
Effective Memory Protection Using Dynamic Tainting

James Clause, Ioannis Doudalis, Alessandro Orso, and Milos Prvulovic
College of Computing

Georgia Institute of Technology
{clause|idoud|orso|milos}@cc.gatech.edu

ABSTRACT
Programs written in languages that provide direct access to memory
through pointers often contain memory-related faults, which may
cause non-deterministic failures and even security vulnerabilities.
In this paper, we present a new technique based on dynamic taint-
ing for protecting programs from illegal memory accesses. When
memory is allocated, at runtime, our technique taints both the mem-
ory and the corresponding pointer using the same taint mark. Taint
marks are then suitably propagated while the program executes and
are checked every time a memory address m is accessed through a
pointer p; if the taint marks associated with m and p differ, the ex-
ecution is stopped and the illegal access is reported. To allow for a
low-overhead, hardware-assisted implementation of the approach,
we make several key technical and engineering decisions in the
definition of our technique. In particular, we use a configurable,
low number of reusable taint marks instead of a unique mark for
each area of memory allocated, which reduces the overhead of the
approach without limiting its flexibility and ability to target most
memory-related faults and attacks known to date. We also define
the technique at the binary level, which lets us handle the (very)
common case of applications that use third-party libraries whose
source code is unavailable. To investigate the effectiveness and
practicality of our approach, we implemented it for heap-allocated
memory and performed a preliminary empirical study on a set of
programs. Our results show that (1) our technique can identify a
large class of memory-related faults, even when using only two
unique taint marks, and (2) a hardware-assisted implementation of
the technique could achieve overhead in the single digits.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Test-
ing and Debugging; C.0 [General]: Hardware/Software Interfaces;

General Terms: Performance, Security

Keywords: Illegal memory accesses, dynamic tainting, hardware support

1. INTRODUCTION
Memory-related faults are a serious problem for languages that

allow direct memory access through pointers. An important class
of memory-related faults are what we call illegal memory accesses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

In languages such as C and C++, when memory allocation is re-
quested, a currently-free area of memory m of the specified size
is reserved. After m has been allocated, its initial address can be
assigned to a pointer p, either immediately (e.g., in the case of
heap allocated memory) or at a later time (e.g., when retrieving
and storing the address of a local variable). From that point on,
the only legal accesses to m through a pointer are accesses per-
formed through p or through other pointers derived from p. (In
Section 3, we clearly define what it means to derive a pointer from
another pointer.) All other accesses to m are Illegal Memory Ac-
cesses (IMAs), that is, accesses where a pointer is used to access
memory outside the bounds of the memory area with which it was
originally associated.

IMAs are especially relevant for several reasons. First, they are
caused by typical programming errors, such as array-out-of-bounds
accesses and NULL pointer dereferences, and are thus widespread
and common. Second, they often result in non-deterministic fail-
ures that are hard to identify and diagnose; the specific effects of an
IMA depend on several factors, such as memory layout, that may
vary between executions. Finally, many security concerns such as
viruses, worms, and rootkits use IMAs as their injection vectors.

In this paper, we present a new dynamic technique for protecting
programs against IMAs that is effective against most known types
of illegal accesses. The basic idea behind the technique is to use
dynamic tainting (or dynamic information flow) [8] to keep track
of which memory areas can be accessed through which pointers,
as follows. At runtime, our technique taints both allocated mem-
ory and pointers using taint marks. Dynamic taint propagation, to-
gether with a suitable handling of memory-allocation and deallo-
cation operations, ensures that taint marks are appropriately prop-
agated during execution. Every time the program accesses some
memory through a pointer, our technique checks whether the ac-
cess is legal by comparing the taint mark associated with the mem-
ory and the taint mark associated with the pointer used to access it.
If the marks match, the access is considered legitimate. Otherwise,
the execution is stopped and an IMA is reported.

In defining our approach, our final goal is the development of a
low-overhead, hardware-assisted tool that is practical and can be
used on deployed software. A hardware-assisted tool is a tool that
leverages the benefits of both hardware and software. Typically,
some performance critical aspects are moved to the hardware to
achieve maximum efficiency, while software is used to perform op-
erations that would be too complex to implement in hardware.

There are two main characteristics of our approach that were de-
fined to help achieve our goal of a hardware-assisted implementa-
tion. The first characteristic is that our technique only uses a small,
configurable number of reusable taint marks instead of a unique
mark for each area of memory allocated. Using a low number of

taint marks allows for representing taint marks using only a few
bits, which can considerably reduce the amount of memory needed
to store taint information, enable a hardware-assisted implementa-
tion of the approach, and ultimately reduce both space and time
overhead. Although using too few taint marks could result in false
negatives for some types of failures or attacks, the vast majority of
memory-related faults and attacks known to date would still be de-
tected. Moreover, the approach is flexible enough that it can handle
more problematic cases as needed by trading efficiency with effec-
tiveness.

The second characteristic is that the technique is defined at the
binary, rather than at the source, level. The ability to handle bi-
naries is necessary for IMA detection; all non-trivial applications
use external libraries or components whose source code is usually
not available. Because memory and pointers can be heavily ma-
nipulated by such external code, an approach that does not handle
these libraries would typically produce unsound results. Working
at the binary level also facilitates a hardware-assisted implementa-
tion, which operates at the machine level where there is little or no
knowledge of the source code structure.

To evaluate our approach, we developed a software-only pro-
totype that implements the approach for x86 binaries and heap-
allocated memory and used it to perform a set of empirical stud-
ies. To implement the prototype, we used a generic dynamic-taint
analysis framework that we developed in previous work [2]. We
also implemented a second prototype using a MIPS-based architec-
ture hardware simulator. This second implementation allowed us
to assess the time overhead that would be imposed by a hardware-
assisted implementation of the approach.

In the evaluation, we applied our technique to a set of programs
that we gathered from different sources and investigated several as-
pects of our technique. More precisely, we used (1) subjects with
known memory-related faults to investigate the effectiveness of our
technique in identifying such faults and (2) subjects with no known
memory-related faults to investigate the overhead imposed by the
technique (and as a sanity check). Overall, the results of the evalu-
ation are encouraging. First, they show that our technique can iden-
tify a large class of memory-related faults, even when using only
two taint marks. Second, the results provide initial evidence that
a hardware-assisted implementation of the technique could achieve
time overhead in the single digits, which would make it practical
for use on deployed software.

The contributions of this paper are:

• A novel technique for detecting IMAs that is effective and could
be efficiently implemented by leveraging hardware support.

• Two prototype implementations of the technique for heap-allocated
memory, a software-based one that works on x86 binaries and a
hardware-assisted one that works on MIPS binaries.

• A set of empirical studies that provide evidence of the effective-
ness and practical applicability of the approach.

