
Traffic Steering Between a Low-Latency Unswitched
TL Ring and a High-Throughput Switched On-chip

Interconnect

Jungju Oh
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia

jungju@gatech.edu

Alenka Zajic
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia

alenka.zajic@ece.gatech.edu

Milos Prvulovic
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia

milos@cc.gatech.edu

Abstract—Growth in core count creates an increasing demand
for interconnect bandwidth, driving a change from shared buses
to packet-switched on-chip interconnects. However, this increases
the latency between cores separated by many links and switches.
In this paper, we show that a low-latency unswitched interconnect
built with transmission lines can be synergistically used with
a high-throughput switched interconnect. First, we design a
broadcast ring as a chain of unidirectional transmission line
structures with very low latency but limited throughput. Then,
we create a new adaptive packet steering policy that judiciously
uses the limited throughput of this ring by balancing expected
latency benefit and ring utilization. Although the ring uses 1.3%
of the on-chip metal area, our experimental results show that,
in combination with our steering, it provides an execution time
reduction of 12.4% over a mesh-only baseline.

Keywords—traffic steering, network-on-chip, transmission line

I. INTRODUCTION

The on-chip core count has already reached the point where
a shared bus no longer provides sufficient bandwidth for the
coherence traffic. Further, bus latency and energy-per-bit are
not scaling favorably. Consequently, a many-core chip must
use a packet-switched network-on-chip (NoC), e.g. a mesh or
torus [1]. In such NoCs, each link is short and its length scales
down with technology, so latency and energy consumption
scale well if most traffic is local. Further, the aggregate
bandwidth of all the links scales with the number of cores.
However, switched networks come at a significant latency cost
for traffic between far-apart cores—these messages traverse
more switches when the core count grows, in addition to longer
wire delays due to technology scaling.

One approach for reducing NoC latency is to use transmis-
sion lines (TLs), where signals propagate close to the speed
of light. However, TLs consume far more metal area than
traditional wires, so a same-area TL-based NoC typically either
provides far less throughput or requires very sophisticated
signaling to improve this throughput.

The key insight we use in this paper is that the latency
advantage of TLs over wires is the greatest for long-distance
packets, while local traffic (which often represents the majority
of the traffic) sees a relatively low latency even in a traditional

mesh based NoC and it has little benefit from going over
(expensive) TLs. Guided by this insight, we design a low-
cost unidirectional TL (UTL) ring interconnect that provides
very low maximum propagation latency (e.g. 2 ns for a 64-
core chip), uses simple signaling and has an efficient yet
simple arbitration mechanism. However, this ring has limited
throughput, so we use it together with a traditional switched
NoC, by judiciously steering each packet to the ring or
the traditional packet-switched interconnect. In particular, this
paper makes the following contributions:

• We design a novel unidirectional transmission line (UTL)
structure that has low signal propagation latency (about
7.5 ps/mm) at relatively high bit rates (>16 Gbit/s) and
much better multi-drop (multiple connections along the
TL) and signal integrity properties than traditional TLs.

• We construct a novel ring out of these UTL structures.
The ring behaves as a contiguous TL propagation medium,
but uses electrical switching (CMOS pass-gates) to achieve
efficient arbitration and loop-around prevention. Our EM
and circuit-level models for this ring show a <2 ns total
propagation latency for 64 cores (<3 ns with 256 cores)
on a 16 mm×16 mm chip.

• We devise an efficient and adaptive traffic steering mech-
anism, which manages the available bandwidth of the ring
by allocating it only to packets that are expected to benefit
the most from its reduced latency.

Our experimental evaluation shows that (1) combined
ring+mesh, with our traffic steering, improves execution time
by 12.4% on average compared to the mesh alone, (2) careful
packet steering plays an important role in using this combined
interconnect, and finally (3) our contributions continue to
provide a performance benefit even when combined with more
sophisticated (lower-latency) switched NoC topologies.

II. BACKGROUND AND RELATED WORK

A. On-chip Network Topologies and Latencies

Generally, on-chip networks can be classified into three
categories: unswitched (typically bus-based), packet-switched
and hybrid interconnects that exploit both. Unswitched inter-
connects broadcast all traffic on a shared medium, allowing

Milos Prvulovic
Typewritten Text

Milos Prvulovic
Typewritten Text

Milos Prvulovic
Typewritten Text

Milos Prvulovic
Typewritten Text

Milos Prvulovic
Typewritten Text
 Appears in the Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques (PACT), Pages 309-318, September 2013.

Milos Prvulovic
Typewritten Text

simpler design than switched interconnects. However, as the
number of cores and connections increases, the resulting con-
tention becomes a major performance issue [2], [3]. Traditional
buses also suffer from unfavorable wire delay and power trend
as technology scales [4]–[7].

In contrast, a packet-switched network typically uses short
links between adjacent cores, which is efficient and has low-
latency for local traffic. However, packets traveling to far-
away destinations have to go through many links and on-chip
routers. These routers are typically pipelined, which improves
throughput but further increases per-hop latency. Studies show
that this per-hop latency can be alleviated by techniques
such as lookahead routing [8] where routing calculation is
performed one hop ahead to shorten the router’s pipeline,
or aggressive speculation [9] which also reduces pipeline
length by speculatively performing switch allocation early.
However, even with these advanced router microarchitectures,
each traversed node still adds several cycles to the latency of
a packet.

Hop count can be reduced by more advanced network
topology. In a concentrated mesh [10], several nodes share each
router, so fewer routing hops are needed than in a traditional
mesh. In a flattened butterfly [11], hop count is reduced by
providing richer physical connectivity to non-adjacent nodes.
Express virtual channel [12] uses dedicated virtual channels to
shorten the latency for multiple-hop traverse and multi-drop
express channel [13] achieves high connectivity in an efficient
manner. However, even with these efforts, growing core counts
still result in increasing hop counts and wire latency, leading
to latencies of tens of cycles between far-apart cores.

The per-hop routing delays can be eliminated either by
using a separate link for each pair of cores, which is ex-
tremely expensive for a large number of cores, or by using
an unswitched interconnect. Unfortunately, as noted earlier,
traditional unswitched interconnects (buses) suffer from both
contention and poor scaling trends.

The latency and energy problems of wires in unswitched
interconnects can be addressed with transmission lines (TLs),
where signals propagate as electromagnetic waves (without
charging the entire capacitance of the link) close to the speed
of light in the conductor material [14]. For the specific TL-
based design we use (Section III-A), electromagnetic simula-
tions show 7.5 ps/mm propagation speed, compared to ITRS
projections [5] of 140 ps/mm for optimally repeated wires
in 22 nm, and 150 ps/mm in 10 nm technology. However,
TLs do not address the throughput problem of unswitched
interconnects—in fact, they make it worse because the metal
area occupied by a single TL is equivalent to tens of wires.
Thus, a TL-based interconnect tends to have less throughput
than the same-cost wire-based one.

