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Abstract

This paper presents Flexilaint, a hardware accelerator
for dynamic taint propagation. FlexiTaint is implemented
as an in-order addition to the back-end of the processor
pipeline, and the taints for memory locations are stored as
a packed array in regular memory. The taint propagation
scheme is specified via a software handler that, given the
operation and the sources’ taints, computes the new taint
for the result. To keep performance overheads low, Flex-
iTaint caches recent taint propagation lookups and uses a
filter to avoid lookups for simple common-case behavior.
We also describe how to implement consistent taint propa-
gation in a multi-core environment. Our experiments show
that FlexiTaint incurs average performance overheads of
only 1% for SPEC2000 benchmarks and 3.7% for Splash-2
benchmarks, even when simultaneously following two dif-
ferent taint propagation policies.

1. Introduction

Software debugging and verification are becoming in-
creasingly complex, and many bugs are also vulnerabilities
that can be used as security exploits. To help deal with these
problems, a variety of runtime checking and tracking ap-
proaches have been proposed. A number of these proposals
have adopted dynamic taint propagation, or tainting. Typ-
ically, a tainting scheme associates a taint with every data
value. The taint is usually a one-bit field that tags the value
as safe (untainted) or unsafe (tainted). Data from trusted
sources starts out as untainted, whereas data from an un-
trusted source (e.g. network) starts out as tainted. Taints are
then propagated as values are copied or used in computa-
tion. To detect potential attacks, a tainting scheme looks for
unsafe uses of tainted values. For example, using a tainted
value as a jump target address is considered unsafe because
such a jump may allow the attacker to hijack the control
flow of the application.

Software taint propagation schemes were proposed as a
comprehensive solution against specific types of attacks [,
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10, 11, 20, 23]. However, software-only schemes have large
performance overheads and have significant problems with
self-modifying code, JIT compilation, and multithreaded
applications. Hardware-assisted schemes try to avoid these
drawbacks [2, 7, 8, 18].

Many hardware tainting schemes suffer from two prob-
lems that limit their practicality. First, their implementa-
tion requires non-standard commodity components and a
redesign of the entire processor core. Since taint bits are
added to every value in memory and in the processor, wider
memory, registers, buses and bypasses are needed. The sec-
ond problem is limited flexibility in specifying taint propa-
gation rules, and in the number of taint bits associated with
a value. Most schemes provide single-bit taints with little or
no flexibility in how that taint is propagated. Those that al-
low multi-bit taints do so by significantly increasing the im-
plementation cost, as memory modules, buses, and the pro-
cessor core must be designed to accommodate the largest
supported taint. Similarly, schemes that provide some flex-
ibility in specifying taint propagation rules are still limited
to simple rules that mainly target only one particular use of
tainting - tainting of inputs to detect attacks.

This paper introduces FlexiTaint, a programmable ac-
celerator for taint propagation. Instead of directly imple-
menting a specific set of tainting policies, FlexiTaint is pro-
grammed at runtime to efficiently follow a desired tainting
policy. This allows a FlexiTaint-equipped system to imple-
ment radically different taint propagation policies for dif-
ferent applications, to upgrade its taint propagation policies
as new attacks are devised to circumvent existing policies,
and even to use tainting for uses other than attack detec-
tion/avoidance. As an accelerator, FlexiTaint is not a com-
prehensive security solution by itself, but rather a proof-of-
concept hardware substrate that can speed up an important
class of security solutions, namely taint propagation.

One of the main advantages of taking the programma-
bility approach for taint propagation reduced risk of obso-
lescence. Whereas a software tool can quickly be upgraded
to guard against new attacks, hardware based tools can only
be upgraded by replacing the processor or the entire system.
This problem is exacerbated by the need to maintain back-



ward compatibility with existing software — once a hard-
ware mechanism is implemented in a processor, new pro-
cessors must continue to support that functionality. As a
result, a hardware scheme can continue to increase the cost
and complexity of systems for years, long after attackers
have discovered how to circumvent it. This concern makes
it very risky to directly implement any specific taint prop-
agation policy or set of policies in a commodity processor.
Our programmable accelerator approach allows taint propa-
gation policies to be changed by software as new attacks are
devised, reducing the risk of hardware becoming obsolete.

Another advantage of FlexiTaint is that it decouples taint
storage and processing from data. We separate taint infor-
mation from the corresponding data and store the taints as
a packed array in virtual memory. This organization still
provides fast taint lookups, but makes the system memory
and buses taint-agnostic; they remain the same regardless of
whether tainting is used or not. To avoid extensive modifi-
cations to the processor core, FlexiTaint also separates taint
and data processing by implementing taint-related logic as
an in-order addition to the back-end of the pipeline. This
leaves the processor core largely unmodified and allows
data to be processed at full speed. Furthermore, by separat-
ing taint storage and processing from data, we avoid perfor-
mance and storage overheads when tainting is not used. In
this case, no memory needs to be allocated for taint storage
and the processor core and caches operate on data exactly
like they would without support for tainting.

With FlexiTaint, the maximum supported number of taint
bits affects only the hardware of the back-end taint pro-
cessing engine, so the hardware cost remains low even
when supporting large taints. To allow programmability
of taint propagation rules, FlexiTaint uses a Taint Propa-
gation Cache (TPC) which is tagged by operation type (e.g.
add, subtract, load, store, etc.) and input-operand taints.
Misses in the TPC are handled by a user-level software
handler, which computes the resulting taint for the missing
operation-taints combination and inserts it into the TPC. To
improve TPC performance, we employ a programmable fil-
ter that can be set up to bypass the TPC lookup for some in-
struction types and use simple common-case rules instead.
This flexible approach allows FlexiTaint to act as an accel-
erator for a wide variety of taint propagation rules, which
can be changed simply by changing the software of the TPC
miss handler.

