
A Practical Methodology for Measuring the Side-Channel
Signal Available to the Attacker for Instruction-Level Events

Robert Callan, Alenka Zajić, and Milos Prvulovic

Georgia Institute of Technology

Abstract—This paper presents a new metric, which we call
Signal Available to Attacker (SAVAT), that measures the side
channel signal created by a specific single-instruction difference
in program execution, i.e. the amount of signal made available
to a potential attacker who wishes to decide whether the
program has executed instruction/event A or instruction/event
B. We also devise a practical methodology for measuring
SAVAT in real systems using only user-level access permissions
and common measurement equipment. Finally, we perform a
case study where we measure electromagnetic (EM) emanations
SAVAT among 11 different instructions for three different
laptop systems. Our findings from these experiments confirm
key intuitive expectations, e.g. that SAVAT between on-chip
instructions and off-chip memory accesses tends to be higher
than between two on-chip instructions. However, we find that
particular instructions, such as integer divide, have much
higher SAVAT than other instructions in the same general
category (integer arithmetic), and that last-level-cache hits and
misses have similar (high) SAVAT. Overall, we confirm that
our new metric and methodology can help discover the most
vulnerable aspects of a processor architecture or a program,
and thus inform decision-making about how to best manage the
overall side channel vulnerability of a processor, a program,
or a system.

I. INTRODUCTION

Side channels are a powerful class of attacks that cir-

cumvent traditional security protections and access controls.

Unlike traditional attacks that exploit vulnerabilities in what

the system does, side channel attacks allow information to

be obtained by observing how the system does it.
An example of a side channel attack is illustrated in

Figure 1. There Alice, an investment banker, makes several

stock trades and writes sensitive emails using an encrypted

connection to her employer’s server. Alice’s back is against

the wall because she does not want others to observe what

she is doing. However, this coffee shop is known to be

frequently visited by investment bankers, so at the next table

Eve is recording electromagnetic (EM) emanations from

Alice’s laptop using an antenna hidden in a briefcase, Evan

has installed a microphone under the table frequented by

Alice to collect sound emanations from her laptop, and Evita

has attached a power meter, disguised as a battery charger,

into the wall socket where Alice’s laptop is plugged in.
Computation requires a large variety of electronic and

microarchitectural activity. Figure 1 only illustrates attacks

that observe power [6], [25], [34], [43], acoustic noise [4],

[12], [51], and EM emanations [2], [32]. Other side channel

attacks may monitor behavior under faults [8], [24], detect

when cache misses occur [5], [61], [63], analyze behavior of

instruction caches and branch predictors [1], etc. In general,

side channel attacks are carried out by 1) identifying some

physical or microarchitectural “signal” that “leaks” desired

information about system activity or the data it processes,

and then 2) monitoring and analyzing that signal as the

system operates. Much work has been done to prevent partic-

ular side channel attacks, either by severing the tie between

sensitive information and the side channel signal, or by

trying to make the signal more difficult to measure. However,

such work mostly focuses on preventing a particular side

channel attack in a very specific piece of code, such as a

cryptographic kernel.

Alice

Eve
EM emanations

Evan
Sound emanations

Evita
Power Fluctuations

Figure 1. Examples of side channel attacks.

Strategies for quantifying potential side channel exposure

at the microarchitectural and architectural levels are still

an open problem. The current state of the art is the recently

proposed Side-Channel Vulnerability Factor (SVF) [15], [16]

which measures how the side channel signal correlates with

high-level execution patterns (e.g. program phase transi-

tions). While this metric allows overall assessment of the

“leakiness” of a particular system and application over a

given side channel, it provides limited insight to 1) computer

architects about which architectural and microarchitectural

features are the strongest leakers, and to 2) software devel-

opers about how to reduce the side channel leakiness of their

code.
This paper is the first step toward such fine-grain under-

Appears in the Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Pages 242-254, December 2014

standing and assessment. Our main contributions are:

1) A new metric, Signal Available to Attacker (SAVAT),

that quantifies the side channel signal caused by dif-

ferences in code execution,

2) A practical methodology for measuring SAVAT on real

machines, and

3) A case study that defines SAVAT for an EM ema-

nations side channel and a small set of instructions.

SAVAT is measured on several different machines and

analyzed to show how these results might be used by

computer architects and software developers.

The basic premise of our work is that information leakage

through side channels occurs when the instructions executed

depend on sensitive information, and this instruction-level

difference creates a side channel signal that is available to

the attacker. Thus the difficulty with which an attacker can

obtain the secret information depends on both 1) program

activity: the information-dependent difference created at the

instruction level, and 2) the side channel signal’s dependence

on these instruction-level differences. Our SAVAT metric

quantifies this second property for a system, allowing 1)

programmers to change their code to avoid creating high-

SAVAT instruction-level differences that depend on secret

information, and 2) computer architects and microarchitects

to focus their side channel mitigation efforts on high-SAVAT

instructions.
We also introduce a new methodology for directly mea-

suring SAVAT for a pair of instructions in a system. The

goal is to measure the side channel signal due to the

differences between two instructions/events (call them A

and B). A naı̈ve approach measures the signals for A and

B separately, then computes the area (total difference over

time) between the signal curves for A and B. Unfortunately,

this naı̈ve approach has a very large measurement error.

First, the single-instruction signal difference is much smaller

than the overall signal generated by the execution that

surrounds the instruction under examination. Computing a

small difference between two large signals is subject to huge

relative error because the measurement error for each signal

is proportional to the signal’s overall value, i.e. the difference

between signals might be dominated by measurement errors

in the two measurements. Second, the computed A−B signal

is affected by imperfect alignment of the two signals in time.

Third, this approach requires recording many samples of the

two signals (to enable accurate subtraction) over a very short

period of time (the duration of a single instruction). Even

the most sophisticated (>$200,000 cost) instruments provide

only 10-20 samples per clock cycle in modern multi-GHz

processors.
To solve this problem, our measurement methodology

creates a pattern of activity in the system that alternates

between the two instructions/events under test and then

measures the periodic signal this alternation creates. The

measured signal is created by a large number of instruction-

pair differences, so it can be measured with much less so-

phisticated instruments. Furthermore, this method measures

the A vs B difference directly (reducing the relative error)

and can be performed at much lower frequencies using

commercially available instruments.
Finally, we perform a case study where we measure the

EM side channel SAVAT for all possible pairings of 11

instructions selected from the x86 instruction set, on three

different laptop systems. We demonstrate our methodology

on EM side channel emanations because such signals are

generally very weak and can be measured non-destructively

using measurement instruments available in our lab. The

results of the case study confirm the intuitive expectations

that 1) off-chip accesses (cache misses that go to main

memory) vs on-chip activity have a high SAVAT and that

2) instructions with similar activity (e.g. ADD and SUB)

have a very low mutual SAVAT. However, we also find

that, for attacks from shorter distances, cache hits in large

caches are also easily distinguished from other operations

- just as easily as off-chip memory accesses are, and that

among arithmetic instructions, execution of an integer divide

instruction is by far the easiest to distinguish.
The results of these measurements can be used by circuit

designers and microarchitects to reduce susceptibility to side

channel attacks by focusing on high-SAVAT aspects of their

designs (e.g. off-chip memory accesses, last-level-cache hits,

and possibly the integer divider in the systems we measured).

Programmers, compilers, and algorithm designers can also

use SAVAT to guide code changes to avoid using “loud”

activity when operating on sensitive data. Although we

only present results for the EM side channel, we believe

that our overall methodology can be used to characterize

the relationship between instruction-difference and signal-

difference in other side channels, especially acoustic and

power-consumption side channels where instruments are

readily available to measure the power of the periodic signals

created by our methodology.
The rest of this paper defines our new metric, Signal

Available to Attacker (SAVAT), and explains the rationale

behind it (Section II), describes our novel measurement

methodology for SAVAT (Section III), describes a mea-

surement setup we used to measure pairwise SAVAT for

11 different instructions/events (Section IV), shows our

measurement results (Section V), summarizes related work

(Section VI), and presents our conclusions (Section VII).