B. Related Work

In contrast to our work, where both networks are fully
capable of delivering any message from its source to its
destination, most prior work with multiple networks uses them
hierarchically. Bourdaus [15] proposes hierarchical rings con-
necting local meshes to reduce global hop count. Local buses
with global meshes are another hierarchical interconnect [16],
[17] that can improve latency and power efficiency through

communication locality. However, these hybrid proposals still
incur significant routing delays for cross-chip packets in many-
core processors, and growing wire delays are still a problem.
In contrast, our approach combines a (traditional or advanced)
switched NoC with a low-cost UTL ring that provides ex-
tremely low latency for selected (e.g. cross-chip) packets.

Other approaches to improve latency of many core inter-
connect include attempts to hierarchically split chip-spanning
bus into multiple local buses connected with point-to-point
links [18]. Filtering broadcasts between segmented global and
local buses further improves bus throughput [19] and the use of
hierarchical (local and global) rings show performance close to
the packet-switched interconnect with improved scalability [4].
However, these interconnects still show strain in high-traffic
applications, so they are likely to only delay the transition to
more scalable switched interconnects. In contrast, we embrace
the transition to more scalable NoCs, but add TL ring to
provide extremely low latency when needed. Furthermore,
advances in scalable switched interconnects in terms of la-
tency [12], [20] and power efficiency [21] may still result
in significant latency differences depending on hop count and
such NoCs can still benefit from our approach.

Ring interconnects have been widely used due to their
simplicity, with trivial routers and manageable latency with
short point-to-point wires. IBM Power5 [22] and IBM Cell
Architecture [23] use a ring to connect multiple on-chip com-
puting units. Our approach also benefits from the simplicity of
the ring, but improves the ring’s latency by using novel TL-
based couplers and by allowing seamless signal propagation
with pass-gates. Thus our ring can form a fast chain that starts
and ends at the sending node. The coupler works similarly to
a ring resonator in nanophotonic interconnects [24], but allows
a node to both receive the signal and pass it on.

Steering messages in heterogeneous networks was explored
in [25]. The heterogeneous network implements multiple in-
terconnects with different characteristics in latency, bandwidth
and power-efficiency by adjusting wire and repeater spacing.
Then, coherence traffic is optimized to steer messages into
different networks according to their properties (criticality,
size, etc.). In contrast to steering between NoCs that are
similar in nature, our approach steers between NoCs with very
different latency, throughput and latency/hop characteristics.

Transmission lines (TLs) have been used for fast commu-
nications, e.g. low-latency barriers [26], [27], long-distance
“express” links [28], [29] and connections between distant
banks in large caches [30]. Shared-medium broadcast TL
interconnects in [31] use optimizations to reduce on-chip
traffic. While these optimizations defer the scalability problem,
growth in core counts still inevitably leads to saturation of
broadcast-type interconnects. In contrast, we rely on a switched
network to provide throughput scaling, and use our TL ring
only for packets that benefit the most from it.

Alternative emerging approaches for low-latency intercon-
nection include nanophotonics [24], [32]–[34] and on-chip
wireless communications [35]. Nanophotonic NoCs are able to
address the power and latency problem of the traditional NoC,
though they require further investigation in their suitability
in replacing existing metal-based NoC architecture [36]. Our
application of TL in augmenting the existing NoCs differ with

Core

Router

Link

TL

Amplifier

Fig. 1: TL-based ring with packet-switched network.

their approach in that we exploit already mature technologies
and can ease the burden of installation. Hybrid wireless
NoC expedites long-range communication but requires routing
scheme and communication protocol that consume power
and area overhead. Also, it has to overcome reliability and
integration challenges.

Finally, a recent proposal describes a NoC composed of TL
buses, with various optimizations to increase throughput [37].
However, such all-TL approaches increase throughput by using
more TLs, complex encoding/decoding to embed more bits in
the signal, and/or signaling at extremely high frequencies. Our
work is based on the insight that TLs provide little benefit for
a large portion of the traffic (e.g. local traffic). That leads us to
a low-cost approach of minimizing total TL length and using
binary pulse signaling at frequencies for which the required
circuitry has already been demonstrated in existing CMOS
technology [38], [39]. We then use the UTL ring to provide
low latency for packets that can benefit from it while relying
on a traditional scalable NoC for throughput requirement.

III. TRANSMISSION LINE RING

This section presents a detailed design of a TL-based low-
latency ring. Because TLs are expensive and have extremely
fast propagation, we chose a topology that minimizes overall
TL length rather than the longest path—a ring (Figure 1)
rather than a double tree [27] or a grid [26]. Our models
(Section III-A) show that the entire ring can still be traversed
in 1.6 ns (64-core chip in 22 nm technology) to 2.6 ns (256-
core chip, 10 nm technology). The latency gain from a lower-
latency topology would be only 1–2 cycles, but the cost would
be several times higher. Furthermore, a ring design allows a
fast arbitration approach (Section III-B).

A. Unidirectional Transmission Line Ring

We implement our TL ring by chaining unidirectional
transmission line (UTL) elements and periodically using am-
plifiers to make up for losses along the ring. Following the
discussion of the UTL elements and how they are connected
into a ring (Section III-A1), we discuss how we prevent the
signal from infinitely looping around the ring (Section III-A2)
and how data bits are transmitted and received on this ring
(Section III-A3).

1) UTL-Based Ring Design: The goal of our TL design
is to manage two main problems that traditional TL designs
with many connections (for transmitters and receivers) face—
attenuation of signal power due to split at each connection and
signal reflections/reverberations due to connections and other
discontinuities (e.g. slight impedance mismatches along the

R1T1 R2T2 R3 T3 R4T4

“main” line

Transmission Lines

1

(a)

(b)

(c)

2

34

Fig. 2: Connecting UTL couplers into a ring.

TL) [27]. With naı̈ve connections like T-junctions, significant
reflection cannot be avoided. Worse, the optimal design from
reflection standpoint is to split the remaining signal power half-
half, but it weakens the forward-propagating signal quickly as
the signal goes through multiple connections. Soon, the “noise”
caused by the sum of the many reflections of reverberating
signal (with various delays and attenuations) between the
connections will dominate the weakened signal. As a result,
the number of connections that are feasible for one TL segment
is low, especially for high frequencies: 6–8 connections (two
at the ends of the TL and 4–6 along the way) up to 10 GHz
frequency and even fewer at higher frequencies (but they allow
high data rates).

