
Automatic Generation of Device User-Interfaces? 
 
 

Olufisayo Omojokun 
Georgia Institute of Technology 

omojokun@cc.gatech.edu 

Prasun Dewan 
University of North Carolina at Chapel Hill 

dewan@cs.unc.edu
 

Abstract 
 

One of the visions of pervasive computing is using 
mobile computers to interact with networked devices. A 
question raised by this vision is: Should the user-
interfaces of these devices be handcrafted manually or 
generated automatically? Based on experience within 
the domain of desktop computing, the answer seems to 
be that automatic generation is not flexible enough to 
support a significant number of useful interfaces but 
requires substantially less coding effort for the 
interfaces it can create. We show that the answer is 
much more complicated when we consider networking 
of traditional appliances such as stereos and TVs. 
Using qualitative arguments and quantitative 
experimental data, we show that the manual vs. 
generated issue must be resolved based on: (a) not 
only user-interface programming and flexibility but 
also several other metrics such as space and time 
costs,  binding time, and reliability (b) whether it is a 
graphical or speech based user-interface, (c) the size 
of the device user-interface, (d) whether the manually 
written user-interface code is available at the mobile 
computer or at a remote machine, and (e) the network 
bandwidth between the mobile computer and remote 
factory.  
 
1. Introduction 
 

One domain currently receiving a significant 
amount of research attention is networking arbitrary 
devices such as TVs, refrigerators, and sensors. It is 
attractive to create software user-interfaces on mobile 
computers to interact with such appliances, for several 
reasons: 

   Truly universal:  Some traditional remote controls 
can interact with multiple devices such as TVs, VCRs, 
cable set-top boxes, and CD players. They are in fact 
called ‘universal’ remote controls, but have two 
important restrictions.  First, a traditional universal 
control can interact with a fixed number of device 
instances.  The amount of physical buttons and other 
controls on the remote determines this number.  
Mobile computers, on the other hand, can control 

arbitrary numbers of device instances.  For example, 
mobile computers could allow security guards to 
control the lights in all current and future buildings in 
which they work.  Second, a traditional universal 
control must provide buttons for the union of the 
operations among device types it can control, which 
can clutter it if the devices types share few operations. 
Therefore, universal controls typically support similar 
types of devices, that is, devices such as CD players, 
DVD players, and VCRs that share a large number of 
operations. Dissimilar devices such as fans and robotic 
vacuum cleaners require separate controls.  A survey 
shows that 44% of households in USA have up to six 
remote controls [1]. A mobile computer can serve as a 
single control for arbitrarily different kinds of devices. 

     Automatic binding:  Traditional universal remote 
controls require users to manually enter specific codes 
for the device instances they wish to use.   For 
instance, universal remotes for controlling home 
entertainment devices require users to look up the 
manufacturer codes of their devices (TVs, VCRs, etc) 
and enter these codes on the remote. This design does 
not create a serious problem when the number of 
devices is small, but would have a significant 
drawback in a world with ubiquitous computing. Since 
mobile computers are intelligent, they can 
automatically bind themselves to arbitrary device 
instances through a discovery process [2-7].   

     Truly remote:  Since IR signals cannot pass 
through walls, some traditional “remote” controls only 
allow users to control devices in the vicinity of a user.  
X10 remote controls are based on radio signals, so they 
are not limited by walls.  However, these signals can 
only travel a few feet.  A mobile computer can interact 
with a networked device over the Internet.  Thus, it can 
be used to control a device from an arbitrary location.  
For example, a mobile computer can allow a person on 
vacation to deactivate a security system at home so that 
a neighbor can freely enter the house to feed fish in an 
aquarium.  If the security system ever needs 
troubleshooting, a technician at the manufacturer’s site 
could use a mobile computer to possibly fix the device 
without having to visit the owner’s home.   



      Beyond physical user-interfaces: Perhaps a 
more fascinating reason for using mobile computers to 
interact with networked devices is that it is possible to 
create software user-interfaces for them that are more 
sophisticated than the conventional physical user-
interfaces offered by traditional appliances and their 
controls [8]. Unlike conventional user-interfaces, they 
can group related controls into overlapping tabs [8, 9], 
display state [8, 9], allow offline editing, provide 
consistency [10], and be customized to the habits of 
their users [9]. 