II. A NEW METRIC: SIGNAL AVAILABLE TO ATTACKER

(SAVAT)

A program that uses some data as its input will generate

data-dependent activity in the processor and possibly also

in the off-chip memory and other system components. This

data-dependent activity will create signals in various side

channels. Data-dependent activity in the system cannot be

avoided: even if the program’s control flow does not depend

on the value of the input, and if the circuitry of the

processor is designed such that every operand value results

in the exact same overall number of bit-flips in transistors

and wires, there will be at least some transistors or wires

whose switching activity is input-dependent. This difference

in transistor/wire activity creates a difference in various

physical side channel signals, such as EM emanations, power

consumption, etc. Process variations, physical location of

the circuit, etc. allow side channel signals to be created

even if the circuitry is designed to minimize the operand-

dependent variations in overall activity – these techniques

can dramatically reduce the magnitude of data-dependent

signal variation but cannot completely eliminate them. But

this does not mean that these and other techniques are

ineffective – they force attackers to use more expensive,

bulkier, and less widely available snooping devices, to run

more risk of discovery (e.g. if they get closer to collect

the weak EM emanations), and/or to need more data points

and collect signals longer for the same amount of extracted

information.

Most side channel mitigation techniques are expensive,

especially if applied very broadly. For example, circuit-level

techniques that mask input-dependent variations in overall

activity do so by performing more activity overall: when

actual inputs require little activity, additional unnecessary

activity is performed to match what happens for high-activity

values. This minimizes variations in power consumption,

EM activity, etc. The costs of these techniques are high:

large increases in chip area (for dummy-activity circuitry),

execution times that always match the worst case inputs,

and power consumption that always equals the peak power

consumption.

To allow judicious use of side channel mitigation tech-

niques, we need a metric that quantifies the amount of

side channel signal that is made available to the attacker

when there is a particular variation in processor and system

activity. To define this metric, we must first choose the gran-

ularity for variation in activity. At the coarsest granularity,

we can consider execution of different programs. While such

a coarse-grain metric would provide some ability to compare

different systems in terms of their “leakiness” in a particular

side channel for a particular application, this metric does

not provide much guidance for where to apply mitigation

techniques. The next level of granularity is program phases.

Such a phase-granularity metric would be used similarly to

SVF [15], [16], i.e. it would allow more robust comparisons

of different systems and specific mitigation approaches, but

would not provide specific feedback about where mitigation

might be needed or what type of mitigation might be

appropriate.

At the other extreme, measurement of overall side channel

signals created by transistor- and wire-granularity variation

in activity might allow some low-level layout optimizations.

However, such a metric 1) would be very difficult to measure

on real systems – it would require one to somehow trigger

activity on that specific transistor or wire while creating

little or no activity on all other transistors and wires in the

system under test, and 2) would only be useful to those with

layout-level knowledge of the system’s design, i.e. it would

be largely meaningless to programmers and unsuitable for

most architecture-level studies.
To allow real-system measurements and provide specific

mitigation guidance to programmers and computer archi-

tects, the granularity we use is an instruction-level event. Our

metric, which we call Signal Available to Attacker (SAVAT),

is a measure of the overall signal that is made available

to the attacker through the side channel as a result of a

single-instruction variation: executing a different instruction

because of a control-flow decision, having or not having

a cache miss, etc. The SAVAT is a pairwise metric - it

measures the signal made available to the attacker when

we execute instruction/event A instead of executing instruc-

tion/event B (or vice versa). For example, the ADD/MUL

SAVAT is the overall amount of the side channel signal that

tells the attacker whether we have executed an ADD or

a MUL instruction, the LDM/LDL2 SAVAT is the overall

amount of the side channel signal that tells the attacker

whether we had a L2 hit or an off-chip memory access for

a load instruction, etc. We also define the single-instruction

SAVAT as the maximum of the pairwise SAVATs where both

events in the pair are generated using the same instruction.

For example, the SAVAT for a load instruction is the max-

imum of pairwise LDM/LDM, LDM/LDL2, LDM/LDL1,

etc. SAVATs.

III. A METHODOLOGY FOR MEASURING SAVAT IN

REAL SYSTEMS

To measure the SAVAT for a pair of instructions in a

real system, we must force the system to execute those

two instructions/events in a way that minimizes the activity

variations from all other system activities, and then we

must actually measure the resulting side channel signals. A

naı̈ve approach for measuring an A/B SAVAT is illustrated

in Figure 2: execute a program fragment that performs

instruction/event A and record the side channel signal,

then execute an identical program fragment but now with

instruction/event B instead of A, record the side channel

signal again, then align the two signal curves in time and

compute the area between the two curves.
This approach suffers from several major problems. First,

in many side channels the signal change from a single

instruction/event is extremely weak relative to the overall

signal – for EM emanations used in our case, the sig-

nal energy produced by a single-instruction/event is well

below the detection threshold of a high-end measurement

instrument. Second, the difference between signals is usually

much smaller than the magnitude of these signals, and the

measurement error is often relative to the magnitude of the

Signal A
Signal B

Measurement
Sampling

1ns

Figure 2. A naı̈ve approach for measuring SAVAT.

measured signal. This means that the relative error in the

computed difference can be very large. For signals shown

in Figure 2, for example, random measurement error that

averages 0.5% of the signal’s range will make the two overall

curves have a total difference that is >5 times as large as

the actual difference (area between the magnified sections

of these curves) we are trying to measure. In addition, as

illustrated in Figure 2, the execution of instructions/events

of interest takes very little time - e.g. the ADD/SUB SAVAT

is based on comparing signals that each last only a fraction

of a nanosecond, and accurate assessment of their difference

requires many samples (at least 10, preferably more) to be

collected during that time. This requires instruments with

an extremely high real-time sampling rate. Unfortunately,

real-time instruments (oscilloscopes or A/D converters) that

can digitize signals at rates >50Gsamples/s cost hundreds

of thousands of dollars. The few samples that are collected

during the “interesting” time period provide a very coarse

representation of the signals, and additional error may be

produced if the samples in the two measurements are not

aligned with each other (as shown in the magnified part of

Figure 2). Even when the start of the A and B instructions

are aligned, if the A instruction takes longer to complete than

the B instruction, a portion of A’s execution is compared

to unrelated processor activity in the signal containing B.

Furthermore, signals are attenuated as they propagate from

the source in the processor to the attacker some distance

away, and this attenuation is far greater at high frequencies,

further complicating the measurement.
To overcome these problems, our measurement method-

ology proposes directly analyzing the signal created by the

execution of code containing both A and B instructions.

This code is carefully constructed so that any signal due to

differences between the A and B instructions is localized in

frequency (Figure 3b), whereas the naı̈ve approach attempts

to localize this difference in time in separate A and B signals

(Figure 2). The new A and B combined signal is constructed

by having the computer system alternate between the two

instructions/events (A and B) many times per second as

shown in Figure 3b. This alternation generates a periodic

signal at the alternation frequency that corresponds to the

overall difference between the individual signals. This peri-

odic signal can then be filtered to reject other frequencies

including the noise and “uninteresting” signals they carry,

and the filtered signal’s magnitude can then be measured.

For EM emanations, power, sound, etc., this filtering and

measurement can be done very precisely using a spectrum

analyzer. The spectrum obtained in this way measures the

difference in signal strength between A and B instruction-

s/events over a unit time (e.g. a second), and overcomes

all of the problems with the naı̈ve measurement because 1)

the measured A/B difference signal accumulates over many

A/B differences over this one second, effectively amplifying

the signal and suppressing noise (the instrument only needs

to be sensitive enough to measure the one-second total;

we can still compute the single-instruction/event SAVAT

by dividing the measured signal by the number of A/B

instances that occur each second), 2) the difference between

A and B side channel signals is directly measured, without

the relative-error problem present when measuring A and

B signals separately, and 3) the signal is measured at the

alternation frequency, which can be adjusted in software by

changing the number of A and B events per iteration of the

alternation loop, so we can easily bring that frequency within

the measurement range of commercially available instru-

ments. We also have the freedom to select a frequency with

relatively little noise - an important consideration for EM

emanation side channels where direct collection of A and B

side channel signals is subject not only to measurement error

but also to noise from various radio signals. Also, while the

A/B difference signal occurs at the greatly attenuated high

frequencies in the naı̈ve measurement, the A/B difference

signal occurs at a single, known, better propagating lower

frequency in this new methodology.