Because of these considerations, we design a new TL
structure that provides unidirectional propagation. This way,
reflections cannot reverberate through the TL medium and
more signal power can continue to propagate along the ring
at each connection. The new structure is based on a four-port
coupler, which is traditionally used in microwave designs to
reduce reflection issues in signal split. We base our coupler on
a recent design [40] that has excellent directivity and frequency
characteristics. A simple coupler consists of two TL structures
running in parallel close to each other, as shown in Figure 2a.
If the signal is injected into one end of one of the lines (e.g. À
in Figure 2a), it propagates to the other end, but some part of
the signal’s power is transferred to the other line through EM
coupling. Interestingly, with careful design, it is possible to
achieve excellent directivity for such a coupler. In our example,
almost all of the transferred power goes to port Â on the
bottom line while nearly nothing goes to port Ã. Note that
the coupler is symmetric and any of the four connections can
be used as “input”. For example, if the signal is injected into
the port Ã instead of the port À in Figure 2a, it still splits
between the right ends of the two lines (port Á and Â).

This allows us to chain couplers together using one of
the lines as the “main” TL and the other line to connect
transmitters and receivers (Figure 2b). Traditional couplers are
designed to split the signal equally between the outputs and
the signal on the “main” line loses half of its power at each
coupler. This would require amplifiers to be placed frequently
along the ring. We modify the coupler design so that most of
the signal’s power continues down to the “main” TL and only
25% of the power goes to the receiver. This allows us to save
half of the amplifiers.

To achieve improved frequency, directionality and power
transfer properties, in our coupler, each of the two “lines”
consists of two conductors that are connected at their endpoints

W W

W W
T

T

Ground

h1 = 4.1 ㎛

h2 = 16 ㎛

S1

S2

W = 4.193 ㎛
S1 = 4.571 ㎛
S2 = 8.457 ㎛
T = 1 ㎛

L =
 1 m

m

Cross-Section View

Top View

Fig. 3: Cross-section and top view of our coupler.

as shown in Figure 3. We still favor this design over a
regular TL because it simplifies implementation and reduces
the circuitry needed in each node and along the ring.

2) Infinite Loop Prevention: Amplifiers in our ring com-
pensate for losses in signal strength. So the signal, once in-
jected by a transmitter, would continue to circle around the ring
infinitely and prohibit transmission of new signals. To prevent
such infinite loops, each transmitter controls a pass-gate that
connects the previous coupler’s “main” ring connection to its
own. This pass-gate is normally in the connected state, i.e.,
the signal is allowed to propagate freely. However, when a
transmitter is about to transmit a packet, it first puts the pass-
gate it controls into the disconnected state. This transforms the
ring into a chain so the signal reaches all the other nodes but
does not continue along the ring for the second time. Note that
each pass-gate only introduces a single transistor delay into the
signal’s path. This delay improves with technology scaling,
making these pass-gates both cost- and energy-efficient.

As shown in Figure 2b, the receiver of each node is
connected before the node’s pass gate, so sender is the last to
receives its own signal. This can be used for error detection,
although we omit that discussion because our ring has low
error rates (10−15 or less). More importantly, this arrangement
allows our new arbitration approach (Section III-B).

3) Signal (De)Modulation: The modulation method is a
tradeoff between receiver/transmitter complexity, their latency,
error rates, and the bit rates that can be achieved within a given
frequency band. Typically, high bit rates require modulations
with multiple bits per “symbol” (e.g. signal level in AM
modulation) with more complex and longer-delay transmit-
ters/receivers. Also, such modulations have smaller differences
between symbols. Furthermore, they tend to require complex
and long-delay approaches to reduce the error rates.

The primary goal for our TL ring is to minimize its latency
and cost. Consequently, we use a very simple form of ultra-
wideband modulation: on-off keying of a high-frequency clock
signal. With this modulation, one or more consecutive pulses
of the clock represent one bit, and these pulses are either
transmitted (bit is one) or not (bit is zero).

From
TL RingPLL

Amplifier

To
TL Ring

Transmitter

10100101....
Detector

Receiver

Fig. 4: Transmitter and receiver design for TL ring.

The pulse frequency and bit rate should correspond to the
central frequency and half-width of the available spectrum of
the transmission medium. Our coupler design has available
spectrum that scales up as its length scales down. For 1 mm
length, the available spectrum is 20–60 GHz. Thus we use a
40 GHz clock signal and conservatively modulate it with two
pulses per bit to get 20 Gbit/s of raw throughput. As cores get
smaller (and transistors faster) with technology scaling, our
design can be modified to use 0.5 mm coupler length. The
available spectrum would be 40–120 GHz, so 40 Gbit/s can
be transmitted using an 80 GHz signal clock and two pulses
per bit.

The receiver and transmitter for this modulation approach
are simple (Figure 4). The transmitter contains (1) a PLL
to generate pulses, (2) a pass-gate to control whether the
pulses get onto the transmission line and (3) an amplifier
(composed of two appropriately sized CMOS inverters) that
mostly provides impedance matching. The receiver consists
of two components: a detector (capacitor and a few CMOS
transistors) to identify if a pulse is present in each bit position
and a fast shift register (clocked by the same PLL used for
the transmitter) to collect the high-rate bits so they can be
used by logic operating at “normal” on-chip clock frequencies
(e.g. 1 GHz). The PLLs of all transmitters can be phase-locked
to the existing skew-compensated global clock signal, which
is used for mesh routers and cores to derive the clock signal.

4) End-to-End Latency on the Ring: The latency has five
components: (1) TL propagation time that largely depends on
the total distance traveled between the farthest-apart transmitter
and receiver, (2) transistor circuit latencies that depend on
the complexity of the circuitry in transmitters, amplifiers,
and receivers, which altogether continues to improve with
technology scaling, (3) delays introduced by fundamental
requirements of signal processing in detectors, (4) packet
transmission latency that depends on the number of bits in the
packet and the time needed to transmit one bit (Section III-A3),
and finally (5) queuing and arbitration delays that we addressed
in Sections IV-B and III-B respectively.

We now summarize the first three components of the
latency: first for the transmitter, then for the TL and amplifiers
on the ring, and finally for the receiver.

Transmitter delay consists of a single CMOS pass-gate
and an amplifier (Figure 4) that connect the PLL to the
transmit port of the TL coupler. The pass-gate delay is only
a few picoseconds and improves with technology scaling. The
amplifier latency is about 50 ps in 45 nm technology and
scales with technology [41] (we conservatively skip the 32 nm
technology node and assume 25 ps for 22 nm and 13 ps for
10 nm technology). Note that the amplifier is needed mainly
for impedance matching if the PLL signal is strong enough. In
our simulations, we find that this amplifier can be replaced by
an inverter, with transistors sized for 50 Ω output impedance.

Propagation speed along our UTL is 0.0075 ns/mm (from
the AWR [42] EM simulator). For a 16 mm×16 mm die with
64 cores, the ring is 156.4 mm long, with 16 amplifiers along
the way. When the number of cores is increased to 256 (in
10 nm technology), the ring length is 286.4 mm with 32 (faster)
amplifiers along the way. Hence, the propagation delay (trans-
mitter output to receiver input) is expected to be 1.6 ns for a 64-
core chip in 22 nm technology (156.4 mm×0.0075 ns/mm+16
amps×0.025 ns/amp), and 2.6 ns for a 256-core chip in 10 nm
(286.4 mm×0.0075 ns/mm+32 amps×0.013 ns/amp).