2. MOTIVATING EXAMPLE
In this section, we provide a motivating example that we will use

in the rest of the paper to illustrate our technique. The code shown
in Figure 1 is taken from an on-line C and C++ reference manual [3]
and consists of a function that, given an integer n, generates and
prints a string of n − 1 random characters. We slightly modified
the original code by adding the use of a seed for the random number
generation, adding a call to a function (getSeedFromUser) that
reads the seed from the user and returns it in a parameter passed
by address. We also introduced a memory-related fault: at line 7,
we changed the terminating condition for the for loop from “i <

void prRandStr(int n) {
1. int i, seed;
2. char *buffer;

3. buffer = (char *) malloc(n);
4. if (buffer == NULL) return;

5. getSeedFromUser(&seed);
6. srand(seed);

7. for(i = 0; i <= n; i++) /* fault */
8. buffer[i] = rand()%26+’a’; /* IMA */
9. buffer[n - 1] = ’\0’;

10. printf("Random string: %s\n", buffer);
11. free(buffer);

}

Figure 1: An example of IMA.

n” to “i <= n”. With the current condition, in the last iteration
of the loop, the statement at line 8 writes a random character at
position buffer + n. Because the address at offset n is outside
the bounds of the memory area pointed by buffer, accessing it
through pointer buffer represents an IMA.

Faults of this kind are fairly common and are a good represen-
tative of memory-related faults that can lead to IMAs. As we dis-
cussed in the Introduction, one of the problems with IMAs is that
they are often non-deterministic, which is also true for our exam-
ple. Whether the write to address buffer + n would result in
a failure or not depends on the state of the memory at that address
(allocated or free) and on how that memory is used in the rest of
the execution. If the memory is not allocated, then the function
will appear to behave correctly. Even if the memory is allocated,
as long as the value at that address is not used for any further com-
putation in the program (e.g., if the next operation on it is a write),
no failure will occur. Conversely, if the value is used, the random
value written in it may cause a failure.

3. OUR TECHNIQUE
In this section we present our technique for identifying IMAs.

Although the technique is meant to operate on binary code, de-
scribing it at that level involves many low-level technical details
that would be distracting and would unnecessarily complicate the
presentation of the approach. Therefore, for the sake of clarity,
we first introduce our technique by describing how it works at the
source-code level. For the same reason, we also avoid discussing
some specific cases, such as static local variables, that our tech-
nique handles analogously to the cases we discuss. Finally, in the
general discussion of the approach, we assume to have an unlimited
number of taint marks available. After presenting our general ap-
proach at the source-code level, we then discuss how the approach
works when the number of taint marks is limited (Section 3.2) and
finally present low-level details of our x86-based implementation
(Section 4).

3.1 General Approach
As we discussed in the Introduction, our technique is based on

dynamic tainting, which consists of marking and tracking certain
data in a program at runtime. In our tainting approach, we instru-
ment a program to mark two kinds of data: memory in the data
space and pointers. When a memory area m in the data space is al-
located, the technique taints the memory area with a mark t. When
a pointer p is created with m as its target (i.e., p points to m’s ini-
tial address), p is tainted with the same taint mark used to taint m.
The technique also propagates taint marks associated with point-
ers as the program executes and pointers are used and manipulated.

Finally, when a memory area is accessed though a pointer, the tech-
nique checks that the memory area and the pointer have the same
taint mark. It should be noted that pointers can be stored in mem-
ory, so a memory location in our technique actually has storage for
two taint marks—one for the taint mark associated with the mem-
ory location itself, and the other for pointer taint associated with
the value stored in that location.

In rest of this section, we describe in detail the three parts of our
technique: tainting, taint propagation, and taint checking.

3.1.1 Tainting
This part of our technique is responsible for initializing taint

marks for memory and pointers.

Tainting Memory. Memory can be allocated in two main ways:
statically and dynamically.

Static memory allocations occur implicitly, as a consequence of
a global or local variable being declared. The memory correspond-
ing to global variables is allocated at program entry, by reserving
space in a global data area. For local variables declared in a func-
tion f , memory is allocated upon to f , by reserving space on the
stack to hold the variable’s value. For our example code in Figure 1,
assuming a 32 bit word size, 12 bytes of stack space are allocated
to store local variables i, seed, and buffer when prRandStr
is entered.

To taint statically-allocated memory, our technique intercepts
function-entry and program-entry events, identifies the memory area
used to store each local variable, and taints each individual area
with a fresh taint mark. The memory area for a variable can be
identified using its starting address and the size needed to store that
variable’s type. For an integer variable i, for instance, the memory
area is the range [&i, &i + sizeof(int)). For statically-allocated
arrays, the range is calculated analogously, with the exception that
the type’s size is multiplied by the number of elements in the array.

To illustrate the technique’s handling of static allocations, con-
sider again our example code. When function prRandStr is
entered, the technique creates three new taint marks, t1, t2, and
t3. Mark t1 is used to mark each of the four bytes in [&i, &i +
sizeof(int)). Analogously, marks t2 and t3 are used to mark ev-
ery byte of seed and buffer, respectively.

Dynamic memory allocations, unlike their static counterparts,
occur explicitly, as a consequence of a call to a memory-allocation
function. In C and C++, there is only a small set of memory-
allocation functions, and they all fulfill two requirements: they (1)
take as input the size of the memory area to allocate and (2) re-
turn either the initial address of a contiguous memory area of the
requested size or NULL if the allocation is unsuccessful.

Therefore, to taint dynamically-allocated memory, our technique
intercepts all calls to low-level memory-allocation functions, such
as malloc. When such a function returns successfully, the tech-
nique first identifies the memory area that was allocated as the
range [r, r + size), where r is the value returned by the memory-
allocation function and size is the amount of memory requested
passed as a parameter to the function. Then, it creates a fresh taint
mark and uses it to taint the allocated memory. Finally, the tech-
nique stores the initial and final address of the tainted memory area
(i.e., r and r + size) to be able to correctly handle memory deal-
locations (as discussed in Section 3.1.2).

To illustrate, consider the call to malloc at line 3 in our example
of Figure 1. Our technique would intercept the call and, if the call is
successful, would mark every byte in the range [buffer, buffer+
n) with a fresh taint mark.

Tainting Pointers. Pointers can be initialized in several ways,
depending on the type of memory they point to.

Pointers to dynamically-allocated memory are initialized, di-
rectly or indirectly, using the return value of the allocation func-
tion call used to allocate that memory area. Therefore, our tech-
nique taints this kind of pointer by, as before, intercepting calls to
memory-allocation functions that return successfully. At that point,
after tainting the allocated memory area, the technique also taints,
using the same mark used for the memory, the pointer p to which
the return value of the call is assigned. If other pointers were to
be derived from p, p’s taint mark would also propagate to those
pointers, as we discuss in Section 3.1.2.

For an example of this type of pointer initialization, consider
again the call to malloc at line 3 of our example. Because the re-
turn value of the call to malloc is assigned to variable buffer,
our technique would taint pointer buffer with the same taint
mark used to taint the dynamically-allocated memory area.

Pointers to statically-allocated memory can be initialized in
two ways, depending on whether that memory contains a scalar
value or an array. A pointer to a scalar value, such as an integer,
can only be initialized using the address-of operator (&), which
returns the starting memory address of the variable to which it is
applied. When the address-of operator is used on a variable, our
technique checks whether the area of memory that is being refer-
enced is tainted and, if so, assigns the same taint mark to the pointer
that stores the return value of the address-of operator.

For our example code, when the address-of operator at line 5 is
used to get the address of seed, our technique retrieves the taint
mark associated with the memory that stores seed and associates
it with getSeedFromUser’s parameter.

