
Automatic Generation of Device User-Interfaces?

Olufisayo Omojokun
Georgia Institute of Technology

omojokun@cc.gatech.edu

Prasun Dewan
University of North Carolina at Chapel Hill

dewan@cs.unc.edu

Abstract

One of the visions of pervasive computing is using
mobile computers to interact with networked devices. A
question raised by this vision is: Should the user-
interfaces of these devices be handcrafted manually or
generated automatically? Based on experience within
the domain of desktop computing, the answer seems to
be that automatic generation is not flexible enough to
support a significant number of useful interfaces but
requires substantially less coding effort for the
interfaces it can create. We show that the answer is
much more complicated when we consider networking
of traditional appliances such as stereos and TVs.
Using qualitative arguments and quantitative
experimental data, we show that the manual vs.
generated issue must be resolved based on: (a) not
only user-interface programming and flexibility but
also several other metrics such as space and time
costs, binding time, and reliability (b) whether it is a
graphical or speech based user-interface, (c) the size
of the device user-interface, (d) whether the manually
written user-interface code is available at the mobile
computer or at a remote machine, and (e) the network
bandwidth between the mobile computer and remote
factory.

1. Introduction

One domain currently receiving a significant
amount of research attention is networking arbitrary
devices such as TVs, refrigerators, and sensors. It is
attractive to create software user-interfaces on mobile
computers to interact with such appliances, for several
reasons:

 Truly universal: Some traditional remote controls
can interact with multiple devices such as TVs, VCRs,
cable set-top boxes, and CD players. They are in fact
called ‘universal’ remote controls, but have two
important restrictions. First, a traditional universal
control can interact with a fixed number of device
instances. The amount of physical buttons and other
controls on the remote determines this number.
Mobile computers, on the other hand, can control

arbitrary numbers of device instances. For example,
mobile computers could allow security guards to
control the lights in all current and future buildings in
which they work. Second, a traditional universal
control must provide buttons for the union of the
operations among device types it can control, which
can clutter it if the devices types share few operations.
Therefore, universal controls typically support similar
types of devices, that is, devices such as CD players,
DVD players, and VCRs that share a large number of
operations. Dissimilar devices such as fans and robotic
vacuum cleaners require separate controls. A survey
shows that 44% of households in USA have up to six
remote controls [1]. A mobile computer can serve as a
single control for arbitrarily different kinds of devices.

 Automatic binding: Traditional universal remote
controls require users to manually enter specific codes
for the device instances they wish to use. For
instance, universal remotes for controlling home
entertainment devices require users to look up the
manufacturer codes of their devices (TVs, VCRs, etc)
and enter these codes on the remote. This design does
not create a serious problem when the number of
devices is small, but would have a significant
drawback in a world with ubiquitous computing. Since
mobile computers are intelligent, they can
automatically bind themselves to arbitrary device
instances through a discovery process [2-7].

 Truly remote: Since IR signals cannot pass
through walls, some traditional “remote” controls only
allow users to control devices in the vicinity of a user.
X10 remote controls are based on radio signals, so they
are not limited by walls. However, these signals can
only travel a few feet. A mobile computer can interact
with a networked device over the Internet. Thus, it can
be used to control a device from an arbitrary location.
For example, a mobile computer can allow a person on
vacation to deactivate a security system at home so that
a neighbor can freely enter the house to feed fish in an
aquarium. If the security system ever needs
troubleshooting, a technician at the manufacturer’s site
could use a mobile computer to possibly fix the device
without having to visit the owner’s home.

 Beyond physical user-interfaces: Perhaps a
more fascinating reason for using mobile computers to
interact with networked devices is that it is possible to
create software user-interfaces for them that are more
sophisticated than the conventional physical user-
interfaces offered by traditional appliances and their
controls [8]. Unlike conventional user-interfaces, they
can group related controls into overlapping tabs [8, 9],
display state [8, 9], allow offline editing, provide
consistency [10], and be customized to the habits of
their users [9].

 Not surprising then, several systems today offer
software-based user-interfaces, which include:
Palm/Pocket-PC IR programs [1, 11], HP’s Cooltown
[12], IBM’s Moca[2], and Websplitter[13], Microsoft’s
UPnP [5, 14], Sun’s Jini[6, 15], CMU’s PUC [8] and
UNIFORM [10], Cornell’s Cougar [16], Swedish
Institute’s Universal Interactor [17], Media Lab’s UI
on the Fly [18], Berkeley’s TinyDB [19], [20], and
DAMASK [21], Stanford’s ICrafter [22], U. of
Washington’s SUPPLE [9], and PARC/Georgia Tech’s
Speakeasy/Obje [23]. In most of these systems, the
user-interfaces are manually implemented. A few
systems [8, 9, 17, 18, 20, 22], on the other hand,
explore the intriguing idea of automatically generating
these user-interfaces. While this idea is new in the
domain of mobile/device computing, it has been
explored for over three decades in the realm of desktop
computing [24-27]. The lessons from desktop
computing tell us that automatic generation is not
flexible enough to support a significant number of
useful interfaces but requires substantially less coding
effort for the interfaces it can create. The question we
try to answer here is: do these lessons also apply to the
area of mobile/device computing? Naturally, the
answer depends on the kind of device user-interfaces
and generation algorithm we address. We consider
software user-interfaces of individual devices and do
not address interfaces for dynamic compositions of
devices [9, 22, 28, 29]. Generation algorithms can be
classified into those using heuristics to meet high-level
goals such as uniformity [10] and low usage of screen
real estate [9], and those that are based on user-
provided specifications. We address specification-
based generation. Thus, our initial answer to the
question above ignores heuristics-based automatic
generation and dynamic-device composition.

