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Abstract

Bidirectional execution is a powerful debugging tech-
nique that allows program execution to proceed both for-
ward and in reverse. Many software-only techniques and
tools have emerged that use checkpointing and replay to
provide the effect of reverse execution, although with con-
siderable performance overheads in both forward and re-
verse execution. Recent hardware proposals for checkpoint-
ing and execution replay minimize these performance over-
heads, but in a way that prevents checkpoint consolidation,
a key technique for reducing memory use while retaining
the ability to reverse long periods of execution.

This paper presents HARE, a hardware technique that
efficiently supports both checkpointing and consolidation.
Our experiments show that on average HARE incurs <3%
performace overheads even when creating tens of check-
points per second, provides reverse execution times similar
to forward execution times, and reduces the total space used
by checkpoints by a factor of 36 on average (this factor gets
better for longer runs) relative to prior consolidation-less
hardware checkpointing schemes.

1. Introduction

Debugging is an important and costly part of software
development. It has been estimated [10] that debugging ac-
counts for 60%–70% of the development effort and 80% of
project overruns. It has also been estimated that in the early
stages of development bugs cost an order of magnitude (50
to 200 times) [1] less to fix than in later stages. Much of the
debugging time and effort is spent on back-tracking from
the point where an error is manifested (e.g. the program
crashes) to the point where the problem originated (e.g. an
incorrect value was computed). Typical back-tracking con-
sists of finding the variable directly responsible for error
manifestation, finding where that variable was last modi-
fied, checking if that modification is a direct result of incor-
rect computation, and repeating this process if the modifi-
cation simply propagates another incorrect value.

An example of buggy execution is shown in Figure 1(A),
where a zero value in variable X causes the program to
crash, e.g. with a divide-by-zero exception. Traditional

back-tracking (Figure 1(B)) would involve placing a write
watchpoint on X, re-running the program, inspecting the
state of the program each time the watchpoint is triggered,
and eventually finding the statement that placed the prob-
lematic value (zero) into X. In our example, this statement
is simply “X=Y” so another back-tracking step (with a write
watchpoint on Y) is needed to find where Y became zero.
In this example, the buggy code is the one that sets Y to
zero, so back-tracking ends there and the programmer can
start figuring out how to fix that code.(A) Execution Timeline Bug Manifested(e.g. crash because X is 0)X=3 X=YBug  originated(e.g. Y becomes 0)X=5X=0X=1X=2 Y=2Y=-3(B) Traditional Back-TrackingX=3 X=YX=5X=0X=1X=2Watchpoint triggered for X

Y=0Watchpoint triggered for YY=2Y=-3 Step 1Step 2
(C) Reverse-Execution Back-TrackingX=YWatchpointtriggered for X

Y=0Watchpointtriggered for Y
Figure 1. Debugging example with back-tracking.

This traditional approach to back-tracking is both time-
consuming and labor-intensive; multiple re-executions of
the program may be needed (one for each back-tracking
step), often with numerous programmer interactions in each
re-execution (to inspect state whenever watchpoints are trig-
gered). Bidirectional debugging [2, 6, 9, 28] has been pro-
posed as a powerful technique to reduce both time and effort
needed for back-tracking. In addition to (traditional) for-
ward execution, bidirectional debugging aids back-tracking
by also providing backward (reverse) execution. As shown
in Figure 1(C), reverse execution saves back-tracking 1)
time, by only going through past execution once (not once
per back-tracking step), and 2) effort, by involving the pro-
grammer only once in each back-tracking step (to inspect
code that writes the watched variable).

True reverse execution is not supported in real proces-
sors and systems, so the appearance of reverse execution is
typically implemented using checkpointing and determinis-



(A) Execution TimelineCurrent Program StateX=3 X=YX=5X=0X=1X=2Checkpoints
DesiredProgram StateFind latestwrite to XGo to latestwrite to X

(B) Reverse Execution Timelinewith a write watchpoint on XZ=-3
DesiredProgram State

Look for latest writeto Z (none found)
Go to latestwrite to Z

(C) Reverse Execution Timelinewith a write watchpoint on ZCurrent Program StateCurrent Program State1:2:
1:2:3:4: Found awrite to Z5:

Figure 2. Reverse execution via checkpoint/replay.

tic replay, as shown in Figure 2. Checkpoints are created
periodically during forward execution (Figure 2(A)). For
reverse execution (Figure 2(B)), a prior checkpoint is re-
stored, re-execution finds the latest occurrence of a watch-
point, the checkpoint is restored again, and in another re-
execution we stop where the latest watchpoint was found.
As shown in Figure 2(C), the most recent checkpoint in-
terval may have no watchpoint occurrences. In this case,
increasingly older checkpoint intervals are replayed until a
watchpoint occurrence is found.

From the user’s perspective, this checkpoint/replay im-
plementation of reverse execution is indistinguishable from
“real” reverse execution if it has similar “speed” and
“reach”1 as forward execution. For “speed”, the time
needed to reverse some execution should be similar to the
time that was needed to forward-execute it. For “reach”,
we should be able to reverse-execute from any point all the
way to the start of the program, just like we can forward-
execute all the way to the end. Disproportionally long re-
verse execution times and/or inability to reverse-execute far
enough into the past are likely to frustrate programmers and
cause them to revert to “traditional” debugging approaches.
Ability to reverse long periods of execution is also needed
for analysis of security attacks that may deliberately exploit
bugs with long dormancy periods.