The situation is slightly different for pointers to static-allocated
arrays. The name of a static-allocated array is for all practical pur-
poses a pointer to the first element of the array. For example, if
an array is created as “int a[10]”, a can be used for access-
ing the array’s ith elements using pointer arithmetic, as *(a +
i), and for retrieving the initial memory address of the array, as
<pointer to int> = a. From a logical standpoint, when a
statically-allocated array is created (at function or program entry)
our technique first associates a taint marking to the memory used to
store the array, as described above, and then assigns the same taint
mark to the pointer corresponding to the array name. The practical
way in which this is done is described in Section 4.

3.1.2 Taint Propagation
One of the key challenges in defining our technique is the defini-

tion of a propagation policy for the taint marks. In dynamic taint-
ing, a propagation policy dictates how taint marks flow along data-
and control-dependencies as the program executes. In our con-
text, there are no cases where taint marks should propagate through
control-flow, so we can disregard control dependences and define
our propagation policy for data-flow only.

Our propagation policy treats taint marks associated with mem-
ory and taint marks associated with pointers differently. We de-
scribe how the policy works in the two cases separately.

Propagation of Memory Taint Marks. Taint marks asso-
ciated with memory are not actually propagated. They are asso-
ciated with a memory area when it is allocated and cleared when
that memory is deallocated. Therefore, the propagation policy for
memory taint marks is relatively straightforward: when an area
of memory is being deallocated, our technique must identify the
boundaries of the memory area and clear the taint marks associ-
ated with that memory area. It is worth noting that, when memory

is deallocated and our technique clears that memory’s taint marks,
the corresponding pointer marks are not cleared. Pointers that are
tainted with the same marks as the memory being released remain
tainted (unless of course the pointer variable is overwritten with
NULL or some other value). The fact that a pointer has a taint mark
for which there is no corresponding memory area is consistent with
the fact that it is a dangling pointer.

According to the above discussion, to suitably handle memory
taint marks, our technique must be able to (1) intercept memory
deallocations and (2) correctly identify the range of memory be-
ing deallocated. We explain how our technique can do this for
the two types of allocated memory in a program: statically- and
dynamically-allocated.

Dynamically allocated memory remains allocated until it is ex-
plicitly deallocated through a direct or indirect call to a memory-
deallocation function (i.e., free), which takes as a parameter the
initial address of the memory to be released. To identify memory
deallocations, our technique (1) intercepts calls to free from the
code or from a library, (2) uses the memory address passed as a
parameter to the call to retrieve the previously stored range of the
corresponding memory area (see Section 3.1.1), and (3) clears taint
marks for all the bytes in that memory area.

For our example in Figure 1, the technique would intercept the
call to free at line 11 and clear the taint marks for the region
[buffer, buffer + n).

Statically allocated memory is deallocated when the function
that allocated it returns (for local variables) or at program exit (for
variables allocated in the global data area). The latter case is clearly
irrelevant for our analysis. To handle deallocation of local vari-
ables, our technique intercepts function exits and clears all taint
marks associated with the memory corresponding to the exiting
function’s stack. Because our technique can simply clear the stack
at once, for local variables there is no need to store any memory
range when they are initially tainted.

In our example code, when prRandStr returns, our technique
clears taint marks associated with prRandStr’s stack, so remo-
ving taint marks associated with the memory that stores local vari-
ables i ([&i, &i+sizeof(int))), seed ([&seed, &seed+sizeof -
(int))), and buffer ([&buffer, &buffer + sizeof(char∗))).

Propagation of Pointer Taint Marks. Unlike memory taint
marks, taint marks associated with pointers are not just created and
cleared. They actually propagate as data flows through the program
during execution, which makes the propagation policy for pointer
taint marks considerably more complex than the one for memory
taint marks. To correctly account for pointer-taint propagation, our
technique must suitably handle all pointer arithmetic operations,
such as assignments, additions, subtractions, and even bitwise op-
erations. In other words, the propagation policy for pointer taint
marks must accurately model all possible operations on a pointer
and associate to each such operation a taint-propagation action that
assigns to the result of the operation a taint mark determined from
the taint marks of the operation’s operands.

For some operations, the corresponding taint-propagation action
is trivial. For instance, an assignment operation “p = q” between
two pointers can be easily handled by assigning any taint mark as-
sociated with pointer q to pointer p. Unfortunately, not all pointer
operations are as simple as assignments. For a simple example,
consider line 8 in Figure 1. The expression buffer[n] is actu-
ally using pointer arithmetic to calculate the memory location of
the nth element of buffer, that is, it is adding an integer (n) to a
pointer (buffer) and dereferencing the pointer to access a mem-
ory location. An accurate taint-propagation policy must make sure

that the result of “buffer + n” is tainted with the same mark as
the original pointer buffer.

A superficial analysis of typical pointer arithmetic operations
could produce a reasonable, initial propagation policy that accounts
for common operations used with their common meaning. For ex-
ample, additions or subtractions of a pointer p and an integer should
produce a pointer with the same taint mark as p; subtractions of two
pointers should produce an untainted integer (an offset); operations
such as adding or multiplying two pointers or performing logical
operations between pointers should be meaningless and simply re-
sult in an untainted value. Unfortunately, due to commonly used
hand-coded assembly functions and compiler optimizations, a sim-
ple propagation policy defined in this way would be highly inaccu-
rate and result in a large number of false negatives.

Even in our preliminary investigation, we encountered dozens
of cases where a simple policy would fall short. We report a spe-
cific example to provide the reader with some sense of why sim-
ple policies are inadequate. The example involves the strcpy
function of the C library. This is a commonly-used function that
copies the contents of a character array (src) to another character
array (dest) under the assumptions that the two arrays do not over-
lap. In the version of the C library that we inspected, the strcpy
function is implemented as follows. It first initializes two pointers
s and d that point to the initial address of src and dest, respec-
tively. It then calculates the distance dist between s and d by sub-
tracting the two pointers. Finally, it executes a loop that reads the
character at position s, copies it to the memory location s + dist,
and loops, incrementing s by one, until the character copied is the
string-termination character.

Using a simple policy like the one described above, this function
would always produce false positives. Such an approach would
taint the memory areas storing src and dest with taint marks tsrc

and tdest, respectively. When s and d are initialized to point to src
and dest, our technique would correctly propagate tsrc to s and
tdest to d. Offset dist would be an untainted integer that, when
added to s, would result in a pointer tainted with mark tsrc. An ac-
cess to any element of dest, which has taint tdest, through a pointer
resulting from s + dist, with taint tsrc, would result in an IMA be-
ing incorrectly reported.

To address this and other issues that we found in our preliminary
investigation, we defined a more sophisticated policy based on a se-
ries of factors: intuition, knowledge of C, C++, and the underlying
machine language, and patterns found in the software subjects that
we studied. We present a summary of our pointer-taint propagation
policy by discussing how it handles different pointer operations.

