
Spectral Profiling: Observer-Effect-Free Profiling by
Monitoring EM Emanations

Nader Sehatbakhsh∗, Alireza Nazari†, Alenka Zajic‡ and Milos Prvulovic§
Georgia Institute of Technology

Atlanta, Georgia
Email: ∗nader.sb@gatech.edu, †anazari@gatech.edu, ‡alenka.zajic@ece.gatech.edu, §milos@cc.gatech.edu

Abstract—This paper presents Spectral Profiling, a new
method for profiling program execution without instrumenting
or otherwise affecting the profiled system. Spectral Profiling
monitors EM emanations unintentionally produced by the pro-
filed system, looking for spectral “spikes” produced by periodic
program activity (e.g. loops). This allows Spectral Profiling to
determine which parts of the program have executed at what
time. By analyzing the frequency and shape of the spectral
“spike”, Spectral Profiling can obtain additional information such
as the per-iteration execution time of a loop. The key advantage of
Spectral Profiling is that it can monitor a system as-is, without
program instrumentation, system activity, etc. associated with
the profiling itself, i.e. it completely eliminates the “Observer’s
Effect” and allows profiling of programs whose execution is
performance-dependent and/or programs that run on even the
simplest embedded systems that have no resources or support
for profiling. We evaluate the effectiveness of Spectral Profiling
by applying it to several benchmarks from MiBench suite on a
real system, and also on a cycle-accurate simulator. Our results
confirm that Spectral Profiling yields useful information about
the runtime behavior of a program, allowing Spectral Profiling
to be used for profiling in systems where profiling infrastructure
is not available, or where profiling overheads may perturb the
results too much (“Observer’s Effect”).

I. INTRODUCTION

Profiling of program execution is an essential part of
performance optimization and performance analysis efforts.
Typically, the goal of profiling is to identify the regions of
code where the bulk of the execution time is spent (“hot”
regions), which allows developers or the compiler to focus
their optimization efforts. Another common goal of profiling
is to gain more insight into the performance characteristics
of some region of code, such as typical execution time or the
variation in execution time for a code fragment, which can help
programmers understand a performance problem and identify
potential solutions [1], [2], [3], [4].

In practice, profiling is typically implemented through
adding instrumentation to the program. At runtime, this in-
strumentation updates statistics about program execution at
runtime, e.g. by counting how many times a particular point
in the code was encountered during execution[1], [3], [5], [6].
For hot-region profiling, the alternative to instrumentation is
to periodically interrupt execution and sample the program

∗,† These two authors contributed to the paper similarly (author order does
not reflect the extent of contribution).

counter [2], [7], [8], [9], [10]. In recent years, support for
profiling has been added to the hardware, especially for higher-
end processors, which reduces (but does not eliminate) the
execution time overheads (and the “Observer’s Effect”) of
profiling, while increasing the cost of the processor even when
profiling is not needed [8], [11], [12], [13], [14].

For some systems, especially in real-time and cyber-physical
domains, program execution can change significantly when
instrumentation (or profiling-induced interrupts) change the
performance characteristics of the program. For example, these
programs often include different algorithms that are used
when there is a risk of not meeting real-time deadlines or
safety criteria, and profiling instrumentation and/or interrupts
may cause the system to use these “emergency” algorithms
more often, leading to an execution profile that is no longer
representative of profiling-free execution.

Profiling is also difficult in systems that have very limited
resources, e.g. the processor performance and/or memory
capacity may be barely sufficient for the system’s primary
function and cannot accommodate profiling overheads, the
system’s power source (e.g. energy harvesting) may not be
able to support the added energy consumption to collect, store,
process, or transmit the profiling data, and the processor has
no advanced hardware support for profiling because it would
significantly add to its (extremely low) cost.

Unfortunately, many Internet-of-things (IoT) devices have
both types of limitations - real-time/cyber-physical system
operating under severe cost, energy, etc. limitations.

Even in some resource-rich profiling scenarios, e.g. already-
deployed systems that suffer from unexplained performance
problems, it would be highly desirable to profile the program
execution as-is, without changing the program or the system
activity in any way, to ensure that actual program behavior in
that deployment is captured during profiling.

In this paper we present Spectral Profiling, a new approach
to profiling that leverages unintentional EM emanations from
the profiled systems. Spectral Profiling allows highly accu-
rate profiling of loops and other repetitive activity, without
perturbing the profiled system, the program it runs, or the
characteristics of the execution, in any way.

The key insight in spectral profiling is that repetitive pro-
gram activity (e.g. a loop) causes the unintentional EM signals
to exhibit periodicity, i.e. the spectrum of these EM signals will
have “spikes” at frequencies that correspond to the time spent978-1-5090-3508-3/16/$31.00 c©2016 IEEE

Milos Prvulovic
Typewritten Text
			 			 Appears in Proceedings of the 49th International Symposium on Microarchitecture (MICRO), October 2016.

Milos Prvulovic
Typewritten Text
Best Paper Award

Milos Prvulovic
Typewritten Text

Milos Prvulovic
Typewritten Text

in each repetition of the program activity. For example, a loop
whose per-iteration time is T will create a spike in the EM
spectrum at frequency f = 1/T and multiples (harmonics) of
that frequency. Spectral profiling relies on training with known
inputs to identify the spike frequencies that are characteristic
for each loop. During profiling, Spectral Profiling monitors the
spectrum in real time to identify when spikes characteristic for
each loop appear and disappear, allowing it to determine when
each loop is entered and exited. Additionally, the frequency of
the spike and its shape allow Spectral Profiling to determine
the average per-iteration time for each loop and the distribution
of the per-iteration time around that average.

The main contributions of this paper are:
• A new approach for profiling that requires no profiling-

related support or activity on the profiled system.
• A proof-of-concept implementation of this approach to

demonstrate its feasibility in practice.
• An experimental evaluation that shows our new approach

achieves high profiling accuracy, both in a real system
and in cycle-accurate simulation.