     Not surprising then, several systems today offer 
software-based user-interfaces, which include: 
Palm/Pocket-PC IR programs [1, 11], HP’s Cooltown 
[12], IBM’s Moca[2], and Websplitter[13], Microsoft’s 
UPnP [5, 14], Sun’s Jini[6, 15], CMU’s PUC [8] and 
UNIFORM [10], Cornell’s Cougar [16], Swedish 
Institute’s Universal Interactor [17], Media Lab’s UI 
on the Fly [18], Berkeley’s TinyDB [19], [20], and 
DAMASK [21], Stanford’s ICrafter [22], U. of 
Washington’s SUPPLE [9], and PARC/Georgia Tech’s  
Speakeasy/Obje [23]. In most of these systems, the 
user-interfaces are manually implemented. A few 
systems [8, 9, 17, 18, 20, 22], on the other hand, 
explore the intriguing idea of automatically generating 
these user-interfaces. While this idea is new in the 
domain of mobile/device computing, it has been 
explored for over three decades in the realm of desktop 
computing [24-27]. The lessons from desktop 
computing tell us that automatic generation is not 
flexible enough to support a significant number of 
useful interfaces but requires substantially less coding 
effort for the interfaces it can create. The question we 
try to answer here is: do these lessons also apply to the 
area of mobile/device computing?  Naturally, the 
answer depends on the kind of device user-interfaces 
and generation algorithm we address. We consider 
software user-interfaces of individual devices and do 
not address interfaces for dynamic compositions of 
devices [9, 22, 28, 29]. Generation algorithms can be 
classified into those using heuristics to meet high-level 
goals such as uniformity [10] and low usage of screen 
real estate [9], and those that are based on user-
provided specifications. We address specification-
based generation. Thus, our initial answer to the 
question above ignores heuristics-based automatic 
generation and dynamic-device composition. 

     Intuitively, there are several reasons why the 
manual/automatic question must be re-examined in the 
context of device user-interfaces. Given a networked 
device, its user-interface must be implemented on each 
of the large number of the continuously evolving 
mobile computers that may be used to interact with it. 
Previous papers have hypothesized that this effort 
would be high, and have used this hypothesis as the 

motivation for (specification-based) generation in this 
domain. In addition, these interfaces seem to be 
simpler and have less variety than desktop user-
interfaces, consisting mainly of rectangular 
arrangements of buttons and simple widgets. Thus the 
inherent lack of flexibility of generation could become 
less of an issue. On the other hand, because they are 
simpler, the automation provided by generation may 
become less of an advantage. Devices and mobile 
computers are much less powerful than desktop PCs – 
thus we must consider space and time costs.  Some of 
these metrics should depend on whether the interfaces 
consist only of commands or includes both commands 
and state, as the latter are more complex. Complicating 
the issue is the fact that mobile devices have limited 
screen space and may be used by users whose hands 
are occupied on some other task, making speech user-
interfaces (SUIs) a practical alternative to GUIs [21-
23, 30-32].  Thus the manual/automatic question must 
be answered also for SUIs. As the devices are 
networked, the impact of communication delays on the 
choice of the approach needs to be explored.   

    At first glance, it seems we must also consider 
usability. However, this is a quality of individual user-
interfaces and not the framework used to implement 
them – both the manual and generation approaches 
may be used to create interfaces that are both easy and 
hard to use. We consider system rather than usability 
issues as we are addressing frameworks rather than 
individual applications. In our experiments, we have 
included the only two device interfaces known to us 
that have been shown (by others) to be easy to use [9, 
30]. The other interfaces we consider are based on a 
systematic way of converting commercial physical 
interfaces to software user-interfaces. Another 
important metric we ignore is the interoperability effort 
required to port a user-interface for one mobile 
computer to another kind of mobile computer[21]. The 
impact of the approach on energy costs is also left as 
future work. 

     The paper consists of both qualitative arguments 
and quantitative experimental data. It is a substantial 
update and extension of our previous workshop paper 
[33].  More details on this issue can be found in the 
first author’s thesis [34]. The rest of the paper is 
organized as follows. We first present our models of 
the generation and manual frameworks. We then 
outline the metrics we used in our analysis and 
describe our experimental setup and benchmarks. The 
bulk of the paper compares the two approaches based 
on these metrics. Finally, we present conclusions and 
directions for future work. 
 



2. Model of Manual/Automatic Generation 
 

Figure 1 shows a general architecture that abstracts 
existing systems for deploying device user-interfaces 
on mobile computers that applies to both the automatic 
and manual approaches.  Device objects encapsulate 
the functionality of actual physical devices.  They 
contain methods for invoking commands on devices 
and viewing device state.  Device advertisers publish 
information about devices and references to them 
within a given network or physical space. They are 
accessed by device discoverers on mobile computers.  
Device advertisers may run on the same host as that of 
the device objects or on a separate machine. User-
interface deployers on mobile computers, using device 
references, deploy the actual user-interfaces for 
interacting with device objects.  Here we consider only 
the issue of whether the deployed user-interface is 
created manually or automatically. Thus, we do not 
consider other problems such as secure device 
discovery and assume state-of-the-art solutions to 
them. 

