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ABSTRACT
As the number of cores on a single-chip grows, scalable bar-
rier synchronization becomes increasingly difficult to imple-
ment. In software implementations, such as the tournament
barrier, a larger number of cores results in a longer latency
for each round and a larger number of rounds. Hardware
barrier implementations require significant dedicated wiring,
e.g., using a reduction (arrival) tree and a notification (re-
lease) tree, and multiple instances of this wiring are needed
to support multiple barriers (e.g., when concurrently exe-
cuting multiple parallel applications).

This paper presents TLSync, a novel hardware barrier im-
plementation that uses the high-frequency part of the spec-
trum in a transmission-line broadcast network, thus leaving
the transmission line network free for non-modulated (base-
band) data transmission. In contrast to other implementa-
tions of hardware barriers, TLSync allows multiple thread
groups to each have its own barrier. This is accomplished by
allocating different bands in the radio-frequency spectrum
to different groups. Our circuit-level and electromagnetic
models show that the worst-case latency for a TLSync bar-
rier is 4ns to 10ns, depending on the size of the frequency
band allocated to each group, and our cycle-accurate archi-
tectural simulations show that low-latency TLSync barriers
provide significant performance and scalability benefits to
barrier-intensive applications.

Categories and Subject Descriptors
C.1.2 [PROCESSOR ARCHITECTURES]: Multipro-
cessors—Interconnection architectures

General Terms
Design, Performance
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1. INTRODUCTION
With growing numbers of cores per chip and increasing

wire latencies, barrier synchronization becomes increasingly
challenging. Simplistic software-only implementations suf-
fer from serialization in counting arrivals, so their latency
increases in proportion to the number of cores. Hierar-
chical barriers reduce this contention, but require multiple
rounds of point-to-point synchronization and an inefficient
broadcast via a shared memory location. Hardware bar-
rier networks provide lower latency but require a dedicated
chip-spanning network whose latency has a very unfavorable
technology-scaling trend. Worse, future many-core chips are
likely to execute several parallel applications, virtual ma-
chines, etc., each of which may need a separate barrier net-
work to synchronize its threads. Because the number of bar-
rier networks (and their total cost) is a design-time decision,
designers must decide between a) providing multiple expen-
sive barrier networks that may be unused and b) not provid-
ing enough of them and potentially forcing applications to
fall back to a much slower software barrier implementation.

Transmission lines have been proposed as a low-latency
solution for on-chip interconnects, e.g. for express links in
the on-chip network [10, 17] or for connecting distant banks
in large caches [5]. In addition to providing much lower
signaling latencies than traditional wires, transmission lines
can be used to transmit multiple modulated signals at dif-
ferent RF frequencies. These advantages are tempered by
increased cost and significant signal processing delays for
demodulation and decoding of RF signals.

In this paper, we exploit the advantages of transmission
lines to address the latency and multiple-barrier support is-
sues faced by traditional barrier networks. Our hardware
barrier support, which we call TLSync, allocates a rela-
tively small part of the transmission line’s available spec-
trum to each barrier group, allowing a single chip-spanning
transmission-line network to support many (tens) of barriers
simultaneously. We minimize signal processing latencies by
not relying on data transmission in our barrier implementa-
tion. Instead, a TLSync barrier uses a simple signal presence
test to determine when all cores in the group have arrived to
the barrier. In essence, a TLSync barrier performs a wired-
AND operation using the presence/absence of a“tone”at the
barrier’s allocated frequency to replace the traditional sig-
naling using high and low voltage level on a wire. Each core
transmits into the transmission line a low-power“tone”at its
barrier’s allocated frequency and stops transmitting when it
finally arrives to the barrier. The receiver in each core is a
simple tone detector tuned to the barrier’s frequency, and a



core can exit the barrier when this receiver no longer detects
a “tone” at the barrier’s frequency.

To obtain accurate latency estimates for the proposed TL-
Sync mechanism, we also provide a careful analysis of how
the underlying chip-spanning transmission-line network can
be designed. This analysis resulted in several important
insights into the tradeoffs that are faced when using trans-
mission lines (TLs) for on-chip transmission of RF signals.
Our key observation in this regard is that the end-to-end
latency of RF transmission is dominated by fundamental
signal processing delays that must be accounted for, and
that careful modeling of TLs is needed to account for severe
signal weakening and degradation when multiple transmit-
ters and/or receivers are connected along one transmission
line.

The rest of the paper is organized as follows. Section 2
describes the background and related work, Section 3 de-
scribes our TLSync scheme, Section 4 provides more detail
and analysis of the implementation of transmission-line net-
works and transmitters and receivers used for TLSync, and
Section 5 presents our evaluation in terms of performance
and area cost. Finally, Section 6 presents our conclusions.

2. BACKGROUND AND RELATED WORK
Researchers have long acknowledged the importance of

efficient barrier mechanisms in highly-parallel systems, and
many past supercomputer or massively parallel multicom-
puter systems had dedicated fast barrier hardware. Ex-
amples include a combining omega-switch network for fast
fetch-and-add (barrier counter increment) in the NYU Ul-
tracomputer [13], a single-stage combining network [14], and
a dedicated bus for test-and-set messages in Sequent sys-
tems [4], dedicated networks in CM-5 [18] and Cray T3D [11],
router extensions to support a virtual barrier tree in Cray
T3E [26], and “global interrupt network” wired-OR in Blue
Gene/L [3]. In the chip-multiprocessor arena, the MIT Multi-
ALU processor [16] has a single-cycle barrier instruction im-
plemented using global wires (that still had single-cycle la-
tencies at the time). These dedicated barrier networks can
only support one barrier at a time, whereas future many-
core systems will likely execute several (potentially many)
multi-threaded applications, each with its own barrier syn-
chronization. Virtual barrier networks, such as the one in
T3E, possibly bolstered with additional express links [24],
are the exception to this—they can provide multiple virtual
barrier trees, albeit at a cost of increased contention and la-
tency. Beckmann and Polychronopolous [6] proposed a ded-
icated global interconnect for barriers that uses a register
with zero-detect logic. However, the extension of this de-
sign for multiple concurrent barriers replicates much of the
cost for each supported barrier, an approach that does not
scale to large number of cores that may need many (ten or
more) concurrent barriers. Sampson et al. introduce Barrier
Filter [23], a lightweight barrier mechanism that uses cache
invalidation as a barrier arrival signal and starves the cache
fill until all threads arrive to the barrier. Unfortunately, the
invalidation traffic to the centralized filter (which determines
when all cores have arrived) can be a problem in many-core
processors.