 Intuitively, there are several reasons why the
manual/automatic question must be re-examined in the
context of device user-interfaces. Given a networked
device, its user-interface must be implemented on each
of the large number of the continuously evolving
mobile computers that may be used to interact with it.
Previous papers have hypothesized that this effort
would be high, and have used this hypothesis as the

motivation for (specification-based) generation in this
domain. In addition, these interfaces seem to be
simpler and have less variety than desktop user-
interfaces, consisting mainly of rectangular
arrangements of buttons and simple widgets. Thus the
inherent lack of flexibility of generation could become
less of an issue. On the other hand, because they are
simpler, the automation provided by generation may
become less of an advantage. Devices and mobile
computers are much less powerful than desktop PCs –
thus we must consider space and time costs. Some of
these metrics should depend on whether the interfaces
consist only of commands or includes both commands
and state, as the latter are more complex. Complicating
the issue is the fact that mobile devices have limited
screen space and may be used by users whose hands
are occupied on some other task, making speech user-
interfaces (SUIs) a practical alternative to GUIs [21-
23, 30-32]. Thus the manual/automatic question must
be answered also for SUIs. As the devices are
networked, the impact of communication delays on the
choice of the approach needs to be explored.

 At first glance, it seems we must also consider
usability. However, this is a quality of individual user-
interfaces and not the framework used to implement
them – both the manual and generation approaches
may be used to create interfaces that are both easy and
hard to use. We consider system rather than usability
issues as we are addressing frameworks rather than
individual applications. In our experiments, we have
included the only two device interfaces known to us
that have been shown (by others) to be easy to use [9,
30]. The other interfaces we consider are based on a
systematic way of converting commercial physical
interfaces to software user-interfaces. Another
important metric we ignore is the interoperability effort
required to port a user-interface for one mobile
computer to another kind of mobile computer[21]. The
impact of the approach on energy costs is also left as
future work.

 The paper consists of both qualitative arguments
and quantitative experimental data. It is a substantial
update and extension of our previous workshop paper
[33]. More details on this issue can be found in the
first author’s thesis [34]. The rest of the paper is
organized as follows. We first present our models of
the generation and manual frameworks. We then
outline the metrics we used in our analysis and
describe our experimental setup and benchmarks. The
bulk of the paper compares the two approaches based
on these metrics. Finally, we present conclusions and
directions for future work.

2. Model of Manual/Automatic Generation

Figure 1 shows a general architecture that abstracts
existing systems for deploying device user-interfaces
on mobile computers that applies to both the automatic
and manual approaches. Device objects encapsulate
the functionality of actual physical devices. They
contain methods for invoking commands on devices
and viewing device state. Device advertisers publish
information about devices and references to them
within a given network or physical space. They are
accessed by device discoverers on mobile computers.
Device advertisers may run on the same host as that of
the device objects or on a separate machine. User-
interface deployers on mobile computers, using device
references, deploy the actual user-interfaces for
interacting with device objects. Here we consider only
the issue of whether the deployed user-interface is
created manually or automatically. Thus, we do not
consider other problems such as secure device
discovery and assume state-of-the-art solutions to
them.

 In many manual approaches such as Nevo [35]

and OmniRemote [11], a predefined implementation of
the user-interface resides on the mobile computer.
Others such as [2, 5, 12, 15], offer an alternative
approach in which the code resides on a remote
computer. Thus, the manual approach has two
variations, local and remote, distinguished by where
the predefined user-interface is located. We consider
both variations. Both manual implementations and
generator specifications can be created interactively or
programmatically. We assume both are created
programmatically.

 (Specification-based) generators create default
user-interfaces for devices, which can be overridden by
high-level specifications. There is no well-defined
model of such generators, in the desktop or device-
mobile computing domain. Therefore, here, we
identify such a model for the device-mobile computing

domain. It includes: (a) features of generators in this
domain published in previous papers, and (b) features
identified by us to completely generate published
interfaces produced by these generators. We give
enough details so that the readers can understand the
programming-cost numbers and specify the user-
interfaces shown here.

 Our generator is given a description of the state
properties and operations of a device. This description
may be automatically derived from the object coding
the device, or it may be created manually using an
external, language-independent, description – our
analysis does not distinguish between these two
approaches as it does not measure the cost of creating
an external description. We restrict operation
parameters to simple types, as complex types do not
appear in device user-interfaces, but allow properties to
be of predefined and user-defined types as device
objects can be hierarchical. Moreover, properties and
operations can be collected into hierarchical user-
defined view groups [30] to allow the view and
dialogue structure to be independent of the device
structure. We allow view groups to overlap, thereby
allowing the use of alternative GUI-views and SUI-
dialogues to invoke an operation or modify a property.
Let us first consider GUI generation.

 An operation is mapped to a button. Any
parameters of the operation are collected using a
dialogue box. A property of a predefined type is
mapped to one of a set of widgets associated with the
type. Each predefined value can be mapped to a text
box displaying the textual representation of the value.
In addition, a Boolean value can be mapped to a
checkbox, an integer value to a slider, and an
enumeration to a combo-box (Figure 2, Band property)
or radio button (Figure 3, Mode property). Finally a
property associated with increment and decrement
operations can be mapped to an IncDec widget that
consists of a text-widget to display the property value
and buttons to invoke the two operations (Figure 2,
widget displaying current station). A user-defined type
or view group is mapped to a panel containing the
display of its properties and operations. These panels
can be arranged in tabs (Figure 2 and 3). A user-
specified attribute of the property/view group selects
from the alternate widgets and containers defined for
it. In addition, we assume attributes that determine the
label and position of a property and operation, and
whether a label is displayed. The positions of
properties and operations are used when they are
linearly arranged, as in different tabs.