To evaluate our FlexiTaint mechanism, we program it
with a set of “benchmark™ tainting schemes. The first
scheme is a representative of input-tainting schemes from
prior work. The second scheme tracks which values in an
application are valid heap pointers, which is useful for ac-
celerating memory leak detection. This scheme is different
from existing input tainting schemes, and we use it to show
that FlexiTaint can be used to accelerate dynamic data flow

analyses beyond traditional security uses. The third scheme
we use in our evaluation is to simultaneously do input taint-
ing and heap-pointer tracking, to evaluate the performance
impact of multi-bit taints. Even for this scheme, our results
indicate that FlexiTaint incurs low performance overheads
(relative to a system without any taint propagation). These
overheads are less than 1% on average and 8.4% worst-case
for SPEC benchmarks, and 3.7% on average and 8.7% worst
case on Splash-2 benchmarks.

2. Related Work

Static taint analysis was proposed to find format string
vulnerabilities in C programs [20] or to identify potentially
sensitive data [12]. Taint propagation is also similar to run-
time type checking, where each object is “tainted” with its
type and operations are checked for type-safe behavior in
languages such as Java or CCured [9].

Perl [11] taints external data, and its taint propagation
is compiled into the code by the just-in-time compiler or
performed by the interpreter. Newsome et al. [10] use run-
time binary rewriting to taint external inputs and propagate
taints. Xu et al. [23] tag each byte of data, with elaborate
policies to track these tags for security.

Hardware support has been proposed to improve perfor-
mance of tainting and to accommodate self-modifying code
and multithreading. Suh et al. [18] propose a low-overhead
architectural mechanism that protects programs by taint-
ing data from untrusted I/O and then propagating this taint.
It provides some flexibility for particular taint propagation
rules. Chen et al. [2] use the notion of pointer taintedness
to raise alarms whenever a tainted pointer is dereferenced
by the program. Minos [4] extends the microarchitecture
with integrity bits and propagation logic that prevents con-
trol flow hijacking. TaintBochs [3] taints sensitive data and
propagates this taint across system, language, and applica-
tion boundaries. TaintBochs provides limited configurabil-
ity to support different tradeoffs between security and the
number of false alarms. The RIFLE architecture [21] sup-
ports runtime information flow tracking, and allows to en-
force their own policies on their programs.

To our knowledge, Raksha [8] is the most configurable
hardware taint propagation mechanism proposed to date. It
supports multi-bit taints and has taint propagation registers
that can be programmed to implement up to four different
policies. Raksha also provides some flexibility in how the
taints are propagated for each type of instructions. How-
ever, this flexibility is limited mainly to selecting whether
or not a given input operand’s taint should or shouldn’t be
propagated to the result, and to selecting whether the taint
operands should be OR-ed or AND-ed. This is sufficient
to efficiently implement most variants of existing tainting
policies. In contrast, FlexiTaint can be used with any set of



propagation rules in which the taint of the result depends
only on the opcode and the taints of the operands.

Another important consideration for taint propagation
schemes is how taints are stored and manipulated. Existing
hardware tainting mechanisms tightly couple the data value
and its taint: memory locations are extended with extra bits
for the taint, and buses and caches are similarly affected.
Unlike prior hardware support for taint propagation, Flexi-
Taint stores and processes taints separately from data. For
storage of memory taints, FlexiTaint uses the approach used
to store memory state (tags) in MemTracker [22]. Taints
are stored as a packed array in virtual memory, allowing
use of standard memory modules and existing OS memory
management mechanisms. Taint processing in FlexiTaint is
implemented as an in-order addition to the back-end of the
processor pipeline to minimize impact on the already com-
plex out-of-order core.

3. Overview of FlexiTaint
3.1. Storing taint information

Taint information must be associated with every word in
memory. Previously proposed hardware support for taint
propagation stores the taint along with the corresponding
data, effectively widening the memory word. This approach
has a number of drawbacks. First, it requires non-standard
memory modules to keep the extra taint bits with each
word. Second, these taint bits are wasted when no taint-
ing is needed. Finally, special hardware and instructions
are needed to access these taint bits, which makes bulk-
manipulation (e.g. initialization) of taints difficult.

Previous hardware support for tainting also widens each
cache block to accommodate the taint bits. Such widening
makes the cache larger, more power-hungry, and possibly
slower even when tainting is not used.

For FlexiTaint, our taint storage approach parallels the
approach used in MemTracker [22] and HeapMon [15, 16]
for their memory state. In particular, taints for data in an
address space are kept as a packed array in a protected area
within that address space. Given an address of a memory
location, the corresponding taint can be found by simply in-
dexing into this array. This organization allows us to use ex-
isting standard memory modules, buses, and caches. Taints
can be kept protected from ordinary load/store accesses us-
ing existing page access permissions, but the system and
library software can temporarily change these permissions
to directly access taints for bulk-manipulation (e.g. to ini-
tialize them).

The only dedicated storage for taints in FlexiTaint is a
separate small (4KBytes in our experiments) L1 cache. This
cache provides bandwidth for taint accesses. The alterna-
tive would be to store taints in the existing L.1 cache and

add ports to it. However, this would make the L1 cache sig-
nificantly larger and slower, affecting its hit latency (even
when tainting is not needed).

Seemingly, a drawback of our taint storage approach is
that taints now compete with data for space in secondary
caches and below. However, our results (Section 6) show
that this causes low performance overheads relative to a sys-
tem with no tainting. If extra area is available, we believe it
is better spent increasing the total capacity of the cache (to
improve performance with or without tainting), instead of
widening each cache block to provide dedicated taint bits.