For future many-core chips, all these barrier networks also
face the problem of increasing latencies for global wires. A
barrier network spans the entire chip, so the wire length
traversed by arrival and notification signals is expected to

slowly increase as the total chip size increases [15], while the
wire latency per unit distance quickly gets worse [15].

Transmission lines (TLs) have been proposed as a low-
latency alternative to traditional global wires. The long de-
lays in traditional wires are a result of changing the potential
of the entire wire, whose capacitance is proportional to its
length. Future technology scaling trends [15] are expected
to significantly increase these already long per-millimeter de-
lays. In contrast, TLs propagate signals as electromagnetic
waves, at speeds that are close to the speed of light in the
conductor material. This allows signals to cross the entire
chip with sub-nanosecond propagation latencies, at least an
order of magnitude faster than with traditional wires. This
makes TLs very attractive for on-chip communication. How-
ever, TLs have several constraints that limit their usability:
1) they are more expensive than traditional wires because
they are much wider (often by an order of magnitude or
more) and occupy several (two or three) metal layers, 2)
design of TLs requires much more modeling and planning
because high frequency signals are significantly affected by
the TL’s shape (e.g., bends and turns) and implementation
(e.g., material and thickness of the metal and insulator), 3)
TLs require more sophisticated circuitry to transmit and re-
ceive their signals—instead of directly connecting logic gate
inputs to a wire, TL receivers range from sense amplifiers to
complete radio-frequency (RF) demodulation and decoding,
depending on the type of the signal that is being used, and
4) data rates that can be achieved with relatively simple
receivers (e.g., sense amplifiers) are limited.

As a result of these considerations, TLs are not likely to
entirely replace global wires. Instead, TLs are likely to be
used strategically, e.g. to provide low-latency global con-
nections for cache banks in very large caches [5], “express”
long-distance network-on-chip (NoC) links [10, 17], or as a
chip-wide frequency-multiplexed bus [9].

Recently, a global network of TLs with baseband (non-
modulated) signals has been proposed for barrier synchro-
nization [1]. This hardware barrier has a lower latency than
one built out of traditional wires. However, this scheme can
still support only one barrier group at a time. Considering
the large cost of TLs, it is unlikely that future chips will
include multiple such global networks in order to support
multiple barriers.

3. DESIGN OF TLSYNC
We propose a novel hardware barrier support which uses

high-frequency RF signals for barriers, while still leaving
the transmission line (TL) usable for baseband and low-
frequency RF data transmission. This barrier, which we
call TLSync, supports multiple simultaneous barriers by al-
locating a separate RF frequency band to each barrier, and
uses very simple modulation to minimize cost and demod-
ulation latencies. Finally, TLSync accommodates the fact
that weakening and distortion in TLs get worse as the fre-
quency of the signals grows—the high-frequency RF bands
we use are unlikely to be of practical use for data transmis-
sion, but are good enough for the simpler signals used for
our barriers.

Our TLSync barrier support is conceptually very simi-
lar to traditional wired-OR [3], wired-NOR [27], and wired-
AND approaches, which differ mainly in the interpretation
of voltage levels (high/low vs. 1/0). A traditional wired-
AND barrier would have a single chip-spanning wire, which
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Figure 1: Overall design of the TL network and TLSync transmitters and receivers.

would be connected to the supply voltage (logical 1) with a
pull-up resistor and to each core by pull-down drivers. These
drivers keep the wire at low (logical 0) voltage in spite of the
current passing through the pull-up resistor. A core that has
not yet arrived to the barrier would keep its pull-down driver
active, thus keeping the wire at a low voltage level. When
the core reaches the barrier, it simply deactivates its pull-
down driver and starts monitoring the wire. When the last
core has arrived, no pull-down drivers remain active and the
pull-up resistor brings the wire’s potential to a high value,
which signals to all cores that the barrier is complete.

Unfortunately, an actual chip-spanning wired-AND cir-
cuit would have a huge latency because the wire has a large
capacitance. For example, in the 45nm technology, a wired-
and circuit for 16 4mm × 4mm cores (for a total chip size of
16mm × 16mm) would have a 34.7ns delay1—nearly 100 cy-
cles for a 3GHz core. This latency grows quickly as technol-
ogy scales—in 32nm technology, 32 such cores would fit on
the same die area and the chip-spanning wired-AND would
have a 100ns delay2, and in 22nm technology the wired-OR
for 64 cores would have a 312ns latency 3.

The latency of a traditional wired-AND circuit can be
improved using a reduction tree for the AND operation and
then a notification tree to distribute the final result to all
the cores. With this approach, the chip-spanning barrier
network would have 8.7ns, 23.4ns, and 59.4ns latency for
the 45nm/16-core, 32nm/32-core, and 22nm/64-core chips
used in the previous example. This latency can be further
improved by using optimal repeater spacing along each wire
segment—the delay drops to only 1.3ns, 2.4ns, and 3.4ns
for the same three chips, but at a cost of using silicon (for
repeaters) at frequent intervals along the wire’s path. This
use of silicon also interferes with the layout of the devices
(cores, caches, etc.) along the path of the wire.