Mobile Computer
(Client)

Device
Discoverer

UI
Deployer

Device Advertiser

Device
Reference

Device
Reference

Object

Device

UI Object

Device

Interacts with
Deploys

Mobile Computer
(Client)

Device
Discoverer

UI
Deployer

Device Advertiser

Device
Reference

Device
Reference

Object

Device

UI Object

Device

Interacts with
Deploys

Figure 1. A general architecture for
deploying device user-interfaces.

Figure 2. PUC Stereo UI

Figure 3. Supple Stereo UI

To accommodate the two-dimensional displays of

devices, we define a special layout that extends the
grid layouts of toolkits in the following ways: (a) the
placement of components (operations/properties) is
based on user-specified row and column attributes
rather than the sequence in which they are added to the
parent container; (b) a component may be associated
with (text or iconic) labels displayed above, below, left
and right of it, (c) for positions in the grid not
associated with a component or label, a filler label is
displayed whose content (text/icon) is specified by an
attribute, (e) and, depending on another attribute, the
rows in a grid may have their preferred sizes or be
made equal size by stretching rows smaller than the
largest row.

By default, we assume that the generator: (a) creates
checkboxes and combo-boxes for Boolean and
enumeration values and textboxes for other primitive
values, (b) creates non-tabbed sub-panels for
composite properties and view groups, (c) arranges
operations and properties in separate grids ordered by
their names, (d) uses the name of a component in the
programming interface as a label, and (e) uses a single

space character for the filler label. Figure 4 shows a
default display created when no attributes are
specified. These defaults are necessary to interpret the
numbers we give for the lines of code required to
specify various user-interfaces.

Figure 4. A TV GUI using all defaults.

It is possible to override defaults globally or for an

individual property and operation. For example, in
Figure 3, a global specification says that rows are not
of equal size. As a result, operations, properties and
view groups such as “Power”, “Volume” “X-Bass”,
and “Tuner” that do not override this default have their
preferred sizes. On the other hand, the column
containing “< Play,” “Play >” and other operations has
rows of equal sizes. This is because the view group
containing them overrides the value of this attribute.

Our model of a speech generator also combines and
extends existing techniques for mapping objects to
dialogues. Each (parameterized) operation is associated
with a (parameterized) command and each composite
property/view group with a sub-dialogue. Commands
are also provided to set and get simple properties. An
attribute determines the spoken name of the
operation/property, which by default is the same as the
identifier used to name the component in the
programming interface. In the system-initiative mode,
the system prompts users for the alternative choices, in
order of the values of their position attributes. In the
user-initiative mode, the user simply gives the
complete command. As view groups can overlap, all
operations and properties with distinct names are put in
a top-level view group so experienced users do not
have to navigate through submenus in the user-
initiative mode. (As mentioned in [30], in this domain,
duplication of names does not occur.) Elements of the
top view group that are also in some other child group
are not presented as options in the system-initiative
mode to keep menus short.

We assume that the GUI and SUI generator models
are built on top of GUI and SUI toolkits, which

themselves provide customization features such as
determining the alignment of labels and the width of
text- and combo- boxes. We assume these generators
allow toolkit customization features to be used by the
developers. Exercising them has the same cost in both
the manual and generation approaches, so we ignore
them in our discussion and implementations.

3. Evaluation

The evaluation metrics we used extend the ones
used for desktop computing and take into account the
special features of this domain:
1) User-Interface Flexibility – range of user-

interfaces that an approach can support.
2) Programming Costs – amount of code required to

define (implement/specify) a user-interface.
3) Efficiency – time and storage space costs of an

approach.
4) Device Binding Time – time a client must learn

about (or bind to) a device in order to deploy a
user-interface for it.

5) Deployment Reliability – the level of guarantee an
approach offers in deploying a user-interface.

The first three metrics are applicable to both
desktop and device user-interfaces. Efficiency takes
into account the fact that devices and mobile
computers have restricted computing power and
devices have restricted memory. Device binding time
is important in our domain because the functionality
and user-interface are distributed on two separate
machines, which must be bound to each other.
Deployment reliability determines the likelihood an
approach provides a user-interface for a network
device. These metrics allow us to make a mix of
qualitative and quantitative comparisons of the various
approaches. As there is no previous work on
quantitative comparative evaluation based on these
metrics, we discuss below in some depth our choice of
benchmarks used for such comparisons.

 Some of the quantitative comparisons require
performing experiments with real networked devices.
Thus, we networked six actual devices of different
types: a Phillips TV, JVC VCR, Sony A/V Receiver,
Panasonic DVD Player, Hitachi Projector, and lamp.
The first author owns all of the devices except the
projector, which is found in a conference room inside
our department’s building.

 For each device, we created a Java RMI (proxy)
object representing its functionality on a desktop PC.
Each object has a programming interface that consists
of a method for each command (or button) found on its
associated device’s traditional remote control and Java

Bean getter and setter methods for each unit of state.
When invoked, a method executes code that sends a
signal to its corresponding (actual) device to perform
the associated command. The desktop PC has an IR
and X10 radio module connected to its serial ports for
sending these signals. The IR module has a
record/playback facility, which we used to store the
signals of all of the commands found on the TV, VCR,
receiver, DVD player, and projector remote controls.
Each method invocation simply replays the recorded
signal of its associated command—it does not return
any value or require any parameters. The lamp is the
only device that we networked using the X10 protocol.