Addition and Subtraction (c = a +/- b). For these two opera-
tions, we consider different cases based on the taint marks of a
and b. If either a or b (but not both) is tainted with a given taint
mark t, then the result c is also tainted with mark t. This case
accounts for situations where a purely-numeric offset (e.g., an
array index) is added to (or subtracted from) a pointer.
If both a and b are tainted with two given marks ta and tb, re-
spectively, then c is tainted with taint mark ta + tb, in the case
of an addition, or ta − tb, for a subtraction. This approach lets
us handle a range of situations that may occur in real programs.
In particular, it accounts for cases where an offset is added to
(resp., subtracted from) a pointer, and the offset was computed
by subtracting (resp., adding) two pointers. To illustrate, con-
sider the strcpy implementation discussed above. Using this
policy, dist would be tainted with mark tdest− tsrc. When dist
is later added to pointer s, which has taint tsrc, the result would
be tainted with taint mark tsrc + (tdest − tsrc) = tdest. The re-
sulting pointer could therefore be used to access the elements of

array dest without our technique generating any false positives.
Finally, if neither a nor b are tainted, then c is also not tainted.
In this case, the two values are either not used as pointers or they
have not been initialized.
In our implementation, “untainted” means that the taint mark is
zero, so all of these cases can be implemented by simply adding
(subtracting) the operands’ taints whenever data values are added
(subtracted) in the program.

Multiplication, Division, and Modulo. Independently from the taint
mark of the operands, the result of any multiplication, division,
or modulo operation is never tainted.

Bitwise AND (c = a&b). Handling the bitwise AND operator is
problematic because, from the standpoint of pointer-taint prop-
agation, its use can have different meanings depending on the
value of its operands. In particular, there are cases where a pro-
gram may compute an AND between a pointer and an integer
to get a base address by masking the lowest bit of an address.
For example, the instruction “c = a & 0xffffff00” would
mask the lowest eight bits of pointer a. Unfortunately, the same
approach could be used to compute an offset by executing, for
instance, the instruction “c = a & 0x000000000f”.
To address this issue, we defined our propagation policy as fol-
lows. If a and b are either both untainted or both tainted, then c
is not tainted. We could not identify any reasonable case where
c could still contain useful pointer-related information in these
two cases.
If only one of a and b is tainted with a given taint mark t, con-
versely, we taint c with taint mark t if it points to an address
in the same memory area as the tainted operand. The rationale
is that the effect of the AND operation is in this case, by defi-
nition, to obtain a pointer to a base address from a pointer at a
given offset. If the number of taint marks is limited, however, c
may point to a different memory area that happens to be tainted
with the same mark as the memory area that the tainted operand
points to. (We discuss the use of a limited number of operands in
detail in Section 3.2.) Therefore, in this case, we apply a heuris-
tic after performing the first check successfully. The heuristic
consists of tainting c with taint mark t if the non-tainted operand
is a mask that results in preserving the 16 most significant bits
of the tainted operand (i.e., the mask is a number that, in binary
format, consists of at least 16 ones followed by no more than 16
zeros).

Bitwise NOT (c = ∼ a). A bitwise NOT can be used as an alterna-
tive way to subtract two values in some special cases. For exam-
ple, an operation such as “c = b - a - 1”, which could be
used to compute an offset between two pointers, could be imple-
mented more efficiently as “c = b + ∼ a”.1 To handle this
type of situation, if a is tainted with a given taint mark t, our
policy taints c with mark −t. This approach is consistent with
the way our policy handles additions and subtractions that we
described above.

Bitwise OR, and XOR. Because we could not identify any rea-
sonable scenario where applying one of these operators to one or
two pointers could produce a result that contains useful pointer-
related information, these operators produce untainted values in
our policy.

It is important to note that any of the above operators could be
used in very creative ways and, thus, programmers’ inventiveness
(or ingenuity) could result in instruction sequences that are not han-
dled correctly by a specific policy. Therefore, it is unlikely that a

1We actually encountered this kind of optimization in real code.

propagation policy can be proven to be sound and complete. As far
as our policy is concerned, as stated above, we defined it based on
domain knowledge and on experience, and we verified that it works
correctly for all the software that we studied so far, as discussed in
Section 5. If our planned additional experimentation would reveal
shortcomings of our policy, we will refine it accordingly.

3.1.3 Checking
This third and last part of the technique is responsible for check-

ing that memory accesses are legal and reporting an IMA other-
wise. The way in which our technique performs this check is straight-
forward. The technique intercepts any memory access, whether it
is a read or a write, performed by the application (including li-
braries) through a pointer. If the memory accessed and the pointer
used to access it are tainted with the same taint mark, then the ac-
cess is considered legitimate. Conversely, if the taint marks are
different, the technique considers the access an IMA and reports
it. Note that the marks are also considered to be different in cases
where either the pointer or the memory is not tainted but the other
is. These cases may correspond to (and help identify) some typical
types of memory-related failures, such as dereferencing an unini-
tialized pointer or a dangling pointer.

Considering again the code example in Figure 1, our technique
would perform a checking operation when the statements at lines 5,
8, 9, 10, and 11 are executed. These are all locations where memory
is accessed through a pointer (directly or through a method call).
Other memory accesses, such as the ones at line 7, are not checked
because they do not occur through pointers.

Currently, our technique is defined so that it halts program execu-
tion when it detects an IMA. However, the technique could also be
used to perform different actions upon detection, such as attaching
a debugger to the execution or just logging the IMA and allowing
the execution to continue. The specific action chosen may depend
on the context (e.g., in-house versus in-the-field or friendly versus
antagonistic environments).

3.2 Limiting the Number of Taint Marks
Ideally, our technique would use an unlimited number of unique

taint marks, which would allow for detecting all IMAs. Realisti-
cally, however, the number of distinct taint marks that the technique
can use must be limited for the technique to be practical.

Taint marks in our approach are represented as sets of n bits,
which limits the number of distinct taint marks to 2n. Although it
is possible to use a large set of bits for taint marks (e.g., 64 bits),
which would make the set of unique taint marks virtually unlimited,
the storage and manipulation of such large numbers of taint marks
would introduce unacceptable overheads. As stated previously, our
approach stores two taint marks for every memory location—one
mark for the memory-taint, and the other for the pointer-taint of the
value stored in that location. Using two 64-bit taint marks per byte
of data would result in a 16-fold increase in memory occupation,
which is prohibitive for many applications.

Most importantly, the use of a such a large number of taint marks
would prevent one of our key goals—a practical hardware-assisted
implementation of the approach. There are two primary reasons
why a large number of taint marks are incompatible with an hardware-
assisted implementation. First, the performance overhead in a hard-
ware-based implementation comes mostly from the competition be-
tween data and taint marks for space (e.g., in caches) and band-
width (e.g., on the system bus). Therefore, it is highly desirable
that the number of bits needed to store the taint marks is small rela-
tive to the size of the corresponding data. Second, using a large set
of bits for taint marks would dramatically affect the design com-

plexity of the hardware. In fact, an ideal solution for a hardware-
assisted implementation would use a single taint mark, thus requir-
ing a single bit for storage. Solutions that involve a slightly larger
number of taint marks, such as 2, 4, or possibly even 8 may still
be viable, but they may result in too much additional complexity in
the hardware design to be considered for actual implementation.