 
     In many manual approaches such as Nevo [35] 

and OmniRemote [11], a predefined implementation of 
the user-interface resides on the mobile computer. 
Others such as [2, 5, 12, 15], offer an alternative 
approach in which the code resides on a remote 
computer. Thus, the manual approach has two 
variations, local and remote, distinguished by where 
the predefined user-interface is located. We consider 
both variations. Both manual implementations and 
generator specifications can be created interactively or 
programmatically. We assume both are created 
programmatically. 

     (Specification-based) generators create default 
user-interfaces for devices, which can be overridden by 
high-level specifications. There is no well-defined 
model of such generators, in the desktop or device-
mobile computing domain.  Therefore, here, we 
identify such a model for the device-mobile computing 

domain. It includes: (a) features of generators in this 
domain published in previous papers, and (b) features 
identified by us to completely generate published 
interfaces produced by these generators.  We give 
enough details so that the readers can understand the 
programming-cost numbers and specify the user-
interfaces shown here. 

      Our generator is given a description of the state 
properties and operations of a device. This description 
may be automatically derived from the object coding 
the device, or it may be created manually using an 
external, language-independent, description – our 
analysis does not distinguish between these two 
approaches as it does not measure the cost of creating 
an external description. We restrict operation 
parameters to simple types, as complex types do not 
appear in device user-interfaces, but allow properties to 
be of predefined and user-defined types as device 
objects can be hierarchical. Moreover, properties and 
operations can be collected into hierarchical user-
defined view groups [30] to allow the view and 
dialogue structure to be independent of the device 
structure. We allow view groups to overlap, thereby 
allowing the use of alternative GUI-views and SUI-
dialogues to invoke an operation or modify a property. 
Let us first consider GUI generation. 

   An operation is mapped to a button. Any 
parameters of the operation are collected using a 
dialogue box. A property of a predefined type is 
mapped to one of a set of widgets associated with the 
type. Each predefined value can be mapped to a text 
box displaying the textual representation of the value. 
In addition, a Boolean value can be mapped to a 
checkbox, an integer value to a slider, and an 
enumeration to a combo-box (Figure 2, Band property) 
or radio button (Figure 3, Mode property). Finally a 
property associated with increment and decrement 
operations can be mapped to an IncDec widget that 
consists of a text-widget to display the property value 
and buttons to invoke the two operations (Figure 2, 
widget displaying current station). A user-defined type 
or view group is mapped to a panel containing the 
display of its properties and operations. These panels 
can be arranged in tabs (Figure 2 and 3). A user-
specified attribute of the property/view group selects 
from the alternate widgets and containers defined for 
it. In addition, we assume attributes that determine the 
label and position of a property and operation, and 
whether a label is displayed. The positions of 
properties and operations are used when they are 
linearly arranged, as in different tabs.  

 
 
 
 

Mobile Computer
(Client)

Device 
Discoverer

UI
Deployer

Device Advertiser

Device
Reference

Device
Reference

Object

Device

UI Object

Device

Interacts with
Deploys

Mobile Computer
(Client)

Device 
Discoverer

UI
Deployer

Device Advertiser

Device
Reference

Device
Reference

Object

Device

UI Object

Device

Interacts with
Deploys

Figure 1. A general architecture for 
deploying device user-interfaces. 



 
Figure 2.  PUC Stereo UI 

 

 
Figure 3.  Supple Stereo UI 

 
To accommodate the two-dimensional displays of 

devices, we define a special layout that extends the 
grid layouts of toolkits in the following ways: (a) the 
placement of components (operations/properties) is 
based on user-specified row and column attributes 
rather than the sequence in which they are added to the 
parent container; (b) a component may be associated 
with (text or iconic) labels displayed above, below, left 
and right of it,  (c) for positions in the grid not 
associated with a component or label,  a filler label is 
displayed whose content (text/icon) is specified by an 
attribute, (e) and, depending on another attribute, the 
rows in a grid may have their preferred sizes or be 
made equal size by stretching rows smaller than the 
largest row.  

By default, we assume that the generator: (a) creates 
checkboxes and combo-boxes for Boolean and 
enumeration values and textboxes for other primitive 
values, (b) creates non-tabbed sub-panels for 
composite properties and view groups, (c) arranges 
operations and properties in separate grids ordered by 
their names, (d) uses the name of a component in the 
programming interface as a label, and (e) uses a single 

space character for the filler label. Figure 4 shows a 
default display created when no attributes are 
specified. These defaults are necessary to interpret the 
numbers we give for the lines of code required to 
specify various user-interfaces.  

 
Figure 4.  A TV GUI using all defaults. 

 
It is possible to override defaults globally or for an 

individual property and operation. For example, in 
Figure 3, a global specification says that rows are not 
of equal size. As a result, operations, properties and 
view groups such as “Power”, “Volume” “X-Bass”, 
and “Tuner” that do not override this default have their 
preferred sizes. On the other hand, the column 
containing “< Play,” “Play >” and other operations has 
rows of equal sizes. This is because the view group 
containing them overrides the value of this attribute.  