Our next step was to identify a set of diverse but
“realistic” benchmark user-interfaces for our
experiments. We created four kinds of device user-
interfaces:

Direct Mimicking: These user-interfaces directly
mimic traditional remote controls by mapping each
physical button to a soft button, ensuring that
groupings of the buttons and their labels are
maintained. The top panel of Figure 5 is an example of
such an interface.

Figure 5. A command and state TV GUI

State-containing User-Interfaces: To expand the

applicability of our results, we wished to also
investigate user-interfaces that incorporate state. Since
traditional remote controls do not display state, there

are no clear-cut examples to directly mimic. However,
we can make a logical derivation of such GUIs by
searching the on-board panels and remote controls of
each device for status information and extend the
standard grid-based layout of buttons to display state.
The bottom panel of Figure 5 illustrates this derivation
by displaying the TV’s handcrafted GUI with state.
This GUI displays the device’s properties using
widgets that can appropriately display their values.
The values of Boolean properties are displayed using
checkboxes while the values of strings and numeric
types are displayed using textboxes. To illustrate, the
TV’s ‘powered’ property value is displayed by a
checkbox. An unchecked box means that the TV is
off, otherwise, it is on.

 Beyond Physical User Interfaces: Even though
traditional appliance panels and their remote controls
have been a principal means for interacting with
devices for many years and their interfaces have not
changed much over these years, as mentioned in the
introduction, it is intriguing to explore more
sophisticated software device user-interfaces. We used
the only two examples of such interfaces available to
us, both of which have been evaluated for usability in
the lab – the PUC AudioPhase user interface (Figure 2)
and the Supple Stereo user-interfaces (Figure 3). These
were good candidates as they provide very different
user-interfaces for essentially the same set of
operations and properties and make extensive use of
view groups. In the PUC case, we could not find the
tape controls in any published work, so we included
only the tuner and CD controls in the user interface. As
we did not have the associated physical devices, the
proxy objects we created for them did not, in fact,
control real devices.

 Speech User-Interfaces: We also derived the
speech user-interfaces of the six real (two simulated
devices) from their corresponding state-containing
(beyond-physical) graphical user interfaces by creating
a sub-dialogue for each view group, allowing users to
speak out the text of the widget used for the operation
or property to invoke/query it, supporting both user
and system initiative, and in the system initiative
mode, ordering the choices by the associated graphical
position attributes.

The nature of the user-interface affects only the
results of the flexibility and programming costs metrics
–as other metrics are either evaluated qualitatively or,
in the case of deployment time, is a function primarily
of the number of operations and properties and the
mode of user-interface (SUI/GUI). Even the flexibility
and programming-cost metrics are somewhat
independent of the exact user-interface. In particular,
the exact position or name of a speech prompt or a
user-interface widget is not important – what matters is

that it is explicitly specified and can be supported by
the generator model. While the picky reader may
quibble with the exact set of user-interfaces we have
chosen, it is important to keep in mind that we have
tried to do better than the well-accepted approach in
other domains of picking random samples when
established benchmarks do not exist.

Our manual implementations of the user-interfaces
were done using Swing. For an implementation of the
generator model described previously, we extended an
existing Java-based generator, called ObjectEditor,
which had previously been used in teaching and
research. As it is a general-purpose generator, it
includes several features not in our model generator,
such as programmer-defined parameters. For an
implementation of our SUI-generator model, we
created a new tool. Neither tool requires an external
description of the appliance object, they create the
description automatically using runtime analysis or
reflection of object signatures. They identify state
properties described by signatures adhering to the Java
Bean conventions. Signatures that are not used to
export state properties describe operations. As a result,
the performance numbers we give include the
reflection cost.

We are finally ready to start evaluating the
approaches based on the dimensions given above.

User-Interface Flexibility: The manual approach,
can, of course, support arbitrary user-interfaces, so the
flexibility comparison requires the degree to which the
user-interfaces in this domain can be supported by the
generation approach. This question has been partly
addressed in papers describing some existing
generators by showing that the generators can create an
interesting set of usable device user-interfaces.
However, these papers do not address the question of
whether the generators can create (device) user-
interfaces not designed by their authors – for example,
user-interfaces created by other generators. We
contribute to this issue by determining what fraction of
the diverse benchmark user-interfaces can be supported
by the generator model described above.

 We found that the generator model supports all of
our target speech and graphical user interfaces. The
fact that it supports all of the speech user-interfaces is
not that surprising. We did not have existing
candidates for them, so, as mentioned above, we
created them based on the corresponding graphical
user-interfaces and general principles about their
design [30], which are embodied in the generator.
Moreover, a cursory look at speech user-interfaces of
web services such as airline systems shows that they
follow these principles. GUIs show much more
variety, so it is more significant that the model
supports all of the target interfaces. Our model, in turn,

was designed for these interfaces, so another way to
state this observation is to say that we were able to
create a model to support all of these interfaces. When
designing the model, it was necessary to look only at
two user-interfaces, one command-based remote
control interface (Figure 5, top panel) and one beyond-
physical user interface (Figure 3). Once these were
supported, the other user-interfaces required no
additional features in the model. This implies that the
model has applicability far beyond the benchmark
user-interfaces. Of course, in the future, there could be
more sophisticated device user-interfaces that are not
supported by (minor tweaks to) our model. Such user-
interfaces would probably be “beyond physical user-
interfaces” that are very different from the ones
invented so far. It is in this space where the tradeoff
between the automation and user-interface flexibility
of generation probably exists in the device/mobile
computing domain. We expand below on this tradeoff
by evaluating the programming costs involved in the
different approaches.