The remainder of this paper is organized as follows. Section
II presents the background related to our new approach.
Section III describes the Spectral Profiling approach and de-
tails our proof-of-concept implementation. Section IV presents
the evaluation setup and results for our proof-of-concept
implementation of Spectral Profiling and some analysis about
the runtime behavior of loops and how some architectural
parameters of the profiled system affect our results. Finally,
Section V briefly reviews related work and Section VI presents
our overall conclusions.

II. BACKGROUND

Electronic circuits within computers generate EM emana-
tions [15], [16], [17] as a side-effect of current flows. Since
current flows in the systems can vary with program activity,
these EM emanations often convey important information
about program activity in the system. Most research work on
EM emanations has focused on the risks they create as a side-
channel, i.e. as a way for attackers to extract sensitive data
values (such as cryptographic keys) from the system [16], [18],
and on countermeasures against such attacks, primarily for
smart-cards used for authentication and payments [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28].

Beyond extracting sensitive data values, side-channel em-
anations have also been used to learn more about program
behavior, e.g. to identify webpages during browsing [29] or
find anomalies in software activity [30], [31] without attribut-
ing emanations to specific parts of the code. However, results
in [32], [33], [34], [35], [36] show that differences between
different instructions can be measured in EM analog sig-
nals across different devices (e.g. desktops, laptops, FPGAs),
identify which aspects of program activity modulate which
EM-emanated signals [34], and even attribute emanations to
specific dynamic paths in the code [36].

The goal of this paper is to leverage unintentional EM
emanations for efficient, accurate, and observer-effect-free

Frequency (Hz) #109
0.99 0.995 1 1.005 1.01 1.015 1.02 1.025

db

-145

-140

-135

-130

-125

-120

-115

-110

-105

fc + falt =1.021 GHz

fc - falt = 0.995 GHz

fc = 1.008 GHz
falt = 13 MHz

Fig. 1. Spectrum of an AM modulated loop activity.

software profiling that can be applied to realistic program runs,
where many millions of basic blocks are executed per second.
This requires understanding the properties of EM signals cre-
ated by typical program behaviors (loops and other repetitive
activity), and exploiting these properties to efficiently match
the EM signal to program code in large (e.g. million-cycle)
chunks.

To illustrate main idea behind spectral profiling, Fig. 1
shows a spectrum of an AM modulated loop activity. We can
observe a spike in a spectrum at fclock = 1.0079 GHZ. This
signal is created by the processor clock periodic activity and
acts as a carrier signal in AM modulation. On the left and
the right side from the carrier, we can observe two spikes.
They correspond to loop activity with execution time of 77 ns
(≈ 13 MHz) in “bit count” benchmark from MiBench [37]
suite that is AM modulated onto a carrier clock frequency
fclock = 1.0079 GHz. Please note that two spikes in the
spectrum are an artifact of AM modulation. Fig. 1 indicates
that if we observe a program spectra during runtime, we can
deduce which spikes correspond to current executing path(s).
By knowing the frequency of each path before runtime, during
execution we can deduce (1) which path in the program is
currently active, (2) how much time program has spent in this
path, and (3) how many times this path has been executed.

As an application goes through different functions and
loops, its spectrum is expected to change over time. To capture
this dynamic spectrum behavior of an application, we use a
short-time Fourier transform (STFT) that is defined as [38]

STFT{s(t)}(τ, ω) ≡ X(τ, ω) (1)

=

∫ +∞

−∞
x(t)w(t− τ)e−jωtdt, (2)

and then compute a spectrogram as follows:

spectrogram(t, w) = |STFT (t, w)|2 (3)

In STFT, a long signal is divided into shorter, equal, and
slightly overlapping segments (windows). Short windows yield
better time resolution, but low frequency resolution, than
longer windows, and overlapped windows (typically 50% to

100% overlap) are often used to avoid missing something that
occurs at the transition between windows. In the next section
we describe methodology of proposed Spectral Profiling.

III. SPECTRAL PROFILING

This section describes the Spectral Profiling approach, and
our current implementation of it, in more detail. To illustrate
how Spectral Profiling works, we use the “Basicmath” appli-
cation from the MiBench [37] suite as a running example.

Spectral Profiling has two phases, training and profiling. In
the training phase, we run the application with known training
inputs to identify which spectra correspond to which part of
the program (mostly loops), and also to identify the valid
orderings between the parts of the program. In the profiling
phase, we run the application with unknown inputs, record
how the spectrum change over time, and combine that with the
information from training to detect which part of the program
is executing at each point in time.

Spectral Profiling’s recognition of activity is based on
recognizing the corresponding spectrum. Any spectrum fun-
damentally corresponds to the signal observed over some
interval of time (window), and the duration of this window
represents a trade-off between temporal resolution and fre-
quency resolution. Temporal resolution corresponds to being
able to tell where exactly some program activity begins and
ends. Fundamentally, a spectrum that corresponds to some
time window “blurs together” activity for the entire win-
dow, so spectra collected with a short window allow more
precise identification of the time when program activity has
changed. This means that, to improve temporal resolution, we
should use spectra collected over very short intervals of time.
However, the number of frequency bins (i.e. the frequency
resolution) in the spectrum is proportional to the duration
of the time interval, so a spectrum collected over a very
brief interval “lumps together” similar frequencies into one
frequency bin. This means that two program activities that
have spectral “spikes” with different shapes and/or similar
frequencies cannot be told apart when using short-window
spectra because the spectrum only has one bin for the entire
frequency range where both spikes are.

Thus the time window should be short enough to capture
relevant events in the profiled execution, e.g. it should be
shorter than the duration of most loops - intuitively, attribution
of execution time to specific code in the application will be
performed at the granularity that is similar to the size of
the window. In our Basicmath benchmark example, we use
a window of 1ms with 75% overlap between consecutive
windows, which provides attribution with 0.25 ms granularity
and precision between 0.25 ms and 1 ms.

A. Training Phase

The goal of the training phase is to collect spectral sig-
natures for all regions of the program, and also to identify
the possible/probable sequence of the program’s execution,
i.e. when one region of code is executed, which regions can
possibly be executed immediately after that.