Our model of a speech generator also combines and 
extends existing techniques for mapping objects to 
dialogues. Each (parameterized) operation is associated 
with a (parameterized) command and each composite 
property/view group with a sub-dialogue. Commands 
are also provided to set and get simple properties. An 
attribute determines the spoken name of the 
operation/property, which by default is the same as the 
identifier used to name the component in the 
programming interface. In the system-initiative mode, 
the system prompts users for the alternative choices, in 
order of the values of their position attributes. In the 
user-initiative mode, the user simply gives the 
complete command.  As view groups can overlap, all 
operations and properties with distinct names are put in 
a top-level view group so experienced users do not 
have to navigate through submenus in the user-
initiative mode. (As mentioned in [30], in this domain, 
duplication of names does not occur.)  Elements of the 
top view group that are also in some other child group 
are not presented as options in the system-initiative 
mode to keep menus short. 

We assume that the GUI and SUI generator models 
are built on top of GUI and SUI toolkits, which 



themselves provide customization features such as 
determining the alignment of labels and the width of 
text- and combo- boxes. We assume these generators 
allow toolkit customization features to be used by the 
developers. Exercising them has the same cost in both 
the manual and generation approaches, so we ignore 
them in our discussion and implementations. 

 
 

3. Evaluation 
 

The evaluation metrics we used extend the ones 
used for desktop computing and take into account the 
special features of this domain: 
1) User-Interface Flexibility – range of user-

interfaces that an approach can support. 
2) Programming Costs – amount of code required to 

define (implement/specify) a user-interface. 
3) Efficiency – time and storage space costs of an 

approach. 
4) Device Binding Time – time a client must learn 

about (or bind to) a device in order to deploy a 
user-interface for it.  

5) Deployment Reliability – the level of guarantee an 
approach offers in deploying a user-interface. 

The first three metrics are applicable to both 
desktop and device user-interfaces. Efficiency takes 
into account the fact that devices and mobile 
computers have restricted computing power and 
devices have restricted memory. Device binding time 
is important in our domain because the functionality 
and user-interface are distributed on two separate 
machines, which must be bound to each other.  
Deployment reliability determines the likelihood an 
approach provides a user-interface for a network 
device.   These metrics allow us to make a mix of 
qualitative and quantitative comparisons of the various 
approaches. As there is no previous work on 
quantitative comparative evaluation based on these 
metrics, we discuss below in some depth our choice of 
benchmarks used for such comparisons. 

 Some of the quantitative comparisons require 
performing experiments with real networked devices. 
Thus, we networked six actual devices of different 
types: a Phillips TV, JVC VCR, Sony A/V Receiver, 
Panasonic DVD Player, Hitachi Projector, and lamp.  
The first author owns all of the devices except the 
projector, which is found in a conference room inside 
our department’s building.  

     For each device, we created a Java RMI (proxy) 
object representing its functionality on a desktop PC.   
Each object has a programming interface that consists 
of a method for each command (or button) found on its 
associated device’s traditional remote control and Java 

Bean getter and setter methods for each unit of state.  
When invoked, a method executes code that sends a 
signal to its corresponding (actual) device to perform 
the associated command.  The desktop PC has an IR 
and X10 radio module connected to its serial ports for 
sending these signals.  The IR module has a 
record/playback facility, which we used to store the 
signals of all of the commands found on the TV, VCR, 
receiver, DVD player, and projector remote controls.  
Each method invocation simply replays the recorded 
signal of its associated command—it does not return 
any value or require any parameters.  The lamp is the 
only device that we networked using the X10 protocol.   

Our next step was to identify a set of diverse but 
“realistic” benchmark user-interfaces for our 
experiments. We created four kinds of device user-
interfaces:  

Direct Mimicking:  These user-interfaces directly 
mimic traditional remote controls by mapping each 
physical button to a soft button, ensuring that 
groupings of the buttons and their labels are 
maintained.  The top panel of Figure 5 is an example of 
such an interface.  

 
Figure 5.  A command and state TV GUI 

 
State-containing User-Interfaces:  To expand the 

applicability of our results, we wished to also 
investigate user-interfaces that incorporate state.  Since 
traditional remote controls do not display state, there 



are no clear-cut examples to directly mimic.  However, 
we can make a logical derivation of such GUIs by 
searching the on-board panels and remote controls of 
each device for status information and extend the 
standard grid-based layout of buttons to display state. 
The bottom panel of Figure 5 illustrates this derivation 
by displaying the TV’s handcrafted GUI with state.  
This GUI displays the device’s properties using 
widgets that can appropriately display their values.  
The values of Boolean properties are displayed using 
checkboxes while the values of strings and numeric 
types are displayed using textboxes.  To illustrate, the 
TV’s ‘powered’ property value is displayed by a 
checkbox.  An unchecked box means that the TV is 
off, otherwise, it is on.  