Even with the repeated-wire approach, the technology
scaling trend is unfavorable and each reduction/notification

1The chip-spanning wire would have a total length of 64mm
(16mm×4) to connect all 16 cores, while ITRS [15] reports
a 0.54ns/mm latency for an unrepeated (continuous) wire in
45nm technology.
2Total wire length grows to 88mm and wire delay is expected
to be 1.13ns/mm in 32nm technology
3Total wire length of 126mm, with 2.48ns/mm delay

barrier tree only provides support for a single barrier (i.e.,
only one parallel application). If there are multiple groups of
threads that synchronize on independent barriers (e.g., sev-
eral multi-core applications running concurrently), separate
hardware barrier support would be needed for each group.

Our TLSync barrier retains the conceptual simplicity of
wired-AND circuits and their main advantage—there is no
contention between arriving cores, so when the last core ar-
rives to the barrier, all cores are released after a fixed latency,
even if all cores arrive nearly simultaneously. However, TL-
Sync eliminates the problems of latency scaling (by using
transmission lines) and of supporting multiple groups (by
using different frequency bands for different groups).

Logical zero and one in a TLSync barrier are represented
by the presence or absence of a signal at a particular fre-
quency (the simplest form of binary amplitude modulation).
Each group of cores that uses barrier synchronization is dy-
namically assigned to a particular frequency, thus separat-
ing it from other groups without requiring a separate set of
transmission-lines (TLs) for each group. Each core has a
transmitter and a receiver (Figure 1(b)), both tuned to the
frequency assigned to the group the core belongs to. The
transmitter outputs a continuous signal at this frequency
into the TL network, and the receiver detects the presence
of such a signal. When a core arrives to the barrier, it stops
transmitting. When the last core in a barrier-synchronized
group has arrived and stops transmitting, after a short delay
(propagation and receiver delay) all the cores in the group
detect the absence of the signal and can continue past the
barrier. Because different groups of cores can use different
frequencies, many barriers can be implemented simultane-
ously using the same TL network and the same transmit-
ter/receiver circuitry in each core. The only change from
using a single, fixed, frequency for all cores is to make the
transmitter and receiver tunable (see Section 4).

We note that the design of a TL based broadcast network
is not a straight-forward task. The number of cores can be
large and a single TL segment can have a limited number of
connections (see Section 4). To overcome this problem, we
use multiple TL segments connected using amplifiers instead
of routers and repeaters, so all of the segments still form the
same broadcast medium (see Figure 1(a)). Section 4 also
provides implementation details for the TL broadcast net-
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Figure 2: TLSync Barrier latency for different frequency band allocations.

work and for transmitters and receivers used in our imple-
mentation of TLSync barriers.

The total delay of a TLSync barrier is composed of three
types of latencies: 1) the TL propagation time, which largely
depends on the total distance traveled between the farthest-
apart transmitter and receiver, 2) transistor circuit latencies,
which depend on the complexity of the circuitry in trans-
mitters, amplifiers, and receivers, but continues to improve
with technology scaling, and 3) delays introduced by funda-
mental requirements of signal processing in filters and de-
modulators. We now summarize the various components of
TLSync barrier latency, in the order in which these delays
are encountered by the transmitted signal.

The transmitter delay contains only a single CMOS pass-
gate, which directly connects the output of the digital phase-
locked loop (PLL) to the transmission line (see Figure 1(b)).
This delay is only a few picoseconds and improves with tech-
nology scaling. Propagation speed along transmission lines
is nearly constant at 0.0075ns/mm [19] and is largely un-
changed by technology scaling. For a 16mm×16mm die
with 16 cores, the worst-case length of TL segments tra-
versed by a signal in our broadcast network is 24mm and
there are three amplifiers along the way—as shown in Fig-
ure 1(a), there is a local collection segment (4mm) with four
transmitters, then an amplifier feeds the collected signals
to the central collection segment (8mm). The overall col-
lected signal is amplified and sent onto the central distribu-
tion segment (8mm again), then amplified again and sent to
the local distribution segment (4mm again). Each amplifier
introduces 0.05ns of delay [28], for a total propagation de-
lay (transmitter output to receiver output) of 0.33ns. When
the number of cores is increased to 64 (in 22nm), the longest
path is 32mm (8mm, 6mm, and 2mm central, quadrant, and
local segments for collection and for distribution). There
are now five amplifiers along each path, but their latency
has improved with technology [28] to 0.025ns, so the total
propagation latency is 0.365ns. With 256 cores in 10nm
technology, the path is 36mm with seven (even faster) am-
plifiers, for a total propagation latency of 0.358ns (36mm ×
0.0075ns/mm + 7 amplifiers × 0.0125ns/amplifier).

At the receiver, a mixer in 45nm technology introduces a
0.5ns delay [2], which is expected to improve to 0.25ns and
0.13ns with technology scaling to 22nm and 10nm. Finally,
band-pass filter and amplitude tracker (AM demodulator)
latency is dominated by fundamental signal processing de-
lays. The demodulator’s delay depends on the frequency of
its input signal (filtered mixer’s output). We use a 1.8GHz
signal, resulting in a 0.28ns demodulator latency (half of

the period). The filter creates a fundamental tradeoff be-
tween latency and frequency band allocation4. When we
allocate to a barrier larger spectrum around its “tone” fre-
quency, we achieve faster filtering but reduce the number
of barrier groups that can be supported. We experimented
with frequency bands as narrow as 100MHz to as wide as
500MHz, designing the filter to have a frequency profile just
steep enough to guarantee that signals at surrounding fre-
quencies will not result in false positives of false negatives for
a barrier. Filter designs that worked well in most cases were
3-stage digital infinite impulse response (IIR) filters, with
delays of 1.74ns, 2.32ns, 3.17ns, 5.15ns, and 14.48ns when
using 500MHz, 400MHz, 300MHz, 200MHz, and 100MHz
bands, respectively [19]5.