When we collect spectra during training, we face a dilemma.
We can run the program just like we do for profiling (no
modifications to the code, no change to the system, no
collection of any information on the profiled system). The
spectra obtained that way will then be the same as the spectra
obtained during profiling, except when spectra produced by
a region of code (e.g. a loop) are input-dependent. However,
when training spectra are collected this way we do not know
which spectrum corresponds to which part of the code.

Alternatively, we can instrument the program (or use
interrupt-based sampling) to record which part of the code
executes at what time, but the spectra collected in such
execution are distorted by such changes and will poorly match
the corresponding spectra during profiling.

Our current approach to resolving this dilemma is to first use
instrumentation to measure the average per-iteration execution
times for each loop. Then we re-run the program with the
same training inputs but without the instrumentation to get the
undistorted spectra. Finally, we use the per-iteration execution
times and the frequencies of spikes in the spectrum to create
spectrum-to-loop mappings.

1) Finding Per-Iteration Execution Time: We place instru-
mentation at the beginning and end of the loop body to get
timestamps at those points, compute execution time for each
iteration, and store it along with information about which loop
they correspond to. When this training run ends, we compute
the average per-iteration execution time for each loop instance.
Note that this per-iteration time is only used in training to
identify the frequency at which the corresponding spectrum
should have a spike: if per-iteration time of a loop is T , we
will expect the corresponding spectrum to have a spike at a
frequency that is relatively close to f = 1/T .

In our Basicmath example, there are four different loops
in the source code. Each of the four loops is instrumented to
collect per-iteration execution time T , and Fig. 2 shows, for
each loop, a histogram of frequencies f = 1/T that correspond
to these per-iteration execution times (i.e., 2.(a) corresponds to
loop 1, 2.(b) corresponds to loop 2 and so on). This provides us
with the approximate frequency at which to expect a spectral
“spike” for each loop, along with information about the width
and shape of each spike.

2) Finding Spectral Signatures for Each Loop: After cal-
culating the frequency of each loop, we re-run the application
with same inputs but without any instrumentation or profiling-
related activity on the profiled device, and record the spectra
for each time window. In each spectrum, we identify the
spikes, then compare their frequencies and shapes to the
histogram obtained from the previous (instrumented run). The
matches are imperfect because instrumentation perturbs the
execution time of a loop’s iteration, and thus changes the
frequency and shape in the histogram. However, our matching
is highly accurate because frequencies that correspond to
different loops tend to differ more than the instrumentation-
induced errors, because the error introduced by instrumenta-
tion is usually in the same direction (increases the per-iteration
execution time), and also because our matching approach

Frequency (Hz) #105
2 2.5 3 3.5

C
ou

nt

0

5

10

15

Frequency (Hz) #105
6.8 7 7.2 7.4

C
ou

nt

0

200

400

600

Frequency (Hz) #106
2.2 2.4 2.6 2.8

C
ou

nt

0
10
20
30
40
50

Frequency (Hz) #106
2 2.2 2.4 2.6 2.8

C
ou

nt

0
50

100
150
200
250

(a) (b) (c) (d)

Fig. 2. Histogram of frequencies that correspond to per-iteration execution time (f = 1/T) for four different loops in Basicmath benchmark for small
(training run) inputs.

TABLE I
MEASURED AND CALCULATED FREQUENCY FOR LOOPS IN “BASICMATH” APPLICATION

Loop Number Frequency (measured) Frequency (calculated)
Loop 1 289.12 KHz 289.1 KHz
Loop 2 720.3 KHz 721 KHz
Loop 3 2.628 MHz 2.577 MHz
Loop 4 2.733 MHz 2.69 MHz

utilizes the fact that the two runs used the same inputs and
thus have the same sequence of loops. For example, Loop 3
and Loop 4 have relatively similar frequencies, but because
we know that Loop 3 is likely to have a lower frequency than,
and be executed before, Loop 4, the spectra corresponding to
these loops can still be correctly “assigned”. In addition, after
successfully assigning spectra to the loops, we will also have
the sequences of the “assigned” loops.

Table I shows the list of frequencies for four loops in
Basicmath. The “measured” column in the table shows the
actual frequency of the loop (i.e. in the instrumentation-free
run), and the “calculated” column shows the average frequency
calculated from the instrumentation-enabled histogram. The
relative error between the calculated and measured frequency
for these loops is up to 2%, but we can still easily match them.
Also note that the frequency error introduced by instrumen-
tation increases as the frequency increases. This is because
instrumentation has more effect on tight loops (short time per
iteration, i.e. high frequency).

After matching spectra to loops, we pre-process the
(instrumentation-free) spectrum that corresponds to each loop
to identify the “spectral signature” for the loop. In our im-
plementation, the signature is a list of frequencies for the
strongest spikes in the spectrum, after removing spikes that
appear in all spectra (e.g. for EM signals, for example, this
eliminates spikes caused by radio stations, etc.). Note that
the signature is not just one number that corresponds to
the fundamental frequency of the loop. Some loops have
a group of spikes instead of one spike, because their per-
iteration execution time takes several discrete values (with
some variation around each of them). In most cases, the
spectrum also contains not only the spikes that correspond to
the per-iteration execution time (fundamental frequency), but
also spikes at multiples (harmonics) of that frequency. These
additional spikes help differentiate spectra that correspond to
different loops, so the signature we use includes all spikes
whose magnitude is sufficiently above the noise floor.

B. Profiling Phase

In training, we identified the spectral signature for each
loop, and we have also identified the possible/probable se-
quences of loops (essentially, which loops can execute imme-
diately after which other loops). Profiling consists of running
the application with unknown inputs and obtaining profiling
information about those runs.

1) Matching of Loop Spectra: Because the profiling inputs
are different from training inputs, it is natural to wonder if
the spectrum of a loop will change. We have found that many
loops, primarily innermost loops, have spectra that are nearly
identical to those found in training. Intuitively, the spectrum
changes when the per-iteration execution time changes, and in
many loops only the number of iterations changes significantly
from input to input, but the work of each iteration (and the
statistics of branches and architectural events) remain similar.
We call these Loops with Input-Independent Spectra (LIIS),
and for these loops the spectrum can be matched to the
corresponding spectrum from training.