A final advantage of decoupled taint storage is low-cost
support for larger taints. In existing approaches, memory
widening must accommodate the largest allowed taint, and
those extra bits prove unnecessary if fewer taint bits are ac-
tually needed. With FlexiTaint, the packed taint array occu-
pies only as much memory space as needed.

3.2. Processing taint information

Figure 1 shows how taint processing is integrated into the
processor’s pipeline in previously proposed schemes where
taint information (dotted lines) must flow along with and be
processed simultaneously with the data (full lines). Shaded
areas in the figure indicate structures that are added or sig-
nificantly changed to support tainting.
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Figure 1. Previous tainting support

Much of the processor’s logic and wire complexity in-
volves moving, manipulating, or storing data values. To ac-
commodate the taint along with the data, all these structures
must be modified. These ubiquitous changes to the pro-
cessor core require a tremendous re-design effort and make
nearly every part of the core larger and longer-latency. It is
unlikely that processor manufacturers will undertake such
re-design solely to provide efficient tainting support.

In light of these considerations, we follow a different ap-
proach and implement the entire FlexiTaint taint processing
accelerator as an in-order addition to the back end of the
pipeline, as shown in Figure 2. This strategy has already
been used for runtime verification [1] and memory check-
ing [22], and has the advantage of keeping the performance-
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Figure 2. Processor pipeline with FlexiTaint

critical out-of-order dataflow engine largely unmodified.
The added taint processing engine is easily turned off and
bypassed when it is not needed.
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Figure 3. Taint propagation in FlexiTaint

We change the commit stage of the processor to pass
instructions on to the FlexiTaint engine. We call this new
stage pre-commit. The first FlexiTaint stage reads the taints
of the register operands from the Taint Register File (TRF)
(Figure 3). For load and store instructions, the taint of
the memory operand is loaded from the TL1 cache. The
next stage looks up the Filter Taint Propagation Table (Filter
TPT) to determine if the taint propagation can be done us-
ing simple rules. If needed, a TPC lookup is performed. In
case of a TPC miss, a software handler is invoked to deter-
mine the output taint for the given operation and the input
taints. Next, the register result taint is written back to the
TRF. After that, the instruction is ready to commit. More
details are given in Section 4.
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Figure 4. Taint propagation for stores

The commit for store instructions (Figure 4) involves the
normal write to the data cache, and a write to the taint cache
to update the taint of the destination memory location.

There are several advantages and efficiencies with this
new approach to hardware taint propagation. First, the short
in-order taint processing pipeline greatly simplifies the taint
forwarding logic for both register and memory taints. Sec-
ond, there is no register renaming, so the TRF only needs to
store the taints for architectural registers. Third, support for
multiple taint bits only affects the taint processing engine,
where the TRF and the forwarding logic are much simpler
and smaller than in the main processor core.

This approach also has several possible disadvantages.
The main disadvantage is that the latency of misses in the
TL1 cache is fully exposed because they stall the in-order
taint processing pipeline. Fortunately, taint addresses can
easily be computed from data addresses, so we issue a taint
prefetch as soon as the data address is available. Because
the taint access pattern is a more compact version of the
data access pattern, a TL1 prefetch miss is often overlapped
and its latency hidden by a DL1 miss. As a result, when a
load instruction comes to the pre-commit stage and requests
its taint from the TL1 cache, the taint prefetch is usually
already complete and the access is a TL1 hit.

The second disadvantage of our back-end taint process-
ing approach is that it could delay instruction commit by
several cycles, increasing the pressure on the ROB, physi-
cal registers, and other processor resources. However, with
the use of structures like TPC and a Filter TPT, we find that
this delay is short and in our experiments it has a modest
effect on performance.

A third disadvantage of our scheme is that the decoupled
approach to data and taint storage can result in consistency
problems in multiprocessors. More specifically, a data write
and its corresponding taint write must happen atomically
to prevent a read from getting the new data with the old
taint or vice versa. Similarly, a data read and a taint read
must also happen atomically. We found that read atomic-
ity can be provided by leveraging existing load-load replay
mechanisms. We also find that most taint writes are silent
writes [6] that can easily be eliminated. For non-silent taint
writes, we ensure atomicity by making sure that both writes
(taint and data) are L1 cache hits before allowing either of
them to modify its cache block.

Finally, a fourth potential issue in our FlexiTaint en-
gine is that dependences between instructions may cause
in-order stalls and create a performance bottleneck. Fortu-
nately, our FlexiTaint engine has two major advantages over
ordinary in-order processors. First, in-order processors suf-
fer stalls when they encounter an instruction that depends
on a long-latency instruction. In FlexiTaint, all instructions
have similar short-latency taint lookups, and cache misses
are largely eliminated by prefetching. The second advan-



tage is that most taint propagation operations are simply
copying input taints to the destination, which allows us to
eliminate most dependences between same-cycle taint prop-
agation operations (see Section 3.5).

3.3. Programmable Taint Propagation

Because it is an accelerator that should be able to im-
plement many different tainting policies, FlexiTaint allows
software to compute the resulting taint for a given combi-
nation of the instruction opcode and input taints. However,
software intervention for every instruction would introduce
huge overheads. To avoid these overheads, FlexiTaint uses a
Taint Propagation Cache (TPC) to memoize resulting taints
for recently seen combinations of opcode and input taints.

The TPC is indexed by concatenating the opcode (or op-
code class) and the taints of all source operands (Figure 3).
Each entry in the TPC contains the resulting taint, and also
a bit that indicates whether an exception should be raised
when this combination of opcode and input taints is encoun-
tered. If the TPC lookup results in a TPC miss, a software
handler is invoked to compute the resulting taint for that
combination of opcode and input taints. This is then in-
serted into the TPC similar to how TLB entries are filled
by software TLB miss handlers. This approach allows us to
specify a taint propagation policy simply by writing a TPC
miss handler. The address of this handler is kept in a special
CPU control register (TPC Handler Register).