The total end-to-end delay for our barrier implementation,
from the time the last core arrives to the barrier to the time
all processors are notified, is shown in Figure 2 for different
frequency band allocations and technology nodes. This de-
lay includes propagation and receiver (mixer, filter, demod-
ulator) delays. For comparison, we also show latencies for a
traditional-wire reduction-notification tree barrier with op-
timal repeater spacing and sizing (“R Tree&”) and without
repeaters (“NR Tree&”). Recall that a traditional-wire tree
can only support one barrier, and that optimally-repeated
wires rely on using silicon along the wire’s path.

We observe that, at the 45nm node, our barrier imple-
mentation has a latency of 2.85ns with a 500MHz band as-
signed to each group. Note that with 16 cores there are at
most eight 2-core groups, so 500MHz per group still leaves
more than 5GHz of spectrum for other uses. However, the
optimally-repeated traditional barrier tree has a latency of
only 1.28ns, and with only 16 cores only a few “R Tree&”
networks may be needed on a chip.

However, at future technology nodes the latency of a tra-
ditional barrier network sharply increases while the number
of cores (and thus potential barrier groups) also increases. In
contrast, the latency of the TLSync barrier implementation

4The fundamental filter delay constraint is a close cousin
of the sampling theorem—to preserve a signal at one fre-
quency while suppressing another whose frequency differs
by x GHz, the filter must “observe” the signals for 1/x ns.
Actual filters have small additional circuit delays and can
save some time by having less suppression for “neighboring”
signals, but their delay is still primarily determined by this
fundamental constraint.
5The actual filter design was for 450MHz, 350MHz,
etc. pass-band, leaving 25MHz on each side of the pass-band
to reduce interference from neighboring signals in order to
avoid use of even more filter stages.



improves slightly, as faster transistor circuits compensate for
longer paths traversed by the signals. More importantly, the
same TL network can support multiple (many) simultaneous
barriers that can be active when many cores are available.

We also observe that, regardless of technology node, fil-
ter delays result in significant barrier latency increase when
the frequency band allocated to a synchronization group
is 200MHz or smaller, and that other latency components
are dominant when the allocation is more than 450MHz per
group. Between 250MHz and 450MHz per group, there is a
reasonable tradeoff between spectrum consumption and bar-
rier latency. One way to manage this tradeoff is to vary size
of the band at runtime, depending on how many barriers
are active. With fewer than 10 barrier-synchronized thread
groups, each group would get a 500MHz band to support a
2.64ns barrier latency at 22nm and 2.50ns latency at 10nm.
With more groups, progressively smaller bands would be
allocated to each group, with a small gradual increase in
barrier latency experienced by each group.

4. IMPLEMENTATION DETAILS

4.1 Using TLs to Connect Many Cores
Our TLSync mechanism relies on a chip-wide broadcast

network built with transmission lines (TLs). Ideally, this
broadcast would be provided by connecting all transmitters
and receivers to the same TL (that winds its way through
the chip). However, each such connection changes the elec-
tromagnetic field that propagates along the TL, thus weak-
ening and distorting the signals represented by this field.
Our detailed simulations of electromagnetic propagation in
transmission lines (see Section 4.3 for details) show that, for
on-chip distances, the length of the TL segment is almost
irrelevant—longer segments do have more signal attenua-
tion (weakening) and reflection (which causes distortion),
but the main factor that determines the overall attenuation
and distortion is the number of connections.

To overcome this problem, we use multiple TL segments
instead of a single TL (see Figure 1(a)). These segments are
connected using amplifiers instead of routers and repeaters,
so all of the segments still form the same broadcast medium.
In light of the results from our electromagnetic simulations
(Section 4.3), we use TL segments with at most five connec-
tions. Our simulations show that the attenuation of such a
segment can still be compensated for by a relatively simple
amplifier, and that reflected signals are still weak enough to
not interfere much with transmitted signals.

When connecting multiple segments using amplifiers, we
must avoid positive feedback loops. In practice, this means
that we cannot connect a TL segment to another one us-
ing amplifiers in both directions, and we cannot form a ring
of segments. Instead, the TL network we use consists of a
quaternary tree of input segments, possibly a shared root
segment, and a quaternary tree of output segments. Trans-
mitters from four cores are connected to a leaf ”collection”
segment, which feeds an amplifier. The outputs of four such
amplifiers are connected to a second-level collection segment,
which feeds an amplifier connected to a third-level collection
segment, etc. If the number of cores on chip is a power of
four, this tree has a root collection segment that feeds an
amplifier whose output is connected to the root distribution
segment, which feeds four amplifiers connected to distribu-

tion segments, etc. until eventually each leaf distribution
segment feeds four receivers (see Figure 1).

If the number of cores is not a power of four, the root col-
lection and distribution TL segments each have fewer con-
nections, so a single root segment can be used for both. For
example, with 32 nodes, eight leaf collection segments feed
two second-level collection segments, and two second-level
distribution segments feed the eight leaf distribution seg-
ments. As a result, all four second-level segments (two for
collection and two for distribution) can be connected using
a single root segment.

By placing the root TL segments in the middle of the chip
and by carefully laying out the others, the total length of TL
that must be traversed by any signal (from a transmitting
core to the farthest-away receiving one) is close to the sum
of the width and length of the chip, plus a few millimeters of
extra distance to avoid having turns in a transmission line
segment—a segment with a turn would have additional at-
tenuation and reflection, and would require a separate anal-
ysis to determine how many connections can be allowed.