During profiling, we use the same time window we used
during training. For each time window during profiling, we
obtain the spectrum for that window, identify the spikes in the
spectrum (the spectral signature) and compare that signature
to the signatures obtained during training. The comparison is
performed by attempting to match the peaks in the profile-time
and training-time signature. For each peak in the profile-time
signature, we find the closest peak (according to frequency) in
the training-time signature. If that closest frequency differs too
much, the peak remains unmatched. If the closest frequency is
very similar, the peak is counted as matched. After attempting
to match each peak, the number of successfully matched peaks
is used as the similarity metric between the signatures.

If the similarity is high between a profile-time spectral
signature and the best-matching training-time signature of
a loop, we attribute the execution during that profile-time
window to that loop. For the vast majority of time-windows

Fig. 3. Spectrogram for Basicmath benchmark with large (profiling run) inputs.

that belong to LIIS loops, this similarity is very high and the
execution is correctly attributed to the correct LIIS loop.

However, it is possible that none of the profile-time sig-
natures matches the observed signature well enough. This
happens primarily because the spectrum of some loops does
change with frequency. For example, a command-line flag may
cause every iteration of the loop to take one path in one exe-
cution and a significantly different path in another execution
or a set of control flows inside the loop that can change the
per-iteration execution time of the loop. For these loops, the
spectrum still indicates that a loop is executing (spikes in the
spectrum) and when the loop begins and ends (spikes appear at
one time and disappear later) but the spectrum during profiling
no longer matches any of the spectra from training.

C. Sequence-Based Matching

To attribute execution time to these Non-LIIS loops (and
report their per-iteration execution time during the profiling
run), we rely on the model of possible loop-level sequences
constructed during profiling. Sequence-based matching begins
after LIIS matching is completed for LIIS loops. The spectra
from time windows that remain unmatched after LIIS matching
are first clustered according to the same similarity metric we
used to match LIIS loops to spectra from training, i.e. spectra
that have many spikes at similar frequencies will be clustered
together. At this point we have clusters where each cluster
corresponds to a Non-LIIS loop, but we do not yet know which
loop in the code this cluster corresponds to.

However, for each “mystery spectrum” we know that it
should be matched to a region of code that is not a LIIS

loop, and the LIIS loop spectra observed before and after the
“mystery spectrum” tell us which loops have been executed
before and after each instance of the “mystery” loop whose
cluster we are considering. Fortunately, the model of the
application’s loop-to-loop transitions restricts the possibilities
for matching so that usually only a single Non-LIIS loop
remains as a possible match. When there are multiple possible
matches, i.e. the “mystery spectra” in a cluster could possibly
belong to more than one Non-LIIS loop, we match the cluster
to the Non-LIIS loop whose training signature has the highest
average similarity to the spectra in the cluster.

Fig. 3 shows the profiling-time spectrogram of the Basic-
math application. The bold line at 1.008 MHz is the clock
signal. The periodic program behavior amplitude-modulates
this signal, and the straight lines to the right of this line
represent the upper sideband of the modulated signal, i.e. they
have the spectrum that corresponds to program behavior but
that spectrum is shifted upward in frequency by the clock
frequency [34]. In this execution the four loops are executed
one after the other (shown by arrows). In this case all four
loops were matched through LIIS matching, but if any one of
the was not matched through LIS matching, it would still be
successfully matched through sequence-based matching.

IV. RESULTS

This section presents our experimental results, first for
profiling of execution in real systems through EM emanations,
and then for profiling through power signals generated through
cycle-accurate simulation. We tested 13 different applications
from MiBench [37] benchmark suite on both of these plat-

0
10
20
30
40
50
60
70
80
90

100

Coverage	accuracy	for	MIBENCH	applications	on	IOT	device

correct	attribution miss-attribution non-attribution

0
10
20
30
40
50
60
70
80
90
100

Coverage	accuracy	for	MIBENCH	applications	on	Simulator

correct	attribution miss-attribution non-attribution

Fig. 4. Correct attribution (striped portion) as a percentage of the overall profiled execution time.

forms. For real system, we used A13-OLinuXino-MICRO
[39]. A13-OLinuXino is a single-board Linux computer which
has ARM Cortex A8 processor [40]. For cycle-accurate sim-
ulator, we used SESC simulator [41].

A. EM-based Spectral Profiling on Real Systems

1) Experimental Setup: To demonstrate the feasibility and
effectiveness of Spectral Profiling, we used it to profile appli-
cations running on a single-board computer (A13-OLinuXino),
which has a 2-issue in-order ARM Cortex A8 processor with
32kB L1 and 256KB L2 caches, and uses Debian Linux as its
operating system (OS). Our Spectral Profiling for this system
uses electromagnetic (EM) emanations that are received by
a commercial small electric antenna (PBS-E1) ([42]) that is
placed next to the profiled system’s processor. The antenna
is placed where the clock signal has the strongest Signal-to-
Noise ratio (SNR).

A spectrum analyzer (Agilent MXA N9020A) is then used
to record the spectra of the signals collected by the antenna.
A spectrum analyzer can be relatively costly (several tens
of thousands of dollars), but we elected to use a spectrum
analyzer primarily because it provides calibrated measure-
ments, and already has support for automating measurements
and for saving and analyzing measured results. In additional
experiments, we observed similar spectra with less expensive
(<$5,000) commercial software-defined radio receivers.

2) Measurement-Based Results: We apply Spectral Profil-
ing to all 13 applications from the automotive, communica-
tions, network, and security categories in the MiBench suite.
We used a 1 ms window size with 75% of overlap between
windows in all applications except GSM, where we used a 0.5
ms window to improve temporal resolution for attribution of
execution time for short-lived loops.

For training, markers are inserted as described in Section
3, except for very tight loops where markers are inserted
before and after each loop and, if needed, only iteration-
counting is added to the loop. The per-iteration time in this
case is computed by dividing the between-markers time by
the number of iterations. Each marker reads and records the

current clock cycle count from the ARM Performance Counter
Unit (ARM-PMU)[14], which provides information similar to
the x86 “rdtsc” instruction [43]. The training runs are repeated
with several different command line flags, in order to identify
the sequence of loops that can occur in each application.