Programming Cost: Previous research, in the
desktop and device domains, has measured the cost of
manually implementing desktop GUIs [36, 37] and the
cost of specifying desktop GUIs [25] and device GUIs
[38]. Our contribution here is a head-to-head
comparison of the programming costs of the two
approaches using the target set of GUIs and SUIs. In
the absence of a better measure, like the previous
works referenced above, we use number of lines of
code/specification needed to implement/specify the
user-interfaces as a measure of the programming cost.
We omit comments in our count.

Table 1 shows the results. As can be expected, the
amount of code is directly proportional to the size of
the device in terms of the number of commands and
properties. Interestingly, the speech

interfaces needed less
code/specification than the
corresponding GUIs. The
specification code was not
negligible because all
operations/properties needed
positions and many of them needed
labels different from their names.
Even then, the generation approach
offers 3-15 times fewer lines of
code/specification. The benefit is
greater for devices such as a lamp
with a small number of
operations/commands because in the
manual approach there is a fixed
cost of interfacing with an
underlying toolkit and implementing

base application-independent functionality such as
transitioning between user-initiative and system-
initiative dialogues. These tasks are automated by the
generator. Assuming that, on average, a line of
specification does not require more effort than a line of
code, it seems generation is a big winner. However, the
absolute values of the numbers for the manual
approach are small given that many commercial
programs are thousands, if not millions of lines of
code. Still, the manual approach can be considered to
impose a significant overhead given that literature
reports programmer productivity to be 250-550 lines of
code per month [39]. Another factor that muddles the
issue is the cost of learning new software. Graphics
toolkits are standard and popular, while GUI
generators are not. Therefore, it may not be worthwhile
to learn a user-interface generator. On the other hand,
most are probably not familiar with speech APIs,
which tend to be non-standard. Learning to use a
generator will probably take much less time.
Moreover, the speech and graphical generators in our
model provide an integrated specification mechanism,
which can be learned once to support both modalities.
Finally, given a device, the productivity gain of the
automation approach applies to each kind of mobile
computer on which a user-interface of the device is
created, assuming no code sharing occurs (in both the
manual and automatic approaches) among the different
kinds of mobile computers. (Automatically or semi-
automatically porting a user-interface implementation
to multiple devices is still an area of research [21]. In
summary, as the productivity gain occurs without loss
of flexibility, the generation approach is a clear but not
big winner if we do not consider other metrics.

of lines of UI code
GUIs SUIs

Command-only Command and State Device # of
cmds

of
props

Semi-
automatic
generation

Manual
Semi-

automatic
generation

Manual

Semi-
automatic
generation

Manual

Lamp 4 2 4 94 8 110 6 102

Projector 20 4 23 254 31 283 24 138

TV 29 9 25 321 36 385 33 142

VCR 46 5 40 247 47 288 46 172

DVD
Player 38 14 38 316 54 414 52 168

Receiver 42 22 42 287 66 428 64 176

PUC
Stereo 115 367 61

Sup.
Stereo 137 546 95

 Table 1. Number of lines of UI code used for each device

Deployment Reliability:
 The metric that makes the most compelling argument
for generation is deployment reliability. So far, we
have assumed that a user-interface specification or
implementation of each device has been created for
each mobile computer. In practice, this may not be the
case. Our generation model, on the other hand, always
guarantees a user-interface, albeit, in the case of GUIs,
a less than ideal one. Assuming a generated user-
interface such as the one shown in Figure 4 (which,
recall, has all the buttons and widgets of the target
user-interface) is better than no interface, generation is
a more reliable approach. We assume here that a
generator for a mobile computer is shipped with the
computer.

Binding Time: When a manual user-interface has
been implemented for a mobile computer, we must
address binding time. There are two times a mobile
client can learn about (or bind to) a device so that it
can display the user-interface for it. In early binding,
users must manually install the user-interface code for
devices they expect to use in the future on their clients.
Consequently, they will not be able to interact with a
device if its user-interface code is not already stored on
their clients. In late binding, no pre-installation is
necessary. Instead, the user-interface for a device is
automatically deployed at interaction time and thus
requires no user anticipation. Therefore, users can
interact with arbitrary devices. The local-manual
approach inherently supports early binding, and the
remote-manual and generation approaches support late
binding. Thus, based on this factor, the comparison
between the automatic and manual approaches depends
on the variation of the manual approach, with the
remote approach performing better.

Space Cost: On the other hand, a disadvantage of
the remote approach is that some networked devices
have limited storage, which in the remote approach,
must be used for storing the user-interfaces of all
possible mobile devices that may interact with them. A
document on UPnP estimating the power of networked
devices states that: “typically, they are based on a low-
cost micro controller, ASICs and some 200-1000 k
bytes of RAM and Flash memory [14].” To understand
the space requirements of the target user-interfaces, we
measured the footprint (in bytes) of the user-interface
code we wrote for each of the target devices. Table 2
shows that the remote approach is practical only if
networked devices have substantially more memory
than the UPnP estimate. It also motivates a variation of
the remote approach in which the user-interface code is
downloaded from a special user-interface server. We
assume a mobile computer has enough space to store
manually implemented user-interface code for a
plethora of devices or the generator.

Table 2. Amount of space consumed by each device’s
handcrafted UI code.

 Interaction Time: So far, the generation approach

has fared better or at least as well as the best manual
approach. However, by definition, it should have larger
time costs than custom code – so the question here is
how much larger are these costs. One important
component of these costs is interaction time – the time
it takes to invoke an operation on the remote device.
Somewhat surprisingly, our experiments showed a
negligible difference between the manual and
automatic approaches for both SUIs and GUIs, despite
the fact that our generator uses reflection and other
forms of indirection to invoke operations. We consider
a time difference significant if it is more than 50ms,
which is the delay noticeable by users [40].