4.2 Transmitter and Receiver Design
When designing transmitters and receivers for a multi-

core broadcast network based on transmission lines (TLs),
the main goal is to preserve signal fidelity without intro-
ducing a significant delay. This is not a simple task, be-
cause signals with different frequencies propagate differently
in TLs—lower-frequency signals propagate less quickly than
high-frequency ones, but high-frequency signals suffer more
attenuation and more distortion due to crosstalk, skin effect,
and other artifacts of electromagnetic wave propagation.
These effects affect non-modulated high-data-rate signals:
rapid transitions have very high-frequency components and
are thus significantly distorted; this limits the data rate that
can be achieved without sophisticated modulation and mul-
tiplexing methods. On the other hand, sophisticated mod-
ulations and multiplexing could introduce signal processing
delays that are incompatible with on-chip latency require-
ments. In fact, most of the high-data-rate modulation and
multiplexing schemes used in modern telecommunications
rely on digital processing in the receiver, with milliseconds-
long delays. Such delays are several orders of magnitude
longer than those needed for on-chip communications.

As a result of these considerations, practical on-chip data
broadcasts are likely to use simple signaling methods (e.g.,
baseband signaling without modulation) and have relatively
low data rates. Therefore, a significant frequency range
below the TL cut-off frequency (see Section 4.3) may be
unused, because signal integrity at those frequencies is not
sufficient for data transmission without sophisticated (and
long-latency) modulation schemes. These frequencies can
still be used for other mechanisms that require low-latency
broadcasts, such as our TLSync barrier synchronization.

In light of this discussion, TLSync uses the simplest form
of binary amplitude modulation (i.e., the presence or ab-
sence of a signal at a particular frequency) to indicate a
logical zero or one. Transmitter delay is very small—when
a core reaches the barrier, it simply turns off the pass-gate
that connects the output of the PLL to the transmission
line. However, the receiver design is more challenging.

To implement different groups of cores that use different
frequencies for barrier synchronization, the only change from
using a single, fixed, frequency for all cores is to make the
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Figure 3: Realizations of transmission lines.

transmitter and receiver tunable. A naive approach to pro-
viding tunability would require a tunable PLL in the trans-
mitter, and a tunable filter (demodulator) in the receiver,
but a tunable digital filter would have significant additional
delays. Fortunately, a viable receiver can be implemented
using a fixed-frequency filter by leveraging the same tunable
PLL used in the core’s transmitter. For this, the received
signal first goes into a mixer, which combines the signal with
a reference signal from the PLL. The output of the mixer
is a down-converted signal—signals from the input signal
are represented in the output, but their frequencies are re-
duced by the frequency of the reference signal6. The output
from the mixer is then fed to a band-pass filter whose fre-
quency is constant. Tuning is achieved by controlling the
frequency of the reference signal. For example, if the filter’s
pass band is centered at 1.8GHz and the group’s assigned
frequency is 8GHz, the reference signal would be generated
at 6.2GHz. To generate reference signals for transmitters
and receivers, we use digital PLLs that can be implemented
efficiently. Tuning is achieved by changing the PLL’s divider
and multiplier factors, without changing phase compensa-
tion and other hard-to-design circuitry of the PLL.

Because our barrier only requires detection of the pres-
ence or absence of a “tone” at a given frequency, the band-
pass filter used for the barrier receiver needs not have a
very steep frequency profile—it only needs to have low at-
tenuation at ”tone” frequency of the band allocated to the
group and large-enough attenuation for “neighboring” tones,
but the attenuation profile for frequencies in-between need
not be sharply defined. This allows this filter to be both
less expensive and faster: as explained in Section 3, the de-
lay introduced by the filter fundamentally depends on how
sharply its frequency profile is defined. Finally, the output
of the band-pass filter is then fed to an AM demodulator—a
diode and a small capacitor that tracks the amplitude of a
high-frequency signal. The delays in the filter and AM de-
modulator are heavily dependent on the width of the filter’s
pass-band and on the frequency at which the AM demodu-
lator is operating. In the proposed system, we use 1.8GHz
for AM demodulator’s frequency and several hundred MHz
for the filter’s pass-band.

4.3 Transmission Line Design
A transmission line (TL) consists of a signal conductor

(wire), surrounding dielectric, and one or more grounding
conductors that run in parallel with the signal wire. There
are three main realizations of TLs that are potentially suit-

6The output of the mixer also contains up-converted signals,
whose frequency is the sum of input and reference frequen-
cies. These signals are eliminated by the filter that follows.

able for on-chip implementation: stripline, microstrip, and
coplanar waveguide, as shown in Figure 3.

In designing TLs, the important characteristics are atten-
uation (forward loss), reflection (return loss), and propaga-
tion delay at different frequencies. These characteristics are,
in turn, affected by not only dimensions of the conductor,
but also the thickness and type of dielectric that separates it
from the ground plane, by the fact that the“ground plane” is
of finite dimensions, and by the size, shape, and impedance
of any connections, bends, etc. This is further complicated
by the fact that attenuation, reflection, and delay of TLs are
not constant across all frequency bands—typically, there is
a range of frequencies within which the TL has acceptable
characteristics. A TL behaves as a low-pass filter—the at-
tenuation slowly worsens as the frequency of the signal in-
creases up to some frequency (called the cut-off frequency),
with rapidly worsening attenuation beyond the cut-off fre-
quency. The end result of this is that any relatively accurate
characterization of TLs requires an electromagnetic (EM)
propagation simulator (ADS, MWO, Linpar, etc.).

We used MWO electromagnetic simulator [19] to deter-
mine appropriate on-chip implementations for all three real-
izations of TLs. In this analysis, we focused on achieving
good transmission characteristics (attenuation, reflection,
latency) in a relatively large spectrum, while minimizing the
total area consumption in the affected metal layers. After
careful consideration, we selected a 1–10GHz spectrum as
the target. Although a similar-sized spectrum at higher fre-
quencies (e.g., at 56–65GHz, which is often used for on-chip
RF circuitry in solid-state literature) would result in smaller
and somewhat faster amplifiers, at higher frequencies the at-
tenuation in TLs is much higher. To compensate for this,
we would need larger number of amplifiers and very sophis-
ticated analog circuitry at transmitters and receivers, which
will increase the delay. As a result, we chose to operate in
the <10GHz part of the spectrum. The optimized dimen-
sions for all three realizations of TLs in a 45nm process are
shown in Figure 3. The smallest dimensions are obtained
for stripline realization, which we choose for our design.