This methodology targets an attack model where sensitive

information creates differences in execution, which in turn

cause different signals in a side channel. Many attacks fit

this model. For example, modular exponentiation in RSA

is typically implemented in a way that results in testing the

bits of the secret exponents one at time, and multiplying two

large numbers (e.g. 2048 bits) whenever such a bit is 1. This

entire multiplication can thus be viewed as the difference

in execution caused by sensitive information (a bit of the

exponent). This example also shows that, although the signal

leaked by a single-instruction difference can be small, a prac-

tical attack may accumulate many of these single-instruction

differences – an entire large-numbers multiplication in this

example. How many single-instruction differences need to

Inst A

B

Measure this
Periodic Signal

Inst B

(a) Naïve Methodology (b) Our Methodology

BA A

Other Activity

Figure 3. Our methodology measures the (a) signal difference by (b) alternating the signals then filtering and measuring the resulting periodic signal at
the alternation frequency.

be accumulated to mount a successful attack depends on the

SAVAT values between these instructions – huge SAVAT

values enable attacks even when sensitive data creates a

seemingly small difference in execution, e.g. the attacker

may need fewer such “loud” instructions.

Single instruction differences in execution may be ac-

cumulated in two ways: 1) repetition: the same single-

instruction difference may be re-created many times, and

the attacker can use the overall difference that is created,

and 2) combination: entire sequences of different instruc-

tions can be executed. Our measurement methodology ex-

ploits repetition to obtain signals that can be more reliably

measured, then divides the large measured signal by the

number of repetitions to determine the contribution of a

single instance. Combination is not directly addressed in this

paper – while we believe that the sum of single-instruction

differences can act as a good estimate for the combined

signal, this estimate is imprecise because instructions can

be reordered and their execution may overlap. A more

accurate SAVAT measurement of signal differences created

by executing different sequences of instructions can be

performed by using those entire sequences as A/B activity

in the measurement. However, this approach does not scale

well to longer sequences: pairwise SAVAT measurement for

N individual instructions requires O(N2) measurements,

pairwise measurement among all possible two-instruction

sequences constructed from these N instructions requires

O(N4) measurements, etc. Ways of addressing this com-

binatorial explosion problem are a priority for our future

research. One approach is to cluster instruction opcodes

using SAVAT as the distance metric, then explore sequences

using instruction class representatives. Another approach

would be to derive a good model of the interaction among in-

structions in a sequence, i.e. to capture effects of reordering,

dependences, etc., and then compute overall SAVAT values

for instruction sequences by using the interaction model to

combine measured single-instruction SAVAT values. Such

models are beyond the scope of this paper, but they are an

important aspect for our future work.

1 while(1){
2 // Do some instances of the A inst/event
3 for(i=0;i<inst_loop_count;i++){
4 ptr1=(ptr1&˜mask1)|((ptr1+offset)&mask1);
5 // The A-instruction, e.g. a load
6 value=*ptr1;
7 }
8 // Do some instances of the B inst/event
9 for(i=0;i<inst_loop_count;i++){

10 ptr2=(ptr2&˜mask2)|((ptr2+offset)&mask2);
11 // The B-instruction, e.g. a store
12 *ptr2=value;
13 }
14 }

Figure 4. The A/B alternation pseudo-code.

The overall structure of the code used in our new

measurement methodology is shown in Figure 4. Lines 2

through 7 execute inst_loop_count instances of the

A instruction/event, and then lines 8 through 13 execute

the same number of instances of the B instruction. Thus

lines 2 through 13 represent one A/B alternation, and

this alternation is repeated (line 1) until the measurement

of the side channel signal is complete. The value of

inst_loop_count allows us to control the number of

alternations per second, and we select a value that produces

the desired alternation frequency for our measurements.
To generate different cache behavior in load and store

instructions, our code (in lines 4 and 10) updates the address

of the accessed location so the memory access repeatedly

sweeps over an array of appropriate size (fits in L1 cache,

does not fit in L1 but fits in L2 cache, or does not fit

in L2) to create the desired cache hit/miss behavior. Note

that ptr1, ptr2, and offset must be chosen so that

the A and B instructions access separate groups of cache

blocks to create the desired cache behavior (e.g. every A

instruction is a L1 cache hit and every B instruction is a

L2 cache hit). Aside from the test instructions (line 6 for A

and line 12 for B), the executed code should be identical

for all instructions/events, so this pointer-update code is

present even when the A and/or B instruction is a non-

memory instruction (e.g. ADD). Our actual code is written

in x86 assembler to minimize the amount of non-under-

test activity and prevent compiler optimizations that might

make the non-under-test code differ for different under-

test instructions (e.g. different instruction scheduling by the

compiler, dead code elimination of memory address updates

for non-memory instructions, etc.).
In developing this measurement methodology, we made

two important simplifying assumptions about execution of

the test code in a modern system. First, we assume that

the observed signal is due to the differences between test

instructions A and B (lines 6 and 12) and not due to

differences in how the processor executes surrounding code

(which contains identical instructions for both A and B

activity). In Section V we present results that support

this assumption to a large degree - the signals created by

alternation of the same activity (A/A instead of A/B) are

very weak compared to the largest A/B SAVAT values we

observe. The second assumption is that the signal created by

the alternation will be in a narrow frequency band around

the alternation frequency, which allows this signal to “stick

out” above the measurement and environment noise. Our

measurements confirm that this assumption does hold – one

of the most frequency-dispersed signals we observe is shown

in Figure 7, and it is still contained in a narrow frequency

range.

IV. EXPERIMENTAL SETUP FOR EM SIDE CHANNEL

MEASUREMENTS

Instruction Description

LDM mov eax,[esi] Load from main memory
STM mov [esi],0xFFFFFFFF Store to main memory
LDL2 mov eax,[esi] Load from L2 cache
STL2 mov [esi],0xFFFFFFFF Store to L2 cache
LDL1 mov eax,[esi] Load from L1 cache
STL1 mov [esi],0xFFFFFFFF Store to L1 cache
ADD add eax,173 Add imm to reg
SUB sub eax,173 Sub imm from reg
MUL imul eax,173 Integer multiplication
DIV idiv eax Integer division
NOI No instruction

Figure 5. x86 instructions for our A/B SAVAT measurements.

In this case study we constructed the A/B alternation code

as described in Section III for each pairwise combination of

the eleven instructions listed in Figure 5. These include loads

and stores serviced by different levels of the cache hierarchy,

simple (ADD and SUB) and more complex (MUL and DIV)

integer arithmetic, and the ”No instruction” case where the

appropriate line in our alternation code (Line 6 or 12 in

Figure 4) is simply left empty.

Processor L1 Data Cache L2 Cache

Intel Core 2 Duo 32 KB, 8 way 4096 KB, 16 way
Intel Pentium 3 M 16 KB, 4 way 512 KB, 8 way
AMD Turion X2 64 KB, 2 way 1024 KB, 16 way

Figure 6. Laptop systems measured in our case study.

This code is run as a single-threaded 32-bit user mode

console application on three different laptop systems shown

in Figure 6. At the time of testing, no other applications

were active and wireless devices were disabled to minimize

interference with measured signals. Aside from this, the

system was operating normally, meaning that any EM signals

resulting from system processes and other OS activity would

affect the received signal. The resulting periodic EM signal

was measured using a magnetic loop antenna (AOR LA400)

connected to a spectrum analyzer (Agilent MXA N9020A).

A recent paper illustrates a practical EM attack on imple-

mentations of the RSA and ElGamal algorithms using simi-

lar measurement instruments and computer systems [22]. In

our study several measurements were taken to observe the

variation between systems and reception distances. All three

systems were measured with an A/B alternation frequency of

80 kHz and a measurement distance of 10 cm. Additional

measurements were performed on the Core 2 Duo laptop

with the 80 kHz alternation frequency at laptop-to-antenna

distances of 50 cm and 100 cm.
The spectrum around the alternation frequency was re-

corded with a resolution bandwidth of 1Hz, which results in

a very low measurement noise floor because the measured

signal is affected only by noise from a 1Hz-wide spectral

band. The actual recorded spectrum for an ADD/LDM (add

instruction and off-chip load instruction) measurement is

shown in Figure 7.

1.E-18

1.E-17

1.E-16

1.E-15

78

78
.5 79

79
.5 80

80
.5 81

81
.5 82

Sp
ec

tr
al

 P
ow

er
 D

en
si

ty
 [W

/H
z]

Frequency [kHz]

Band

Freq. Shift

Freq. Dispersion

Figure 7. Recorded spectrum for 80 kHz ADD/LDM alternation.