In our experiments, we use a small (128-entry) on-
chip TPC, which is directly mapped to allow single-cycle
lookups. To avoid caching stale TPC entries, the TPC
is flash-cleared whenever the TPC Handler Register is
changed. This allows us to change the taint propagation pol-
icy (e.g. on a context switch) by just writing a new handler’s
address into the TPC Handler Register. Note that tainting is
often used to detect attacks, so attackers must not be al-
lowed to change the TPC Handler Register or the code of
the handler itself. For this reason, the TPC Handler Regis-
ter can only be modified in kernel mode.

3.4. Taint Manipulation Instructions

In most taint propagation schemes, there are high-level
events that affect taint propagation but are not readily rec-
ognizable at the hardware level. For example, an input
tainting scheme typically untaints data that has been range-
checked to avoids false alarms for jump-table implementa-
tions. However, in most ISAs a range-check involves a se-
quence of instructions that are difficult to recognize by the
hardware as a range-check.

To allow high-level events to be conveyed to our Flex-
iTaint hardware, we add a small number of new taintr
and taintm opcodes. These instructions are treated as no-

ops in the main processor pipeline, but are processed in the
FlexiTaint engine. A taintr instruction has a register-to-
register format, and based on the opcode and the the input
taint values, FlexiTaint performs a TPC lookup to determine
the new taint of the destination register. This instruction al-
lows us to change the taint associated with a register value,
without changing the value itself. Similarly, a taintm in-
struction has the format of a store operation, but only affects
the taint of the memory location. The system software can
use these taintr and taintm instructions to mark high-
level events and set the propagation rules for these instruc-
tions to achieve the needed taint propagation actions. For
example, a taintm instruction can be added to the mes-
sage receive code to taint the input data, and taintr can
be used to, for example, untaint a value that has been range-
checked. Note that the mapping between high-level events
and these new opcodes is determined by the programmer or
the system, not by the ISA or hardware itself. To indicate a
specific high-level event, we choose an unused opcode, put
it in the code to signal the event, and change the TPC miss
handler to perform correct tainting for the event when that
opcode is encountered.

Instead of using new opcodes, high-level events could
be indicated by trapping into the system, which can then di-
rectly read/write the taint array in memory to implement the
needed tainting behavior. However, such traps may add sig-
nificant overheads when high-level of interest are frequent.

Finally, we note that any hardware taint propagation
scheme requires changes to the system and libraries to indi-
cate high-level events that cannot be identified by hardware
alone. Our implementation of FlexiTaint differs only in that
it provides a generic set of ISA extensions for this purpose.
This is consistent with FlexiTaint’s role as an accelerator for
taint propagation - it speeds up the time-consuming activity
of instruction-to-instruction taint propagation, and relies on
existing taint propagation schemes for system-level support
and for specific sets of rules it is programmed with.

3.5. Fast Common-Case Taint Propagation

Although the TPC is small, if it is accessed for every
instruction it would need to be multi-ported to keep up
with the throughput of the multiple-issue processor core.
However, multi-porting could slow the TPC down, make it
power-hungry, and make future enhancements or upgrades
to larger TPCs costly.

To reduce the number of TPC accesses and keep the TPC
single-ported, we rely on two key observations that hold for
most (but not all) types of instructions in the schemes we
studied. First, if inputs are untainted (zero-taint), the output
is also untainted. Second, if only one of the operands has a
non-zero taint, the result taint is simply a copy of the non-
Zero input taint.



To exploit these observations, we use a programmable
Filter Taint Propagation Table (Filter TPT) to selectively
enable these optimizations for opcodes to which they are
applicable according to the current set of taint propagation
rules. The Filter TPT is indexed only by opcode, and each
entry has only two bits that tell us which common-case opti-
mizations can be used (Table 1). With 256 opcodes, the Fil-
ter TPT is a simple 512-bit table (no tag checks). Although
it has multiple read ports to support separate lookups for
each instruction issued in a cycle, this small table uses little
on-chip area and is fast enough for single-cycle lookups.

Value | Meaning
00 Use Taint Propagation Cache (TPC) for this
opcode.

01 If all source taints are zeros, destination taint
is zero. Otherwise, like 00 (use TPC).

10 If only one non-zero source taint, copy it to
destination taint. Otherwise, like 01.

Table 1. Meaning of Filter TPT entries

We note that these optimizations are based on observa-
tions that were made in our two example taint propaga-
tion schemes (Section 5). It is possible to devise a set of
taint propagation rules for which TPC lookups are always
needed (all Filter TPT entries are 00). Fortunately, now and
in the foreseeable future the most common use taint prop-
agation is tainting of input-derived data to detect security
violations. These schemes are similar to the first exam-
ple tainting schemes used in our experiments, so we expect
such schemes to show similar benefit from the Filter TPT.

Another benefit of using our Filter TPT is that its op-
timizations also allow us to eliminate most of the depen-
dences between same-cycle instructions. If the TPC lookup
is not needed, note that the resulting taint is either zero or
equal to the taint of one of the operands. In such cases,
the “computation” of the taint is trivial and the source taint
can be directly forwarded in the same cycle to a depen-
dent instruction. A similar idea (but with a different imple-
mentation) was used for elimination of move instructions
in RENO [13]. In FlexiTaint, we have the added advan-
tage that most of the taint propagation operations are taint
moves, even when the corresponding data operation for the
same instruction is not a move.

