2000.

[4] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz.
Application-level Checkpointing for Shared Memory Programs. In
11th Intl. Conf. on Arch. Support for Prog. Lang. and Operating Sys.,
page 235, 2004.

[5] Christian Bienia and Sanjeev Kumar and Jaswinder Pal Singh and Kai
Li. The PARSEC Benchmark Suite: Characterization and Architec-
tural Implications. In 17th Intl. Conf. on Parallel Architectures and
Compilation Techniques, 2008.

[6] I. Doudalis and M. Prvulovic. HARE: Hardware Assisted Reverse
Execution. In Proc. of 16th Intl. Symp. on High-Perf. Comp. Arch.,
2010.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Re-
Virt: Enabling Intrusion Analysis Through Virtual-Machine Logging

and Replay. In 5th Symp. on Operating Sys. Design and Impl., pages
211–224, 2002.

[8] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Ex-
ecution Replay of Multiprocessor Virtual Machines. In 4th ACM SIG-
PLAN/SIGOPS Intl. Conf. on Virtual Execution Environments, pages
121–130, 2008.

[9] S. I. Feldman and C. B. Brown. IGOR: A System For Program
Debugging via Reversible Execution. SIGPLAN Not., 24:112–123,
1989.

[10] Intel. Intel 64 and IA-32 Architectures Application Note
TLBs, Paging-Structure Caches, and Their Invalidation.
http://www.intel.com/design/processor/applnots/317080.pdf, 2008.

[11] A. Kolawa. The Evolution of Software Debugging. In
http://www.parasoft.com/jsp/products/article.jsp?articleId=490,
1996.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In ACM SIG-
PLAN 2005 Conf. on Prog. Lang. Design and Impl., pages 190–200,
2005.

[13] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging.
In 32nd Intl. Symp. on Comp. Arch., 2005.

[14] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
Checkpointing under Unix. In USENIX 1995 Tech. Conf. Proc. on
USENIX 1995 Tech. Conf. Proc., pages 18–18, 1995.

[15] M. Prvulovic and J. Torrellas. ReVive: Cost-Effective Architectural
Support for Rollback Recovery in Shared-Memory Multiprocessors.
In 29th Intl. Symp. on Comp. Arch., pages 111–122, 2002.

[16] J. Renau et al. SESC. http://sesc.sourceforge.net, 2006.
[17] Y. Saito. Jockey: A User-space Library for Record-Replay Debugging.

In 6th Intl. Symp. on Automated Analysis-driven Debugging, pages
69–76, 2005.

[18] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging
Operating Systems with Time-Traveling Virtual Machines. In annual
conference on USENIX Tech. Conf., pages 1–15, 2005.

[19] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: Improving the
Availability of Shared Memory Multiprocessors with Global Check-
point/Recovery. In 29th Intl. Symp. on Comp. Arch., pages 123–134,
2002.

[20] S. M. Srinivasan, S. Kandula, and C. R. Andrews. Flashback: A
Lightweight Extension for Rollback and Deterministic Replay for
Software Debugging. In USENIX Tech. Conf., General Track, page
29–44, 2004.

[21] Standard Performance Evaluation Corporation. SPEC Benchmarks.
http://www.spec.org, 2006.

[22] S. Thoziyoor et al. Cacti 5.3. http://quid.hpl.hp.com:9081/cacti/,
2008.

[23] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder” for
Enabling Full-system Multiprocessor Deterministic Replay. In 30th
Intl. Symp. on Comp. Arch., pages 122–135, 2003.

	Introduction
	Review of Checkpointing Techniques
	Overview of HARE++
	Undo-Log Construction
	Redo-Log Construction
	Checkpoint Consolidation

	HARE++ Implementation
	Undo Log Creation
	Redo Log Creation
	L5 Node Meta-Data Organization
	Interaction with the OS/VM

	Evaluation
	Conclusions and Future Work.
	Acknowledgments