At the receiver, the delay is dominated by the delay of
a detector, which is a signal-processing delay determined by
the frequency of the received RF signal. For the 40 GHz AM
detector used in our design, the delay was 25 ps for one pulse.
Since we use two pulses per bit, the second pulse can be used
for robustness (at the cost of adding another 25ps to the delay),
or it can simply be ignored.

B. Disconnect-Based Arbitration Mechanism

With a separate arbitrator, the request/grant signals must
be sent to/from the arbitrator by a separate set of TLs (which
is expensive), or through long-latency wires (which leads to
much longer overall latency for ring-steered packets). Instead,
we use the ring itself for arbitration by adapting the Token Ring
approach from nanophotonic broadcast rings [24]—the sender
transmits a token down the ring when it is done, and the first
prospective sender node that gets the token becomes the new
sender. However, in nanophotonic interconnects, a dedicated
wavelength is used for the token signal, whereas our ring with
simple modulation uses all of its bandwidth for one channel.
Therefore, we attach a token sequence at the end of the packet.
The token sequence consists of a few disconnect-delay bits, a
token bit that is initially equal to 1, and a few reconnect-delay
bits. Each potential sender looks for the end of the current
packet, disconnects the ring using its pass-gate and receives
the token bit. If the token bit is zero, it reconnects the ring.
This way, only the first potential sender will receive the token
bit with a value of 1—the disconnect in our modulation scheme
results in a 0 value (no pulses) continuing down the ring so
other prospective senders receive 0 value for the arbitration
bit. Our EM and circuit simulations show that disconnect and
reconnect delays of only 2 bits are sufficient, so arbitration
“spends” only five bits worth of throughput per packet.

C. Broadcasts on the TL Ring

A packet sent on our TL ring is “seen” by all other
cores, so we convert multicast packets (e.g., when sending out
invalidations) into broadcasts. However, we use the baseline
directory protocol for all coherence actions, even though a ring
can be used as an ordered interconnect to support efficient
snooping [43]. In our approach, most packets still use an
unordered (mesh) interconnect, which would lead to ordering
inconsistencies if both snoopy and the directory-based actions
can occur on the same cache block. A solution for this is
outside the scope of this paper.

IV. TRAFFIC STEERING

The UTL ring presented in Section III provides low-
latency and efficient arbitration, but its aggregate throughput

is significantly lower than that of wire-based switched NoCs.
Instead of boosting the ring throughput using multiple rings,
sophisticated modulation and even higher signaling frequencies
that cause major increase in cost and design complexity,
we combine the low-latency-but-limited-throughput UTL ring
with a traditional switched interconnect. This approach is
based on an insight that the latency benefit from using the
ring varies from message to message, so we can boost the
benefit from the low-latency ring by using it only for packets
that are expected to show a lot of benefit from the reduced
latency while the remaining (majority of) packets continue to
use the high-throughput switched interconnect.

Our steering approach has three components: (1) a scoring
mechanism that predicts the benefit from ring-steering a given
packet (Section IV-A), (2) a threshold management mechanism
that controls ring throughput consumption (Section IV-B) and
(3) an emergency re-steering mechanism for sudden rises in
ring contention (Section IV-C).

A. Benefit Estimation and Packet Scoring

Our scheme rates each packet and assigns a score according
to how much benefit it can expect from being steered to
the ring instead of the mesh. This score S is a sum of two
components: latency benefit Slat and criticality score Scrit.
The latency benefit Slat is the difference in packet latency,
which requires future knowledge and is thus estimated. So,
Slat ≈ Lmesh − Lring , where Lmesh and Lring are the
estimated latencies for the mesh and the ring, respectively.

Because the main latency factors in the ring and mesh
are different, they have separate estimators. The mesh latency
mainly depends on the packet’s hop count and network conges-
tion. Without congestion, latency is proportional to hop count.
However, in our experiments, a 5-hop packet has latencies
from 19 cycles (no contention) to 56 cycles (heavy contention),
so it is important to account for contention when estimating
Lmesh. For the TL ring, the range of packet latencies can be
even larger without some form of demand control. Ring-steered
packet latency can be as low as 4–6 cycles without contention
(4 cycles to transmit a 64-bit packet at 16 Gbit/s, plus 0–2
cycles of propagation latency depending on destination). In
our experiments with lu-cn, most packets do have reasonable
latency (82.7% are below 20 cycles), but some (about 5%) have
latencies above 100 (and up to 2600) cycles due to contention
when we randomly steer packets to TL ring with 50% chance.

Our mesh latency estimator uses a small cache (m-cache)
in each node to track latencies of recent packets with a given
hop count. The m-cache has s rows, one row for each possible
hop count in the mesh. Each row stores n most recently
observed latencies for that hop count for messages sent by
that node. In our experiments, s = 14 (8 × 8 mesh for 64-
cores) and n = 4. We store 8-bit values (255 represents
all latencies ≥255), so the m-cache uses only 64 bytes on
each core. We use three prediction strategies: (1) most recent
latency, (2) average of latest n

2 latencies and (3) average of all
n latencies. All three use the same state (the m-cache), and
they offer a tradeoff between quick adaptation and ability to
filter outliers. Each node picks the best-performing strategy
as Lmesh for its score calculation, and tracks accuracy of
each strategy with a saturating counter that is incremented

by 2 when that strategy’s prediction is the closest to actual
latency and decremented by 1 otherwise. To do this, we add
short timestamps to outgoing packets, compute latency at the
destination node, and piggyback this information to a packet
sent in the opposite direction.

Our ring latency estimator considers l, the contention-
free latency for the packet, and two contention-related factors:
1) probability of finding the ring idle (pidle) and 2) expected
wait time if the ring is not idle (tqueue). The packet’s overall
latency Lring on the ring is estimated as Lring = l+ tqueue×
(1 − pfree). To estimate pidle and tqueue, for the most recent
K packets seen on the ring, each node records 1) the number
of elapsed cycles since the previous packet, i.e. tk = Tk−Tk−1

and 2) the distance (dk) along the ring between the previous
and the current transmitter. The probability of finding the ring
idle is estimated using the history of elapsed time: over the
last K ring accesses the total elapsed time was

∑K
i=1 tk cycles

while the ring was busy for l×K cycles. Therefore, the ring is
expected to be free with a probability of pfree = 1− l×K∑K

i=1
ti

.