Because the alternation frequency in the running code can-

not be controlled perfectly, the actual measured signal is not

perfectly concentrated at the intended alternation frequency,

which was 80 kHz for Figure 7. The actual alternation

frequency can be slightly different – in Figure 7 it is shifted

lower by about 400 Hz, and it can vary during the mea-

surement so it is dispersed around the central frequency (as

indicated in Figure 7). Thus the measured value we use is the

total received signal power in the frequency band from 1 kHz
below to 1 kHz above the alternation frequency (illustrated

near the bottom of Figure 7). In each A/B measurement,

the same number of A and B instructions is executed per

second, so we divide this total signal power by the number

of executed A/B pairs. Because power (energy/second) is

divided by the instruction-pairs/second, the resulting SAVAT

quantity is actually the signal energy available to the attacker

to discern whether a single A or a single B instruction was

executed. Finally, each measurement campaign to gather the

11-by-11 pairwise A/B SAVAT was repeated 10 times over

a period of multiple days to assess how the measurement

is affected by changes in radio signal interference, room

temperature, errors in positioning the antenna, etc.

1.E 18

1.E 17

1.E 16

1.E 15

78

78
.5 79

79
.5 80

80
.5 81

81
.5 82

Sp
ec

tr
al

Po
w

er
De

ns
ity

[W
/H

z]

Frequency [kHz]

Band

Weak External
Radio Signal Actual ADD/ADD

Periodic Signal

Figure 8. Recorded spectrum for 80 kHz ADD/ADD alternation.

Our measurements include all 11 cases where A and B

are the exact same instruction/event, where the resulting

A/A alternation should result in no signal at the alternation

frequency. An actual measured spectrum for ADD/ADD is

shown in Figure 8. We see that some signal does exist

in the band around the intended alternation frequency: the

instrument’s sensitivity floor (which is around 6 × 10−18

W/Hz in Figure 8), external radio signals, and a weak signal

created by imperfect matching of A/B not-under-test activity.

Therefore, these same-instruction alternation measurements

give us a very good estimate of the experimental measure-

ment error, and can help identify possible problems such as

strong radio interference or mistakes in the A/B alternation

code. When A and B instructions/events are not the same,

we measure both the A/B alternation and the B/A alternation

- these should be the same, so their difference allows us to

assess the measurement error caused by placing identical

instructions at different program addresses, i.e. the effect of

fetch-related variations such as instruction cache alignment.

V. EXPERIMENTAL RESULTS FOR EM SIDE CHANNEL

MEASUREMENTS

A. Measurements at 10 cm Distance

Each measurement campaign results in a 11-by-11 matrix

of pairwise A/B SAVAT values for a particular system,

alternation frequency, and antenna distance. The matrix for

the Core 2 Duo laptop with the 10 cm distance and 80 kHz
intended alternation frequency is shown in Figure 9. Note

that these values are extremely small - they are in zepto-

joules (1zJ = 10−21J)! This indicates that one occurrence of a

single-instruction difference would probably not be sufficient

for the attacker to decide which of the two instructions

was executed – many repetitions of the same instruction,

or many instructions worth of difference will be needed.

Unfortunately, repetition is common for some kinds of

sensitive data, e.g. a cryptographic key can be reused many

times while encrypting a long stream of data.

LDM STM LDL2 STL2 LDL1 STL1 NOI ADD SUB MUL DIV
LDM 1.8 2.4 7.9 11.5 4.6 4.4 4.3 4.2 4.4 4.2 5.1
STM 2.3 2.4 8.8 11.8 4.3 4.2 3.8 3.9 3.9 4.3 4.2
LDL2 7.7 7.7 0.6 0.8 3.9 3.5 4.3 3.6 4.8 3.8 6.2
STL2 11.5 10.6 0.8 0.7 5.1 6.1 6.1 6.1 6.1 6.2 10.1
LDL1 4.4 4.2 3.3 5.8 0.7 0.6 0.7 0.7 0.7 0.7 1.3
STL1 4.5 4.2 3.8 4.9 0.7 0.6 0.7 0.6 0.6 0.6 1.2
NOI 4.1 3.8 4.1 6.4 0.7 0.7 0.6 0.6 0.7 0.6 1.0
ADD 4.2 4.1 4.1 7.0 0.7 0.7 0.6 0.7 0.6 0.6 1.0
SUB 4.4 4.0 3.8 7.3 0.7 0.6 0.7 0.6 0.6 0.6 1.1
MUL 4.4 3.9 3.7 5.7 0.7 0.7 0.6 0.6 0.6 0.6 1.1
DIV 5.0 4.6 6.9 9.3 1.3 1.2 1.0 1.1 1.1 1.1 0.8

Figure 9. SAVAT values (in zJ) for the Core 2 Duo laptop at the 10 cm
distance and at the 80 kHz intended alternation frequency.

Figure 9 shows large variations in SAVAT among these

instruction pairs – this means that some instruction pairs are

much easier for attackers to disambiguate than others. Each

entry in this table is the mean for a set of 10 measurements

where the A instruction is given by the row and the B

instruction is given by the column. This table can also be

used to confirm some assumptions about our measurement

methodology. First, each of the diagonal entries in the table

(the A/A pairs) is the smallest value in its respective row and

column (with one exception for STM/LDM). This validates

the assumption that the largest (i.e. most interesting/danger-

ous) measured SAVAT values are predominantly a result of

actual differences among instructions under consideration,

and not of the surrounding code that should be the same for

all instructions under test.
Each SAVAT value in Figure 9 is an average of ten

separate measurements. To investigate how repeatable our

measurements are, we compute the standard deviation for

each such set of ten measurements. We found that the

standard-deviation-to-mean ratio is 0.05 on average, i.e.

individual measurements vary about 5% around the ten-

measurement mean. This implies that our measurements

are repeatable, and indicates that the signal created by the

alternation loop (discussed in the previous paragraph) is the

dominant source of error in the measured SAVAT values.
Figure 10 visualizes the mean values of Figure 9 as shades

of gray, where white corresponds to the smallest and black

to the largest SAVAT values, and Figure 11 shows SAVAT

values for selected instruction pairings as a traditional bar

chart.

LDM STM LDL2 STL2 LDL1 STL1 NOI ADD SUB MUL DIV
LDM 1.8 2.4 7.9 11.5 4.6 4.4 4.3 4.2 4.4 4.2 5.1

STM 2.3 2.4 8.8 11.8 4.3 4.2 3.8 3.9 3.9 4.3 4.2

LDL2 7.7 7.7 0.6 0.8 3.9 3.5 4.3 3.6 4.8 3.8 6.2

STL2 11.5 10.6 0.8 0.7 5.1 6.1 6.1 6.1 6.1 6.2 10.1

LDL1 4.4 4.2 3.3 5.8 0.7 0.6 0.7 0.7 0.7 0.7 1.3

STL1 4.5 4.2 3.8 4.9 0.7 0.6 0.7 0.6 0.6 0.6 1.2

NOI 4.1 3.8 4.1 6.4 0.7 0.7 0.6 0.6 0.7 0.6 1.0

ADD 4.2 4.1 4.1 7.0 0.7 0.7 0.6 0.7 0.6 0.6 1.0

SUB 4.4 4.0 3.8 7.3 0.7 0.6 0.7 0.6 0.6 0.6 1.1

MUL 4.4 3.9 3.7 5.7 0.7 0.7 0.6 0.6 0.6 0.6 1.1

DIV 5.0 4.6 6.9 9.3 1.3 1.2 1.0 1.1 1.1 1.1 0.8

Figure 10. Visualization of SAVAT values from Figure 9.

0

2

4

6

8

10

12

ADD/ADD

ADD/M
U

L

ADD/LDL1

ADD/DIV

ADD/LDL2

ADD/LDM

LDL1/LDL2

LDL2/LDM

STL1/STL2

STL2/STM

STL2/DIV

AS
SI

LE
 [z

J]

Figure 11. SAVAT for selected instruction pairings from Figure 9.