Unfortunately, “speed” and “reach” create conflicting
demands for checkpointing frequency: “speed” needs fre-
quent checkpointing so short periods of execution can be
reversed quickly, but for “reach” checkpoints should be cre-
ated rarely to retain a lot of checkpoints without running
out of space. To achieve both goals, some software-only
tools create checkpoints frequently (for short-term “speed”
of reverse execution) and then consolidate [2] them as they
age (to conserve space over the long term). Unfortunately,
software-only checkpointing approaches for reverse exe-
cution [2, 4, 5, 6, 9, 15, 19, 21, 28] have large perfor-
mance overheads (when checkpointing often enough for
good “speed” of reverse execution), and they cannot ef-

1Reverse execution, its “speed”, and its “reach’ refer to what the user
(of the debugger) perceives during bidirectional debugging.

ficiently record memory races for deterministic replay of
multi-core execution.

Hardware support has been proposed as a way to mini-
mize performance overheads of checkpointing for error re-
covery [14, 17, 26] and, in combination with deterministic
replay, for debugging [14, 16, 26]. Performance overheads
are reduced mostly 1) by saving checkpoint data in the back-
ground and on-demand, as application execution modifies
memory content, and 2) by tracking race outcomes in hard-
ware. In recent years, memory space needed to record race
outcomes has been reduced by multiple orders of magni-
tude [7, 12, 13, 27]. However, the total memory used for
checkpoint storage is dominated by saving modified data
blocks (Data Log in Figure 3), where hardware schemes
could only reduce space consumption (typically by a factor
of 2 to 3) using compression of individual checkpoints. In
contrast, consolidation would result in orders-of-magnitude
space reduction for data logs. Unfortunately, checkpoints
produced by existing hardware schemes are not amenable
to efficient consolidation because 1) consolidation of two
checkpoints relies on finding and eliminating duplicate data
blocks (those saved in both original checkpoints), which re-
quires checkpoints to be sorted (or at least searchable) by
data address, whereas 2) existing hardware schemes save
data blocks on-demand, thus data blocks in each checkpoint
are ordered by time of modification (or use), not by data
address. As a result, these schemes must sacrifice space
(by giving up on consolidation) or performance (by sorting
checkpoints after they are created).

In this paper, we present HARE (Hardware-Assisted Re-
verse Execution), a low-cost hardware support that provides
efficient checkpointing and consolidation. The key contri-
bution of this work is a checkpointing mechanism that, like
prior hardware mechanisms, operates in the background
but, unlike prior work, produces checkpoints which are al-
ready sorted by address. We also describe a low-cost hard-
ware checkpointing engine that can also perform checkpoint
consolidation in the background, and show that this check-
pointing and consolidation implementation results in mini-
mal performance overheads, records long periods of execu-
tion using orders of magnitude less space than prior hard-
ware schemes, and provides reverse execution times similar
to forward execution times of the same instructions.

The rest of this paper reviews bidirectional debugging
(Section 2), describes our technique (Section 3) and its im-
plementation details (Section 4), and presents our quantita-
tive evaluation (Section 5) and conclusions (Section 6).

2. A Review of Bidirectional Debugging

In addition to commands for executing the application
forward (step, continue, etc.), a bidirectional debugger also
provides commands for reverse execution (rstep, rcontinue,



etc.). As described in Section 1, reverse execution is
typically implemented by restoring a checkpoint and then
forward-executing to the desired point, using the number
of executed instructions to define “position” in the execu-
tion time-line. For example, if N instructions have been
executed since the last checkpoint, a rstepi command
(undo one instruction) causes the debugger to restore the
last checkpoint and re-execute N-1 instructions. In some
cases, the desired point is unknown a priori. A typical ex-
ample (shown in Figure 2), is when the user (of the debug-
ger) sets a write watchpoint on some variable and then uses
a rcontinue command (reverse-execute until watchpoint
is triggered). The desired point in this case is the most re-
cent write to the watched variable(s). The example in Fig-
ure 2(B) shows a situation where the watchpoint is triggered
while replaying (phase 1) the most recent checkpoint inter-
val. In this phase, replay continues to find if an even more
recent write exists in that checkpoint interval. Once the in-
struction count for the last write is ascertained, another re-
play of the same checkpoint interval (phase 2) is used to
reach that point. Alternatively, the debugger creates tem-
porary checkpoints as it finds each write in phase 1, then
phase 2 consists of simply restoring the most recent tem-
porary checkpoint. If the watchpoint is not triggered while
replaying the most recent checkpoint interval (Figure 2(C)),
the debugger replays progressively older intervals until it
finds one where the watchpoint is triggered.

Assuming that checkpoints can be restored as quickly as
they can be created, and assuming that replay is as quick
as original forward execution, the time needed for reverse
execution will be equal to the time that was needed for the
same execution in the forward direction, plus the time to
restore and replay the rest of the target checkpoint interval
(once if no temporary checkpoints are created, twice oth-
erwise). Therefore, the “speed” of reverse and forward ex-
ecution (discussed in Section 1) will be similar if the tar-
get checkpoint interval is relatively short compared to the
amount of execution being reversed. For small amounts
of reverse execution, e.g. reverse-executing only a few in-
structions, recent checkpoint intervals must be very short
(so their replay appears instantaneous), thus leading to very
frequent checkpointing (at least several times per second).
On the other hand, long-range reverse execution achieves
good “speed” even with longer checkpoint intervals.

Frequent checkpointing that can provide good “speed”
for small amounts of reverse execution leads, over long peri-
ods of execution, to huge space overheads. To illustrate this,
Figure 3 shows, for 8-threaded execution of PARSEC 2.0
benchmarks, the rate (in GBytes/minute) at which space is
consumed by checkpoints when they are created whenever 1
billion instructions are executed (by all threads, resulting in
10-30 checkpoints per second) without using consolidation.
We see that facesim, fluidanimate, freqmine, and x264 con-
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Figure 3. Space used for frequent checkpointing.

sume more than 10 GBytes per minute, so good “reach” of
reverse execution would be infeasible for long-running ap-
plications (e.g. hours of execution time) with similar mem-
ory access patterns.