Deployment Time Another important component of
time costs is the time it takes to deploy the user-
interface. Previous work has shown that on an iPAQ
this time can be as large as 40 seconds for the user-
interface of Figure 3 when the generator is both
specification- and heuristics-based [9]. However, it
does not compare this cost with the two variations of
the manual approach. Qualitatively, generating a user-
interface can be expected to take longer than starting a
local copy of manually written user-interface code.
Similarly, deployment time can be expected to be more
in the remote-manual rather than local-manual
approach. However, it is not possible to make
qualitative arguments: (a) comparing the generation
and remote-manual approach or (b) about the extent by
which the local-manual approach wins over the other
two approaches. Therefore, we performed experiments
comparing the three approaches with respect to the
GUI and SUI interfaces of the six devices. We used
two different kinds of mobile computers: (1) an old
laptop {Windows 2000 OS, 733 MHz Pentium,
128MB} and (2) an iPAQ Pocket PC {SavaJe Java-
based operating system, 206MHz StrongArm, 32MB}.
The old laptop was meant to represent future palmtop
computers. We considered three kinds of network

Space Consumed (bytes)

GUIs Device

Command-
only

Command
+

State

SUIs
(manual)

Receiver 9,728 11,737 5945
DVD
Player 9,216 11,086 5723

Lamp 2970 3,516 3827
Projector 6753 6,958 5375
TV 8,704 9,377 5442
VCR 9028 10,064 5845

connections: dialup (50Kbps), wireless (1Mbps), and
wired (11Mbps) LAN. The dialup case was meant to
represent cell-phone connections, some of which have
close to dialup speeds.

Because of space limitations, we discuss the results
of only a few of these experiments (Figure 6) – more
details are given in [34]. All the generation times
assume that the generator is preloaded since it is a
general purpose application. A mobile computer will
execute the same generation algorithm to create
different device user-interfaces throughout a user’s
course of interactions. It does not make sense to
consider the case of always keeping manually written
user-interfaces in memory since functionality (or code)
from one user-interface implementation cannot be used
to help deploy another. Somewhat surprisingly, we
found that preloading the generator can reduce the
deployment time by an order of magnitude. In our
experiments with the receiver, Figure 6a shows that on
the iPAQ, the remote-manual approach is 1.57 times
slower than the local-manual approach, while
generation is 3.0 and 1.90 times slower than the local-
manual and remote-manual approaches respectively.
The laptop results follow this trend, but have
significantly lower deployment times, thus showing
that processing power is an issue for both the manual
and generation approaches. The generation, remote-
manual, and local-manual approaches respectively took
3.78, 4.4, and 2.8 times longer on the iPAQ than on the
laptop. It even took less time to generate the GUI on
the laptop than to deploy one on iPAQ using the local-
manual approach (Figure 6a). Thus, the deployment
times were significantly larger in generation than in
other two approaches, but were much smaller than the
ones reported in [9] even though our implementation
makes extensive use of layering and dynamic
reflection. The better times can be attributed to the fact
that unlike [9], our implementation does not use
heuristics. Moreover, in the experiment reported in [9],
the generator may not have been preloaded.

UI Size: We found that these times are a function
only of the size of the interface and not its layout. For
example, on the iPAQ, in the generation approach, the
receiver’s command- and state- based GUI takes five
times longer than that of the lamp.

Network Speed The above results assume a wired
LAN connection. We also measured the effect of
network speed on the relative deployment times
(Figure 6b). As can be expected, the remote-manual
approach is sensitive to the network speed. Perhaps
less intuitive, so are the local-manual and generation
approaches. The local-manual approach must remotely
download device state before the user-interface is
ready, which causes, in this example, the deployment
in the wireless and dialup connections to respectively

take 1.21 and 16.19 times longer than the wired LAN
connection. The

Figure 6. (a) Receiver command and state GUI
based times (laptop and iPAQ with a wired LAN
connection); (b) Receiver command and state
GUI based times (laptop with different LAN
connections); (c) Receiver and lamp command-
only SUI based times (laptop with a wired LAN
connection).

proportional differences are greater under the remote-
manual approach because it must additionally
download code for an entire user-interface—not just
property values. Specifically, the wireless and dialup

Receiver GUI Deployment Times
(ObjectEditor Preloaded in Memory)

(Laptop)
396.43

(Ipaq)
1121.11

(Laptop)
401.00

(Ipaq)
1760.43

(Laptop)
882.44

(Ipaq)
3339.00

0

500

1000

1500

2000

2500

3000

3500

4000

1

tim
e(

m
s)

Local-Manual Remote-Manual Generation

(a)

Wired LAN vs. Wireless LAN vs. Dialup
Laptop GUI Deployment Times (for Receiver)

(w
ire

d)
, 3

96
.4

3

(w
ire

le
ss

),
48

0.
56 (d

ia
lu

p)
, 6

41
8.

00

(w
ire

d)
, 4

01
.0

0

(w
ire

le
ss

),
66

7.
78

(d
ia

lu
p)

11

62
7.