To estimate tqueue, we first estimate pcore, the probability
that a core will use the ring if given the opportunity (“live”
token with arbitration bit 1 passes by). Over the last K packets,
the number of cores that were given this opportunity was∑K

i=1 di, but only K of them used the ring. Thus we estimate
pcore = K∑K

i=1
di

. If the ring-distance between the current

transmitter and this node is k, the expected number of packets
that will be transmitted before this node can get the “live”
token is k× pcore, and the expected wait time for a packet on
this node is l × k × pcore. Note that this assumes no packets
are already queued for the ring at this node. If there are w
already-queued packets on this node, the first of those packets
will be transmitted when this node gets the live token, and then
for each subsequent packet the node will have to wait until
every node around the ring gets the opportunity to transmit—
if there are N cores in the ring, each “circle” around the ring is
expected to take l cycles for our own packet (which we know
will be sent) plus l× (N − 1)× pcore cycles for packets from
other N − 1 nodes. The overall waiting time for a packet is
then tqueue = l × k × pcore + w × (l + l × (N − 1) × pcore).

The criticality adjustment Scrit is used to account for
known and/or estimated effects of the packet’s latency on
the actual performance. In principle, one can use instruction-
level criticality estimator that attributes some of the message’s
latency to overall stall time and uses it for future messages
from the same instruction. To simplify hardware, we use a
simple approach that assigns a constant penalty to messages
that are unlikely to be critical. Examples include write-back
messages, speculative replies and their confirmations when
various protocol optimizations are used.

B. Threshold-Based Throughput Control

Note that the overall latency benefit of having the TL ring
can be roughly estimated as the product of the number of ring-
steered messages and the average latency benefit per message.
Without any throughput control, too many packets would be
steered to the ring under high-load conditions. An equilibrium
would eventually be reached at a point where ring contention is
so high that it offsets the latency advantage for most messages.

The result would be that the ring still carries a small fraction
of the traffic while provides very little latency advantage for
that traffic. Thus, our throughput mechanism aims to maintain
a ring utilization level that is low enough to preserve its low
latency, but high enough not to waste the ring throughput. The
“Goldilocks” utilization level depends on the distribution of
mesh latencies in the application, efficiency of arbitration on
the ring and many other factors. However, we found that target
utilizations around 75% tend to work well for our ring—it
keeps queuing delay at a low level, but still utilizes a significant
portion of the available throughput of the ring.

Our approach to controlling utilization of the ring is to
maintain a threshold for scores used in steering decisions.
Instead of steering packets based on whether its expected-
benefit score is positive or negative, we now steer a packet
only when its score exceeds the threshold. To control ring
utilization, we adjust the threshold upward when the ring
is busier than desired, or decrease the threshold if the ring
utilization is too low.

The ring utilization is measured locally at each core using
a TL ring access counter. Each core increments the counter
when a packet is observed. For every T cycles, the counter
is destructively read and ring utilization is calculated as l×n

T ,
where the counter value is n and the TL ring propagation
latency is l. In our implementation, we update utilization
every 512 cycles (T = 512), and increment or decrement the
threshold by 1 if the utilization is above or below a preset
target utilization.

Finally, we note that high ring utilization also creates
significant priority inversion problems—a high-scored message
on one core waits for other cores’ lower-scored messages that
are sent on the ring already. This priority-inversion problem
can get resolved with score-aware arbitration at a cost of more
ring throughput wasted on arbitration. However, when ring
utilization is lower (e.g. below 85%) such priority inversion
is rare, so score-aware arbitration is counter-productive—the
penalty from larger arbitration sequences is higher than the
benefit from eliminating priority inversion.

C. Emergency Re-steering

Our steering mechanism is based on estimated latencies.
If the actual latency of TL-steered packet is higher than
estimated, e.g. due to a sudden burst of ring-steered messages,
it may take a while for our throughput control to compensate.
During that time, ring-steered messages may experience very
long latencies. To avoid this, we implement an emergency re-
steering mechanism, which periodically checks entries in the
local TL packet queue and resteers a packet to the mesh if
it has waited too long. To find such packets without keeping
much state, we use a single bit in each TL packet queue entry.
We set this bit to 0 when the packet is enqueued. Periodically,
we check these bits. If the bit is 0, we set it to 1. If the
bit is already set, we resteer the packet. With this scheme, if
checks are performed every T cycles, the maximum penalty
from ring-steering a packet is limited to 2 × T .

V. IMPLEMENTATION COST

Our transmission-line (TL) ring has two main sources of
cost—the use of metal layers for the coupler-based TL ring,
and the use of silicon area for active components of the design.

Active
Element

Area
(mm2)

Power
(mW) # Used

Total
Area

(mm2)

Total
Power

(W)
Amplifier [38] 0.017 28 16 0.272 0.448
Detector [39] 0.00024 0.84 64 0.015 0.054

Total – – – 0.287 0.502

TABLE I: The cost of main active components used in TL ring for
64-core processor in 22 nm technology.

In terms of metal area, a coupler-based TL should be
implemented in the top two (global) metal layers. However,
its “ground plane” should be in the lowest global metal layer,
and the layers in-between should be clear of metal and cannot
be used for any local circuitry. Hence, the coupler-based TL
uses all global metal layers. However, switches are needed
only at connection points between couplers, and amplifiers
are required at every eighth connection point. This use of
switches and amplifiers at millimeter-scale distances allows our
TL ring to be placed-and-routed without affecting the layout
of circuitry within each core.

The main drawback of using transmission lines is in their
large width—a microstrip coupler implementation occupies a
20 µm-wide area in two metal layers. The coupler consists of
two strips, each only 4 µm wide, but to achieve the desired
amount of coupling, the spacing between the strips has to
be about 10 µm. Furthermore, other wires or transmission
lines cannot go between its “ground plane” conductors without
creating significant crosstalk. This metal use is significantly
larger than traditional global wires that have only a 0.135 µm
pitch in 45 nm technology with proportional scaling in future
technologies. This difference in metal area consumption rein-
forces the argument in favor of combining a fast TL based
ring with the traditional switched interconnects, rather than
trying to replace a traditional high-bandwidth interconnect with
a much more expensive TL-based interconnect.

A conservative estimate of the total metal area necessary
for our TL ring with 64 processors in 22 nm technology
is 31.28 mm2—two coupled lines (transmitter, receiver and
the next coupler) for each coupler, 156.4 mm total length of
the TL ring, 20 µm total width in 10 layers for a total of
156.4 mm×0.020 mm×10. Although this appears expensive,
it should be noted that it represents only 1.22% of the
total metal area for a 16 mm×16 mm chip with 10 metal
layers. Furthermore, the only requirement for “ground plane”
conductor is that it should not carry RF signals, so this wide
conductor can be leveraged for Vdd or Vss distribution.

The main active components are the amplifiers between
transmission line segments and amplitude detector in each
receiver (Table I). For amplifier design, we model a low-
noise amplifier (LNA) that can be implemented in a CMOS
process [38]. In the original 45 nm implementation, this
amplifier occupies 0.017 mm2 of chip area. For the detector,
we model a compact CMOS-based design [39]. In the original
90 nm technology, this detector only occupies 0.00024 mm2 of
chip area, and can be expected to scale well because it entirely
consists of transistors and very small capacitors and inductors.