The insertion of markers and the identification of possible
sequences for an application are both accomplished fully
automatically. Identification of loop nests and marker insertion
are implemented as a Clang tool, and identification of possible
loop sequences in implemented as a pass in LLVM 3.7.

After training, for which we used the small input set [37],
we perform actual profiling with the original unmodified code
(no markers) and with the large input set [37]. The accuracy
we measure is defined as the fraction of execution time for
which our method correctly identifies the loop that is currently
executing. This accuracy is not 100% because of (1) miss-
attribution, during which our algorithm matches the spectrum
to a different loop (i.e. loop A is actually executing, but the
algorithm matches the spectrum to loop B instead) at loop
B, and (2) non-attribution, during which our algorithm finds
that the spectrum is too different from loop spectra observed
in training, so it leaves such intervals un-attributed. Non-
attribution is typically a result of computation whose spectrum
varies widely depending on inputs, or activity that has no
recognizable spectral signature (e.g. loops whose per-iteration
time varies a lot from iteration to iteration).

Fig. 4 (left) shows the breakdown of profiled execution time
into time that was accurately attributed, time that was miss-
attributed, and non-attributed time. In all benchmarks except
GSM, our method provides correct attribution during at least
90% of the execution time, with the arithmetic mean at 93%.
Miss-attribution occurs during less than 4% of the execution
time, except in QSORT, where miss-attribution occurs during
8% of the time. The larger miss-attribution for QSORT occurs
primarily because the std::qsort library function does not have
a stable signature, so it is often miss-attributed. It is quite
possible that the variation in std::qsort spectra is a result
of having multiple loops in that function. Unfortunately, our
marker insertion did not include library code so our scheme

treats the entire std::qsort function as a single entity and
expects it to have the same spectrum throughout its execution.
We expect that this problem can be overcome by also adding
loop markers to library code. Overall, the arithmetic mean for
miss-recognition is 2.26%.

B. Simulated Results

To provide further evidence that the ability to do Spec-
tral Profiling is a result of a fundamental connection be-
tween repetitive program behavior and the spectra of result-
ing side-channel signals, we apply Spectral Profiling power
signals produced via cycle-accurate architectural simulation
in SESC [41], a cycle accurate simulator that includes
CACTI [44] and WATTCH [45] power models. In this simula-
tion, we model a 1.8GHz 4-issue out-of-order core with 32KB
L1 and 64MB L2 caches.

Fig. 4 (right) shows the profiling accuracy results from
these simulations, with the accurate-attribution-percentage at
98% on average. This is slightly better than for our real-
system results, mainly because simulation-produced power
signals are free of radio-frequency noise and other problems
that present in EM signals received from real systems are:
measurement error, frequency-dependent distortion (for some
EM frequencies the real system acts as a better “transmitter”
than for others), etc. The arithmetic mean for miss-recognition
in simulations is 1.19% which is again slightly better than for
the real system.

Overall, Spectral Profiling remains effective in spite of
differences in clock rates (1.008 GHz vs. 1.8 GHz), pipelines
(In-order vs. Out-of-order), use of different signals (EM em-
anations vs. power), etc. This provides strong evidence that
the existence of spectral signatures is not an anomaly of the
particular system we used in our experiment, and that Spectral
Profiling is likely to be effective for a wide variety of other
real computer systems.

C. Loops with Input-independent Spectra

As discussed in previous section, some loops produce spec-
tral “spikes” whose frequency does not change significantly
with changing inputs, while others have input-dependent spec-
tra. Recall that the frequencies of the “spikes” depend on the
loop’s average per-iteration time and not on the number or
iteration executed in the loop, so loops with input-independent
spectra (which we abbreviate as LIIS) tend to be innermost
loops. Conversely, loops with input-dependent spectra tend
to be outer loops whose inner loops have input-dependent
iteration counts, or loops that have a set of control flows which
can change the per-iteration execution time of the loop. The
reason we are interested in LIIS loops is that, during profiling,
their execution can be directly recognized from the spectrum.
The remaining loops may still be correctly attributed, but
that attribution consists of (1) identifying stable spectral pat-
terns (the spectrum has “spikes” that remain the same for a
while, which indicates that the system is likely executing a
single loop) and (2) using the program’s possible loop-level
sequences (learned from training), i.e. the knowledge of which

loops may possibly execute immediately after other loops, to
attribute that activity to a specific non-LIIS loop.

0

10

20

30

40

50

60

70

80

90

100

LIIS seq

Fig. 5. Profiled time attributed through LIIS and Sequence mechanisms.

Fig. 5 shows how much of the profiled execution time
is attributed through each of these mechanisms (LIIS and
Sequence). On average, 82% of the execution time is attributed
through LIIS, and some applications spend nearly all of their
execution time in LIIS loops. However, in several applications
(especially Susan and SHA) most of the execution time is
attributed through the Sequence mechanism, and almost all
of this attribution is correct (see Fig. 4). In general, we
observed that Sequence-based attribution of profiled time is
highly accurate, as long as the execution contains enough LIIS
recognitions to constrain the set candidate loops to which the
(non-LIIS) spectrum may possibly be attributed.

D. Accuracy for Loop Exit/Entry Time Profiling

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

Fig. 6. Standard error for loop start/end times, normalized to loop duration.

In addition to overall accuracy with which execution time
is attributed to specific loops, we measured how accurate
our method is at determining the exact time when a loop is
entered and exited. Specifically, if in the profiled run some
loop “Loop1” starts at time t1, and our Spectral Profiling
implementation identifies t′1 as the start time, then the dif-
ference between t′1 and t1 is the deviation (error) for this
“sample” in this experiment. The samples in this experiment

Frequency (Hz) #106
4.5 5 5.5 6 6.5 7

C
ou

nt

#104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Histogram for (1/execution time)of the loop in Blowfish

Exec. time

Fig. 7. Spectrogram and per-iteration execution time for a loop in Blowfish.

are loop start and end times for all dynamic instances of all
loops executed in the application, and for each application we
report the standard deviation across these samples, normalized
to the average duration of the loop. Because we need the actual
start/end times for each loop to compute the error, we only
perform this measurement in simulation (where we can get the
actual loop entry/exit times without changing the timing of the
execution itself). The per-application results of this experiment
are shown in Fig. 6, and across all benchmarks, the average
of these normalized standard deviations is 1.42%.