89

(w
ire

d)
, 8

82
.4

4

(w
ire

le
ss

),
16

84
.3

3

(d
ia

lu
p)

16
10

0.
00

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1

tim
e(

m
s)

Local-Manual Remote-Manual Generation

(b)

(c) Speech UI Deployment Times
(on Laptop)

Lo
ca

l-M
an

ua
l,

 2
79

1.
99

R
em

ot
e-

M
an

ua
l,

 2
89

9.
89

Generation,
 3401.67

Local-
Manual,
4290.44

Remote-
Manual,
 4456.25

Generation,
 4935.89

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1

tim
e

(m
s)

Receiver UILamp UI

Receiver GUI Deployment Times
(ObjectEditor Preloaded in Memory)

(Laptop)
396.43

(Ipaq)
1121.11

(Laptop)
401.00

(Ipaq)
1760.43

(Laptop)
882.44

(Ipaq)
3339.00

0

500

1000

1500

2000

2500

3000

3500

4000

1

tim
e(

m
s)

Local-Manual Remote-Manual Generation

(a)

Wired LAN vs. Wireless LAN vs. Dialup
Laptop GUI Deployment Times (for Receiver)

(w
ire

d)
, 3

96
.4

3

(w
ire

le
ss

),
48

0.
56 (d

ia
lu

p)
, 6

41
8.

00

(w
ire

d)
, 4

01
.0

0

(w
ire

le
ss

),
66

7.
78

(d
ia

lu
p)

11

62
7.

89

(w
ire

d)
, 8

82
.4

4

(w
ire

le
ss

),
16

84
.3

3

(d
ia

lu
p)

16
10

0.
00

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1

tim
e(

m
s)

Local-Manual Remote-Manual Generation

(b)

(c) Speech UI Deployment Times
(on Laptop)

Lo
ca

l-M
an

ua
l,

 2
79

1.
99

R
em

ot
e-

M
an

ua
l,

 2
89

9.
89

Generation,
 3401.67

Local-
Manual,
4290.44

Remote-
Manual,
 4456.25

Generation,
 4935.89

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1

tim
e

(m
s)

Receiver UILamp UI

connections respectively take 1.67 and 30 times longer
than the wired LAN connection. The generation
approach is also more network-dependent than the
local-manual approach. Before downloading state, a
generator must first download device descriptions from
which it creates user-interfaces. Thus, just going from
a wired to wireless connection can double generation
time. Finally, generating with the dialup connection
takes 18.24 times longer than with the wired LAN
connection.

SUIs: SUI deployment follows the same trend as
GUI deployment (Figure 6c). In the SUI case,
however, the differences between the three approaches
were not as significant. Our results also show that
speech user-interface deployment takes much longer
than GUI deployment no matter the approach—
implying that SUI deployment is a more resource
intensive process than GUI deployment. Deploying a
local-manual lamp (command-only) SUI (2791.99 ms)
takes over twice as long as generating a receiver
(command-only) GUI (505.50 ms) when using the
wired LAN connection. Further, generating the
receiver SUI using the same network connection
actually takes over four seconds. This explains why
remote downloading and generation does not
contribute as much to the deployment time in the SUI
case.

4. Conclusions and Future Work

The novel aspects of our work can be described at
various levels of detail. The most abstract message is
that the question of whether user-interfaces should be
automatically generated must be revisited in the
context of device/mobile-computer interaction. The
next-level message consists of the set of important
metrics we have found to matter in making this
decision: user-interface flexibility, programming
overhead, space costs, deployment time, device-
binding time, and deployment reliability. Only the first
two matter in desktop computing. A related
contribution is the set of factors we found that make a
significant difference to these metrics, which include:
the network speed, device complexity, processing
power of mobile computer, the type of user-interface
(command-only GUI, command- and state- based GUI,
and SUI), and whether the generator is preloaded and
is domain-specific. Another important contribution is
the detailed model we have provided for specification-
based SUI and GUI generation.

A more detailed contribution is the comparison of
(semi-automatic and automatic) generation and (local
and remote) manual approaches along each of the
evaluation dimensions. These observations imply that

each of the three approaches, local-manual, remote-
manual, and automatic generation, has a unique
benefit. The local-manual approach offers the lowest
deployment time when early binding is acceptable.
The remote-manual approach offers the best
deployment time when late binding is required and
device space cost is not an issue. Automatic generation
simultaneously offers the maximum user-interface
flexibility, lowest programming overhead, maximum
deployment reliability, and late binding. A single
computer could use multiple approaches and the
choose the appropriate one based on the scenario – for
example, fully automatic for new devices and local-
manual for frequently used old devices.

 The question posed by this paper is one that is
often debated informally, and ours is simply an initial-
cut at a systematic analysis of this issue. It would be
useful to extend the: (a) set of target devices in the
domain examined by including, for example,
thermostats, sensors, and digital music streamers, (b)
target domain by including, for instance, device user-
interface personalized to a user, (c) the mobile
computers used in the experiments by including, for
instance, cell phones, (d) the set of metrics by
including, for instance, maintenance costs, and (e) the
set of approaches by including a generation approach
that retargets existing user-interfaces [10, 20] rather
than generating them from scratch, composes devices
[22, 28, 29], and supports heuristics and remote
generation [9].

5. Acknowledgements

This research was funded in part by IBM, Microsoft
and NSF grants ANI 0229998, EIA 03-03590, and IIS
0312328.

6. References

[1] Remote Possibilities, in USA Today. 2000.
[2.] Beck, J., Geffault, A., and Islam, N. MOCA: A Service
Framework for Mobile Computing Devices. in International
Workshop on Data Engineering for Wireless and Mobile
Access.
[3] Czerwinski, S., et al. An Architecture for a Secure Service
Discovery Service. in ACM MobiCom 1999.
[4] Guttman, E. Service Location Protocol: Automatic
Discovery of IP Network Services. in IEEE Internet
Computing.
[5] Larsson, B.C.a.O., Universal Plug and Play Connects
Smart Devices. WinHec 99 White Paper
(http://www.axis.com/products/documentation/UPnP.doc).
[6] Sun Microsystems, I., Jini technology architectural
overview: from http://www.jini.org, and Jini network
technology http://www.sun.com/jini/).