Finally, we note that the design of transmission lines can
pose some restrictions on the traditional use of metal layers,
and may result in sub-optimal placement of non-TL component
such as mesh links in metal layers. However, such elements

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Fig. 5: Normalized execution time with infinite throughput on-chip
interconnect (single cycle latency).

are less affected by physical location and shape, and can often
be relocated with negligible impact on performance and metal
budget. Finally. our TL-coupler design operates at much higher
frequencies (e.g. 20–60 GHz) and filters out everything below
20 GHz, so traditional signals (which are below 20 GHz) will
not interfere with the TL design and layout.

VI. PERFORMANCE EVALUATION

For performance evaluation, we implement a detailed
model of our TL ring’s message and arbitration timing as
well as its traffic steering in SESC [44], an open-source cycle-
accurate architectural simulator. Our baseline system is a 64-
tile CMP system. A tile contains a 2-issue out-of-order core
at 1 GHz, a 32 KB instruction L1 cache, a 32 KB L1 data
cache, a 1 MB slice of the L2 cache, a directory slice and
a mesh router. The latency of an off-chip memory access is
200 cycle, with memory controllers located in each corner of
the chip. The packet-switched interconnects are modeled in
detail using the cycle accurate Booksim simulator [45], which
we integrated into SESC. Our evaluation is based on 8×8 2D
mesh with 128 bit channel with one cycle delay. We model 8
virtual channels (24 buffers) per router port and packets are
routed using Dimension-Order Routing (DOR).

We evaluate our scheme with parallel applications from
SPLASH-2 [46] and PARSEC 3 [47] benchmark suites. For
SPLASH-2, enlarged input set sizes are used to achieve
execution of at least 1 billion instructions. For PARSEC, we
use sim-medium inputs. We measure the execution time only
in the parallel section as intended by the benchmark designers,
denoted as region of interest.

Not all 20 applications in SPLASH-2 and PARSEC can
benefit from better on-chip interconnects. Figure 5 shows
results with an ideal interconnect that transmits every packet
in a single cycle with no contention, and in half of the
applications this only improves overall performance by <20%.
These applications either suffer from high rates of off-chip
memory access (e.g., fft and radix show 98.7% and 85.0% of
accesses go off-chip), or exploit memory- or instruction-level
parallelism to hide on-chip access latencies. In the remainder
of our evaluation, we focus on applications whose performance
is sensitive to NoC characteristics. We thus use only applica-
tions that have at least a 20% execution time reduction with
ideal interconnect, called latency-critical applications.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

N
or

m
al

iz
ed

 P
ac

ke
t

L
at

en
cy

Cmesh Flat TL
Cmesh Flat TL

Fig. 6: Normalized packet latency to the baseline mesh (left axis)
of concentrated mesh (Cmesh), flattened butterfly (Flat) and TL ring
with execution time (right axis).

A. Impact of Latency Reduction with TL

Signal propagation speed in a our TL ring is much faster
than traditional on-chip wire. As a result, ring-steered packets
on average have 55% lower latency than the packets in the
baseline mesh interconnect despite serial transmission of bits
on a single transmission line and some delays (Figure 6).
Furthermore, TL ring provides lower latency when compared
with advanced interconnects: ring-steered packets show 44.3%
and 43.9% lower latency over concentrated mesh (Cmesh)
and flattened butterfly (Flat), respectively. Note that Cmesh
and Flat provide some latency reduction for all long-distance
packets through a more complex topology, which includes long
links. In contrast, the TL ring provides much lower latency
but only for 13% to 44% of the on-chip messages and 2.0%
to 9.9% of the traffic (bits), depending on the application. The
overall average packet latency for ring+mesh is thus slightly
higher than for Cmesh or Flat.

However, in terms of execution time, our ring+mesh com-
bination outperforms both advanced switched interconnects.
Ring+mesh provides a 12.4% execution time reduction, com-
pared to 11.5% and 8.9% reduction achieved by using Cmesh
and Flat. This is because our steering scheme concentrates the
ring’s large packet latency reduction on packets that benefit the
most. Furthermore, our ring+X approach can be gainfully ap-
plied to advanced switched interconnects, i.e. a ring+Cmesh or
ring+Flat combination provides a performance benefit beyond
that provided by Cmesh or Flat alone (Section VI-D).

B. Latency Estimation and Re-Steering

Our steering is based on latency estimation of mesh and
TL ring. Our estimation of mesh latency has <30% error for
>80% of packets in all applications, except in streamcluster
where “only” 72% of packets have <30% latency estimation
error. For TL latency estimation, we find that 80% of packets
can be estimated within 6 cycles of actual latency, except
in ocean and ocean-nc where “only” about 75% of packets
are estimated within 6 cycles of actual latency. Note that our
steering scheme uses a threshold that specifies the minimum
allowed score (i.e., gap between estimated TL and mesh
latency), so small estimation errors are unlikely to change the
steering decision. Only a small fraction of packets experience
high estimation error and are steered to a sub-optimal network,
with negligible impact on overall performance.

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

RND50-16G RND30-16G TS-16G
TS-32G TS-64G

117% 159%
118%

105%130%
102%

Fig. 7: Normalized execution time of traffic steering (TS) with varying
TL ring bandwidth, random (RND).

Re-steering is also rare—in our experiments, only 0.27% of
packets are re-steered on average. The highest re-steering (in
streamcluster) is only 2.3%. Recall that these packets wait in
the TL queue first, and are then sent to the mesh, so they
suffer a higher latency than they would in the mesh-alone
baseline. This penalty can be controlled by how often we
check ring-enqueued packets for possible re-steering (period
T in Section IV-C). If T is too short, packets that could have
benefited from the ring are send to the mesh after already
suffering a latency penalty while waiting for the ring. If T is
too long, the ring can suffer longer periods of saturation (and
high overall latency) during certain message traffic changes. In
our experiments, the re-steering period does change how many
packets are re-steered, but even with short re-steering periods
(10 cycles) the number of re-steered packets is still relatively
low (1.7% on average) and the impact on execution time is also
marginal (0.3% worse than with the optimal T). Interestingly,
our results show that the optimal re-steering period (24 cycles)
is very close to the average packet latency in the mesh.

C. Effect of Ring Bandwidth and Steering

Figure 7 shows application execution times with a
mesh+ring, normalized to the mesh-only baseline. To evaluate
the effectiveness of our traffic steering scheme (shown as TS),
we also show RND50 and RND30 steering, which randomly
steer packets to the ring with 50% and 30% probability,
respectively. These non-adaptive random steering approaches
provide limited execution time reduction for some applications,
mostly those that have less message traffic (e.g., radiosity).
However, for applications like ocean-nc, where on-chip traffic
can be significant, sending 50% of packets to TL ring causes
too much contention, which results in significant slowdown
(59% execution time increase in ocean-nc), and even 30% of
the traffic proves too much in some applications. On average,
RND30 provides only a 1.7% execution time reduction, and
RND50 results in a 5% execution time increase. In some
lower-traffic applications, RND50 provides better performance
than RND30, because it allows more of the (light) traffic to
benefit from the ring’s low latency. However, even in these
applications, our adaptive steering (TS) shows significantly
better performance—partly because it allows nearly all traffic
to benefit from the TL when traffic is very light, and partly
because it is more judicious in selecting which messages to
ring-steer during higher-traffic periods. Finally, we tried other
simple (non-adaptive) policies, e.g. steering all short packets

0.8

0.9

1

1.1

1.2

1.3

1.4
S
pe
ed
up

Mesh+TL Cmesh+TL Flat+TL
Mesh Cmesh Flat

Fig. 8: Effect of combining a 16GB/s TL ring with a mesh, a
concentrated mesh (Cmesh), and a flattened butterfly (Flat).