We observe four groups of instructions/events that have

low intra-group and high inter-group SAVATs: The off-chip
access group (LDM and STM), the L2 hit group (LDL2 and

STL2), an Arithmetic/L1 group that includes ADD, SUB,
MUL, NOI, and also LDL1 and STL1, and a group that only
contains the DIV instruction. We can see that the SAVAT

between instructions in the Arithmetic/L1 group is similar to

the same-instruction measurement (e.g. ADD/ADD), i.e. it is

very difficult for attackers to distinguish between instructions

in this group. Although their functionality is quite different,

L1 cache accesses are also very difficult to distinguish from

ADD/SUB/MUL arithmetic instructions. As expected, L2

accesses and main-memory accesses are much easier to

distinguish from other instructions. Note that an L2 store

hit is noticeably easier to distinguish from other instructions

than it is an L2 load hit. This might be caused by the fact

that we cannot create a sustained string of L1 write misses

without also creating dirty replacements from L1 to L2, i.e.

each STL2 instruction creates two L2 accesses - one to fetch

the block from the L2 cache into L1, and later another that

writes back the dirty block from L1 to L2. So the higher

SAVAT values for STL2 might be attributable to write-back

activity caused by these instructions. If that is true, however,

it is surprising that STM does not have higher SAVAT values

than LDM, even though it includes write-back activity that

LDM does not have.

Also surprisingly, the DIV instruction has noticeably

higher SAVAT values than ADD, SUB, and MUL. It is

also surprising that off-chip memory accesses and L2 hits

have similar SAVAT, i.e. the task of distinguishing between

LDM and ADD using EM emanations is similar in difficulty

to the task of distinguishing between LDL2 and ADD.

This is contrary to the intuitive expectation that off-chip

accesses should create stronger emanations because they

toggle long off-chip wires that can act as better transmission

antennae for EM emanations. Interestingly, however, off-

chip memory accesses do have an even higher SAVAT

when paired with L2 hits than when paired with other

instructions. One possible explanation for this is that e.g.

LDM creates an EM fields that allows it to be distinguished

from e.g. an ADD, and that LDL2 creates an EM field that

is similarly distinguishable from an ADD, but the fields for

LDM and LDL2 are different from each other and very easy

to distinguish.

For computer architects who desire to reduce the potential

for EM side channel attacks on their processors, these results

indicate that the path of least resistance for the attackers is

in code that uses off-chip accesses, L2 cache accesses, and

possibly DIV instructions in ways that depend on sensitive

data, so the architects’ focus should be on making execution

of these instructions less EM-noisy, e.g. through limited use

of compensating-activity techniques. For programmers, these

results confirm what programmers should already know from

work on other side channels - in code that processes sensitive

data, special care should be taken to avoid situations where

a memory access instruction might have an L2 hit or miss

depending on the value of some sensitive data item. Code

that does not have data-dependent variation in cache hit/miss

behavior is considerably less vulnerable to EM side channel

attacks, and the most worrisome situation in that code would

be one where a DIV instruction is executed or not depending

on sensitive data, e.g. when a control flow decision based

on sensitive data selects between a path that includes a DIV

instruction and another that does not.

Figures 12 and 13 show the results of a similar mea-

surement (10 cm, 80 kHz) for the Pentium 3 M laptop,

which is several processor generations older than the Core

2 Duo laptop. Some of the trends in these figures are

similar - the ADD/SUB/MUL instructions are very difficult

to distinguish from each other, the SAVAT for pairings

of L2 accesses and arithmetic instructions is higher (and

similar to what we saw for the Core 2 Duo laptop), and

the DIV instruction has higher SAVAT than other arithmetic

instructions. However, in this laptop the DIV instruction is

much easier to distinguish from other arithmetic instructions

- the ADD/DIV SAVAT is an order of magnitude higher

LDM STM LDL2 STL2 LDL1 STL1 NOI ADD SUB MUL DIV
LDM 2.9 29.2 42.6 51.8 27.6 28.6 21.3 25.5 26.3 25.8 13.8

STM 23.5 8.8 16.6 19.9 11.8 11.4 8.3 11.9 12.3 12.0 5.6

LDL2 44.0 15.4 0.8 1.2 2.9 2.6 4.4 4.0 3.7 4.8 21.7

STL2 50.5 16.9 1.2 0.8 4.6 4.6 6.9 6.6 6.4 7.3 28.3

LDL1 30.2 11.0 2.2 4.4 0.8 0.8 1.1 1.0 1.0 1.3 11.8

STL1 29.7 9.9 2.5 4.3 0.8 0.8 1.2 1.1 1.0 1.2 11.6

NOI 28.7 12.3 2.7 4.9 0.8 0.8 0.9 0.8 0.8 0.9 10.4

ADD 26.5 11.3 3.4 6.4 0.9 1.0 0.8 0.9 0.8 0.9 10.0

SUB 27.5 11.5 3.2 5.8 0.9 0.9 0.8 0.9 0.9 0.9 10.2

MUL 27.7 11.5 3.5 6.5 1.0 1.0 0.8 0.9 0.9 0.9 9.6

DIV 14.4 5.2 22.3 27.8 11.8 11.9 7.8 12.4 13.0 10.4 1.9

Figure 12. Visualization of SAVAT for the Pentium 3 M laptop.

0
5

10
15
20
25
30
35
40
45
50

ADD/ADD

ADD/M
U

L

ADD/LDL1

ADD/DIV

ADD/LDL2

ADD/LDM

LDL1/LDL2

LDL2/LDM

STL1/STL2

STL2/STM

STL2/DIV

AS
SI

LE
 [z

J]

Figure 13. SAVAT for selected instruction pairings for the Pentium 3 M
laptop.

than the ADD/MUL SAVAT. Similarly, off-chip accesses

here have much higher SAVAT values than do L2 accesses,

and LDM has higher SAVAT values than STM. Overall,

it seems that the high-SAVAT problem of DIV and off-

chip load/store instructions in the Pentium 3M processor

was reduced when designing Core 2 (released 7 years after

the Pentium 3 M). It is possible that the reason for this

improvement was not a deliberate effort to alleviate EM side

channel vulnerabilities – reduction in EM leakage might be

a side effect of a reduction in operating voltages, shorter

wire lengths in the technology-shrunk divider, and signaling

optimizations that save power by reducing wire toggling at

the processor-memory interface.
Finally, Figures 14 and 15 show the results of a similar

measurement (10 cm, 80 kHz) for the Turion X2 laptop,

whose processor was released in the same year as Core 2

Duo. We observe very similar results here as we did for

the Pentium 3 M, except that the DIV instruction here has

an even higher SAVAT values - they rival those of off-chip

memory accesses.
Overall, we observe both similarities and differences

among different systems, so SAVAT results can be useful

to both 1) architects who wish to identify (and alleviate)

the aspects of their processor and system that are the most

susceptible to EM side channel vulnerabilities, especially

those that are endemic to that processor, and 2) software

developers who need to know which variations in program

behavior are the most likely to allow successful side channel

attacks, especially for behaviors that are consistently vul-

LDM STM LDL2 STL2 LDL1 STL1 NOI ADD SUB MUL DIV
LDM 5.6 6.5 23.4 19.7 9.5 7.1 15.1 12.0 13.1 9.0 4.6

STM 24.0 4.6 7.7 7.0 3.4 2.8 3.0 2.9 2.8 3.7 33.9

LDL2 45.3 8.7 1.2 9.9 8.9 9.0 6.8 10.5 7.6 9.9 56.1

STL2 25.4 7.8 2.5 4.3 7.4 8.4 3.2 5.7 5.0 6.4 46.0

LDL1 18.1 3.8 5.1 4.3 0.9 0.9 0.9 1.1 0.9 1.0 17.1

STL1 15.0 3.8 7.8 5.0 0.9 0.9 0.9 1.1 1.0 1.1 19.6

NOI 20.3 3.4 6.3 3.5 1.0 1.0 1.1 1.5 1.3 1.2 17.0

ADD 14.3 3.5 6.9 3.4 0.9 1.0 0.9 0.9 0.9 0.9 13.4

SUB 12.3 3.5 4.2 2.8 0.9 0.9 0.9 0.9 0.9 0.9 17.0

MUL 11.3 3.7 5.6 2.1 0.9 0.9 0.9 0.9 0.9 0.9 13.6

DIV 5.1 32.2 52.6 42.7 17.7 17.1 17.1 16.1 15.9 17.6 4.3

Figure 14. Visualization of SAVAT for the Turion X2 laptop.

0
5

10
15
20
25
30
35
40
45
50

ADD/ADD

ADD/M
U

L

ADD/LDL1

ADD/DIV

ADD/LDL2

ADD/LDM

LDL1/LDL2

LDL2/LDM

STL1/STL2

STL2/STM

STL2/DIV

AS
SI

LE
 [z

J]

Figure 15. SAVAT for selected instruction pairings for the Turion X2
laptop.

nerable across several generations of processors and among

several processor manufacturers.