The checkpointing space requirements in Figure 3 are
broken down into checkpointed data (Data Log), system
event logs for deterministic replay (Syscall Log), and race
logs for deterministic replay of multi-threaded execution
(Race Log). We obtain Data Log and Race Log sizes by
modeling the approach used in FDR [26], but without us-
ing compression (which typically can only reduce these
space requirements by a factor of 2 to 3). We observe that
Data Log (checkpoints themselves) is the dominant com-
ponent (by far). This may seem to contradict recent re-
search in deterministic replay, which focuses almost exclu-
sively on reducing Race Log sizes [7, 12, 13, 27], espe-
cially knowing that PARSEC is not as I/O intensive as com-
mercial workloads used to evaluate work that focused on
recording races and non-deterministic system events (such
as I/O) [19, 21, 26]. However, results presented for com-
mercial workloads by Xu et al. [26] lead to similar conclu-
sions (data logs are the dominant component).

As described previously, frequently taken checkpoints
are only needed to achieve good “speed” for reversing small
amounts of execution, and long-range reverse execution can
achieve good “speed” using checkpoints that are further
apart from each other. Some software schemes for bidirec-
tional debugging [2] build on this insight by using check-
point consolidation to dramatically reduce the total space
consumed by checkpoints, while retaining good “speed” for
short-range reverse execution. With consolidation, incre-
mental checkpoints are created often, for “speed” of short-
term reverse execution, but are then merged as they age into
progressively coarser-grained checkpoints to reduce space
requirements while still supporting good “speed” of long-
term reverse execution.

A consolidated checkpoint is the union of its input
checkpoints, but duplicates (data blocks present in both in-
put checkpoints) eliminated. To efficiently find duplicates
during consolidation, checkpoints must be searchable by
data address or, preferably, arranged by address so a single
merging pass can eliminate all duplicates. This is relatively



Checkpoint CWR XWR YWR XWR ZWR YCheckpoint C+1
(C) Redo Logging Activity(B) Undo Log Activity(A) Execution Timeline Mark X as modifiedMark Y as modifiedNo action (X already marked)Mark Z as modifiedNo action (Y already marked)Save X, Y, and Z into  redo log for C+1Save old X, Mark X as SavedSave old Y, Mark Y as SavedNo action (X already saved)Save old Z, Mark Z as SavedNo action (Y already saved)Start new undo log for C+1

Figure 4. Checkpointing with undo and with redo logs.

easy to achieve in software schemes, which can use sophis-
ticated data structures (e.g. search trees) to facilitate checks
for duplicates. Additionally, many such schemes identify
changes at page granularity [2, 6, 9, 15, 21], so there are
fewer saved records to search or sort than in schemes with
finer (e.g. cache block or even word) granularity.

In contrast, hardware checkpointing schemes [14, 17, 20,
26] dramatically reduce performance overheads of check-
pointing by saving data on-demand (without stopping the
application) and at finer (typically cache-block) granular-
ity. Sophisticated data structures would result in prohibitive
costs, so these schemes simply write out data blocks to a
contiguous log in memory as each block is modified (in
BugNet [14], when modified data is used for the first time).
This results in checkpoint logs with many fine-grain en-
tries that are not sorted by address. Unfortunately, this pre-
vents efficient consolidation: these logs cannot be searched
for duplicates efficiently, and sorting them is either time-
consuming (if sorting in software) or requires expensive
sorting hardware. It should be noted that some hardware so-
lutions [14, 20] compress checkpoints, which typically re-
duces space requirements by a factor of 2 to 3. In contrast,
as will be shown in Section 5.3, if efficient consolidation
could be supported it would provide orders-of-magnitude
reduction is total space requirements.

3. An Overview of HARE

As explained in Section 2, to support efficient consolida-
tion we must either 1) sort checkpoints by address after they
are created, or 2) create checkpoints that are already sorted
by address. Sorting is time-consuming if done in software
and expensive if done in hardware, so our only remaining
option is to fundamentally change the checkpointing mech-
anism to create already-sorted checkpoints.

To efficiently create an already-sorted checkpoint, we
must 1) know which blocks will be saved before we actu-
ally save any of them, and at that time 2) efficiently dis-
cover these modified blocks in order of address and save
them without stopping the execution of the application. The
undo-log approach used in prior hardware schemes [17, 20]
is incompatible with the first requirement. Figure 4(A)
shows an example execution and Figure 4(B) shows the
corresponding undo log activity, which saves each old data
value just before it is overwritten for the first time in this
checkpoint interval. Because data is actually saved during

the checkpoint interval, the next checkpoint (Checkpoint
C+1) is “created” by simply marking the position in the
undo log (or by starting a new log). To restore a prior check-
point, we would simply restore to memory all values saved
since that checkpoint, starting with most recent log entries.
However, we only know the entire set of modified blocks
at the end of the checkpoint interval - after data from all
these blocks is already read out from memory and saved to
the log. To produce a sorted checkpoint, we would need
considerable on-chip resources to buffer these blocks (or at
least records that contain pointers to saved blocks), as well
as expensive hardware to sort these records by address be-
fore we can write them out as a sorted undo log. We note
that BugNet [14] does not use undo logs, but its logs are
sorted by time of first read and thus suffer from similar lim-
itations when it comes to consolidation.

Due to these considerations, for our HARE scheme we
forgo undo-log and loaded-value-log approaches, and use
redo logs instead. Redo logging for the execution example
in Figure 4(A) is shown in Figure 4(C). A redo log con-
tains new values for modified data, recorded at the end of
the checkpoint interval when the set of blocks that must
be saved is known and can be written to the log in order
of original address. However, redo logs present two main
challenges that should be addressed. First, we need to track
blocks that are modified during the checkpoint interval and
efficiently save these modified blocks (in order of data ad-
dress) when actually creating the checkpoint. Second, redo
logs can directly support a roll-forward from older to newer
checkpoints, not roll-back from newer to older checkpoints
that is needed to provide reverse execution.