[7] J. Beck, A.G., & N. Islam, MOCA: A Service Framework
for Mobile Computing Devices. Proceedings of the
International Workshop on Data Engineering for Wireless
and Mobile Access.
[8] Nichols, J., et al. Generating Remote Control Interfaces
for Complex Appliances. in ACM Symposium on User
Interface Software and Technology. 02. Paris.
[9] Gajos, K. and D.S. Weld. SUPPLE: Automatically
Generating User Interfaces. in IUI. 04.
[10] Nichols, J., B.A. Myers, and B. Rothrock. UNIFORM:
Automatically Generating Consistent Remote Control User
Interfaces. in Proceedings of CHI'2006. 2006.
[11] OmniRemote.
[12] Hewlett-Packard-Corporation, Cooltown.
[13] Han, R., V. Perret, and M. Naghshineh. WebSplitter: A
Unified XML Framework For Multi-Device Collaborative
Web Browsing. in Proceedings of ACM Computer Supported
Cooperative Work. 2000.
[14] Schlimmer, J., ChangeDisc:1 Sample Service Template
For Universal Plug and Play Version 1.0.
[15] Community, J. The ServiceUI Project: UI Factories. in
http://www.artima.com/jini/serviceui/UIFactories.html.
[16] Bonnet, P., Gehrke, J., Seshadri, P. Querying the
Physical World. in IEEE Personal Communications. 2000.
[17] Stina Nylander and M. Bylund. The Ubiquitous
Interactor: Universal Access to Mobile Services. in HCII.
2003.
[18] Reitter, D., E. Panttaja, and F. Cummins. UI on the fly:
Generating a multimodal user interface. in HLT/NAACL. 04.
[19] Madden, S.e.a. The Design of an Acquisitional Query
Processor for Sensor Networks. in SIGMOD. 2003.
[20] Hodes, T. and R. Katz, Composable Ad Hoc Location-
Based Services For Heterogeneous Mobile Clients. Wireless
Networks, 1999. 5: p. 411-427.
[21] Lin, J. and J.A. Landay. Damask: A Tool for Early-
Stage Design and Prototyping of Multi-Device User
Interfaces. 2002,.
[22] Ponnekanti, S.R., et al. ICrafter: A Service Framework
for Ubiquitous Computing Environments. in Ubicomp 2001.
2001. Atlanta.
[23] Edwards, W., et al. Recombinant Computing and the
Speakeasy Approach. in Mobicom 2002. 2002.
[24] Olsen, D.R. and E.P. Dempsey, SYNGRAPH: A
Graphical User Interface Generator. Computer Graphics,
July 1983. 17(3): p. 43-50.
[25] Dewan, P. and M. Solomon, An Approach to Support
Automatic Generation of User Interfaces. ACM Transactions
on Programming Languages and Systems, October 1990.
12(4): p. 566-609.
[26] Sukaviriya, P., J. Foley, and T. Griffith. A Second
Generation User Interface Design Environment: The Model

and Runtime Architecture. in Proceedings of Human Factor
in Computing Systems: INTERCHI'93. April 1993.
[27] Szekely, P. Retrospective and Challenges for Model-
Based Interface Development. in in 2nd International
Workshop on Computer-Aided Design of User Interfaces.
1996.
[28] Omojokun, O. and P. Dewan. A High-level and Flexible
Framework for Dynamically Composing Networked Devices.
in Proceeding of 5th IEEE Workshop on Mobile Computing
Systems and Applications. 2003.
[29] Nichols, J., et al. Huddle: Automatically Generating
Interfaces for Systems of Multiple Connected Appliances. in
Proc. UIST '06. 2006.
[30] Jeffrey Nichols, B.M., Thomas K. Harris, and S.S. Roni
Rosenfeld, Michael Higgins, Joseph Hughes. Requirements
for Automatically Generating Multi-Modal Interfaces for
Complex Appliances. in Proc. ICMI. 02.
[31] Lemon, O. and X. Liu. DUDE: a Dialogue and
Understanding Development Environment, mapping Business
Process Models to Information State Update dialogue
systems. in EACL 2006.
[32] Larsson, S., R. Cooper, and S. Ericsson. Menu2dialog.
in IJCAI Workshop on Knowledge And Reasoning In
Practical Dialogue Systems, 2001.
[33] Omojokun, O. and P. Dewan. Experiments with Mobile
Computing Middleware for Deploying Appliance UIs. in In
Proceedings of the 23rd International Conference on
Distributed Computing Systems – Workshops. 2003.
[34] Omojokun, O., Interacting with Networked Devices, in
Computer Sciences. 2006, University of North Carolina.
[35] Nevo for PDAs.
[36] Sutton, J. and R. Sprague, A Study of Display
Generation and Management in Interactive Business
Applications Tech. Rept. RJ2392(#31804). November 1978:
IBM San Jose Research Laboratory.
[37] Myers, B., User Interface Software Tools. ACM
Transactions on Computer-Human Interaction, March 1995.
2(1): p. 64-103.
[38] Gajos, K., et al. Fast And Robust Interface Generation
for Ubiquitous Applications. in Proceedings of the Seventh
International Conference on Ubiquitous Computing
(UBICOMP'05).
[39] Sommerville, I., Software Engineering Environments.
(IEEE Computing Series Number 7, CM007): p. ISBN 0
86341 077 4, 1986.
[40] Shneiderman, B., CHAPTER 10 - "Response Time and
Display Rate", in Designing the User Interface: Strategies
for Effective Human-Computer Interaction. 1998, Addison-
Wesley Longman. p. 352-369.