 Beyond Physical User Interfaces: Even though 
traditional appliance panels and their remote controls 
have been a principal means for interacting with 
devices for many years and their interfaces have not 
changed much over these years, as mentioned in the 
introduction, it is intriguing to explore more 
sophisticated software device user-interfaces. We used 
the only two examples of such interfaces available to 
us, both of which have been evaluated for usability in 
the lab – the PUC AudioPhase user interface (Figure 2) 
and the Supple Stereo user-interfaces (Figure 3). These 
were good candidates as they provide very different 
user-interfaces for essentially the same set of 
operations and properties and make extensive use of 
view groups. In the PUC case, we could not find the 
tape controls in any published work, so we included 
only the tuner and CD controls in the user interface. As 
we did not have the associated physical devices, the 
proxy objects we created for them did not, in fact, 
control real devices.  

   Speech User-Interfaces:  We also derived the 
speech user-interfaces of the six real (two simulated 
devices) from their corresponding state-containing 
(beyond-physical) graphical user interfaces by creating 
a sub-dialogue for each view group, allowing users to 
speak out the text of the widget used for the operation 
or property to invoke/query it, supporting both user 
and system initiative, and in the system initiative 
mode, ordering the choices by the associated graphical 
position attributes. 

The nature of the user-interface affects only the 
results of the flexibility and programming costs metrics 
–as other metrics are either evaluated qualitatively or, 
in the case of deployment time, is a function primarily 
of the number of operations and properties and the 
mode of user-interface (SUI/GUI). Even the flexibility 
and programming-cost metrics are somewhat 
independent of the exact user-interface. In particular, 
the exact position or name of a speech prompt or a 
user-interface widget is not important – what matters is 

that it is explicitly specified and can be supported by 
the generator model. While the picky reader may 
quibble with the exact set of user-interfaces we have 
chosen, it is important to keep in mind that we have 
tried to do better than the well-accepted approach in 
other domains of picking random samples when 
established benchmarks do not exist. 

Our manual implementations of the user-interfaces 
were done using Swing. For an implementation of the 
generator model described previously, we extended an 
existing Java-based generator, called ObjectEditor, 
which had previously been used in teaching and 
research. As it is a general-purpose generator, it 
includes several features not in our model generator, 
such as programmer-defined parameters. For an 
implementation of our SUI-generator model, we 
created a new tool. Neither tool requires an external 
description of the appliance object, they create the 
description automatically using runtime analysis or 
reflection of object signatures. They identify state 
properties described by signatures adhering to the Java 
Bean conventions. Signatures that are not used to 
export state properties describe operations. As a result, 
the performance numbers we give include the 
reflection cost.  

We are finally ready to start evaluating the 
approaches based on the dimensions given above. 

User-Interface Flexibility: The manual approach, 
can, of course, support arbitrary user-interfaces, so the 
flexibility comparison requires the degree to which the 
user-interfaces in this domain can be supported by the 
generation approach.  This question has been partly 
addressed in papers describing some existing 
generators by showing that the generators can create an 
interesting set of usable device user-interfaces. 
However, these papers do not address the question of 
whether the generators can create (device) user-
interfaces not designed by their authors – for example, 
user-interfaces created by other generators. We 
contribute to this issue by determining what fraction of 
the diverse benchmark user-interfaces can be supported 
by the generator model described above. 

 We found that the generator model supports all of 
our target speech and graphical user interfaces. The 
fact that it supports all of the speech user-interfaces is 
not that surprising. We did not have existing 
candidates for them, so, as mentioned above, we 
created them based on the corresponding graphical 
user-interfaces and general principles about their 
design [30], which are embodied in the generator. 
Moreover, a cursory look at speech user-interfaces of 
web services such as airline systems shows that they 
follow these principles.  GUIs show much more 
variety, so it is more significant that the model 
supports all of the target interfaces. Our model, in turn, 



was designed for these interfaces, so another way to 
state this observation is to say that we were able to 
create a model to support all of these interfaces. When 
designing the model, it was necessary to look only at 
two user-interfaces, one command-based remote 
control interface (Figure 5, top panel) and one beyond-
physical user interface (Figure 3). Once these were 
supported, the other user-interfaces required no 
additional features in the model. This implies that the 
model has applicability far beyond the benchmark 
user-interfaces. Of course, in the future, there could be 
more sophisticated device user-interfaces that are not 
supported by (minor tweaks to) our model. Such user-
interfaces would probably be “beyond physical user-
interfaces” that are very different from the ones 
invented so far. It is in this space where the tradeoff 
between the automation and user-interface flexibility 
of generation probably exists in the device/mobile 
computing domain.  We expand below on this tradeoff 
by evaluating the programming costs involved in the 
different approaches. 