0%

20%

40%

60%

80%

100%

0.0

0.2

0.4

0.6

0.8

1.0

M
et

al
 A

re
a

O
ve

rh
ea

d

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Transmission Line Bandwidth

Execution Time Metal Area

Fig. 9: Normalized execution times (averaged for all benchmarks) for
configurations with various TL ring bandwidth.

to the ring. These policies still significantly underperform our
adaptive steering, for similar (lack of adaptation) reasons.

D. Effect of Advanced Switched Networks

In our combined interconnect, the switched interconnect
handles most of the on-chip traffic. While we have used
a mesh as a baseline switched interconnect, our approach
can be applied to any switched interconnect where there is
a significant variation in packet latency depending on the
destination. To confirm this, we evaluate our approach using
a concentrated mesh (Cmesh) and a flattened butterfly (Flat)
as the baseline. The Cmesh we use in our experiments is 4-
concentrated (4 cores per switch) and in Flat, we halved the
link width. These results are shown in Figure 8. Note that the
speedups are based on the baseline mesh result. We find that
our TL ring provides a 8.7% improvement in speedup (1.23×)
over the Cmesh (1.13×), and 5.7% improvement (1.16×) over
Flat (1.10×). These results show that the benefits of adding
our TL ring are not entirely additive with the benefits of
using a more advanced switched interconnect. However, it
should be noted that the flattened butterfly is one of the best-
performing switched networks that is still suitable for on-
chip implementation, so a 5.7% performance improvement
in exchange for 1.2% of the chip’s metal area may be a
good tradeoff that would be difficult to match by further
improvements in switched network topology.

E. Sensitivity to TL Ring Bandwidth

Figure 9 shows average execution time reduction as TL
ring bandwidth increases, e.g. by using more than one such
ring or more sophisticated signaling. We observe diminishing
marginal benefit from each doubling of TL bandwidth, while

the costs increase dramatically: a 16 Gb/s TL provides 12.4%
execution time reduction; 32 Gb/s yields an additional 2.6%
execution time reduction but at 2× the cost, and 64 Gb/s yields
only another 1.5% improvement but doubles the cost again, etc.
This is because our steering chooses those messages that get
the most latency reduction per ring-steered bit, so each addition
to the ring’s bandwidth allows it to also carry “second-best”
packets in addition to the “very-best” ones. This leads to a
decreasing cost-benefit trend, which confirms our initial insight
that a limited-throughput TL interconnect can provide most of
the benefit that would be obtained from a higher-throughput
(but proportionally more expensive) TL interconnect.

F. Non-Latency-Critical Applications

Although our evaluation is focused on latency-critical
applications, our scheme provides some performance improve-
ment (2.9% on average) for non-latency-critical applications,
and does not hurt performance in any applications.

G. Power Benefit

The main sources of power consumption at TL ring
are active components (Table I). Without any power-hungry
switches/routers, the overhead is near constant regardless of
the load on the TL ring (0.5W). Therefore, the overall power
benefit is equal to the reduction in power consumption on
baseline NoC due to the reduced traffic (5.0% on average),
minus the (nearly constant) TL ring power overhead.

VII. CONCLUSION

This paper describes an approach where a low-latency
unswitched interconnect is synergistically used with a high-
throughput switched interconnect in a many-core system. We
designed and introduced a ring of transmission line coupler
structures with low latency and low throughput. We combined
the structures with a low-latency arbitration mechanism that
allows efficient use of this ring by many cores. Then, we create
a new adaptive packet steering policy to judiciously use the
limited throughput available on the low-latency interconnect.
Our experiments show that the ring+mesh combination adds
only 1.3% to the chip area, but provides a 12.4% execution
time reduction for parallel applications on average, compared
to the mesh alone.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants 0903470 and 0964647. Any opinions,
findings, and conclusions or recommendations in this paper are
ours alone, and do not necessarily reflect the views of NSF.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip in-
teconnection networks,” in Proceedings of the 38th Annual Design
Automation Conference, 2001, pp. 684–689.

[2] C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh, “Structured interconnect
architecture: a solution for the non-scalability of bus-based SoCs,” in
Proc. 14th ACM Great Lakes Symposium on VLSI, 2004, pp. 192–195.

[3] R. Lu, A. Cao, and C.-K. Koh, “SAMBA-Bus: A high performance bus
architecture for system-on-chips,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 1, pp. 69–79, 2007.

[4] C. Fallin, X. Yu, G. Nazario, and O. Mutlu, “A high-performance
hierarchical ring on-chip interconnect with low-cost routers,” SAFARI
Technical Report No. 2011-007, Sep. 2011.

[5] International Technology Roadmap for Semiconductors, “ITRS - 2009
edition,” http://www.itrs.net, 2009.

[6] N. Srivastava and K. Banerjee, “Performance analysis of carbon nan-
otube interconnects for VLSI applications,” in Proceedings of Int’l
Conference on Computer Aided Design, Nov. 2005.

[7] P. Wolkotte, G. Smit, N. Kavaldjiev, J. Becker, and J. Becker, “En-
ergy model of Networks-on-Chip and a Bus,” in Proceedings of Int’l
Symposium on System-on-Chip, 2005, pp. 82–85.

[8] M. Galles, “Spider: A high-speed network interconnect,” IEEE Micro,
vol. 17, pp. 34–39, 1997.

[9] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel
routers for on-chip networks,” in Proceedings of the 31st Annual Int’l
Symposium on Computer Architecture, 2004, pp. 188–197.

[10] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proc. 20th Int’l Conference on Supercomputing, 2006,
pp. 187–198.

[11] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-
chip networks,” in Proc. 40th Int’l Symposium on Microarchitecture,
2007, pp. 172–182.

[12] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual
channels: towards the ideal interconnection fabric,” in Proc. 34th Int’l
Symposium on Computer Architecture, 2007, pp. 150–161.

[13] B. Grot, J. Hestness, S. Keckler, and O. Mutlu, “Express cube topologies
for on-chip interconnects,” in Proceedings of the 15th Int’l Symposium
on High Performance Computer Architecture, 2009, pp. 163–174.

[14] R. E. Collins, Field Theory of Guided Waves. McGraw-Hill, 1960.