In the rest of this section we describe our modification-
tracking approach, our checkpoint creation approach, how
to roll back to past checkpoints created by our scheme, and
how our redo logs can be efficiently consolidated, and how
our logs are organized to reduce memory bandwidth needed
for consolidation.

3.1. Memory Modification Tracking

Creation of checkpoint C+1 involves saving new values
of all blocks that were modified between checkpoint C and
checkpoint C+1. To track which blocks were modified,
we use a packed bit-array with a “modified” flag (bit) for
each memory block in the application’s address space, and
we keep, look-up, and update these per-block bits using a
MemTracker-like approach [24].

When creating a checkpoint, a linear search of this bit-
array can discover modified blocks in order of their (virtual)
address. However, our checkpoints will be created often, so
only a small fraction of blocks in the entire address space
is modified, and blocks that are modified tend to be clus-
tered (because of spatial locality of writes in the applica-



Virtual Address Base Address ofPer-Block Bits Per-Block“Modified”Bits(in memory)Page OffsetInner Page #Outer Page #Page TableRoot Address
Figure 5. Modification tracking bits (shown in gray).

tion). This means that a linear search of the bit-array would
be time-consuming, with most of that time spent scanning
through bits that correspond to unmodified blocks.

To improve efficiency of the search for modified blocks,
we also mark modifications in page tables and TLBs by us-
ing an additional dirty bit in each page table (and TLB) en-
try. Figure 5 shows an example with hierarchical page ta-
bles (a page table with only two levels is shown for clarity).
When creating a checkpoint, modified pages can be found
by identifying modified entries in outer levels, descending
towards inner levels for such entries, and eventually search-
ing only the parts of the bit-array that correspond to pages
marked as modified. We clear “modified” bits in page table
entries and the bit-array as we discover them and save the
blocks they indicate, so when a checkpoint is created the
same bits can be used to track modified blocks for the next
one. Overall, for each modified page we examine at most
one page table node at each level (e.g. 4 nodes for 4-level
page tables) and tens of bits in the bit-array (e.g. 64 bits
for 4kB page size and 64-byte blocks). Since each modified
page contains at least one modified data block that must be
copied to the checkpoint, the scan for modified blocks rep-
resents only a small fraction (<2%) of the total time and
memory bandwidth used for checkpointing.

To simplify our hardware support, we use a software
handler to discover modified pages and create a list of such
pages. Our hardware checkpointing support then reads this
list, scans corresponding parts of the bit-array, and saves
discovered blocks to the checkpoint’s data log. We note
that, as an alternative to using additional page table bits and
the bit-vector array, our modification tracking could also be
implemented with a single hierarchical meta-data structure,
e.g. we can use a trie structure from Mondrian Memory
Protection [25] with “modified” bits at each level to quickly
zero in on modified blocks. The choice of the specific mech-
anism to track modified blocks is largely orthogonal to the
design of our checkpointing and consolidation support.

3.2. Checkpoint Creation

To create a checkpoint, we scan our modification-
tracking state, find modified blocks, and save them to our
redo log. In a naive implementation of this approach, the
execution cannot continue until the checkpoint completed,
as modification tracking for the next checkpoint can inter-

fere with the creation of the current one, and new execution
could modify data blocks again before they are saved.

We distinguish between modification marks from the
previous and the current checkpoint interval by using two
separate modification bits for each block and page table en-
try. During a particular checkpoint interval, one set of bits
is used to track modifications for the next checkpoint, while
the other is being scanned and cleared as blocks modified
in the previous checkpoint interval are saved. The roles of
the two sets of bits are reversed at each checkpoint. In the
unlikely case that a checkpoint interval ends while the pre-
vious is still being saved, we stall the processor. Such stalls
are not observed in any of our experiments - even with very
short checkpoint intervals, checkpoint creation completes
well before it is time to create the next checkpoint.

To prevent overwrites in the new checkpoint interval
from destroying yet-to-be-saved values from the previous
one, for each write generated by the processor we check the
modification bit from the previous checkpoint interval. If
that bit is still set, the block must be saved before it is over-
written. A naive solution would be to stall the processor at
this point, but such stalls would occur often2. Instead, when
a yet-to-be-saved block is about to be modified again, we
save this block to another log (called collision list), clear its
modification bit, and allow the processor’s write to proceed.
This leaves the main data log for the checkpoint completely
sorted by address, but produces an unsorted collision list.
Fortunately, our experiments indicate that the collision list
is much smaller than the checkpoint list, so it can be quickly
sorted in software when checkpoint creation is complete.

3.3. Restoring Checkpointed State

Bidirectional debugging restores past checkpoints in or-
der to provide the effect of reverse execution. With undo
logs, past checkpoints are restored simply by copying saved
data from the undo log, in the order opposite from the one
in which log entries were created. With redo logs, however,
log entries contain the new version of each block that was
modified since the previous checkpoint.

To restore some checkpoint C using redo logs, for each
block modified in checkpoint intervals that follow C we
must find the version of that block that existed at the point
where C was created. This version is found by searching for
it in checkpoint C, then in the checkpoint that immediately
precedes it, etc., until it is found. This search is far more ef-
ficient than it seems because 1) most blocks are found after
looking in only a few (e.g. one or two) checkpoints because
writes tend to exhibit temporal locality, 2) our checkpoints
are sorted by address, so binary search can be used to find if

2Blocks with high addresses (e.g. stack) are written often (causing a
stall) and checkpointed last, so overlap between execution and checkpoint-
ing activity would be minimal



a checkpoint contains a given block, and 3) even the worst-
case search (all the way to the start of execution) is fairly
efficient: consolidation dramatically reduces the total num-
ber of checkpoints that are kept at any given time.