Programming Cost: Previous research, in the 
desktop and device domains, has measured the cost of 
manually implementing desktop GUIs [36, 37] and the 
cost of specifying desktop GUIs [25] and device GUIs 
[38].  Our contribution here is a head-to-head 
comparison of the programming costs of the two 
approaches using the target set of GUIs and SUIs. In 
the absence of a better measure, like the previous 
works referenced above, we use number of lines of 
code/specification needed to implement/specify the 
user-interfaces as a measure of the programming cost. 
We omit comments in our count.  

Table 1 shows the results. As can be expected, the 
amount of code is directly proportional to the size of 
the device in terms of the number of commands and 
properties.  Interestingly, the speech 

interfaces needed less 
code/specification than the 
corresponding GUIs.  The 
specification code was not 
negligible because all 
operations/properties needed 
positions and many of them needed 
labels different from their names. 
Even then, the generation approach 
offers 3-15 times fewer lines of 
code/specification.  The benefit is 
greater for devices such as a lamp 
with a small number of 
operations/commands because in the 
manual approach there is a fixed 
cost of interfacing with an 
underlying toolkit and implementing 

base application-independent functionality such as 
transitioning between user-initiative and system-
initiative dialogues.  These tasks are automated by the 
generator. Assuming that, on average, a line of 
specification does not require more effort than a line of 
code, it seems generation is a big winner. However, the 
absolute values of the numbers for the manual 
approach are small given that many commercial 
programs are thousands, if not millions of lines of 
code. Still, the manual approach can be considered to 
impose a significant overhead given that literature 
reports programmer productivity to be 250-550 lines of 
code per month [39]. Another factor that muddles the 
issue is the cost of learning new software. Graphics 
toolkits are standard and popular, while GUI 
generators are not. Therefore, it may not be worthwhile 
to learn a user-interface generator. On the other hand, 
most are probably not familiar with speech APIs, 
which tend to be non-standard. Learning to use a 
generator will probably take much less time. 
Moreover, the speech and graphical generators in our 
model provide an integrated specification mechanism, 
which can be learned once to support both modalities. 
Finally, given a device, the productivity gain of the 
automation approach applies to each kind of mobile 
computer on which a user-interface of the device is 
created, assuming no code sharing occurs (in both the 
manual and automatic approaches) among the different 
kinds of mobile computers. (Automatically or semi-
automatically porting a user-interface implementation 
to multiple devices is still an area of research [21]. In 
summary, as the productivity gain occurs without loss 
of flexibility, the generation approach is a clear but not 
big winner if we do not consider other metrics. 
 
 

 

# of lines of UI code 
GUIs SUIs 

Command-only Command and State Device # of 
cmds 

# of 
props 

Semi-
automatic 
generation 

Manual 
Semi-

automatic 
generation 

Manual 

Semi-
automatic 
generation 

Manual 

Lamp 4 2 4 94 8 110 6 102 

Projector 20 4 23 254 31 283 24 138 

TV 29 9 25 321 36 385 33 142 

VCR 46 5 40 247 47 288 46 172 

DVD 
Player 38 14 38 316 54 414 52 168 

Receiver 42 22 42 287 66 428 64 176 

PUC 
Stereo     115 367 61  

Sup. 
Stereo     137 546 95  

        Table 1.  Number of lines of UI code used for each device 



Deployment Reliability: 
 The metric that makes the most compelling argument 
for generation is deployment reliability. So far, we 
have assumed that a user-interface specification or 
implementation of each device has been created for 
each mobile computer. In practice, this may not be the 
case. Our generation model, on the other hand, always 
guarantees a user-interface, albeit, in the case of GUIs, 
a less than ideal one. Assuming a generated user-
interface such as the one shown in Figure 4 (which, 
recall, has all the buttons and widgets of the target 
user-interface) is better than no interface, generation is 
a more reliable approach. We assume here that a 
generator for a mobile computer is shipped with the 
computer.   

Binding Time: When a manual user-interface has 
been implemented for a mobile computer, we must 
address binding time. There are two times a mobile 
client can learn about (or bind to) a device so that it 
can display the user-interface for it.  In early binding, 
users must manually install the user-interface code for 
devices they expect to use in the future on their clients.  
Consequently, they will not be able to interact with a 
device if its user-interface code is not already stored on 
their clients. In late binding, no pre-installation is 
necessary.  Instead, the user-interface for a device is 
automatically deployed at interaction time and thus 
requires no user anticipation.  Therefore, users can 
interact with arbitrary devices. The local-manual 
approach inherently supports early binding, and the 
remote-manual and generation approaches support late 
binding. Thus, based on this factor, the comparison 
between the automatic and manual approaches depends 
on the variation of the manual approach, with the 
remote approach performing better. 