[15] S. Bourduas and Z. Zilic, “A hybrid ring/mesh interconnect for network-
on-chip using hierarchical rings for global routing,” in Proceedings of
the First Int’l Symposium on Networks-on-Chip, 2007, pp. 195–204.

[16] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das, “Design
and evaluation of a hierarchical on-chip interconnect for next-generation
CMPs,” in Proceedings of the 15th Int’l Symposium on High Perfor-
mance Computer Architecture, 2009, pp. 175–186.

[17] K.-L. Tsai, F. Lai, C.-Y. Pan, D.-S. Xiao, H.-J. Tan, and H.-C. Lee,
“Design of low latency on-chip communication based on hybrid NoC
architecture,” in 8th IEEE Int’l NEWCAS Conference, 2010, pp. 257–
260.

[18] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in Multi-
Core Architectures: Understanding mechanisms, overheads and scal-
ing,” in Proc. 32nd Int’l Symposium on Computer Architecture, 2005,
pp. 408–419.

[19] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Towards
scalable, energy-efficient, bus-based on-chip networks,” in Proc. 16th
Int’l Symposium on High Performance Computer Architecture, 2010,
pp. 1–12.

[20] M. Hayenga and M. Lipasti, “The NoX router,” in Proc. 44th Int’l
Symposium on Microarchitecture, 2011, pp. 36–46.

[21] C. Fallin, C. Craik, and O. Mutlu, “CHIPPER: A low-complexity
bufferless deflection router,” in Proceedings of the 17th Int’l Symposium
on High Performance Computer Architecture, 2011, pp. 144–155.

[22] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner, “Power5 system microarchitecture,” IBM J. Res. Dev., vol. 49,
pp. 505–521, 2005.

[23] C. R. Johns and D. A. Brokenshire, “Introduction to the cell broadband
engine architecture,” IBM J. Res. Dev., vol. 51, no. 5, pp. 503–519,
2007.

[24] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn,
“Corona: System implications of emerging nanophotonic technology,”
in Proc. 35th Int’l Symposium on Computer Architecture, 2008, pp.
153–164.

[25] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and
J. B. Carter, “Interconnect-aware coherence protocols for chip multi-
processors,” in Proc. 33rd Int’l Symposium on Computer Architecture,
2006, pp. 339–351.

[26] J. L. Abellán, J. Fernández, and M. E. Acacio, “Efficient and scalable
barrier synchronization for many-core cmps,” in Proceedings of the 7th
ACM Intl. Conf. on Computing frontiers, 2010, pp. 73–74.

[27] J. Oh, M. Prvulovic, and A. Zajic, “TLSync: support for multiple fast
barriers using on-chip transmission lines,” in Proceeding of the 38th
Annual Int’l Symposium on Computer Architecture, 2011, pp. 105–116.

[28] M.-C. F. Chang, J. Cong, A. Kaplan, C. Liu, M. Naik, J. Premkumar,
G. Reinman, E. Socher, and S.-W. Tam, “Power reduction of CMP
communication networks via RF-interconnects,” in Proceedings of the
41st Annual Int’l Symposium on Microarchitecture, 2008, pp. 376–387.

[29] T. Krishna, A. Kumar, P. Chiang, M. Erez, and L.-S. Peh, “NoC with
near-ideal express virtual channels using global-line communication,”
Symposium on High-Performance Interconnects, pp. 11–20, 2008.

[30] B. M. Beckmann and D. A. Wood, “TLC: Transmission Line Caches,”
in Proceedings of the 36th Annual IEEE/ACM Int’l Symposium on
Microarchitecture, 2003, pp. 43–54.

[31] A. Carpenter, J. Hu, J. Xu, M. Huang, and H. Wu, “A case for
globally shared-medium on-chip interconnect,” in Proceedings of the
38th Annual Int’l Symposium on Computer Architecture, 2011.

[32] M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi, “Phastlane: a rapid
transit optical routing network,” in Proceedings of the 36th Annual Int’l
Symposium on Computer Architecture, 2009, pp. 441–450.

[33] N. Kirman and J. F. Martı́nez, “A power-efficient all-optical on-chip in-
terconnect using wavelength-based oblivious routing,” in Proceedings of
the fifteenth Int’l Conference on Architectural Support for Programming
Languages and Operating Systems, 2010, pp. 15–28.

[34] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
“Firefly: illuminating future network-on-chip with nanophotonics,” in
Proc. 36th Int’l Symposium on Computer Architecture, 2009, pp. 429–
440.

[35] A. Ganguly, K. Chang, S. Deb, P. Pande, B. Belzer, and C. Teuscher,
“Scalable hybrid wireless network-on-chip architectures for multicore
systems,” IEEE Transactions on Computers, vol. 60, no. 10, pp. 1485–
1502, 2011.

[36] E. Yablonovitch, “Can nano-photonic silicon circuits become an intra-
chip interconnect technology?” in Proceedings of the 2007 IEEE/ACM
Int’l Conference on Computer Aided Design, 2007, pp. 309–309.

[37] A. Carpenter, J. Hu, O. Kocabas, M. Huang, and H. Wu, “Enhancing
effective throughput for transmission line-based bus,” in Proc. 39th Int’l
Symposium on Computer Architecture, 2012, pp. 165–176.

[38] J. Borremans, S. Thijs, M. Dehan, A. Mercha, and P. Wambacq,
“Low-cost feedback-enabled LNAs in 45nm CMOS,” in Proceedings
of ESSCIRC, 2009, pp. 100–103.

[39] A. Oncut, B. Badalawa, and M. Fujishima, “60GHz-pulse detector based
on CMOS nonlinear amplifier,” in IEEE Topical Meeting on Silicon
Monolithic Integrated Circuits in RF Systems (SiRF), Jan. 2009.

[40] A. R. Djordjević, V. M. Napijalo, D. I. Olćan, and A. G. Zajić,
“Wideband multilayer directional coupler with tight coupling and high
directivity,” Microwave and Optical Technology Letters, vol. 54, no. 10,
pp. 2261–2267, 2012.

[41] M. Sinha, S. Hsu, A. Alvandpour, W. Burleson, R. Krishnamurthy,
and S. Borkar, “High-performance and low-voltage sense-amplifier
techniques for sub-90nm SRAM,” in Proceedings of the IEEE Int’l
Conference on Systems-on-Chip, 2003, pp. 113–116.

[42] AWR, “Applied Wave Research,” El Segundo, CA, USA, 2010.
[43] M. R. Marty and M. D. Hill, “Coherence ordering for ring-based chip

multiprocessors,” in Proceedings of the 39th Annual IEEE/ACM Int’l
Symposium on Microarchitecture, 2006, pp. 309–320.

[44] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,”
2005, http://sesc.sourceforge.net.

[45] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., 2003.

[46] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,” in
Proc. 22th Int’l Symposium on Computer Architecture, 1995.

[47] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