B. Measurements at 50 cm and 100 cm Distances
The EM side channel has an interesting parameter that

other channels do not - the distance from which the attack

is attempted. Thus we performed additional measurements

using the Core 2 Duo laptop, with the antenna at distances

of 50 cm and 100 cm from the laptop.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

ADD/ADD

ADD/M
U

L

ADD/LDL1

ADD/DIV

ADD/LDL2

ADD/LDM

LDL1/LDL2

LDL2/LDM

STL1/STL2

STL2/STM

STL2/DIV

AS
SI

LE
 [z

J]

50 cm 100 cm

Figure 16. SAVAT measured at 50 cm and 100 cm for the Core 2 Duo
laptop.

Figure 16 shows the measured SAVAT values for selected

instruction pairings at these distances. As expected, we

observe significantly lower SAVAT values for these larger

distances but, interestingly, the SAVAT values do not drop

much when changing the distance from 50 cm to 100 cm.

Another interesting aspect of these measurements is that at

these larger distances pairings that include off-chip activity

have higher SAVAT values than pairings of on-chip events;

although pairings of DIV with other instructions do have

slightly higher SAVAT than do pairings that include ADD,

SUB, or MUL, this difference is now very small.

LDM STM LDL2 STL2 LDL1 STL1 NOI ADD SUB MUL DIV
LDM 1.7 1.9 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.3

STM 2.0 2.2 1.5 1.6 1.4 1.4 1.4 1.4 1.4 1.4 1.5

LDL2 1.2 1.5 0.6 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.8

STL2 1.3 1.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.9

LDL1 1.2 1.4 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7

STL1 1.2 1.4 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7

NOI 1.2 1.4 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7

ADD 1.2 1.4 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7

SUB 1.2 1.4 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7

MUL 1.2 1.4 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7

DIV 1.3 1.5 0.8 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.8

Figure 17. Visualization of SAVAT results at 50 cm.

LDM STM LDL2 STL2 LDL1 STL1 NOI ADD SUB MUL DIV
LDM 1.7 1.9 1.2 1.2 1.2 1.1 1.1 1.1 1.2 1.1 1.3

STM 2.0 2.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5

LDL2 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

STL2 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

LDL1 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

STL1 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

NOI 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

ADD 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

SUB 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

MUL 1.2 1.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

DIV 1.3 1.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8

Figure 18. Visualization of SAVAT results at 100 cm.

Figures 17 and 18 show a visualization of SAVAT values

measured from distances of 50 cm and 100 cm, respectively.

We observe that off-chip memory accesses are now (by far)

the most attacker-distinguishable type of instruction/event

- although the SAVAT of both LDM and STM when al-

ternated with other instructions is significantly lower than

at 10 cm distance, the SAVAT values for LDL2 and STL2

have dropped a lot more with this distance change. This

indicates that vulnerability to EM side channel attacks must

be assessed at distances similar to those that might be used

by attackers. If only long-range (e.g. from a neighboring

desk in an office) attacks are realistic but we use a very

short measurement distance, we might be alleviating EM

signals that attenuate quickly with distance, such as near-

field signals, that are quickly attenuated with distance and

are not such a significant threat for long-range attacks. On

the other hand, if short-distance attacks are possible, e.g. if

the attacker attaches the receiver to the underside of our desk

surface, use of only long-range measurements might lead us

to ignore some potential short-distance vulnerabilities.
We note that the need to select an appropriate measure-

ment distance, or to measure at several different distances,

does not detract from the usefulness of our SAVAT metric

or from our repeated-alternation measurement methodology:

any metric and any measurement approach can be misused

by measuring under one set of conditions and applying the

results under very different conditions.

VI. RELATED WORK

Side channel analysis has emerged as a powerful tool for

data theft, especially in the context of breaking commercial

cryptography implementations. Such analysis exploits the

fact that cryptography implementations on physical devices

transfer much more information than just the desired input-

output information [33], [34]. In cryptography, a side chan-

nel attack is defined as any attack that uses information

gained or leaked from the physical implementation of a

system, and this definition has been used for other data

theft contexts as well. Side channel attacks can be classi-

fied as timing attacks, power monitoring attacks, electro-

magnetic attacks, acoustic attacks, differential fault attacks,

bus-snooping attacks, cache-based attacks, etc. Timing and

power attacks are based on measuring the time and power

that system needs to perform particular operations (e.g.,

encryption operations) [6], [10], [14], [25], [33], [34], [43].

Electromagnetic attacks are based on leaked electromagnetic

radiation [2], [3], [32], and acoustic attacks exploit the sound

(acoustic “noise”) produced by a system as it carries out

computation [4], [12], [51]. Differential fault attacks are

based on using the secrets discovered by introducing faults in

a computation [9], [24]. Cache-based attacks extract secrets

by observing (using a malicious process running on the

same machine) which memory blocks are accessed by the

target application [5], [61], [63]. Other microarchitecture-

based side channel attacks have been reported, e.g. attacks

based on branch prediction or instruction caches [1].
Different side channels offer different advantages and

disadvantages to potential attackers. Timing and power side

channel attacks [6], [10], [11], [18], [25], [33], [34], [43],

[49] only require relatively simple equipment. Power attacks

are relatively easy to detect because measurement equipment

must be attached to the target system, while timing attacks

require attackers to interact (e.g. request-response over the

network) with the system or observe other users’ interac-

tions. Bus snooping attacks require physical access to the

system, but they are powerful because they give the attacker

direct access to observe (and even modify) values that are

communicated on the processor-memory bus [30], [29] or

that are stored in the system’s memory [36]. Bus snooping

attacks are well understood and effective targeted solutions

have been proposed in research literature [13], [21], [23],

[37], [38], [39], [40], [42], [48], [52], [53], [54], [55], [56],

[57], [58], [64], [65], [68] and used in actual products [31],

[41]. Cache-based attacks and other resource-sharing-based

attacks do not require physical access, but they do require

running the attacker’s code on the same system that runs

the “victim” code. These attacks can be defended against

by both traditional measures (prevent malicious code from

being introduced) and by careful hardware design [63].

Electromagnetic side channel attacks are very difficult to

detect because they can be mounted from a distance. The

existence of side channel EM emanations was reported in

the open literature as early as 1966 [28], [66], and even older

classified TEMPEST work is often discussed [32], [66].

Analysis of security risks from EM emanations from com-

puter monitors has been presented in 1985 [62], and low-

cost software techniques for reducing risks from computer

display emanations have been proposed much later [32] and

mostly apply to now-obsolete CRT displays. Radio trans-

mission through EM emanations from a desktop’s memory

system was detected at a distance of about two meters [17]

as a proof-of-concept experiment, but without any analysis

or direction toward potential solutions. Some systematic

investigation of leakage of smartcard EM emanations [2],

[20] classifies EM emanations as direct emanations, caused

by current flows within circuits (e.g. switching activity while

adding two numbers in a processor), and indirect emanations

due to EM couplings among chip circuits (e.g. activity

on a data bus coupling to and modulating the amplitude

of a nearby clock signal). Recently reported results for

modern systems [67] show that information can be trans-

mitted through EM emanations to distances of at least 2-

3m, even in the presence of significant countermeasures

(metal shielding, walls, etc.), and practical EM attacks

against implementations of the RSA and ElGamal algorithms

running on laptops have been reported [22]. Attacks against

cryptographic hardware [26] and keyboards [35] have also

been reported. Countermeasures for EM leakage have been

proposed for smartcards [19], [45], [46], [47], [59], [60],

including the use of asynchronous circuits [19], low-cost

shielding (e.g. metal foil) [45], transmission of jamming

signals [46], etc. Although these proposed solutions do

attenuate EM emanations from a system, they are presum-

ably more expensive in terms of silicon cost, weight and

bulk, and/or power consumption compared to solutions that

directly address the leakage mechanisms.

Solutions for other problems may have an impact (positive

or negative) on side channel signals. For example, signif-

icant research and applied work on EM interference and

compatibility (EMI/EMC) [27], [44] also aims to reduce the

spectral density of EM emanations. Some methods, such as

shielding, alleviate both EMC and EM side channel issues.

Some methods, however, help one at the expense of other.