Based on these considerations, we decided to limit the number of
taint marks in our approach (and implementation) to a small, con-
figurable number. The drawback of this approach is that taint marks
have to be reused and thus, in some cases, several allocated mem-
ory areas may happen to have the same taint mark. In these cases,
if a pointer that was intended to point to one of these areas were
used to access a different region with the same mark, the resulting
IMA would remain undetected. In other words, when using a lim-
ited number of taint marks, IMAs are not detected with certainty,
but rather probabilistically. Assuming that we have 2n different
taint markings, a uniformly-distributed random assignment of taint
markings to memory regions, and IMAs such that a pointer ac-
cesses a random memory region, the probability of detecting each
IMA would be equal to P = 1− 1

2n . This is encouraging: even for
a single taint mark, our approach may still find 50% of all IMAs at
runtime.

Moreover, this estimate may actually be a lower bound for the ef-
fectiveness of our technique, for two reasons. First, using smarter-
than-random (re)assignment strategies could reduce the probability
of reassigning the same marks to two regions that could be accessed
through each other’s pointers. For example, in our technique we at
least ensure that the same taint mark is never assigned to contigu-
ous regions (when possible). Second, in cases where single faults
can result in multiple IMAs, the 50% probability of detection for
each IMA may correspond to an even higher probability of detect-
ing the underlying defect(s). According to the above formula, with
2 bits, 4 bits, and 8 bits of storage for taint markings we would
expect to detect each IMA with 75%, 94%, and 99.6% probability,
respectively.

As we discuss in Section 5, in our empirical evaluation we in-
vestigated the effectiveness of our technique when using only two
unique taint marks and got encouraging results: we found that the
actual IMA-detection results were even better than our expectations
based on the analytical computation outlined above. The reason is
that most of the common program defects and vulnerabilities result
in IMAs where a pointer is used to access a memory region that
is adjacent to the one the pointer is intended for, or where a dan-
gling pointer is used to access an unallocated region. Because our
approach does not assign the same taint mark to two contiguous re-
gions, it can detect these types of common IMAs even when using
only two distinct taint marks. In addition, different and possibly
more sophisticated IMAs could still be detected with the estimated
probability computed above (P = 1− 1

2n).
We conclude this section by noting that limiting the number of

taint marks does not lead to false positives because a pointer and
its corresponding memory region would still have the same taint
mark. This property gives us the ability to tune the number of taint
marks used to achieve a desired tradeoff between likelihood of IMA
detection and space and performance overhead, without worrying
about introducing false positives that would need to be investigated
and detract from the practical usability of the technique.

4. IMPLEMENTATION
Although in the previous sections we have kept the discussion at

the source-code level, our technique is actually defined to operate
(and be implemented) at the binary level. In this section, we dis-
cuss the main differences between operating at these two levels and

provide some details of the two prototype tools that we developed
to perform our empirical evaluation: a software-based implemen-
tation and a hardware-based implementation.

4.1 Operating at the Binary Level
Even if operating on binaries, most parts of the technique can be

implemented exactly as discussed in Section 3. Memory and point-
ers can be tainted just as described there. Program entry, function
entries, and calls to dynamic memory-allocation routines can be in-
tercepted to taint memory accordingly. Function exits and calls to
memory deallocation routines can be intercepted to clear memory
taint marks. Assignments of the return value of allocation func-
tions, uses of the address-of operator (i.e., its binary equivalent—
the load effective address instruction, lea), and assignments of the
starting address of a static array can be intercepted to taint pointers.
Finally, all propagation actions for pointer manipulation, such as
arithmetic and bitwise operations, can be implemented by simply
mapping the source-level operations to the corresponding hardware
instructions.

There is, however, one main challenge when implementing our
technique at the binary level, This challenge is related to tainting
statically-allocated memory. When operating at the binary level, a
great deal of information that is normally available at the source-
code level is lost (e.g., the memory ranges associated with local
variables or symbol-table information). Without this information,
our technique would be unable to individually taint each local vari-
able. Although in many cases such missing information can still
be gathered by leveraging debugging information and/or tools like
readelf and objdump,2 there are also cases where this infor-
mation cannot be retrieved. This could happen, for instance, when
operating on obfuscated or stripped binaries.

In these cases, our technique is still able to operate, albeit with
reduced precision; instead of using a unique taint mark for each
statically-allocated region of memory, it uses a single mark for the
entire range of local variables, which is always available in a bi-
nary. By doing this, the technique loses the ability to detect IMAs
where a pointer to a local variable is used to access a different lo-
cal variable, but it can still detect IMAs where a pointer to a local
variable is used to access a dynamically-allocated memory area or
vice versa. In particular, this less precise approach would still be
effective in detecting some stack-based attack types, such as stack
smashing.3

At this stage of the research, our implementation goal is to de-
velop a prototype that lets us investigate feasibility and usefulness
of our approach. Moreover, to be able to estimate the performance
of a hardware-assisted implementation, we also need to develop a
second implementation of our technique, using a simulator. There-
fore, instead of implementing fully-fledged tools, we developed
prototypes that handle heap-allocated memory only. Note that not
considering statically-allocated memory does not affect the effec-
tiveness of the technique when used to detect IMAs targeted at
memory allocated on the heap. Note also that IMAs involving the
heap are common, so even a partial implementation allows us to
perform a meaningful evaluation of the general approach. In prac-
tice, this means that our prototypes can detect IMAs resulting from
overflows of heap-allocated buffers, integer overflows, and format
string attacks that write to heap-allocated memory. The prototypes
cannot detect IMAs resulting from writes to statically allocated
memory, such as IMAs involving the global offset table, IMAs
that overflow stack-allocated arrays, and format string attacks that
2http://www.gnu.org/software/binutils/manual/html_
chapter/binutils_4.html
3http://insecure.org/stf/smashstack.html

write to statically-allocated memory. Finally, even though our pro-
totypes only detect heap-related IMAs, both implementations prop-
agate and check taint marks for all instructions, so the performance
overhead of our hardware-assisted prototype is likely to be similar
to the overhead for a fully-fledged implementation.

4.2 Software-based Implementation
To create our software-based prototype, we leveraged a generic

dynamic tainting framework, called DYTAN, that we developed in
previous work [2]. To instantiate the framework, we developed
custom tainting, propagation, and checking routines that implement
our approach and plugged them into DYTAN. DYTAN is in turn built
on top of the Pin dynamic-instrumentation framework [14], which
can instrument binary applications on the fly. Using dynamic bi-
nary instrumentation allows our prototype to handle dynamically-
loaded shared libraries, which would be difficult for an implemen-
tation that operates on source code (unless all shared libraries were
recompiled). Although Pin allows our implementation to handle
shared libraries, it cannot instrument the underlying Operating Sys-
tem (OS), which creates additional challenges for our implementa-
tion with respect to handling system calls and signals.

System calls allow an application to request a service from the
OS, such as opening a file or checking resource limits. In some
instances, system calls can modify the application’s memory. The
read system call, for instance, fills a provided buffer with data
read from a file descriptor. Because Pin does not instrument sys-
tem calls, we model their behavior in our prototype. Fortunately,
system calls are typically simple to model, so handling them is
more tedious than conceptually difficult.