As a result of all these considerations and limitations, on-
chip TLs must be designed carefully, especially when the ge-
ometry of TLs is further complicated by having more than
just a single receiver and a single transmitter at the end-
points of the line. We find that these considerations have a
major effect on the characteristics of the TL. As an example,
consider a straight 16mm run of stripline implemented as in
Figure 3(a). With a single transmitter (at one end) and a
single receiver (at the other end) that are both impedance-
matched to the TL in the 1–10GHz frequency range, for-
ward loss (attenuation) is 5dB at 1GHz and 10dB at 10GHz,
return loss (attenuation of the reflected signal) is 15dB at



Parameters Small-Core Large-Core

Core Frequency, Issue Width, ROB Size 1 GHz, 2 (Out-of-Order), 64 3 GHz, 4 (Out-of-Order), 128
Cache Line Size 64 Byte 64 Byte
L1 Instruction Cache 32 KB, Private, 2 way, 1 cycle 32 KB, Private, 2 way, 1 cycle
L1 Data Cache 32 KB, Private, 2 way, 1 cycle 32 KB, Private, 4 way, 3 cycles
L2 Cache 16 MB, Shared, 16 way, 6 cycles 256 KB, Private, 8 way, 5 cycles
L3 Cache – 32 MB, Shared, 16 way, 23 cycles
Memory Latency 110 cycles 323 cycles
TLSync Barrier Latency (350/300/200/150MHz) 4/5/6/9 cycles 12/13/16/25 cycles

Table 1: Simulation Setup

1GHz and 10dB at 10GHz, and propagation delay is 110ps.
Although forward loss is significant (the received signal re-
tains only 10% of the transmitted power), the signal is still
significantly above the noise level and can be amplified using
a low-noise linear amplifier. The return loss and delay, how-
ever, are excellent: the reflected signal is weaker7 than the
one being sent, so reflection causes little interference, and
the delay is much lower than that of a traditional 16mm
wire implementation (even with optimal repeater spacing).
However, if we have 15 additional transmitters (at 1mm
intervals along the TL), the forward loss, return loss, and
propagation delay for the transmitter at the end of the TL
become 44dB, 7dB, and 139ps at 10GHz. This signal is
unlikely to be received successfully—the forward loss sup-
presses the signal well into the noise level, and the reflected
signal is nearly 10,000 times stronger than the weakened for-
ward signal. This loss occurs because impedance cannot be
matched equally well in a wide frequency range (more than a
few GHz), resulting in a slight-to-moderate impedance mis-
match at some frequencies. This mismatch adds significant
additional attenuation and reflection.

A practical implementation must have relatively few re-
ceiver/transmitter connections on the same TL segment,
with careful planning and design of those connections. Thro-
ugh careful experimentation, modeling, and EM simulation,
we found that up to 6-7 transmitters (and an amplifier at the
receiving end) can be safely implemented on a single trans-
mission segment. Reception segments are a bit more forgiv-
ing, allowing for 10-12 receivers (each with its own amplifier)
to reside on a segment fed by an amplifier. Our TLSync de-
sign is conservatively engineered to have five connections (a
transmitter and four receivers, or four transmitters and a
receiver) on each segment.

5. EXPERIMENTAL EVALUATION
We evaluate the performance impact of our TLSync bar-

rier in terms of raw barrier latency, and in terms of execu-
tion time on Livermore loop kernels [21], hand-parallelized
Dithering application from EEMBC benchmark [12] and the
Streamcluster application from the PARSEC benchmark [7].
Other PARSEC benchmarks use barriers rarely and their
performance is not affected much by barrier latencies.

For comparison, we also show results for a optimized im-
plementations of the widely-used centralized sense rever-
sal software barrier (shown as “Centralized”), the tourna-
ment barrier (among the most scalable software barrier im-
plementations [20]), and the hardware-assisted Barrier Fil-

7At 10GHz and beyond, the reflected signal becomes too
strong, which is part of the reason why the usable spectrum
for this transmission line ends at 10GHz

ter [23] implementation. In all three implementations, we
carefully arrange shared variables to avoid unnecessary co-
herence traffic and use the best-performing variant (e.g.,
ping-pong with I-Cache for Barrier Filter).

We obtain our performance results using the SESC [22]
cycle-accurate simulator. We model two types of cores, sum-
marized in Table 1, with core counts from 4 to 256. The
“Small-Core” setup models a “many-smaller-cores” approach
that can achieve large core counts (64 and beyond) in the
near future, while the “Large-Core” setup models the ap-
proach of using fewer high-performance cores, which can be
expected to achieve large core counts later. The last row in
Table 1 shows TLSync barrier latency with 350, 300, 200,
and 150MHz bands allocated to each barrier in terms of
clock cycles in each type of cores.

5.1 Barrier Latency
We measure the raw barrier latency by executing (in par-

allel) a tight loop with 64 barriers in the loop body, then
dividing the execution time with the number of completed
barriers.
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Figure 4: Raw barrier latency in Small-Core (top)
and Large-Core (bottom) configurations.

Figure 4 shows the results from this experiment. In both
configurations, TLSync barriers have very low latency which
stays nearly constant as the number of cores increases. This
is because the number of cores affects the barrier latency
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Figure 5: Performance of Livermore Loop 2 for various barrier mechanisms.

only slightly—e.g., from 16 to 256 cores (assuming the same
16mm by 16mm chip size) the longest path for signal prop-
agation changes from 24mm to 36mm and there are four
more amplifiers on that path. The resulting additional de-
lay is only 290ps (less than one cycle even for “Large-Core”).
The width of the frequency band allocated to the barrier
changes its latency noticeably (note the logarithmic scale in
Figure 4), but even with only a 150MHz band the TLSync
barrier outperforms the others by an order of magnitude
for small core counts and by two orders of magnitude for
large core counts. As expected, the centralized sense re-
versal barrier outperforms the tournament barrier up to a
certain point (16 small cores, 8 large cores). This is because
the tournament barrier executes more code in each core but
with little serialization among cores, whereas the central-
ized barrier uses a simple counter increment but serializes
increments from different cores. Barrier Filter reduces bar-
rier latency, but its scaling trend is similar to the other two
because there is still serialization in the barrier filter logic
that receives notifications from each arriving core.