Space Cost: On the other hand, a disadvantage of 
the remote approach is that some networked devices 
have limited storage, which in the remote approach, 
must be used for storing the user-interfaces of all 
possible mobile devices that may interact with them. A 
document on UPnP estimating the power of networked 
devices states that: “typically, they are based on a low-
cost micro controller, ASICs and some 200-1000 k 
bytes of RAM and Flash memory [14].” To understand 
the space requirements of the target user-interfaces, we 
measured the footprint (in bytes) of the user-interface 
code we wrote for each of the target devices. Table 2 
shows that the remote approach is practical only if 
networked devices have substantially more memory 
than the UPnP estimate. It also motivates a variation of 
the remote approach in which the user-interface code is 
downloaded from a special user-interface server. We 
assume a mobile computer has enough space to store 
manually implemented user-interface code for a 
plethora of devices or the generator. 

 
Table 2.  Amount of space consumed by each device’s 
handcrafted UI code. 

  
 Interaction Time: So far, the generation approach 

has fared better or at least as well as the best manual 
approach. However, by definition, it should have larger 
time costs than custom code – so the question here is 
how much larger are these costs. One important 
component of these costs is interaction time – the time 
it takes to invoke an operation on the remote device.  
Somewhat surprisingly, our experiments showed a 
negligible difference between the manual and 
automatic approaches for both SUIs and GUIs, despite 
the fact that our generator uses reflection and other 
forms of indirection to invoke operations. We consider 
a time difference significant if it is more than 50ms, 
which is the delay noticeable by users [40]. 

Deployment Time Another important component of 
time costs is the time it takes to deploy the user-
interface. Previous work has shown that on an iPAQ 
this time can be as large as 40 seconds for the user-
interface of Figure 3 when the generator is both 
specification- and heuristics-based [9]. However, it 
does not compare this cost with the two variations of 
the manual approach. Qualitatively, generating a user-
interface can be expected to take longer than starting a 
local copy of manually written user-interface code. 
Similarly, deployment time can be expected to be more 
in the remote-manual rather than local-manual 
approach. However, it is not possible to make 
qualitative arguments: (a) comparing the generation 
and remote-manual approach or (b) about the extent by 
which the local-manual approach wins over the other 
two approaches. Therefore, we performed experiments 
comparing the three approaches with respect to the 
GUI and SUI interfaces of the six devices. We used 
two different kinds of mobile computers: (1) an old 
laptop {Windows 2000 OS, 733 MHz Pentium, 
128MB} and (2) an iPAQ Pocket PC {SavaJe Java-
based operating system, 206MHz StrongArm, 32MB}. 
The old laptop was meant to represent future palmtop 
computers.   We considered three kinds of network 

Space Consumed (bytes) 

GUIs Device 

Command- 
only 

Command 
+ 

State 

SUIs 
(manual) 

Receiver 9,728 11,737 5945 
DVD 
Player 9,216 11,086 5723 

Lamp 2970 3,516 3827 
Projector 6753 6,958 5375 
TV 8,704 9,377 5442 
VCR 9028 10,064 5845 



connections: dialup (50Kbps), wireless (1Mbps), and 
wired (11Mbps) LAN. The dialup case was meant to 
represent cell-phone connections, some of which have 
close to dialup speeds. 

Because of space limitations, we discuss the results 
of only a few of these experiments (Figure 6) – more 
details are given in [34].  All the generation times 
assume that the generator is preloaded since it is a 
general purpose application.  A mobile computer will 
execute the same generation algorithm to create 
different device user-interfaces throughout a user’s 
course of interactions.  It does not make sense to 
consider the case of always keeping manually written 
user-interfaces in memory since functionality (or code) 
from one user-interface implementation cannot be used 
to help deploy another.  Somewhat surprisingly, we 
found that preloading the generator can reduce the 
deployment time by an order of magnitude.  In our 
experiments with the receiver, Figure 6a shows that on 
the iPAQ, the remote-manual approach is 1.57 times 
slower than the local-manual approach, while 
generation is 3.0 and 1.90 times slower than the local-
manual and remote-manual approaches respectively.   
The laptop results follow this trend, but have 
significantly lower deployment times, thus showing 
that processing power is an issue for both the manual 
and generation approaches. The generation, remote-
manual, and local-manual approaches respectively took 
3.78, 4.4, and 2.8 times longer on the iPAQ than on the 
laptop.  It even took less time to generate the GUI on 
the laptop than to deploy one on iPAQ using the local-
manual approach (Figure 6a). Thus, the deployment 
times were significantly larger in generation than in 
other two approaches, but were much smaller than the 
ones reported in [9] even though our implementation 
makes extensive use of layering and dynamic 
reflection. The better times can be attributed to the fact 
that unlike [9], our implementation does not use 
heuristics. Moreover, in the experiment reported in [9], 
the generator may not have been preloaded. 