3.4. Checkpoint Consolidation

We consolidate two level-N checkpoints into a new level-
(N+1) checkpoint as soon as two level-N checkpoints ex-
ist and a third is created by establishing a new checkpoint
(for level-zero checkpoints) or through consolidation. This
consolidation policy is similar to the one used in software-
only schemes [2], and it provides two key benefits: 1) the
total number of checkpoints and the total size of all check-
points at any given time is only logarithmically proportional
to the total execution since the beginning of the program, 2)
checkpoints at each level of consolidation need to be con-
solidated only half as often as the previous level, so consol-
idation work grows slowly and can be bounded by saving
very old (and heavily consolidated) checkpoints to disk and
not consolidating them further, and 3) the “speed” of for-
ward and of reverse execution is similar, because replay of
each checkpoint interval takes about half as much time as
was needed to forward-execute from the start of that inter-
val to the “current” point in the execution.

To consolidate two (already sorted) checkpoints into a
new (also sorted) one, we perform a merging pass that reads
the next record from each source checkpoints and compares
the addresses from which the two blocks were copied. If
the addresses are the same, only the record from the later
source checkpoint is copied to the consolidated checkpoint
and the next record from each source checkpoints is read
for the next comparison. If the addresses are different, the
record with the lower address is copied to the consolidated
checkpoint, while the one with the higher address is retained
to be compared with the next record from the other source
checkpoint. The result of this merging pass is a consolidated
checkpoint that is also sorted by address.

3.5. Checkpoint Log Organization

The most straightforward checkpoint organization would
be an (address-ordered) sequence of records, each contain-
ing a block of data and its original address. However, such
organization would require saved data to be copied dur-
ing consolidation. Instead, we separate saved data from its
meta-data. Meta-data for a particular checkpoint is kept as
a contiguous array of records, each with the block’s origi-
nal address and the pointer to the block’s saved data. We
also use a special “free list” meta-data array that points to
free blocks in the saved-data-block space. Consolidation
now leaves saved data blocks in place, and only performs
a merging pass on the meta-data arrays to create a consoli-

dated one, while records for duplicates go to the free list to
be reused when new checkpoints are created.

4. Implementation Details

This section describes how HARE can be implemented
and how it can be integrated with existing system and race
logging approaches and with the operating system.

4.1. Caching Memory Modification Bits

Our memory modification tracking allows efficient dis-
covery of modified blocks during checkpoint creation.
However, on each store instruction the processor must look
up and possibly update these structures, so they should be
cached for efficiency. The “modified” bits in page table
entries are equivalent to existing “dirty” bits that are used
to support virtual memory, so we can extend existing TLB
look-up and update mechanisms [8]. Our per-block modi-
fication bits are kept in a packed bit-array format, but can
be cached in primary caches by extending the block’s tag
array to also keep its “modified” bits (as shown in Fig-
ure 6). This approach was called “Interleaved”caching by
Venkataramani et al. [24] and was rejected as not flexible
enough for their MemTracker scheme (which uses a vari-
able number of bits per word). Since our HARE technique
uses only two “modified” bits per block, it can use this
simpler caching approach in L1 caches. For L2 caches,
we adopt the same approach used in MemTracker - each
L1 miss fetches the data and its state separately, so the L2
cache is unmodified and memory blocks that belong to the
bit-array are cached normally and simply compete for L2
cache space. This is not a concern because each block of
“modified” bits corresponds to many (e.g. 256 with 64-byte
blocks) data blocks.

L2
CPUTLB L1 On-ChipInterconnect(e.g. Bus)

Probe
Checkpoint and Consolidation EngineLogicMemory Interface RandomAccessesPage ListSource 1Destination 1Source 2Stream BuffersDestination 2

Figure 6. Hardware support for HARE, with added
hardware shown as gray.

4.2. Checkpoint/Consolidation Engine

The bulk of checkpoint creation and consolidation work
in our HARE scheme is implemented in a separate engine,
as shown Figure 6. It has a memory interface that is used



both to 1) read data blocks from and save them to memory
and 2) to provide memory access for several stream buffers.
Several input and output stream buffers are used to read and
write log records, and an additional stream buffer is used to
read the list of modified pages (see Section 3.1).

When creating a checkpoint, the engine reads the ad-
dresses of modified pages, fetches the corresponding per-
block “modified”bits from the bit-array, and finds which
blocks are marked as “modified”. For each such block, it
gets the next free-list record, fetches the block from mem-
ory and saves it to the space indicated by the free-list, and
adds a new record (with the block’s original address and the
address it was written to) to the checkpoint’s log. To get up-
to-date values, e.g. when reading modified data blocks that
may still be in the writer’s cache, the HARE engine must
participate in coherence, generating read requests to obtain
data blocks (from either memory or caches) and generating
invalidations for memory blocks that are written (logs and
clearing of “modified” bits).

When consolidating two checkpoints (as described in
Section 3.4), the two input stream buffers are used to read
records from their logs, and output stream buffers are used
to write out the consolidated checkpoint log and to add en-
tries to the free list. However, after a checkpoint is estab-
lished by our scheme, it consists of two sorted logs (already-
sorted data log and software-sorted sorted collision list). To
consolidate two such “bifurcated” checkpoints, we can ei-
ther 1) “consolidate” each checkpoint’s data log with its
own collision list, then consolidate the two actual check-
points in another merging pass, or 2) extend our HARE en-
gine with two more input stream buffers and additional logic
to handle a four-way merge. In our experiments we use the
second approach (four-way merge) to simplify our software
handlers and to achieve more efficient consolidation.

4.3. System and Race Logging

Our HARE mechanism focuses on creating data check-
points and efficiently consolidating them. It can be used
together with existing hardware data race recording mech-
anisms [7, 12, 13, 26, 27] to allow accurate deterministic
forward and backward execution for debugging in multi-
core machines. Similarly, non-deterministic system events
must be recorded so they can be accurately replayed. The
type of event and its timing can be captured by the system
at the point when control is transferred (via interrupt, I/O
system call, etc.) from the application to the system code.
However, changes made by the system in the application’s
address space must also be captured, and it would be im-
practical to instrument the operating system to track such
changes. Previous hardware implementations [14] capture
these modifications by terminating the current checkpoint
interval and establishing a checkpoint just before the sys-

tem event is executed, processing the event normally, then
establishing a new checkpoint after the event completes.