For example, transmission of jamming signals [46] may

help mask EM side channel signals but negatively affects

EMC. Recent findings show that EM signals from computer

systems may satisfy EMC regulations but still be detected

in EM side channel attacks [50].

The Side-Channel Vulnerability Factor (SVF) [15], [16]

measures the correlation between high-level execution pat-

terns (e.g. program phase transitions) and side channel

signals. This provides high level information about potential

leakage from programs, but does not provide the instruction

level information that would be needed to attribute the

potential leakage to specific processor/system components

or to specific sites (e.g. line of code) in a program. Previous

research has developed methods for measuring energy per

instruction (for example [7]), however more work is needed

to determine how differences in the expenditure of energy

propagate to the attacker to use these measurements in the

context of side channel analysis. Whereas previous work

measures the energy expended per instruction, the metric

discussed in this paper measures only the energy that can

be received and exploited by an attacker through a given

side channel (EM emanations in our case study).
Overall, our instruction-level metric and methodology

differ from prior work in that we quantify the signal that

is sent to the attacker by an instruction-level difference
in program execution. These measurements can be used

to determine the potential for information leakage when

execution of individual instructions or even sections of code

depends on sensitive information. We expect our instruction-

level attribution of potential side channel vulnerability to

help system designers decide where in the system/processor
to apply countermeasures, and also to help programmers and

compilers apply software-based countermeasures selectively

to minimize their performance and power impact.

VII. CONCLUSION

Side channels are a powerful class of attacks that circum-

vent traditional protections, and a significant number of such

attacks and potential countermeasures have been proposed

for both hardware and software. Recent work has shown

that potential side channel vulnerability can be assessed

at the level of an entire processor or system, and at the

granularity of entire phases. However, without a practical

way to attribute potential side channel vulnerability to spe-

cific instruction-level behavior, it is difficult for computer

architects and software developers to apply countermeasures

strategically to limit their cost and performance/power im-

pact.
This paper presents a new metric, which we call Signal

Available to Attacker (SAVAT), that measures the side

channel signal created by a specific single-instruction dif-

ference in program execution, i.e. the amount of signal

made available to a potential attacker who wishes to decide

whether the program has executed instruction/event A or

instruction/event B. We also devise a practical methodology

for measuring SAVAT in real systems using only user-level

access permissions and realistic measurement equipment,

and perform a case study where we measure EM emanations

SAVAT among 11 different instructions for three different

laptop systems. Our findings from these experiments confirm

key intuitive expectations, e.g. that SAVAT between on-chip

instructions and off-chip memory accesses tends to be higher

than between two on-chip instructions, but we also find that

at short distances particular instructions, such as the integer

divide, have much higher SAVAT than other instructions

in the same general category (integer arithmetic), and that

last-level-cache hits and misses have similar (high) SAVAT.

Overall, we confirm that our new metric and methodology

can help discover the highest-vulnerability aspects of a pro-

cessor architecture or a program, and thus inform decision-

making about how to best manage the overall side channel

vulnerability of a processor, program, or system.
Although we have demonstrated that our instruction-level

metric and methodology do lead to useful insights, we also

believe that this is just a first step toward potentially more

informative fine-grain metrics, and more refined measure-

ment methodologies. Another direction for future research

is to measure SAVAT for multiple side channels to help

inform decisions about which ones are the most dangerous

for a particular class of processors or systems. Strategies

for systematically classifying and clustering instructions and

events without the need to measure SAVAT for all pairwise

combinations would also be helpful, and probably necessary

to “cover” large instructions sets such as x86. Finally, our

methodology can be extended to assess the side channel

signals generated by microarchitectural activity beyond data

cache hits/misses. Examples that may have high SAVAT

and should be studied include branch prediction hit/misses,

bursts of wakeup/select activity, and coherence activity in

multi-core systems.

VIII. ACKNOWLEDGMENTS

This work has been supported, in part, by NSF grant

1318934 and AFOSR grant FA9550-14-1-0223. The views

and findings in this paper are those of the authors and do

not necessarily reflect the views of NSF or AFOSR.

REFERENCES

[1] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of
simple branch prediction analysis,” in Proc. 2nd ACM Symp.
on Information, Computer and Communications Security.
ACM Press, Mar. 2007, pp. 312–320.

[2] D. Agrawal, B. Archambeult et al., “The EM side-channel(s),”
in Proc. Crypto. HW and Emb. Sys. (CHES), 2002, pp. 29–45.

[3] ——, “The EM side-channel(s): attacks and as-
sessment methodologies,” 2002. [Online]. Available:
http://www.research.ibm.com/intsec/emf-paper.ps

[4] M. Backes, M. Durmuth et al., “Acoustic side-channel attacks
on printers,” in Proc. USENIX Security Symp., 2010.

[5] E. Bangerter, D. Gullasch, and S. Krenn, “Cache games -
bringing access-based cache attacks on AES to practice,” in
Proc. IEEE Symp. on Security and Privacy, 2011.

[6] A. G. Bayrak, F. Regazzoni et al., “A first step towards
automatic application of power analysis countermeasures,” in
Proc. 48th Design Automation Conf., 2011.

[7] R. Bertran, A. Buyuktosunoglu et al., “Systematic energy
characterization of cmp/smt processor systems via automated
micro-benchmarks,” in Proc. 45th Int’l Symp. on Microarchi-
tecture, 2012, pp. 199–211.

[8] E. Biham and A. Shamir, “Differential cryptanalysis of the
data encryption standard,” in Proc. Int’l Cryptology Conf.,
1993.

[9] ——, “Differential fault analysis of secret key cryptosys-
tems,” in Proc. Int’l Cryptology Conf., 1997, pp. 513–525.

[10] D. Boneh and D. Brumley, “Remote Timing Attacks are
Practical,” in Proc. USENIX Security Symp., 2003.

[11] S. Chari, C. S. Jutla et al., “Towards sound countermeasures
to counteract power-analysis attacks,” in Proc. Int’l Cryptol-
ogy Conf., 1999, pp. 398–412.

[12] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in
Proc. Crypto. HW and Emb. Sys. (CHES), 2002, pp. 13–28.

[13] D. Clarke, S. Devadas et al., “Checking the Integrity of
Memory in a Snooping-Based Symmetric Multiprocessors,”
MIT-CSAIL Memo No. 470, 2004.

[14] B. Coppens, I. Verbauwhede et al., “Practical Mitigations for
Timing-Based Side-Channel Attacks on Modern x86 Proces-
sors,” in Proc. IEEE Symp. on Security and Privacy, 2009,
pp. 45–60.

[15] J. Demme, R. Martin et al., “Side-channel vulnerability
factor: A metric for measuring information leakage,” in Proc.
39th Int’l Symp. on Comp. Arch. (ISCA), 2012, pp. 106–117.

[16] ——, “A quantitative, experimental approach to measuring
processor side-channel security,” Micro, IEEE, vol. 33, no. 3,
pp. 68–77, May 2013.

[17] B. Durak, “Controlled CPU TEMPEST Emanations,” 1999.
[Online]. Available: http://cryptome.org/tempest-cpu.htm

[18] P. N. Fahn and P. J. Pearson, “A new class of power attacks,”
in Proc. Crypto. HW and Emb. Sys. (CHES), 1999, pp. 173–
186.

[19] J. J. A. Fournier, S. Moore et al., “Security evaluation of
asynchronous circuits,” in Proc. Crypto. HW and Emb. Sys.
(CHES), 2003, pp. 137–151.

[20] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic
analysis: concrete results,” in Proc. Crypto. HW and Emb.
Sys. (CHES), 2001, pp. 251–261.

[21] B. Gassend, G. Suh et al., “Caches and Hash Trees for
Efficient Memory Integrity Verification,” in Proc. 9th Int’l
Symp. on High-Perf. Comp. Arch. (HPCA), 2003.

[22] D. Genkin, I. Pipman, and E. Tromer, “Get Your Hands Off
My Laptop: Physical Side-Channel Key-Extraction Attacks
on PCs,” in Proc. Crypto. HW and Emb. Sys. (CHES), 2014.

[23] T. Gilmont, J.-D. Legat, and J.-J. Quisquater, “Enhancing the
Security in the Memory Management Unit,” in Proc. 25th
EuroMicro Conference, 1999.

[24] C. Giraud, “DFA on AES,” in Proc. 4th Int’l AES Conf.
Springer, 2003, pp. 27–41.