4. FlexiTaint Implementation

With FlexiTaint, the front-end and the out-of-order
dataflow engine of the processor core are largely unmodi-
fied. The most significant modification to these parts of the
processor is that load and store instructions also compute

the taint address and issue a non-binding taint prefetch into
the TL1.

The main FlexiTaint pipeline (Figure 2) begins when the
instruction is otherwise ready to commit. As a result, Flex-
iTaint receives instructions in-order, does not receive any
wrong-path or otherwise speculative instructions, and gets
already-decoded instructions. This greatly simplifies the
implementation of our FlexiTaint engine.

FlexiTaint starts off by fetching source taints, (in paral-
lel) looking up the Filter TPT, and (also in parallel) check-
ing dependences. The next step is to check which source
taints are zero and whether the value found in the Filter
TPT allows us to use a common-case optimization. If one
of these optimizations can be used, the taint propagation is
trivial - the resulting taint is either zero (if all source taints
are zero and the Filter TPT entry has a value other than 00)
or equal to the non-zero source taint (if there is only one
non-zero source taint and the Filter TPT entry is 10). If the
Filter TPT and the source taints are such that a TPC lookup
is needed, the next step is to look up the TPC entry using
the opcode and the source taints as an index and tag. In
this case, a same-cycle dependent instruction (and all sub-
sequent instructions) is stalled until the next cycle. If no
TPC lookup is needed, same-cycle forwarding of the orig-
inal source taint (see Section 3.5) is used to avoid in-order
stalls. Next, the resulting taint is written to the Taint Reg-
ister File (TRF) if the instruction’s destination is a register.
Finally, the instruction is ready to commit. In our current
implementation, the FlexiTaint pipeline has a total of four
stages in addition to the regular pipeline, two to look up
the Filter TPT, TL1, and register taints, one stage for actual
taint propagation (TPC lookup or trivial propagation with
same-cycle forwarding), and one to finally commit.

Another consideration is handling of TPC misses. A
TPC miss is an exception that triggers execution of a soft-
ware handler. We find that such exceptions are very rare
in our experiments due to a combination of several factors.
First, most dynamic instructions are amenable to common-
case optimizations and do not access the TPC at all. Second,
for instructions that do access the TPC, there is significant
locality in the values of source taints and opcodes (some op-
codes are used much more frequently than others and some
taint values are much more common than others).

4.1. Multiprocessor Consistency Issues

Outside the processor and L1 caches, FlexiTaint memory
taint values are stored like any other data, so they are auto-
matically kept coherent in a multiprocessor system. How-
ever, FlexiTaint does raise a few issues with respect to con-
sistency. In particular, sequential consistency and several
other consistency models assume that a load or a store in-
struction appears to execute atomically. For brevity, we only



discuss sequential consistency, but our discussion can easily
be extended to other models.

The main problem is that FlexiTaint stores taints in mem-
ory separately from the corresponding data. As a result, a
load (which reads the data and its taint) on one processor
and a store (which writes both data and its taint) on another
processor may be executed such that, for example, the load
obtains the new data but the old taint.

To prevent this inconsistency, data and the taint must be
read atomically in a load and written atomically in a store.
Load (read) atomicity must ensure that the data value is not
changed between the time data is read in the main processor
core and the time the taint is read in the FlexiTaint pipeline.
Existing replay traps can be leveraged to accomplish this by
treating data loads as “vulnerable” to invalidation-caused
replay until the corresponding taint is read. We imple-
mented this behavior, and in our experiments we observe
practically no performance impact due to such replays be-
cause they are exceedingly rare.

Write atomicity for a store instruction is more challeng-
ing. To prevent speculative writes to the L1 cache, mod-
ern processors delay cache writes until the instruction can
commit. When FlexiTaint is active, we also delay the taint
write until the instruction commits. As a result, both writes
(taint and data) need to be performed atomically at commit
time. To simplify the implementation, we change the com-
mit logic to only perform both writes if both are hits - if
either data or the taint write is a miss, we do not allow the
other to modify its cache. To accomplish this, we check the
hit status of both accesses after tag checks, and suppress the
actual write in one cache if the other indicates a miss. Once
the miss is serviced, both writes are re-tried. There are sev-
eral factors that prevent this from having a significant effect
on performance. First, a TL1 access is nearly always a hit
(due to prefetches), so DL1 write hits are rarely delayed by
TL1 misses. Second, a tag check in the small TL1 are com-
pleted well before the DL1 tag check, so the propagation of
the TL1 hit signal does not delay a DL1 hit. Finally, many
taint writes are silent writes [6]. Because FlexiTaint already
reads the memory location’s taint for store instructions (Fig-
ure 4), we compare the new taint with the old one and only
write the new taint if it differs from the old one. This op-
timization allows most store instructions to write only data,
and also reduces the coherence traffic on memory blocks
that store taints because they become dirty less often.

4.2. Initialization and OS Interaction

With FlexiTaint, the processor context of a process is
extended to include the TPC Handler Register (TPCHR),
the FlexiTaint Configuration Register (FTCR), the Memory
Taint Base Register (MTBR), and the Filter TPT content.
The TPCHR contains the address of the TPC miss handler,

and is discussed in Section 3.3. The FTCR contains the taint
size, which can be from zero to sixteen bits in our current
implementation. Taint size of zero bits indicates that taint-
ing is not used, and it turns off taint propagation circuitry
and the TL1 cache. The MTBR contains the virtual address
of the packed array that stores taints of memory locations.
The Filter TPT is already discussed in Section 3.5.

To initialize FlexiTaint, we allocate the memory taint
array, initialize it, and protect it from ordinary user-level
accesses so only FlexiTaint-initiated accesses can modify
these taints. Next, we load the address of the TPC miss han-
dler into the TPC Handler Register. We then load the filter-
ing rules into the Filter TPT and the address of the memory
taint array into the Memory Taint Base Register. Finally, we
write the number of taint bits to the FlexiTaint configuration
register, which enables the FlexiTaint mechanism.