Signals are a mechanism used by the OS to report exceptional
situations, such as a division by zero, to an application. Applica-
tions can register custom functions to handle a particular type of
signal; if an application registers a signal-handler function, the OS
invokes the provided function instead of the default action when the
corresponding signal occurs. Before invoking the function, how-
ever, the OS saves the current state of the execution, including the
value of all registers, and creates a clean stack frame for the sig-
nal handler. Then, when the handler returns, the OS restores the
saved state. All these operations occur within the OS, so our tech-
nique would not realize that registers values have changed, and may
incorrectly propagate taint marks. Therefore, to handle signals cor-
rectly and avoid generating spurious IMAs, our implementation in-
tercepts calls to and returns from signal handlers and suitably saves
and restores the correct taint marks.

4.3 Hardware-based Implementation
To implement our hardware-assisted prototype, we used a cycle-

accurate simulation approach, which is nearly ubiquitously used in
computer architecture research. In particular, we extended SESC
[17], an open-source simulator that models the complete execu-
tion of code through a modern processor and memory system. Our
modifications to SESC extend the simulator to also model, in de-
tail, the operation of the hardware structures needed to implement
our technique.

The modifications to the simulator include: (1) extending the
hardware registers to hold the taint markings associated with the
value in a register and (2) extending the processor core (e.g., arith-
metic and floating point units) so that taint markings propagate
along with their corresponding data. These modifications allow
the hardware to perform, in parallel, both the data propagation op-
erations (e.g., add, sub, and and) and the corresponding taint-
propagation actions. This ability to perform taint propagation in
parallel with computation on data is one of the key reasons we ex-

pect a hardware-based implementation of our approach to have a
very low performance overhead.

A naive approach for storing taint markings associated with mem-
ory locations would be to simply extend the memory by the number
of bits needed to store these marks. For example, per-word single-
bit taint markings would result in a two-bit taint added to each 32
bit memory word (one bit for memory taint and one bit for pointer
taint). However, from the perspective of commercial adoption, this
approach is infeasible. The cost of memory modules (i.e., RAM)
is dependent on high volume production. A non-standard (e.g., 34-
bit- or 136-bit-wide) module would cost much more than standard
32-bit or 128-bit-wide modules, and would require other expensive
changes in the system. For example, such a module would not fit
into a standard DIMM slots on a motherboard, so a new format for
these slots would be needed.

Instead of assuming that these tainting-specific memory mod-
ules and associated changes will become common, our technique
adopts a different approach that does not modify the system hard-
ware, except for the changes to the processor core outlined above.
To achieve this, we store the taint markings in a packed array, sep-
arate from their associated data. When the processor fetches data
from memory, it uses a simple index calculation to compute the ad-
dress of the corresponding taint, and issues a separate fetch request
for the taint marks. The steps needed to write to memory are anal-
ogous. Despite the additional memory accesses required by this
approach, the extensive caching used by modern processors, com-
bined with the favorable ratio between word size and the number
of bits needed to store taint marks, results in only a minor increase
in the actual number of reads and writes that access main memory
through the system bus.

In summary, our hardware-assisted prototype follows well estab-
lished guidelines for investigating architecture modifications, specif-
ically using a cycle-accurate simulator to model the proposed changes.
In addition, we also limit the scope of our architectural modifica-
tions to only the processor core, which increases the feasibility of
implementing our approach in actual hardware (not a simulator),
given today’s existing hardware components.

5. EMPIRICAL EVALUATION
The goal of our empirical evaluation is to assess effectiveness

and efficiency of our technique. To this end, we used the two pro-
totypes described in Section 4 on a set of real applications gathered
from different sources and investigated three research questions:
RQ1: How effective is our technique at detecting IMAs that in-

volve heap-allocated memory when using only a small number
of taint marks?

RQ2: Does our technique erroneously report as IMAs any legiti-
mate memory accesses?

RQ3: How much run-time overhead is a hardware-supported im-
plementation of the technique likely to impose?
RQ1 and RQ2 are concerned with the rate of false negatives

and false positives, respectively, generated by the technique. RQ3
is concerned with the efficiency of the technique in the case of a
hardware-assisted implementation.

Section 5.1 presents the software applications that we used in the
study. Sections 5.2, 5.3, and 5.4 present results and discussion for
each of our three research questions.

5.1 Experimental Subjects
In our empirical studies, we used two sets of subjects. The first

set consists of applications with known illegal heap-memory ac-
cesses. We selected both subjects used in related work and sub-
jects selected by looking at online bug databases. More precisely,

Application IMA location Type Detected
bc-1.06 more_arrays: 177 buffer overflow X
bc-1.06 lookup: 177 buffer overflow X
gnupg-1.4.4 parse_comment: 2095 integer overflow X
mutt-1.4.2.li utf8_to_utf7: 199 buffer overflow X
php-5.2.0 string.c: 3152 integer overflow X
pine-4.44 rfc822_cat: 260 buffer overflow X
squid-2.3 ftpBuildTitleUrl: 1024 buffer overflow X

Table 1: Results for RQ1 (effectiveness).

we selected from BugBench [13] the two applications with heap-
related IMAs: bc v1.06, an interactive calculator (≈14.4k LoC),
and squid v2.3, a web proxy cache server (≈93.5k LoC). bc has
two known IMAs and squid has one known IMA. Browsing on-
line bug databases, we identified four additional subjects: pine
v4.44, an email and news client (≈211.9k LoC), mutt v1.4.2.li,
another email and news client (≈453.6k LoC), gnupg v1.2.2, an
implementation of the OpenPGP standard (≈117.3k LoC), and ver-
sion 5.2.0 of the php language (≈558.2k LoC). Pine, mutt,
gnupg, and php all have one known IMA. We used these six sub-
jects to investigate RQ1.

Our second set of subjects consists of the twelve applications
from the integer component of SPEC CPU2000 [20]. These ap-
plications cover a wide range of possible program behaviors and
range in size from ≈3.1k LoC, for 181.mcf, to ≈1312.2k LoC,
for 176.gcc.4 The SPEC benchmarks were created as a standard-
ized set of applications to be used for performance assessment and
are close-to-ideal subjects for us for two reasons. First, they are
widely used and, thus, thoroughly tested (i.e., we do not expect
them to be faulty), so we can use them to address RQ2. Second,
they are commonly used to evaluate hardware-based approaches,
so they are also a good set of subjects for investigating RQ3.

5.2 RQ1
To address RQ1, we ran the four applications from our first set

of subjects while protecting them with our software-based tool and
configured our tool so that it used only two taint marks. For each
of the considered IMAs, we reran the corresponding application,
reproduced the IMA, and checked whether our tool detected it. Be-
cause there is a probabilistic component in our technique when
working with a limited number of taint marks, we repeated the
study five times and obtained consistent results. The results of the
study are shown in Table 1. For each IMA, the table shows the
application containing the IMA, the IMA location in the applica-
tion, the type of the illegal access, and whether or not our prototype
successfully detected the IMA.

As the table shows, our prototype was able to successfully detect
all five illegal memory accesses. This result is encouraging because
it indicates that even with only a very limited number of unique
taint markings (in this case, two), our technique can detect real
heap-based IMAs.

5.3 RQ2
To address RQ2, we performed a study similar to the one we

performed for RQ1: we protected the applications in the SPEC
benchmarks using our software-based tool, run each of them five
times against their test-input workload, and checked that no IMA
was reported. Because we consider the programs in the benchmark
to be virtually bug-free, due to their widespread usage, reporting an
IMA would correspond to a false positive. Note that, although our
technique should not generate any false positive by construction,

4Detailed information about the SPEC CPU2000 applications is
available at http://www.spec.org/cpu/CINT2000/.

boolean Domain_Exit(ft F,lt Z,zz *Status) {
...