E. Runtime Behavior of Loops

In addition to providing useful information about which
regions of the code are hot and how much time is spent in
each region, Spectral Profiling can also exploit the shape of
the spikes in the spectrum to tell us the runtime behavior of the
each loop. For example, sharp spikes indicate that almost all
iterations of the loop take same amount of time. Conversely,
having a wide spike, or a group of spikes, indicates that
different iterations of the loop have different execution times.
Such variation in per-iteration execution time could occur in
outer loops when the number of iterations in their inner loops
varies, and even in inner loops due to architectural events
(e.g. cache misses, branch miss-predictions, etc) or differences
in control flow among loop iterations. Identifying loops with
unusually large per-iteration performance variation may help
programmers identify performance problems, e.g. problems
caused by unexpectedly large number of architectural events,
unexpectedly frequent use of a long and seemingly unlikely
program path within the loop body, etc.

To illustrate how Spectral Profiling can help understand
performance of a loop, Fig. 7 shows the spectrogram (how the
spectrum changes over time, where the spectrum is displayed
horizontally and elapsed time is shown from bottom to top)
for one loop in the “Blowfish” benchmark, for the real-system
EM signal without any markers. We also show a histogram
of actual per-iteration execution times in this loop, obtained

by the markers during the execution with same inputs with
markers. As seen in this figure, the duration and intensity of
spikes in the frequency spectrum indicate how often (and when
during the loop) different per-iteration execution times occur.
In this loop, the variation in per-iteration execution time is
caused by cache misses on one memory access instruction
and branch mispredictions on two difficult-to-predict branch
instruction in the loop body.

F. Effects of Changing Architecture

To show that ability to benefit from Spectral Profiling is not
taking advantage of any specific architectural property of target
machine, Fig. 8 shows the spectrogram for a same application,
using the same inputs, on two different simulated systems:

Configuration Clock Core Caches
A (Simple CPU) 50 MHz InO 1-Wide 4 KB L1, No L2
B (Modern CPU) 1.8 GHz OoO 4-Wide 32 KB L1, 64 MB L2

In this run, the application executes seven loops. The first
loop is a nested loop that’s why its signature is poorly defined
at lower frequencies (which correspond to to the outer loop)
with a sharp spike that corresponds to the inner loop at around
7.8 MHz in Config A and 81MHz in Config B. The remaining
six loops each have a well-defined frequency, and can be
clearly seen in spectrograms for both Config A and Config
B. The vertical lines in the Config B spectrogram appear
weaker because the spectral power of each spectral spike
is distributed across a narrow frequency band as the out-of-
order execution engine introduces slight variation among per-
iteration execution times in each loop. However, spikes are
still easily identifiable in both spectrograms, and allow us to
attribute execution time to each of these seven loops, and also
to determine their per-iteration execution time and its variation.

G. Size of the SFFT Window

Ideally, the profiled periodic activity lasts much longer than
the window we use to compute the spectrum, so the “blurring”
at the beginning and end of the activity introduces an error that

Fig. 8. Spectrograms from two different system configurations for Bitcnt benchmark for large size input.

Fig. 9. Spectrograms for SFFT windows of 50us (left) and 500us (right), for the Blowfish benchmark with the large-size input.

is negligible relative to the duration of the activity. However,
as described in Section III, windows that are too short provide
low spectral resolution, i.e. they make it more difficult to tell
different spectra apart. Consequently, the window size is a
compromise between these two considerations. To illustrate
this, Fig. 9 shows the spectrogram when the window is 500
µs and when it is 50 µs. The application spends most of its
time in two loops, one with a frequency close to 3 MHz (the
spectrogram also shows its harmonic that is close to 6 MHz),
and the other loop has a frequency close to 5 MHz. Both
spectrograms are derived from simulation-based power signals
for the same simulation run. As can be seen in the figure,
the shorter window allows us to clearly identify transitions
between these loops. The longer window, however, sometimes
(e.g. for 0.6 ms to 1.2 ms on the spectrogram) only indicates
that both loops are active during the interval. However, note
that the vertical lines in the short-window spectrogram are
thicker – this indicates that the frequency bins are wider, i.e.
there is less spectral resolution. In this particular example,
the frequencies of the loops are far apart, so even the 50
µs window provides enough spectral resolution to distinguish
them. This indicates that adaptive window size can improve
Spectral Profiling accuracy beyond what is shown in this paper,
where each experiment used a fixed window size.

V. RELATED WORK

Information obtained through program profiling is useful
for code optimization (e.g., [46]), testing and debugging (e.g.,
[47]), and software maintenance (e.g., [48]), and much effort
has been invested in tools, algorithms, and even hardware
support for profiling (e.g. [1], [2], [7], [8], [9], [10]). Profilers
typically use instrumentation [49], [50], [1], [3], [5], [6] to
count how often each part of the code is executed, or even
to account for actual execution time, e.g. by reading a cycle-
resolution counter [43]. Another approach is to periodically
interrupt the program [2], [7], [8], [9], [13] and obtain samples
of the program counter (PC) during execution, and use the
distribution of these samples as an approximate distribution
of where time was spent in the program. Hardware support
[8], [11], [12], [13], [14] has been added to many processor
specifically to reduce profiling overheads.

However, the overheads introduced by profiling can still
be problematic. These overheads can be especially high if
we need to profile the per-iteration behavior if tight (only a
few instructions per iteration) loops. Even when overheads
are a relatively small percentage of the execution time, they
might fundamentally change the behavior of the application,
especially in real-time and cyber-physical systems where the

application may switch to less demanding algorithms to avoid
missing deadlines. In embedded and IoT systems, another
problem is the lack (or limited) debugging infrastructure,
resources (e.g. memory) to store profiling information, and the
additional overheads and perturbation introduced by sending
the profiling information out of the profiled system. Some
of these problems can be addressed by adding Trace/Debug
interfaces, but they often change the form factor of the device
and limit its usability.