In our HARE mechanism, we already have two sets of
“modified” bits, which allows us to capture system-event
modifications without terminating the current checkpoint in
the application. When the system event (e.g. system call)
occurs while one set of bits is clear (the previous check-
point is complete), we use that “free” set of bits to track
memory modifications while in system code. When re-
turning to the application, we can “checkpoint” only those
changes to the system event log (which also resets these
“spare” modification-tracking bits), then continue tracking
changes in the application’s current checkpoint interval us-
ing the original set of “modified” bits.

If a system event occurs while both sets of “modified”
bits are in use (the application’s previous checkpoint is still
being created), we simply stall the application until that
checkpoint is complete, at which time one set of “modified”
bits is free. Note that this stall would have to happen even if
we used the approach of ending a checkpoint interval before
the system event - we would need a third set of “modified”
bits to continue executing while two prior checkpoints are
still being created.

Finally, we note that, because race and system logs can-
not be consolidated, their size grows linearly as execution
proceeds. Data logs, which without consolidation would
also grow linearly and represent most of the overall mem-
ory consumption, now grow only logarithmically. Over
long periods of time (e.g. minutes or hours) consolidation-
reduced data logs eventually become smaller than the ever-
growing race and system logs, thus putting priority again on
improvements in race and system log recording. In effect,
consolidation is necessary to keep data log sizes at bay and
allow race and system log optimizations to have an impact.

4.4. OS Interaction

Our HARE approach uses Operating System (OS) soft-
ware handlers to reduce hardware complexity and ensure
correct operation. We rely on the OS to determine (typically
via timer interrupts) when to create a new checkpoint. At
that time, the OS walks the page tables and builds a list (ac-
tually, a contiguous array) of modified pages. It then mod-
ifies control registers to switch to the other set of modifica-
tion tracking bits, configures the checkpoint/consolidation
engine to start checkpoint creation, and allows the appli-
cation to continue. If the engine is still creating a previ-
ous checkpoint, for that application, the application is sus-
pended until that checkpoint is complete. If the engine is
busy doing consolidation, the OS saves the internal state of
the engine and starts it on checkpoint creation (consolida-
tion can be delayed without stalling the application). The
engine generates an interrupt when its current task is com-



plete, at which point the OS checks if another task (consol-
idation or checkpointing) should be initiated.

Another OS-related issue arises when swapping out a
page that is marked as modified in the current checkpoint
- HARE’s engine will not be able to read the block’s data.
If the OS keeps a sufficiently large free-page pool, we can
delay page eviction until the end of the checkpoint interval
(with our frequent checkpointing, this is only a minor de-
lay). For urgent page evictions, modified blocks can simply
be saved to the conflict list prior to eviction.

5. Evaluation

We quantitatively evaluate our HARE support in terms of
estimated hardware cost, performance overhead in forward
execution, memory requirements for long-term checkpoint-
ing, and reverse execution time.

5.1. Hardware Cost

In this evaluation, we model a multi-core system, with
Core2-like parameters: 4-issue, out-of-order cores run-
ning at 2.93GHz. Each core has a 32KByte, 8-way set-
associative, dual-ported L1 data cache, and all cores share
a 4MByte, 16-way set-associative, single-ported L2 cache.
Block size is 64 bytes in all caches, and the processor-
memory bus is 64 bits wide and operates at 800MHz.
For our HARE mechanism, we model an on-chip check-
point/consolidation engine that participates in coherence
and has (fully snooped) 16-entry read and write queues.
As described in Section 4.4, the engine only works on one
checkpointing or consolidation task at a time, but check-
pointing tasks can preempt consolidations. Using CACTI
5.3 [23], we estimated that the overall internal state of
HARE’s checkpoint/consolidation engine (read and write
queues, stream buffers, internal latches, etc.) uses less than
5% of the area occupied by one L1 cache, while caching
of our “modified” bits adds a <1% overhead to each L1
cache. Finally, the bit-array for out modification tracking is
stored in memory and uses only 0.4% of the memory used
by the application being debugged. Overall, hardware sup-
port for our HARE mechanism amounts to about 4KB of
fast on-chip SRAM and represents a negligible fraction of
the overall chip area. Its cost is considerably lower than
48KB reported for BugNet [14] or 1416KB for FDR [20],
so we expect HARE to add little cost when it is combined
with existing race logging mechanisms.

5.2. Performance Overhead

For our performance evaluation, we used SESC [18],
an open source execution driven simulator, to model a 4-
core system with parameters described in Section 5.1. For

Benchmark Input
Splash-2
Barnes 64K
FMM 64K
LU 4096x4096
Radiosity -room
Water-sp 4096
Water-n2 4096
PARSEC 2.0
Blackscholes 64k options
Bodytrack 4 cameras, 2 frames, 2000 particles, 5 layers
Facesim 372,126 tetrahedra, 1 frame
Fluidanimate 300000 particles, 5 frames
Swaptions 64 swaptions, 20000 simulations

Table 1. Multi-threaded benchmarks and their inputs.

each simulated application, we skip 5% of the execution
and then simulate for 16 checkpoint intervals. We use 23 of
the 29 SPEC 2006 [22] benchmarks; perlbench, lbm, milc,
sphinx3, tonto, and zeusmp are omitted because of incom-
patibilities (mostly from x86-specific code) with our sim-
ulator infrastructure. We also evaluate HARE with multi-
threaded workloads, using a subset of Splash-2 and PAR-
SEC 2.0 suites, with inputs shown in Tables 1. The re-
maining Splash-2 benchmarks are omitted because no in-
put sets are available that result in sufficiently long execu-
tion (16 checkpoints), whereas the omitted PARSEC bench-
marks have x86-specific code incompatible with our simu-
lation infrastructure.