1259. fclose(MsgFilePtr);
...
// expanded from macro STAT

1268. return(Test = *Status == 0 ?
True :
PrintErr (F, Z, *Status));

}

boolean PrintErr(ft F,lt Z,zz Status) {
...

71. SendMsg (0, Line);
...

}

boolean SendMsg (int MsgLevel, char *MsgLine) {
...

278. if (MsgFilePtr != NULL) {
279. fprintf (MsgFilePtr, "%s", MsgLine);

...
}

Figure 2: IMA in 255.vortex

we have no formal proof of that. Therefore, this study served as a
sanity check for both our technique and our implementation.

Although we observed the expected outcome for eleven of the
twelve applications (i.e., no IMAs reported), the prototype re-
ported an IMA for 255.vortex, when function fprintf is
called from function Ut_SendMsg. After examining 255.vortex’s
source code, we discovered that the IMA reported was indeed the
consequence of a memory-related fault in the code.

We illustrate the fault in Figure 2. Function Domain_Exit is
used to clean up resources before the program exits. In particular, at
line 1259, it closes a FILE* pointer called MsgFilePtr. When
the expression at line 1268 evaluates to false, the program calls
PrintErr, which in turn calls SendMsg. Function SendMsg
then attempts to write to the previously closed MsgFilePtr and
generates an IMA. The problem occurs because FILE* pointers
point to a dynamically allocated area of memory that is allocated
through a call to fopen, and deallocated by calling fclose. When
255.vortex is protected by our tool, MsgFilePtr and its as-
sociated area of memory are both tainted with the same mark. When
fclose is called and frees the memory pointed by MsgFilePtr,
that memory is untainted, but MsgFilePtr retains its mark. There-
fore, when later on SendMsg attempts to write to MsgFilePtr,
our tool intercepts the memory access, detects that the pointer is
tainted while the memory is not, and reports an IMA.

After verifying that the problem reported was an actual IMA, we
checked the documentation for the SPEC benchmarks and found
that it was indeed a known fault in 255.vortex that was corrected in
the subsequent release of the benchmarks, which further confirms
the relevance of the fault. We also found that it was the only known
memory-related fault in that release of the benchmarks.

Overall, the results for RQ2 are fairly positive. Not only our
technique did not generate any false positives, but it was also able
to detect the only memory-related fault in the whole set of subjects.

5.4 RQ3
For RQ3, we could not use the software-based implementation

of our approach. First, we developed our prototype by focusing
on functionality rather than efficiency. We used a generic taint-
ing framework that already trades speed for flexibility and imposes
approximately a 30x time overhead [2]. In addition, we imple-
mented our tainting, propagation, and checking approach as exter-
nal functions that are invoked by the framework for every memory
access, which results in a considerable additional overhead. As a

Figure 3: Performance overhead in a hardware-assisted implementation of our approach for different numbers of taint marks.

result, the overall overhead of the software-based implementation
varies between 100x and 500x, depending on the application. Sec-
ond, no software implementation can approach the efficiency of a
hardware-assisted implementation due to the intrinsic cost of in-
strumenting almost every instruction in the code.

Therefore, to investigate this research question, we used the hard-
ware-assisted implementation of our approach described in Sec-
tion 4.3, which uses the SESC [17] cycle-accurate simulator to
model a near-future processor and a memory system. More pre-
cisely, we model a 4-issue out-of-order 5GHz processor core with
16KB L1 caches, 2MB L2 caches, and 300-cycle memory latency.
Our simulated processor uses the MIPS IV instruction set, which
is considerably different from the x86 instruction set used in our
software-based implementation. Therefore, our experiments actu-
ally evaluated our approach with two different types of binaries.

Similar to what we did for RQ2, we ran all of the SPEC bench-
marks against their test-input workload and used the built-in func-
tionality of the simulator to measure the overhead imposed by our
technique on the benchmarks. For this study, we ran the technique
for different possible numbers of taint markings: 2 (1 bit), 4 (2
bits), 16 (4 bits), and 256 (8 bits). In this way, we were able to
get a more thorough assessment of the feasibility of the approach
in cases where more than two taint marks could improve the effec-
tiveness of the approach.

The results of the study are shown in Figure 3 using a block dia-
gram. For each application and each number of taint marks consid-
ered, the figure shows on the Y-axis the time overhead expressed as
a percentage of the base execution time for the application (i.e., the
execution time without our technique). The rightmost entry on the
X-axis shows the average overhead results across all applications.

As the figure shows, the performance overhead increases as we
increase the number of taint bits, as expected. The main reason for
the increase is that taint marks and actual data are competing over
cache and memory bandwidth. The figure also shows that the over-
head varies across applications, which is due to different locality
properties and different runtime behaviors. 186.crafty, for in-
stance, has a small working set that fits inside the data L1 and L2
cache, even after taint marks are added. Therefore, the overhead for
186.crafty is extremely low. At the other end of the spectrum
is 181.mcf, which has high cache miss rates, exhibits very poor
spatial locality in general (i.e., when it accesses a memory loca-
tion, it does not have a strong tendency to access nearby locations),
and behaves even worse when taint marks are added. In this case,
the high overhead is mainly caused by the frequent reloads of the
cache memory. However, even under these highly unfavorable cir-
cumstances, the overhead imposed by our technique on 181.mcf
is lower than 25% (even with 8-bit taint markings).

Overall, the performance overhead results are also encourag-
ing. On average, a hardware-supported implementation of our tech-
nique would impose about 1% performance overhead when only
two taint marks are used and about 7% overhead when 256 taint
marks are used. These numbers, if confirmed in further exper-
imentation, would support the use of the technique on deployed
software. They would also make a case for building the needed
hardware support into processors, especially considering that many
other applications using dynamic tainting are being investigated in
various fields, including security and software testing.

5.5 Threats to Validity
The main threats to the external validity of our results are the lim-

ited number of applications considered and the focus on only one
class of IMAs. Experiments with additional subjects containing
other types of IMAs may generate different results. However, the
applications we used in our studies are real(istic), representative,
and widely used. Moreover, heap-related IMAs are a widespread
and relevant class of IMAs [13]. Even if further evaluation were to
show that our technique only works with this class of failures, the
fact that our technique is able to detect them with high effectiveness
and low performance overhead would be a good result in itself.

6. RELATED WORK
There is a large body of existing work, across many disciplines,

that attempts to detect IMAs in C and C++ programs. In this sec-
tion, we discuss the work most closely related to our research.

Program-analysis-based tools (e.g., [7, 9, 11, 23]) attempt to dis-
cover IMAs by performing various types of static analysis on an ap-
plication. Although powerful, these tools may produce a large num-
ber of false-positives due to the conservative nature of the analysis
they perform, which is likely to alienate users. Language-based ap-
proaches, such as Cyclone [12] and CCured [15], are another form
of static analysis that attempts to remove the possibility of IMAs by
translating unsafe languages into safe variants. Some of these ap-
proaches attempt to perform an automated translation, but for large
applications they still involve programmer intervention, in the form
of rewriting or annotations. Overall, approaches based on static
analysis can be considered complementary to dynamic approaches
in terms of strengths and weaknesses.