For context switching, we simply save/restore the three
registers (TPC Handler, Memory Taint Base, and FlexiTaint
Configuration) and the Filter TPT content to/from the con-
text of the process. This save/restore is very fast: only three
additional registers are saved/restored, and the Filter TPT is
very small. In our implementation, it is only 64 bytes (512
bits) in size.

As our memory taints have their own virtual and physical
addresses, they are also fully compatible with OS mecha-
nisms such as copy-on-write optimizations on process fork-
ing, paging and virtual memory, disk swapping, etc.

5. Evaluation Setup

To evaluate our FlexiTaint accelerator, we use two ex-
ample taint propagation schemes. The first is input taint-
ing similar to dynamic information flow tracking [18]. This
scheme is intended to be representative of tainting schemes
that look for security violations by tainting input-derived
data and detecting when such data is used in insecure ways
(e.g. as data pointers, or jump addresses). The second ex-
ample scheme “taints” values that are valid heap pointers.
This can be used to speed up pointer identification for mem-
ory leak detection. This scheme’s propagation rules are very
different from those of input-tainting, so it also illustrates
how easily FlexiTaint can be used with different taint prop-
agation policies. We note that this evaluation is not intended
to show that FlexiTaint can detect a specific attack or a class
of attacks. FlexiTaint can be programmed to follow a wide
variety of taint propagation schemes, and the attack detec-
tion comes from these schemes. Consequently, we do not
claim taint propagation schemes in Tables 2 and 3 as our
contributions. They are merely example schemes to show
how FlexiTaint can be used and to evaluate its impact on
performance.



Instruction
ALU-Op R1,R2,R3
(add, sub, etc.)
mov R1,R2
1d R1,offset(R2)

Input-taint propagation rule
Taint(R1) =

Taint(R2) OR Taint(R3).
Taint(R1)=Taint(R2).
Taint(R1)= Taint(R2) OR
Taint(Mem[R2+offset]).
Taint(Mem[R 1+offset])=
Taint(R1) OR Taint(R2).
Taint(Mem[R 1+offset])=
INPUT-TAINT.

If Taint(R1)= INPUT-TAINT,
raise exception.

st offset(R1),R2

taintmO offset(R1)

Jump R1
(branch, jump, etc.)

Table 2. External Input Tracking.

Instruction | Pointer-taint propagation rule
add R1,R2,R3 | Taint(R1)=Taint(R2) OR Taint(R3).
Exception if Taint(R1) AND Taint(R2)
sub R1,R2,R3 | Taint(R1)=Taint(R2) XOR Taint(R3).
mov R1,R2 Taint(R1)=Taint(R2).
Id R1,0ffs(R2) | Taint(R1)= Taint(Mem[R2+offs]).
st offs(R1),R2 | Taint(Mem[R1+offs])= Taint(R2).
taintrO R1 Taint(R1)=POINTER-TAINT.

Table 3. Heap Pointer Tracking.

5.1. Taint Propagation Schemes

Table 2 shows the rules we use for input tainting. In this
table, taintmO is the first of our taintm opcodes, which
we added to input/output libraries to indicate memory into
which external inputs were just received in read and simi-
lar input functions.

These rules can easily be converted into TPC and Filter
TPT entries. For example, according to the table, the TPC
entry for a store instruction with both the address register
and value register tainted would be to raise no exception
and to taint the target memory location. Also, the same rule
allows us to set the Filter TPT entry for store to 107,
avoiding TPC lookups for a st ore with input taint combi-
nations other than the one just described.

Our simulator uses the MIPS instruction set, where RO
is hard-wired to the value of zero and add rX, rY, RO is
used to move values from rY to rX. In keeping with this,
we also hard-wire the taint for register RO to zero (no taint),
so no separate rule for mov is needed. Alternatively, uses
of add as mov, zero-out uses of xor and and, etc. can
be decoded as separate opcodes that have their own taint
propagation rules.

For heap pointer tracking, we use rules shown in Table 3.
The taintrO0 is the first of our taintr opcode, which
we added to memory allocation libraries to indicate return
values of heap allocation functions such asmalloc.

Note that these propagation rules are different from those
in Table 2. For example, the st ore instruction only prop-
agates the pointer-taint of the value register, but ignores the
heap-pointerness of the address register. As a result, we can
only set the Filter TPT entry for store to “01” (see Ta-
ble 1).

For propagating both taints, we use a two-bit taint where
the first bit is propagated according to Table 2 (input taint-
ing) and second bit is propagated according to Table 3
(pointer tainting). For example, the TPC entry for a store
instruction with the address register taint of “01” (heap
pointer) and value register taint of “10” (input-derived
value), the exception bit would not be set and the taint for
the result (memory location) would be “10” because the in-
put taint of the value register is propagated but the pointer
taint of the address register is not. Note that the Filter TPT
entry for store can only be set to “01” to eliminate TPC
lookups when both source registers are untainted.

5.2. Benchmark Applications

We use all applications from the SPEC CPU 2000 [17]
benchmark suite. For each application, we use the refer-
ence input set in which we fast-forward through the first
10% of the execution to skip initialization, and then sim-
ulate the next one billion instructions in detail. We note
that our fast-forwarding must still model all taint creation
and propagation to provide correct taint state for the simu-
lation. In order to evaluate the multi-threaded workloads,
we simulate benchmarks from the Splash2 [19] suite (no
fast-forwarding).