Figure 7 presents the performance overhead of HARE
when checkpoints are established every 100 million instruc-
tions. For each benchmark suite, we only show the aver-
age (over all applications we simulated) and the three ap-
plications that had the worst overheads for HARE. We also
show the performance overhead that would result from us-
ing prior approaches with checkpoint consolidation. Copy
On Write models a software-only page-granularity undo
logging scheme, where all pages are marked as read-only
when a checkpoint is created.The first write to each page
causes a protection fault, and the fault handler saves the
old version of the page, changes its permission to allow
writes, and resumes the application. In this approach, most
of the overhead comes from delaying application execution
while copying pages. The overheads of sorting lists of saved
pages for consolidation is present, but it is dwarfed by page
copying overheads. Undo Log models a block-granularity
hardware undo logging scheme such as FDR [20] or Re-
Vive [17], using software handlers to sort lists of saved
blocks prior to consolidation. In this case, the overhead is
dominated by sorting of these lists 3.

3Sorting overhead is much higher in Undo Log than in Copy On Write
because a modified page often has numerous modified blocks, so per-block
logs tend to have many times as many entries as per-page ones do.
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Figure 7. Performance overhead when checkpointing every 100 million instructions.
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Figure 9. Breakdown of performance overheads for our HARE mechanism.

Overall, HARE incurs a maximum overhead of 23%
across all applications, with averages under 3% for
SPECint, under 1% for SPECfp, and under 3% for multi-
threaded applications. Software-only checkpointing and
consolidation results in averages that can exceed 100% (for
SPECint and SPECfp), with overheads in individual ap-
plications as high as 991% (in mcf). Hardware undo log
checkpointing with software sorting for consolidation still
results in high overheads both on average (>50% overhead
in each of the three sets of benchmarks) and on individual
applications (>300% overhead in GemsFDTD).

To examine how checkpointing frequency affects per-
formance, Figure 8 shows results from additional experi-
ments with different checkpointing intervals. We observe
that overheads in HARE do increase when checkpointing
is very frequent (every 10M instructions), such that some
applications suffer >100% overheads. On the other hand,
when checkpointing intervals are increased to 1 billion4 in-
structions (only a few checkpoints per second), both the
maximum and the average overhead in HARE is reduced

4Note that we do not show results for multi-threaded applications with
1 billion instructions per checkpoint – the input sets we simulated in these
benchmarks (Table 1) do not execute long enough to create sixteen check-
points with this checkpointing interval.

significantly. Surprisingly, the overhead of Undo Log is
still significant (average >50% and maximum >300% in
SPECfp). This is because, for relatively frequent check-
pointing, longer checkpointing intervals can result in pro-
portionally larger logs to sort for each checkpoint, and sort-
ing time grows super-linearly with log size.

To gain insight into the sources of HARE’s performance
overhead, Figure 9 breaks this overhead down into four
components (bottom to top): Construct Page List is the time
needed for our software handlers to scan the page table and
find modified pages for each checkpoint; Checkpoint Cre-
ation is the increase in execution time due to using HARE’s
engine to create a checkpoint (most of the overhead is due
to contention for cache and memory bandwidth between
the processor and the engine); Sorting Collision List is the
overhead of sorting (in software) the collision list after a
checkpoint is created; Consolidation of checkpoints is the
increase in execution time due to using HARE’s engine
to consolidate checkpoints (again, most of this overhead
comes from cache and memory bandwidth contention).

Dominant sources of performance overhead in HARE
are sorting of the collision list (e.g. in libquantum) and
memory and bandwidth contention from checkpointing
(e.g. in fluidanimate). Consolidation causes minimal over-



0.1

1.0

10.0

100.0

1000.0

G
b

y
te

s
(L

o
g

 S
c

a
le

)

HARE 1B HARE 10B Undo Log 1B Undo Log 10B CopyOnWrite 1B CopyOnWrite 10B

CINT 2006 CFP 2006 Parsec 2.0

gcc mcf sjeng

(all 12)

Average Gems.. bwaves lbm canneal dedup freqmineAverage

(all 17)

Average

(all 13)

xalan.. zeusmp x264

Figure 10. Total checkpoint size (in gigabytes) for checkpointing every 1 billion and every 10 billion instructions

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  200  400  600  800  1000  1200

T
o

ta
l 
C

h
e

c
k
p

o
in

t 
S

iz
e

 (
M

B
)

Time (Billion Instructrions)

xalancbmk

Undo Log

HARE

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  500  1000  1500  2000  2500  3000

T
o

ta
l 
C

h
e

c
k
p

o
in

t 
S

iz
e

 (
M

B
)

Time (Billion Instructrions)

bwaves

Undo Log

HARE

 0

 50000

 100000

 150000

 200000

 250000

 0  50  100 150 200 250 300 350 400 450 500

T
o

ta
l 
C

h
e

c
k
p

o
in

t 
S

iz
e

 (
M

B
)

Time (Billion Instructrions)

GemsFDTD

Undo Log

HARE

Figure 11. Total checkpoint space over time.

heads, because it operates only on meta-data (saved block’s
data is not moved) and uses much less bandwidth than
checkpoint creation.

Overall, we find that the overheads of HARE are signif-
icantly lower than when consolidation is added to previous
approaches. HARE’s overheads are also low enough to per-
mit debugging of long-running applications with realistic
(large) data sets.