UI Size: We found that these times are a function 
only of the size of the interface and not its layout. For 
example, on the iPAQ, in the generation approach, the 
receiver’s command- and state- based GUI takes five 
times longer than that of the lamp.   

Network Speed The above results assume a wired 
LAN connection.  We also measured the effect of 
network speed on the relative deployment times 
(Figure 6b).  As can be expected, the remote-manual 
approach is sensitive to the network speed. Perhaps 
less intuitive, so are the local-manual and generation 
approaches. The local-manual approach must remotely 
download device state before the user-interface is 
ready, which causes, in this example, the deployment 
in the wireless and dialup connections to respectively 

take 1.21 and 16.19 times longer than the wired LAN 
connection.  The 

Figure 6.  (a) Receiver command and state GUI 
based times (laptop and iPAQ with a wired LAN 
connection); (b) Receiver command and state 
GUI based times (laptop with different LAN 
connections); (c) Receiver and lamp command-
only SUI based times (laptop with a wired LAN 
connection). 
 
proportional differences are greater under the remote-
manual approach because it must additionally 
download code for an entire user-interface—not just 
property values.  Specifically, the wireless and dialup 
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connections respectively take 1.67 and 30 times longer 
than the wired LAN connection.  The generation 
approach is also more network-dependent than the 
local-manual approach.  Before downloading state, a 
generator must first download device descriptions from 
which it creates user-interfaces.  Thus, just going from 
a wired to wireless connection can double generation 
time.  Finally, generating with the dialup connection 
takes 18.24 times longer than with the wired LAN 
connection.  

SUIs: SUI deployment follows the same trend as 
GUI deployment (Figure 6c).  In the SUI case, 
however, the differences between the three approaches 
were not as significant.  Our results also show that 
speech user-interface deployment takes much longer 
than GUI deployment no matter the approach—
implying that SUI deployment is a more resource 
intensive process than GUI deployment.  Deploying a 
local-manual lamp (command-only) SUI  (2791.99 ms) 
takes over twice as long as generating a receiver 
(command-only) GUI (505.50 ms) when using the 
wired LAN connection.  Further, generating the 
receiver SUI using the same network connection 
actually takes over four seconds.  This explains why 
remote downloading and generation does not 
contribute as much to the deployment time in the SUI 
case. 
 
4. Conclusions and Future Work 
 

The novel aspects of our work can be described at 
various levels of detail. The most abstract message is 
that the question of whether user-interfaces should be 
automatically generated must be revisited in the 
context of device/mobile-computer interaction. The 
next-level message consists of the set of important 
metrics we have found to matter in making this 
decision: user-interface flexibility, programming 
overhead, space costs, deployment time, device-
binding time, and deployment reliability. Only the first 
two matter in desktop computing. A related 
contribution is the set of factors we found that make a 
significant difference to these metrics, which include: 
the network speed, device complexity, processing 
power of mobile computer, the type of user-interface 
(command-only GUI, command- and state- based GUI, 
and SUI),  and whether the generator is preloaded and 
is domain-specific. Another important contribution is 
the detailed model we have provided for specification-
based SUI and GUI generation.   

A more detailed contribution is the comparison of 
(semi-automatic and automatic) generation and (local 
and remote) manual approaches along each of the 
evaluation dimensions.  These observations imply that 

each of the three approaches, local-manual, remote-
manual, and automatic generation, has a unique 
benefit. The local-manual approach offers the lowest 
deployment time when early binding is acceptable.  
The remote-manual approach offers the best 
deployment time when late binding is required and 
device space cost is not an issue. Automatic generation 
simultaneously offers the maximum user-interface 
flexibility, lowest programming overhead, maximum 
deployment reliability, and late binding.  A single 
computer could use multiple approaches and the 
choose the appropriate one based on the scenario – for 
example, fully automatic for new devices and local-
manual for frequently used old devices. 

   The question posed by this paper is one that is 
often debated informally, and ours is simply an initial-
cut at a systematic analysis of this issue. It would be 
useful to extend the: (a) set of target devices in the 
domain examined by including, for example, 
thermostats, sensors, and digital music streamers, (b) 
target domain by including, for instance, device user-
interface personalized to a user, (c) the mobile 
computers used in the experiments by including, for 
instance, cell phones, (d) the set of metrics by 
including, for instance, maintenance costs,  and (e) the 
set of approaches by including a generation approach 
that retargets existing user-interfaces [10, 20] rather 
than generating them from scratch, composes devices 
[22, 28, 29],  and supports heuristics and remote 
generation [9]. 
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