5.2 Livermore Kernels
Livermore loops [21] have long been used in architecture

and compiler research for testing the scaling of parallel per-
formance. We use Livermore Kernels 2, 3 and 6 to evaluate
the performance impact of different barrier implementations
for workloads with large amounts of fine-grain parallelism.
In parallelizing these kernels, we followed the same method-
ology that was used for Barrier Filter work [23], and we
carefully aligned data structures to cache line boundaries
and assigned data in cache-line-sized chunks to minimize
coherence traffic. For the TLSync barrier, we only show the
results when a 350MHz band is allocated to a barrier group,
because results for bands sizes from 150MHz to 350MHz do
not perceptibly differ from each other.

Figure 5 shows cycles per loop iteration in Kernel 2 for
different barrier implementations across various input sizes.
For comparison, each chart also shows the results for se-

quential execution (“Serial”). In each chart, as input size
increases, more iterations are assigned to each core and the
impact of barrier latency decreases. With 16 cores (left half
of Figure 5), the difference in performance between TLSync
and other barrier implementations almost disappears when
the input size reaches 32,768. However, when the number of
cores is increased to 256 (right half of Figure 5), the same
work is split among more cores and the impact of barrier
latency increases—even with the input size of 65,536, the
TLSync barrier provides speedups of at least 2X relative
to tournament and Barrier Filter barriers. We also observe
that barrier latency has a larger impact with large cores, be-
cause they finish the work between barriers faster and expe-
rience longer barrier latencies. This means that, as technol-
ogy scales, barrier latency will have more impact regardless
of whether the increased transistor count is used to improve
performance of each individual core, to put more cores on
the chip, or for a combination of both.

Figure 6 shows the results of our experiments on Liver-
more kernel 3. Small and large cores have nearly identical
trends, so we omitted Small Core results for brevity.

With 16 cores, the trends are similar to those observed for
Livermore Loop 2. Loop 3 computes a simple inner prod-
uct of two vectors and is parallelized by computing a partial
sum-of-products in each thread, then combining the partial
sums in the “main” thread. With 256 cores, the parallel
portion of the execution is finished much faster than with
16 threads, but the serial part takes longer (256 partial sums
to add instead of 16) and dominates the execution time un-
til input sizes become sufficiently large. This causes “Serial”
execution to perform better than any of the parallel exe-
cutions until input sizes reach about 512. The same effect
reduces the impact of barrier latency for small inputs and
moves the convergence point for their performance beyond
the 8192 input size.

Livermore Loop 6 is a reduction for a general linear equa-
tion, and is parallelized using the coordinate axis transfor-
mation [23]. The results for Loop 6 are shown in Figure 7.
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Figure 6: Performance of Livermore Loop 3 with
various barrier mechanisms with 16 (top) and 256
(bottom) cores.

Again, we only show Large Core results for brevity because
Small core results show nearly identical trends.

The trends for 16-core execution are nearly identical to
those for Loop 2 and Loop3—the lower barrier latency in
TLSync results in better overall performance, with a trend
toward eventual convergence as input sizes increase. When
the core count increases to 256, the difference between TL-
Sync and longer-latency barrier implementations increases
because each core has less work between barriers and the
barrier latency becomes more significant.

In addition to lowering execution times, an important ef-
fect of a low-latency barrier implementation is that it re-
duces the input size necessary to achieve a parallel speedup.
In all three Livermore loops (Figures 5, 6, and 7) we observe
that with TLSync barriers the break-even point (where the
parallel execution time is equal to serial execution time) oc-
curs at smaller input sizes than with longer-latency barrier
implementations. This is very important for parallelization
of non-scientific applications—unlike scientific applications
where ever-larger input sizes are the norm, input sizes for
many consumer applications are either determined by stan-
dards (e.g., for video and audio) or grow less quickly than
core counts due to other limitations, e.g., display resolution
and human perception thresholds for games.

5.3 Streamcluster and Dithering
To examine the impact of various barrier mechanisms on

overall performance in non-scientific applications, we use the
Streamcluster benchmark from PARSEC [7] and the Dither-
ing benchmark from the EEMBC [12] benchmark suite. Stre-
amcluster is an RMS kernel that solves an online cluster-
ing problem using a streaming algorithm. To synchronize
threads between relatively short tasks along the stream, it
uses a large number of barriers (8,772 for 1K data points).
Dithering is an embedded benchmark that converts an im-
age into a error-diffused image suitable for printing using the
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Figure 7: Performance of Livermore Loop 6 with
various barrier mechanisms with 16 (top) and 256
(bottom) cores.

Floyd-Steinberg dithering algorithm. We hand-parallelized
the application to exploit fine-grained parallelism by pro-
cessing each row concurrently. In our implementation, a
pair of barriers were used to synchronize error propagation
between rows.