5.3. Checkpoint Space Overheads

To estimate long-term memory requirements, we used
PIN [11] to model5 HARE’s functionality. We then used
all SPEC 2006[22] benchmarks, with ref input sets, and
all PARSEC 2.0 [3] benchmarks, with native inputs and 8
threads. Each application is simulated to completion, using
regular checkpoint consolidation in HARE and no check-
point consolidation in Copy on Write and Undo Log. Note
that the Copy on Write and Undo Log we show here are
not the same as in our performance overhead experiments
– without consolidation, overheads in these schemes would
be significantly lower, and with consolidation their space
overheads would be similar to HARE’s. We use these dif-
ferent kinds of experiments in different parts of the eval-
uation to show that HARE achieves both efficient space
use and low forward-execution overheads, while prior Undo
Log hardware schemes can only achieve one or the other –
either 1) low performance but high space overheads if con-
solidation is not used, or 2) low space but high performance
overheads if consolidation is used.

5Detailed simulation is infeasible for this, as it goes through only a few
checkpoint periods per hour of simulation time.

The result of this experiment is shown in Figure 10. We
observe that total space use for checkpoints in HARE is an
order of magnitude lower than in prior hardware schemes
(note the logarithmic scale in these charts). To reduce space
requirements, other schemes can try reducing checkpoint-
ing frequency – as shown in these charts, reducing the fre-
quency from once per 1 billion instructions (several times
per second) to once per 10 billion instructions (once every
several seconds, with frustrating delays for short reverse ex-
ecution) does significantly reduce total space use in Undo
Log schemes (FDR or ReVive). Even then, however, the
space use in these schemes can reach hundreds of gigabytes
to capture what amounts to tens of minutes of execution.

In contrast, HARE’s consolidation effectively changes
the checkpoint frequency for older checkpoints, allowing it
to use a limited amount of space regardless of checkpoint-
ing frequency. In most applications, HARE with check-
pointing every 1 billion instructions or every 10 billion in-
structions consumes similar amounts of space. More im-
portantly, HARE with checkpointing every 1 billion instruc-
tions often uses an order of magnitude less space than when
consolidation-less Undo Log or BugNet checkpoint every
10 billion instructions.

It should be noted that HARE’s advantage over
consolidation-less schemes grows as execution proceeds:
Figure 11 shows total space use over time in HARE and in
Undo Log for several applications. The trend is toward lin-
ear growth in Undo Log and logarithmic growth in HARE.
In each chart, we only show data for a limited number of
instructions because in entire-execution charts HARE’s line
becomes hard to distinguish from the X-axis.
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Figure 12. Estimates of reverse execution time and forward execution time with HARE.

5.4. Reverse Execution Time

To evaluate whether HARE achieves the goal of support-
ing the programmer’s intuitive notion that reverse and for-
ward execution should have similar “speed”, we perform
additional experiments where we estimate the latency of
varying amounts of reverse execution (from back-stepping
one instruction to undoing the entire execution), all start-
ing from the same state (the very end of the application’s
execution). It would take years to get these results through
cycle-accurate simulation, so for this evaluation we estimate
the time of reverse execution as follows: we use profiling
to determine the time required to search an average-sized
checkpoint for a particular block, and how much time is
needed to restore a block from checkpoint space to appli-
cation’s memory; we use our experiments to collect data
on how many checkpoints need to be searched on average
to find a desired block, and how many blocks would have
to be restored in each reverse execution; finally, with these
per-event times and event counts we compute estimated re-
verse execution times. These results are shown in Figure 12,
along with forward-execution times. We only show the four
application with the worst “speed” of reverse execution rel-
ative to forward execution.

As expected, the latency of forward execution grows in
linear proportion to the number of instructions executed.
For backward execution, however, this latency is “choppy”.
This effect is caused by how the checkpoint-and-replay
implementation of reverse execution works: it restores a
checkpoint that precedes a target position, then re-executes
until that target position is reached. For target positions
within the same checkpoint interval (the same checkpoint
is restored), replay time grows as we reverse-execute fewer
instructions - reversing to the beginning of the checkpoint
interval results in negligible replay time, while reversing to
the end of the checkpoint interval requires replay of the en-
tire checkpoint interval. As a result, reverse execution time
shown in Figure 12 “jumps” whenever the increase in the
number of instructions results in changing the checkpoint
that needs to be restored, but then smoothly improves as
fewer instructions in that checkpoint interval are replayed.

The overall trend shown in Figure 12 still matches what
the user (of the debugger) expects from long-term reverse
execution: its “speed” is similar (well within a factor of 2)
to forward execution. For short-term reverse execution, the
intuitive expectation is for it to be “instantaneous” - forward
execution of the same number of instructions takes negligi-
ble time. The largest difference in “speed” between forward
and reverse execution occurs when executing (or reversing)
only one instruction (leftmost point in each chart): a for-
ward single-step of one instruction takes only nanoseconds,
whereas the worst latency we observe for reverse single-
step is about 1 second (in xalancbmk, see the leftmost chart
in Figure 12). Although not truly below the human percep-
tion threshold, this is still a highly interactive response that
is unlikely to frustrate programmer, and it can be improved
by checkpointing more often (at the cost of some additional
performance loss in forward execution).

6. Conclusions

Bidirectional debugging is a powerful debugging tech-
nique that allows program execution to proceed both for-
ward and in reverse. Many software-only techniques and
tools have emerged that use checkpointing and replay to
provide the effect of reverse execution, although with con-
siderable performance overheads in both forward and re-
verse execution. Recent hardware proposals for checkpoint-
ing and execution replay minimize these performance over-
heads, but in a way that prevents checkpoint consolidation,
a key technique for reducing memory use while retaining
the ability to reverse long periods of execution.

This paper presents HARE, a low-cost hardware tech-
nique that efficiently supports both checkpointing and con-
solidation. Our experiments show that HARE incurs small
(<3%) performace overheads even when checkpointing
several times per second, provides reverse execution times
similar to forward execution times, and reduces the total
space used by checkpoints by a factor of 36 on average
(this factor gets better for longer runs) relative to prior
consolidation-less hardware schemes.
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