5.3. Simulator and Configuration

We use SESC [14], an open-source execution-driven
simulator, to simulate an 8-core system with Core2-
like, four-issue out-of-order superscalar cores running at
2.93GHz. Data L1 caches are 32KBytes in size, §-way
set-associative, dual-ported, with 64-byte blocks. The
shared on-chip L2 cache is 4MBytes in size, 16-way
set-associative, single-ported, with 64-byte blocks. The
processor-memory bus is 64 bits wide and operating at
1333 MHz. In FlexiTaint configurations, taint L1 caches
are 4KBytes in size, 4-way set-associative, dual-ported, and
also with 64-byte blocks.

6. Evaluation

We conduct experiments to evaluate the performance of
FlexiTaint when it is programmed to implement input taint-
ing, pointer tainting, and also when it is programmed to
simultaneously implement both schemes. Figure 5 shows
the execution time overhead for all SPEC2000 and Splash-2
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Figure 5. Performance overhead of taint propagation with FlexiTaint.

applications. For SPEC2000, we observe worst-case over-
heads of 8.4% (in mcf) and average overheads of about 1%,
even for the combined taint propagation scheme. In bench-
marks with above-average performance overheads, most of
the overhead is caused by increased L2 miss rates and in-
creased L2 port contention because the L2 cache is used for
both data and taints. The L2 capacity problem is also dom-
inant in most applications, which explains the small differ-
ences in overheads between one-bit and two-bit schemes.
In swim, the overhead in the combined two-bit scheme is
slightly lower than for one-bit schemes. As different mem-
ory locations are accessed for taints when taint sizes are dif-
ferent, the overlap of cache misses with other operations
in these executions is also different. In swim, the com-
bined scheme suffers more cache misses (as expected), but
in single-bit schemes there is less overlap and, as a result,
they suffer more overhead.

For Splash-2 benchmarks, we observe modest perfor-
mance overheads - about 3.7% on average and 8.7% worst-
case (in ocean). Both input and pointer taint propagation
schemes show similar overheads for all benchmarks except
radiosity where the input scheme has slightly higher over-
head than the pointer scheme. This is due to increased num-
ber of taints propagated between memory and registers in
the input tainting compared to the pointer scheme.

Figure 6 shows a breakdown of dynamic instructions ac-
cording to which Filter TPT optimizations are applied (data
shown is for the 2-bit combined tainting scheme). Dy-
namic instructions that could not benefit from Filter TPT
common-case optimizations are further classified into those
that hit and those that miss in the TPC. Note that the instruc-
tions shown as “No Taint” are not all the instructions whose
operands carry no taint. Instead, these are instructions
whose operands carry no taint and the Filter TPT allows that
opcode to use the “no taint yields no taint” common-case

optimization without accessing the TPC. Similarly, “One
Source Taint” instructions in Figure 6 are those that have
one operand tainted with a non-zero taint and the Filter TPT
allows the instruction’s opcode to use the common-case op-
timization of copying the non-zero source taint to the desti-
nation taint without using the TPC. We find that most of the
instructions processed by the FlexiTaint engine can be han-
dled by one of these common-case rules. Instructions that
access the Taint Propagation Cache (TPC) are infrequent
enough, and represent only up to 1.9% (in mcf) of all dy-
namic instructions. As expected, TPC misses are extremely
rare.
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Figure 6. Use of FlexiTaint optimizations.

These results indicate that our combination of TPC han-
dlers for programmability, TPC for memoization of fre-
quently used rules, and Filter TPT for common-case opti-
mizations can achieve a very high level of programmability



with low performance overheads. Also, the TPC can indeed
be small and does not need to be multi-ported because most
instructions do not actually access it. However, in all of
the applications the TPC is accessed a non-trivial number
of times, which indicates that the TPC and its software miss
handler are still needed to support less common taint propa-
gation cases that are specific to each set of taint propagation
rules.
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Figure 7. Non-silent taint writes.

Figure 7 shows the number of non-silent memory taint
writes as a fraction of the number of dynamic instances of
store instructions processed by the FlexiTaint engine. We
only show a subset of applications to illustrate the range
of the fraction. The averages for SPEC2000 and Splash-2
shown in the figure cover all of the applications. Because
every store instruction produces a resulting taint, without
detection of silent taint writes, all store instructions would
cause FlexiTaint to write the resulting taint to the TL1
cache. From this figure, we observe that in many bench-
marks nearly 80% of store instructions do not change the
taint of the target memory location. On the other hand, in
benchmarks like gcc nearly 99% of stores have non-silent
taint writes.

6.1. Sensitivity Analysis

The TL1 cache is the largest on-chip structure we added
to support FlexiTaint, and we used 4KByte TL1 caches in
our experiments. However, we performed additional exper-
iments with 2KByte and 8KByte TL1 caches to determine
how the size of the TL1 affect the performance of Flexi-
Taint. These experiments indicate that a larger 8KB TL1
results in no noticeable performance improvement over our
default 4KB TL1 cache. For the smaller 2KByte TL1 cache,
we find that the performance overhead increases to 2.8% on
average and nearly 14% worst-case (in mcf). We conclude

that our default 4KByte cache is well-chosen for one- and
two-bit taints, but a scheme that uses four-bit taints may
need a larger (e.g. 8KByte) cache to avoid some increase in
overheads due to TL1 contention.

Our results in Figure 5 show that multi-threaded (Splash-
2) applications have higher overheads than single-threaded
(SPEC) ones. This is largely due to false sharing of taint
blocks. A single taint block corresponds to numerous data
blocks: with 2-bit taints, a single taint block corresponds to
16 data blocks. When two processors access different data
blocks, the taints for those data blocks can be in the same
taint block, causing false sharing.
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Figure 8. Effect of TL1 line size in Splash-2.