To our knowledge, the only other approach that attributes
side-channel signals to specific parts of the program is ZOP
[36], which uses time-domain correlation (i.e. correlation of
signal samples obtained from the digital-to-analog converter)
at the granularity of acyclic paths (usually one of a few basic
blocks). As a result, ZOP requires orders of magnitude more
computational effort and has only been evaluated for very brief
runs. In contrast, Spectral Profiling exploits the connection
between common program behaviors (loops) and the resulting
EM signals to provide at-speed profiling of arbitrarily long
program runs.

VI. CONCLUSIONS

This paper presents Spectral Profiling, a new method for
profiling program execution without instrumenting or other-
wise affecting the profiled system. Spectral Profiling moni-
tors EM emanations unintentionally produced by the profiled
system, looking for spectral “spikes” produced by periodic
program activity (e.g. loops). This allows Spectral Profiling
to determine which parts of the program have executed at
what time and, by analyzing the frequency and shape of the
spectral “spike”, obtain additional information such as the
per-iteration execution time of a loop. The key advantage of
Spectral Profiling is that it can monitor a system as-is, without
program instrumentation, system activity, etc. associated with
the profiling itself, i.e. it completely eliminates the “Observer’s
Effect” and allows profiling of programs whose execution
is performance-dependent and/or programs that run on even
the simplest embedded systems that have no resources or
support for profiling. We evaluate the effectiveness of Spectral
Profiling by applying it to several benchmarks from MiBench
suite on a real system, and also on a cycle-accurate simulator.
Our experimental results show that our current implementation
of Spectral Profiling on average correctly attributes 93% of
execution time when applied to EM emanations from an actual
IoT device, and we confirm the versatility of the approach
by also successfully applying it to the power signal produced
through cycle-accurate simulation of several different architec-
tures, from sophisticated out-of-order cores to simple in-order
cores. Additionally, our finding confirm that Spectral Profiling
yields additional useful information about the runtime behavior
of loops. Overall, Spectral Profiling can be used for profiling
in systems where profiling infrastructure is not available, or
where profiling overheads may perturb the results too much
(“Observer’s Effect”).

ACKNOWLEDGMENT

This work has been supported in part by NSF grants
1563991, 1318934, and 1320717, AFOSR grant FA9550-14-
1-0223, and DARPA LADS contract FA8650-16-C-7620. The
views and findings in this paper are those of the authors and do
not necessarily reflect the views of AFOSR, NSF, or DARPA.

REFERENCES

[1] J. Demme and S. Sethumadhavan, “Rapid identification of architectural
bottlenecks via precise event counting,” in Proceedings of the 38th
Annual International Symposium on Computer Architecture (ISCA),
2011.

[2] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri, “Identifying
potential parallelism via loop-centric profiling,” in Proceedings of the
4th International Conference on Computing Frontiers, 2007.

[3] A. Ketterlin and P. Clauss, “Profiling data-dependence to assist paral-
lelization: Framework, scope, and optimization,” in Proceedings of the
45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2012.

[4] Y. Sato, Y. Inoguchi, and T. Nakamura, “On-the-fly detection of precise
loop nests across procedures on a dynamic binary translation system,”
in Proceedings of the 8th ACM International Conference on Computing
Frontiers, 2011.

[5] Q. Zhao, I. Cutcutache, and W. Wong, “Pipa: Pipelined profiling and
analysis on multi-core systems,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO), 2008.

[6] S. Wallace and K. Hazelwood, “Superpin: Parallelizing dynamic instru-
mentation for real-time performance,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization (CGO), 2007.

[7] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,
S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and
W. E. Weihl, “Continuous profiling: Where have all the cycles gone?,”
in ACM Trans-actions on Computer Systems, 1997.

[8] Intel-Corporation, “Intel vtune amplifier.” https://software.intel.com/en-
us/intel-vtune-amplifier-xe/details, accessed April 2, 2016.

[9] X. Yang, S. M. Blackburn, and K. S. McKinley, “Computer performance
microscopy with shim,” in ACM/IEEE International Symposium on
Computer Architecture (ISCA), 2015.

[10] S. L. Graham, P. B. Kessler, and M. K. McKusiclc, “Gprof: A call
graph execution profiler,” in Proceedings of the SIGPLAN Symposium
on Compiler Construction, 1982.

[11] Intel-Corporation, “Precise-event-based-sampling on intel processors.”
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-
optimization-manual.pdf, accessed April 2, 2016.

[12] Intel-Corporation, “Intel performance counter monitor.” https:
//software.intel.com/en-us/articles/intel-performance-counter-monitor,
accessed April 2, 2016.

[13] Linux, “Linux kernel profiling with perf.” https://perf.wiki.kernel.org/
index.php/Main Page, accessed April 3, 2016.

[14] ARM, “Arm performance monitor unit.” http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0388f/Bcgddibf.html, accessed April
2, 2016.

[15] H. Highland, “Electromagnetic radiation revisited,” Computers and
Security, pp. 85–93, dec 1986.

[16] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM side-
channel(s),” in Proceedings of Cryptographic Hardware and Embedded
Systems (CHES), pp. 29–45, 2002.

[17] A. Zajić and M. Prvulovic, “Experimental demonstration of electro-
magnetic information leakage from modern processor-memory systems,”
IEEE Transactions on Electromagnetic Compatibility, vol. 56, no. 4,
pp. 885–893, 2014.

[18] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: con-
crete results,” in Proceedings of Cryptographic Hardware and Embedded
Systems - CHES 2001, pp. 251–261, 2001.

[19] M. G. Khun, “Compromising emanations: eavesdropping risks of
computer displays,” The complete unofficial TEMPEST web page:
http://www.eskimo.com/˜joelm/tempest.html, 2003.

[20] H. Sekiguchi and S. Seto, “Measurement of radiated computer rgb
signals,” Progress in Electromagnetic Research C, pp. 1–12, 2009.

[21] Y. Suzuki and Y. Akiyama, “Jamming technique to prevent information
leakage caused by unintentional emissions of pc video signals,” in Elec-
tromagnetic Compatibility (EMC), 2010 IEEE International Symposium
on, pp. 132–137, 2010.