[25] L. Goubin and J. Patarin, “DES and Differential power
analysis (the duplication method),” in Proc. Crypto. HW and
Emb. Sys. (CHES), 1999, pp. 158–172.

[26] Y.-I. Hayashi, N. Homma et al., “Transient analysis of em
radiation associated with information leakage from crypto-
graphic ics,” in 9th Int’l Workshop on EM Compat. of ICs
(EMC Compo), 2013, pp. 78–82.

[27] Henry W. Ott, Electromagnetic Compatibility Engineering.
Wiley, 2009.

[28] H. J. Highland, “Electromagnetic radiation revisited,” Com-
puters and Security, pp. 85–93, Dec. 1986.

[29] A. B. Huang, “The Trusted PC: Skin-Deep Security,” IEEE
Computer, vol. 35, no. 10, pp. 103–105, 2002.

[30] ——, Hacking the Xbox: An Introduction to Reverse Engi-
neering. No Starch Press, San Francisco, CA, 2003.

[31] IBM, “IBM Extends Enhanced Data Se-

curity to Consumer Electronics Products,”
http://domino.research.ibm.com/comm/pr.nsf/pages/
news.20060410 security.html.

[32] M. G. Khun, “Compromising emanations: eavesdropping
risks of computer displays,” The complete unofficial TEM-
PEST web page: http://www.eskimo.com/˜joelm/tempest.html,
2003.

[33] P. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Proc. Int’l
Cryptology Conf., 1996, pp. 104–113.

[34] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis:
leaking secrets,” in Proc. Int’l Cryptology Conf., 1999, pp.
388–397.

[35] M. Kuhn, “Compromising emanations of lcd tv sets,” IEEE
Trans. Electromagn. Compat., vol. 55, no. 3, pp. 564–570,
June 2013.

[36] A. Kumar, “Discovering Passwords in Memory,”
http://www.infosec-writers.com/text resources/, 2004.

[37] M. Lee, M. Ahn, and E. J. Kim, “I2SEMS: Interconnects-
Independent Security Enhanced Shared Memory Multiproces-
sor Systems,” in Proc. Int’l Conf. on Paral. Arch. and Comp.
Techn. (PACT), 2007.

[38] R. B. Lee, P. C. S. Kwan et al., “Architecture for Protecting
Critical Secrets in Microprocessors,” in Proc. 32nd Int’l Symp.
on Comp. Arch. (ISCA), 2005.

[39] D. Lie, J. Mitchell et al., “Specifying and Verifying Hardware
for Tamper-Resistant Software,” in Proc. IEEE Symp. on
Security and Privacy, 2003.

[40] D. Lie, C. A. Thekkath et al., “Architectural Support for Copy
and Tamper Resistant Software,” in Proc. 9th Int’l Conf. on
Arch. Support for Prog. Lang. and Op. Sys. (ASPLOS), 2000.

[41] Maxim/Dallas Semiconductor, “DS5002FP Se-
cure Microprocessor Chip,” http://www.maxim-
ic.com/quick view2.cfm/qv pk/2949.

[42] J. P. McGregor and R. B. Lee, “Protecting Cryptographic
Keys and Computations via Virtual Secure Coprocessing,” in
Workshop on Arch. Sup. for Sec. and Anti-virus (WASSA),
2004.

[43] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power
analysis attacks of modular exponentiation in smart cards,”
in Proc. Crypto. HW and Emb. Sys. (CHES), 1999, pp. 144–
157.

[44] C. R. Paul, Introduction to Electromagnetic Compatibility,
2nd ed. Wiley, 2006.

[45] T. Plos, M. Hutter, and C. Herbst, “Enhancing side-channel
analysis with low-cost shielding techniques,” in Proceedings
of Austrochip, 2008.

[46] F. Poucheret, L. Barthe et al., in Proc. 18th VLSI System on
Chip Conf.

[47] J. J. Quisquater and D. Samyde, “Electromagnetic analysis
(EMA): measures and counter-measured for smart cards,” in
Proceedings of E-smart, 2001, pp. 200–210.

[48] B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient Data
Protection for Distributed Shared Memory Multiprocessors,”
in Proc. Int’l Conf. on Paral. Arch. and Comp. Techn. (PACT),
Sep. 2006, pp. 84–94.

[49] W. Schindler, “A timing attack against RSA with Chinese
remainder theorem,” in Proc. Crypto. HW and Emb. Sys.
(CHES), 2000, pp. 109–124.

[50] H. Sekiguchi and S. Seto, “Study on maximum receivable

distance for radiated emission of information technology
equipment causing information leakage,” IEEE Trans. Elec-
tromagn. Compat., vol. 55, no. 3, pp. 547–554, June 2013.

[51] A. Shamir and E. Tromer, “Acoustic cryptanalysis (On nosy
people and noisy machines),” http://tau.ac.il/˜tromer/acoustic/.

[52] W. Shi and H.-H. Lee, “Authentication Control Point and Its
Implications for Secure Processor Design,” in Proc. 39th Int’l
Symp. on Microarchitecture, 2006.

[53] W. Shi, H.-H. Lee et al., “Architectural Support for High
Speed Protection of Memory Integrity and Confidentiality in
Multiprocessor Systems,” in Proc. Int’l Conf. on Paral. Arch.
and Comp. Techn. (PACT), 2004.

[54] ——, “High Efficiency Counter Mode Security Architecture
via Prediction and Precomputation,” in Proc. 32nd Int’l Symp.
on Comp. Arch. (ISCA), 2005.

[55] W. Shi, H.-H. S. Lee et al., “Towards the Issues in Archi-
tectural Support for Protection of Software Execution,” in
Workshop on Arch. Sup. for Sec. and Anti-virus (WASSA),
2004.

[56] E. Suh, C. W. O’Donnel et al., “Design and Implementation
of the AEGIS Single-Chip Secure Processor Using Physical
Random Functions ,” in Proc. 32nd Int’l Symp. on Comp.
Arch. (ISCA), 2005.

[57] G. Suh, D. Clarke et al., “AEGIS: Architecture for Tamper-
Evident and Tamper-Resistant Processing,” in Proc. 17th
International Conference on Supercomputing, 2003.

[58] G. E. Suh, D. Clarke et al., “Efficient Memory Integrity
Verification and Encryption for Secure Processor,” in Proc.
36th Int’l Symp. on Microarchitecture, 2003.

[59] H. Tanaka, “Information leakage via electromagnetic emana-
tions and evaluation of Tempest countermeasures,” in Proc.
3rd Int’l Conf.on Inf. Sys. Sec.(ICISS), 2007, pp. 167–179.

[60] H. Tanaka, O. Takizawa, and A. Yamamura, “Evaluation and
improvement of Tempest fonts,” in Springer LNCS, Vol. 3325,
2005, pp. 457–469.

[61] Y. Tsunoo, E. Tsujihara et al., “Cryptanalysis of block ci-
phers implemented on computers with cache,” in Proc. Int’l
Symp.on Information Theory and its Applications, 2002, pp.
803–806.

[62] W. van Eck, “Electromagnetic radiation from video display
units: an eavesdropping risk?” Computers and Security, pp.
269–286, Dec. 1985.

[63] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proc. 34th Int’l
Symp. on Comp. Arch. (ISCA). ACM, 2007, pp. 494–505.

[64] C. Yan, B. Rogers et al., “Improving Cost, Performance, and
Security of Memory Encryption and Authentication,” in Proc.
33rd Int’l Symp. on Comp. Arch. (ISCA), 2006, pp. 179–190.

[65] J. Yang, Y. Zhang, and L. Gao, “Fast Secure Processor for
Inhibiting Software Piracy and Tampering,” in Proc. 36th Int’l
Symp. on Microarchitecture, 2003.

[66] J. Young, “How old is Tempest?” Online response collection,
http://cryptome.org/tempest-old.htm, 2000.

[67] A. Zajic and M. Prvulovic, “Experimental demonstration of
electromagnetic information leakage from modern processor-
memory systems,” IEEE Trans. Electromagn. Compat.,
vol. 99, no. 3, pp. 1–9, 2014.

[68] Y. Zhang, L. Gao et al., “SENSS: Security Enhancement to
Symmetric Shared Memory Multiprocessors,” in Proc. 11th
Int’l Symp. on High-Perf. Comp. Arch. (HPCA), 2005.