There are several well-known ways to reduce false shar-
ing. One would be to pad and align data structures. Several
Splash-2 applications already use padding to reduce false
sharing on data blocks, but the granularity of this padding
is insufficient for taint blocks. If the L2 cache is shared,
false sharing of taints can be reduced using a smaller block
size in the L1 taint cache. Figure 8 compares performance
of FlexiTaint with 64-byte and 32-byte blocks in the taint
cache (DL1 and L2 use 64-byte blocks in both configura-
tions. We observe performance improvements with smaller
taint block sizes, and in several applications this improve-
ment is dramatic. This confirms that false sharing is indeed
present, and also shows that it can be reduced without af-
fecting the design of existing DL1 and L2 caches.

With private L2 caches, coherence actions occur between
L2 caches. Even if the block size in the TL1 cache is
smaller, a TL1 miss still results in a coherence request for
an entire larger L2 block. A possible solution would be to
use a sectored L2 cache. A data L1 miss would then fetch
an entire block into the L2 cache, but a taint L1 miss would
only fetch a particular sub-block (sector). We leave this and
other more sophisticated schemes for future work.



6.2. Effect of limited programmability

To demonstrate the benefits of FlexiTaint’s full pro-
grammability, we artificially limit its programmability to
only handle propagation rules that can also be handled by
previously proposed hardware support, then use the result-
ing accelerator on the heap-pointer tracking scheme. Most
of the rules for heap-pointer tracking (Table 3) can be han-
dled by this limited scheme. However, rules for add and
sub cannot. In all input tainting schemes, both of these
opcodes simply perform a logical OR of input taints to pro-
duce the propagate the output taint, without raising any ex-
ceptions. In heap-pointer tracking, addition or subtraction
of two heap pointers produces a non-pointer, and addition of
two pointers is meaningless and indicates a probable bug.
As a result, the heap-pointer tracking rule for add is to
propagate the taint if only one source operand is pointer-
tainted, but to raise an exception (invoking a software han-
dler to record a possible bug) when both operands are
pointer-tainted. The heap-pointer tracking rule for sub is
to propagate the taint if only one source operand is tainted,
but produce an untainted result if both source operands are
tainted. Effectively, the taint propagation rule for sub is
a logical XOR of input taints. A limited-programmability
scheme must raise an exception for each add and sub in-
struction and implement correct taint propagation for these
instructions in an exception handler. In our evaluation, we
do not actually implement this exception handler. Instead,
we model its overhead by adding a (rather optimistic) 5-
cycle penalty each time an add or sub is encountered.
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Figure 9. Effect of limited programmability.

The result of this evaluation is shown in Figure 9, which
shows execution times with a limited-programmability
scheme and with our full FlexiTaint mechanism. Execution
times are normalized to a baseline that does no taint propa-
gation. These results indicate that limited-programmability

hardware support incurs large performance overheads when
it is used on schemes that are not sufficiently amenable to
the particular programmability limitations.

Note that we do not claim that other hardware schemes
cannot be extended to support the particular taint propaga-
tion rules needed to support add and sub for heap-pointer
tracking. For example, the original description of Rak-
sha [8] includes no support for XOR-in input taints, but such
support can easily be added.

We argue that the needs of future taint propagation
schemes are difficult to predict at hardware design time, and
we claim that by providing more programmability we run
far less risk of being unable to efficiently handle those fu-
ture schemes. In other words, any existing hardware mecha-
nism can be extended with a setting that allows it to support
a particular tainting rule it currently does not support, but
this obsoletes systems that have the previous iteration of the
hardware support. Our approach is to avoid this by design-
ing our FlexiTaint accelerator to be highly programmable to
begin with.

6.3. Validation

As mentioned previously, input-tainting itself is not our
contribution, and we use heap-pointer tracking mostly as
an example of a scheme with propagation rules different
from those in input tainting. Our FlexiTaint accelerator
is intended to provide a programmable, low-cost, and im-
plementable substrate that allows implementation of vari-
ous taint propagation schemes with low performance over-
heads. As a result, our evaluation focuses on performance.
However, we do verify that our implementation of input
tainting and pointer tracking correctly tracks input-derived
and pointer values throughout the program. We also val-
idate heap pointer tracking by verifying that tainted vari-
ables are indeed heap pointers and that non-pointers remain
untainted. We verify input tainting by injecting buffer over-
flows and verifying that they are indeed detected. Interest-
ingly, some benchmarks (twolf and gcc) have a number of
dynamic instructions that produce values tainted with both
the pointer taint and the input taint. For such occurrences,
we examine the source code of the application to confirm
the correct behavior of our scheme.

7 Conclusions

This paper proposes and evaluates FlexiTaint, a pro-
grammable hardware accelerator for taint propagation.
FlexiTaint is implemented without modifying the system
bus or main memory, and without extensive modifications
to the performance-critical front-end pipeline of the proces-
sor or to its out-of-order dataflow engine. FlexiTaint stores
memory taints as a packed array in virtual memory, and its



taint processing engine is implemented as an in-order ad-
dition to the back end of the CPU pipeline. FlexiTaint is
also fully programmable, using a Taint Propagation Cache
(TPC) backed by a software miss handler to determine the
taint of an instruction’s resulting data value, using as in-
puts the type of operation (its opcode) and the taints of the
operands. A Filter TPT is also used to reduce the number
of accesses to the TPC for common-case optimizations.

Our results indicate that FlexiTaint incurs very low per-
formance overheads, even when using a two-bit taint that
simultanously tracks two very different properties with dif-
ferent taint propagation rules. We also evaluate FlexiTaint
on Splash-2 benchmarks and demonstrate that it operates
correctly and with low overheads even in a multi-core sys-
tem.
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