Dynamic approaches for IMA detection instrument a target ap-
plication to perform run-time monitoring. Instrumentation can ei-
ther be done at the source-code level (e.g., [6, 18, 24]) or at the
binary level (e.g., [10, 19]). Source-code level approaches typ-
ically impose less overhead because they can leverage additional
information not present at the binary level. However, they have the
problem of not being able to track memory allocations or accesses

within external black-box libraries and components. Approaches
based on dynamic instrumentation, conversely, can instrument code
on the fly and handle pre-compiled external code. Among the ap-
proaches that work at the binary level, Valgrind [19] is the most
similar to our technique, in that it uses a bit to keep track of which
memory has been defined and identify illegal accesses to unini-
tialized memory. Unlike our technique, however, Valgrind cannot
detect accesses to memory that has been initialized, but is being
accessed through an illegal pointer.

Beside these software-based approaches, there have also been
numerous proposals for hardware-assisted detection of IMAs. In
particular, SafeMem [16] uses existing memory-error correcting
codes to detect accesses to unallocated memory. Our approach is
more general than SafeMem, in that we also detect illegal accesses
to allocated memory. MemTracker [22] associates a state with each
memory location and uses a programmable state machine to detect
accesses incompatible with the location’s current state (e.g., reads
from uninitialized locations). MemTracker targets a slightly differ-
ent problem and cannot distinguish between accesses of the same
kind from different pointers. For example, MemTracker can allow
(or disallow) all reads from a location, but cannot prevent reads
from a given pointer while allowing reads from another one.

There have also been several proposals (e.g., [1, 4, 5, 21]) of
techniques that use hardware support to taint data that comes from
external inputs, propagate this taint at runtime, and detect when
input-derived values are used as jump addresses or fetched as in-
structions. These mechanisms, as originally proposed, cannot sup-
port the taint propagation rules needed for our new IMA-detection
technique. However, they demonstrate that hardware support can
provide taint propagation with nearly negligible overheads.

7. CONCLUSION
This paper presents a novel dynamic technique for detecting In-

valid Memory Accesses (IMAs). Our approach (1) taints a memory
region and the pointers that are allowed to point to that region with
the same taint mark, (2) propagates taint marks, and (3) checks
memory accesses performed through pointers to make sure that the
memory and the pointer used to access it have the same taint mark.
If this is not the case, it reports an IMA and stops the execution.

Our approach has several key advantages over previously-proposed
techniques for dynamic IMA detection. First, it is highly effective;
in our empirical evaluation, it was able to identify all of the IMAs
in the real programs that we considered. Second, it is amenable
to a hardware-assisted implementation. Detailed simulations of a
hardware-based implementation show performance overheads be-
low 10%. Finally, unlike previous IMA detection techniques, our
technique can easily be tuned to achieve different tradeoffs between
performance overhead and probability of detecting IMAs.

In future work, we will extend the implementation of our tech-
nique to add support for statically-allocated variables. We will also
perform additional empirical evaluation using a broader range of
memory faults. Finally, we will investigate additional optimiza-
tions and design improvements that could further lower the perfor-
mance overhead of our hardware-assisted implementation.

Acknowledgments
This work was supported in part by NSF award CCF-0541080 to
Georgia Tech and by the Department of Homeland Security and
US Air Force under Contract No. FA8750-05-2-0214. Any opin-
ions expressed in this paper are those of the authors and do not
necessarily reflect the views of the US Air Force.

8. REFERENCES
[1] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.

Understanding data lifetime via whole system simulation. In SSYM’04:
Proceedings of the 13th conference on USENIX Security Symposium, pages
22–22, Berkeley, CA, USA, 2004. USENIX Association.

[2] J. Clause, W. Li, and A. Orso. Dytan: A Generic Dynamic Taint Analysis
Framework. In Proceedings of The International Symposium on Software
Testing and Analysis (ISSTA 2007), pages 196–206, London, UK, July 2007.

[3] cplusplus.com. Malloc example, June 2007.
http://www.cplusplus.com/reference/clibrary/cstdlib/malloc.html.

[4] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture, pages 221–232,
Washington, DC, USA, 2004. IEEE Computer Society.

[5] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible informatin flow
architecture for software security. In International Symposium on Computer
Architecture, 2007.

[6] D. Dhurjati and V. Adve. Backwards-compatible array bounds checking for C
with very low overhead. In ICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 162–171, New York, NY, USA,
2006. ACM Press.

[7] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically
detecting all buffer overflows in C. SIGPLAN Not., 38(5):155–167, 2003.

[8] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147,
1974.

[9] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for
building system-specific, static analyses. SIGPLAN Not., 37(5):69–82, 2002.

[10] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the Winter Usenix Conference, 1992.

[11] D. L. Heine and M. S. Lam. A practical flow-sensitive and context-sensitive C
and C++ memory leak detector. SIGPLAN Not., 38(5):168–181, 2003.

[12] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A Safe Dialect of C, in 2002 USENIX Annual Technical Conference,
pages 275–288, 2002.
, Proceedings of the General Track: , June 10-15, 2002

[13] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks for
evaluating bug detection tools. In Proc. of the Workshop on the Evaluation of
Software Defect Detection Tools, 2005.

[14] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI
2005), pages 190–200, 2005.

[15] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst.,
27(3):477–526, 2005.

[16] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ecc-memory for detecting
memory leaks and memory corruption during production runs. In HPCA ’05:
Proceedings of the 11th International Symposium on High-Performance
Computer Architecture, pages 291–302, Washington, DC, USA, 2005. IEEE
Computer Society.

[17] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. SESC simulator, January 2005.
http://sesc.sourceforge.net.

[18] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow detector. In
Proceedings of the Network and Distributed System Security (NDSS)
Symposium, pages 159–169, 2004.

[19] J. Seward and N. Nethercote. Using Valgrind to detect undefined value errors
with bit-precision. In ATEC’05: Proceedings of the USENIX Annual Technical
Conference 2005 on USENIX Annual Technical Conference, pages 2–2,
Berkeley, CA, USA, 2005. USENIX Association.

[20] Standard Performance Evaluation Corporation. SPEC Benchmarks.
http://www.spec.org, 2000.

[21] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An architectural
framework for user-centric information-flow security. In MICRO 37:
Proceedings of the 37th annual IEEE/ACM International Symposium on
Microarchitecture, pages 243–254, Washington, DC, USA, 2004. IEEE
Computer Society.

[22] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. Memtracker:
Efficient and programmable support for memory access monitoring and
debugging. In High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, Vol., Iss., Feb. 2007, pages 273–284,
2007.

[23] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic, path-sensitive
analysis to detect memory access errors. SIGSOFT Software Engineering
Notes, 28(5):327–336, 2003.

[24] W. Xu, D. C. DuVarney, and R. Sekar. An efficient and backwards-compatible
transformation to ensure memory safety of C programs. SIGSOFT Softw. Eng.
Notes, 29(6):117–126, 2004.

	Untitled

	Appears: Appears in the Proceedings of the22nd IEEE/ACM International Conference on Automated Software Engineering (ASE), November 2007.