[22] M. G. Kuhn, “Compromising emanations of lcd tv sets,” IEEE Trans-
actions on Electromagnetic Compatibility, pp. 564–570, 2013.

[23] T. Plos, M. Hutter, and C. Herbst, “Enhancing side-channel analysis with
low-cost shielding techniques,” in Proceedings of Austrochip, 2008.

[24] F. Poucheret, L. Barthe, P. Benoit, L. Torres, P. Maurine, and M. Robert,
“Spatial EM jamming: A countermeasure against EM Analysis?,” in
Proceedings of the 18th IEEE/IFIP VLSI System on Chip Conference
(VLSI-SoC), pp. 105–110, 2010.

[25] H. Tanaka, “Information leakage via electromagnetic emanations and
evaluation of Tempest countermeasures,” in Lecture notes in computer
science, Springer, pp. 167–179, 2007.

[26] Y. ichi Hayashi, N. Homma, T. Mizuki, H. Shimada, T. Aoki, H. Sone,
L. Sauvage, and J.-L. Danger, “Efficient evaluation of em radiation
associated with information leakage from cryptographic devices,” IEEE
Transactions on Electromagnetic Compatibility, vol. 55, no. 3, pp. 555–
563, 2013.

[27] H. Sekiguchi and S. Seto, “Study on maximum receivable distance for
radiated emission of information technology equipment causing infor-
mation leakage,” IEEE Transactions on Electromagnetic Compatibility,
vol. 55, no. 3, pp. 547–554, 2013.

[28] Y. ichi Hayashi, N. Homma, T. Mizuki, T. Aoki, H. Sone, L. Sauvage,
and J.-L. Danger, “Analysis of electromagnetic information leakage
from cryptographic devices with different physical structures,” IEEE
Transactions on Electromagnetic Compatibility, vol. 55, no. 3, pp. 571–
580, 2013.

[29] S. Clark, H. Mustafa, B. Ransford, J. Sorber, K. Fu, and W. Xu,
“Current events: Identifying webpages by tapping the electrical outlet,”
in Computer Security- ESORICS 2013 (J. Crampton, S. Jajodia, and
K. Mayes, eds.), vol. 8134 of Lecture Notes in Computer Science,
pp. 700–717, Springer Berlin Heidelberg, 2013.

[30] C. R. A. Gonzlez and J. H. Reed, “Power fingerprinting in sdr integrity
assessment for security and regulatory compliance,” Analog Integrated
Circuits and Signal Processing, vol. 69, no. 2-3, pp. 307–327, 2011.

[31] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu, and
K. Fu, “Wattsupdoc: Power side channels to nonintrusively discover un-
targeted malware on embedded medical devices,” in USENIX Workshop
on Health Information Technologies, 2013.

[32] R. Callan, A. Zajić, and M. Prvulovic, “A practical methodology
for measuring the side-channel signal available to the attacker for
instruction-level events,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2014.

[33] R. Callan, N. Basta, A. Zajic, and M. Prvulovic, “A new approach
for measuring electromagnetic side-channel energy available to the
attacker in modern processor-memory systems,” in Proceedings of the
9th European Conference on Antennas and Propagation (EuCAP), 2015.

[34] R. Callan, A. Zajic, and M. Prvulovic, “FASE: Finding Amplitude-
modulated Side-channel Emanations,” in the 42nd International Sym-
posium on Computer Architecture (ISCA), 2015.

[35] R. Callan, N. Popovic, A. Daruna, E. Pollmann, A. Zajic, and
M. Prvulovic, “Comparison of electromagnetic side-channel energy
available to the attacker from different computer systems,” in Proceed-
ings of the 2015 IEEE International Symposium on Electromagnetic
Compatibility (EMC), 2015.

[36] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, “Zero-
overhead profiling via em emanations,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA),
2016.

[37] M. R. Guthaus, J. S. Pingenberg, D. Emst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the IEEE International Workshop
on Workload Characterization, 2001.

[38] E. Sejdić, I. Djurović, and J. Jiang, “Time–frequency feature representa-
tion using energy concentration: An overview of recent advances,” Digit.
Signal Process., vol. 19, pp. 153–183, Jan. 2009.

[39] Olimex, “A13-olinuxino-micro user manual.” https://www.olimex.
com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-
hardware, accessed April 3, 2016.

[40] ARM, “Arm cortex a8 processor manual.” https://www.arm.com/
products/processors/cortex-a/cortex-a8.php, accessed April 3, 2016.

[41] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,”
January 2005. http://sesc.sourceforge.net.

[42] AARONIA, “Datasheet: Rf near field probe set dc to 9ghz.” http:
//www.aaronia.com/Datasheets/Antennas/RF-Near-Field-Probe-Set.pdf,
accessed April 6, 2016.

[43] G. Paoloni, “White paper: How to benchmark code execution times
on intel ia-32 and ia-64 instruction set architectures,” tech. rep., Intel
Corporation, September 2010.

[44] G. Reinman and N. Jouppi, “Cacti 2.0: An integrated cache timing and
power model,” Technical Report, 2000.

[45] D. Brooks, V. Tiwari, and M. Martonosi in ACM/IEEE International
Symposium on Computer Architecture, ISCA-27, pp. 83–94, 2000.

[46] S. Debray and W. Evans, “Profile-guided code compression,” in Pro-
ceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI), 2002.

[47] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani, “HOLMES:
Effective Statistical Debugging via Efficient Path Profiling,” in Pro-
ceedings of the 31st International Conference on Software Engineering
(ICSE), 2009.

[48] M. D. Ernst, J. CockrelI, W. G. Griswold, , and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,” in
Proceedings of the 21st International Conference on Software Engineer-
ing (ICSE), 1999.

[49] T. Ball and J. R. Larus, “Efficient Path Profiling,” in Proceedings of the
29th annual ACM/IEEE International Symposium on Microarchitecture
(MICRO), 1996.

[50] R. Joshi, M. D. Bond, and C. Zilles, “Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems,” in
Proceedings of the International Symposium on Code Generation and
Optimization (CGO), 2004.