Figure 8 shows the parallel speedup of the two applica-
tions for different barrier implementations and numbers of
cores. We used 1K data points for the Streamcluster, and
a 4,096×3,072 image for the Dithering application. Each
application executed 8,772 and 6,144, respectively. In ad-
dition to the centralized, tournament, and Barrier Filter
barrier implementations, we compare TLSync performance
to a hardware barrier with reduction and notification trees
implemented with traditional wires with optimally-spaced
repeaters (shown as “R Tree&”) Recall that this hardware
barrier implementation requires a separate barrier tree for
each barrier group, and that the optimally-repeated chip-
spanning wiring of this implementation requires repeater
placement at frequent intervals along each wire, which inter-
feres with the layout of “local” logic (e.g., cores and caches)
that the wire is traversing. We observe that hardware bar-
riers (both variants of TLSync and “R Tree&”) show nearly
identical performance than software-only and Barrier Filter
implementations. This result is in-line with our results from
Livermore loops, and leads to two important conclusions
regarding the performance impact of barriers. First, vari-
ous scalable low-latency barriers have similar performance
on real workloads in spite of differences in actual barrier
latency—when barrier latency is low enough (tens of cy-
cles or less), execution time between barriers dominates the
execution time and further reduction in barrier latency pro-
vides minimal returns. Second, the advantage of scalable
low-latency barriers increases significantly as the core count
increases, not only up to the point when the application per-
formance stops scaling for other reasons (e.g., Streamclus-
ter), but also beyond the point (e.g., Dithering). As noted



Active Element Area (mm2) Power (mW) # Used Total Area (mm2) Total Power (W)

Amplifier [8] 0.008 8 9 0.08 0.07
Mixer [25] 0.005 1.46 16 0.08 0.02

Filter [29, 31] 0.07 10 16 1.12 0.16
AM demodulator [30] 0.002 3.03 16 0.02 0.05

Total – – – 1.30 0.30

Table 2: The cost of main active components used in TLSync for a 16-core processor in 45nm technology.
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Figure 8: Performance of Dithering (top) and
Streamcluster (bottom) with various barrier mech-
anisms.

earlier, this is because larger core counts result in less work
per core between barriers, turning barrier latencies into a
larger fraction of overall execution time, and thus increasing
the performance impact of barriers.

5.4 Implementation Cost
Our transmission line (TL) broadcast network with TL-

Sync barrier support has two main sources of cost—the use
of metal layers for the actual TL, and the use of silicon area
for active components of the design.

In terms of metal area, a TL should be implemented in
the top (global) metal layers. Because a TL is shielded from
the circuitry below by its “ground plane” conductor, it can
easily be routed over any local circuitry. Additionally, our
TL broadcast network only requires amplifiers at connection
points between segments, at millimeter-scale distances from
each other. This allows our TL network to be routed without
affecting the placement of circuitry within each core.

The main drawback of using TLs is in their large width:
a stripline implementation occupies a 12µm-wide strip in
three metal layers. Although the main conductor is only
6µm wide, an additional 3µm on each side must be free
of other wires or TLs to keep crosstalk within tolerable
bounds. This metal use is significantly larger than for tra-
ditional global wires, which have only a 0.135µm pitch in
45nm technology, with proportional scaling in future tech-
nologies. As explained in Section 3, a single chip-spanning

TL broadcast tree can support multiple barrier groups with
a very low latency, and the total metal area needed for this
tree in 45nm technology is only 1.7mm2—two lines (input
and output) for each segment, 24mm total length of all seg-
ments, using 12µm each in three layers for a total area of
2×24mm×0.012mm×3. Although this appears expensive, it
should be noted that it represents only 0.07% of the total
metal area for a 16mm×16mm chip with 10 metal layers.
Furthermore, the only requirement for “ground plane” con-
ductors is that they should not carry RF signals, so these
wide conductors can be leveraged for Vdd and Vss distribu-
tion. Alternatively, if the metal layers used for Vdd and Vss
are placed above and below the TL’s main conductor metal
layer, there would be no need for separate “ground plane”
conductors, thus reducing the metal area demands for TLs
by a factor of three.

The main active components in TLSync are the ampli-
fiers between transmission line segments, and the mixer,
filter, and AM demodulator (amplitude tracker) circuitry
in each receiver. Table 2 summarizes the chip area occu-
pied by each active component, together with energy con-
sumed by that component. We use the resistive-feedback
low-noise amplifier with a high gain from [8], the low-voltage
ultra-wideband down-conversion mixer from [25], the ultra-
compact active bandpass filter from [31] with low-power en-
hancements from [29], and the compact CMOS-based am-
plitude tracker from [30]. Because the original filter and
amplitude tracker were built in 180nm and 350nm CMOS
technology, their area and energy numbers were scaled to
45nm technology using conservative assumptions: we as-
sumed that area is reduced in linear (not quadratic) propor-
tion to feature size, and that power is reduced only because
of the reduction in supply voltage (this preserves the cur-
rent in analog circuitry to ensure its correct operation after
scaling). Note that all components are chosen to scale well
and avoid the use of large passive (e.g., inductor, capacitor,
and resistor) components, so their actual scaling is likely to
be better than described above.

6. CONCLUSIONS
This paper presents TLSync, a novel hardware barrier im-

plementation that uses the high-frequency part of the spec-
trum in a transmission-line broadcast network, thus leaving
the transmission line network free for non-modulated (base-
band) data transmission. In contrast to other implementa-
tions of hardware barriers, TLSync allows multiple thread
groups to each have its own barrier. This is accomplished by
allocating different bands in the radio-frequency spectrum to
different groups.

Our circuit-level and electromagnetic models show that
the worst-case latency for a TLSync barrier would be be-
tween 4ns and 10ns, depending on the size of the frequency
band allocated to the barrier. Our cycle-accurate simulation



results show that such TLSync barriers 1) provide significant
performance improvements for barrier-intensive multi-core
applications and 2) improve scalability over software and
some hardware-assisted implementations. Since the perfor-
mance improvement is not very sensitive to variations in
barrier latency caused by allocating larger or smaller (up
to a point) frequency bands to the TLSync barrier, tens
of different barriers can be supported using a single phys-
ical transmission-line chip-spanning tree while still leaving
the transmission line free for baseband (unmodulated) data
transmission.

Overall, we find that TLSync barrier support is a very
good candidate for cost-effectively providing scalable and
low-latency barrier synchronization for multiple thread gro-
ups in future many-cores.
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