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ABSTRACT
Regression test suites tend to grow over time as new test
cases are added to exercise new functionality or to target
newly-discovered faults. When test suites become too large,
they can be difficult to manage and expensive to run, espe-
cially when they involve complicated machinery or manual
effort. Test-suite minimization techniques address this is-
sue by eliminating redundant test cases from a test suite
based on some criteria, while trying to maintain the over-
all effectiveness of the reduced test suite. Most minimiza-
tion techniques proposed to date have two main limitations:
they perform minimization based on a single criterion and
produce approximated suboptimal solution. In this paper,
we propose a test-suite minimization framework that over-
comes these limitations. Our framework allows for (1) easily
encoding a wide spectrum of test-suite minimization prob-
lems, (2) handling problems that involve any number of cri-
teria, and (3) computing optimal solutions to minimization
problems by leveraging modern integer linear programming
solvers. We implemented our framework in a tool called
mints, which is freely-available and can be interfaced with a
number of different state-of-the-art solvers. In our empirical
evaluation, we show how mints can be used to instantiate
a number of different test-suite minimization problems and
efficiently find an optimal solution for such problems using
different solvers.

1. INTRODUCTION
When developing and evolving a software system, it is

common practice to build and maintain a regression test
suite, a test suite that can be used to perform regression
testing of the software after it is changed. Regression test
suites are an important artifact of the software-development
process and, just like other artifacts, must be maintained
throughout the lifetime of a software product. In particular,
testers often add to such suites test cases that exercise new
behaviors or target newly-discovered faults.

As a result, during maintenance, test suites tend to grow
in size, to the point that they may become too large to be run
in their entirety [17,18]. In some scenarios, the size of a test
suite is not an issue. This is the case, for instance, when all
test cases can be run quickly and in a completely automated
way. In other scenarios, however, having too many test

cases to run can make regression testing impractical. For
example, for a test suite that requires human intervention
(e.g., to check the outcome of the test cases or setup some
machinery), executing all test cases could be prohibitively
expensive. Another example is the case of cooperative en-
vironments where developers run automated regression test
suites before committing their changes to a repository. In
these cases, reducing the number of test cases to rerun may
result in early availability of updated code and improve the
overall efficiency of the development process.

To reduce the cost of regression testing, researchers have
investigated several directions and proposed various comple-
mentary approaches. Regression test selection techniques
identify test cases in a regression test suite that need not be
rerun on the new version of the software (e.g., [8, 23, 30]).
Prioritization techniques, conversely, rank test cases in a
test suite based on some criteria, so that test cases that
are more effective according to such criteria would be run
first (e.g., [25, 28, 31]). Other techniques aim to identify,
based on specific knowledge about a system such as histori-
cal data or static analysis results, where to focus the testing
effort (e.g., [5, 21]). This paper targets another technique
proposed to limit the cost of regression testing and to im-
prove the cost-effectiveness of regression test suites: test-
suite minimization (also called test-suite reduction).

The goal of test-suite minimization techniques is to reduce
the size of a test suite according to some criteria. Ideally,
these techniques should let testers specify a set of relevant
criteria and compute an optimal minimal test suite that
satisfies such criteria. For example, a tester may want to
generate a test suite with maximal coverage and fault de-
tection capability and minimal running time and setup cost.
Due to the computational complexity of multi-criteria min-
imization, however, most existing techniques target a much
simpler version of the problem: generating a test suite that
achieves the same coverage as the original test suite with
the minimal number of test cases (e.g., [12, 24, 29, 34]). Al-
though these techniques work well for the simpler problem
they address, they are likely to generate test suites that are
suboptimal with respect to other criteria. Previous research
has shown, for instance, that the error-revealing power of
a minimized test suite can be considerably less than that
of the original test suite [24, 33]. Furthermore, because
even single-criterion versions of the minimization problem
are NP-Complete (see Section 2.2), most existing techniques
are based on heuristics and approximated algorithms. On
the one hand, these approaches have the advantage of being
practical and fairly efficient. On the other hand, they trade



accuracy for efficiency and compute solutions that are sub-
optimal even for the simplified version of the minimization
problem they target.

To address these shortcomings of existing techniques, we
propose a test-suite minimization framework that has three
main advantages over previous minimization approaches. First,
it allows for easily encoding a wide range of test-suite mini-
mization problems. Second, it can accommodate minimiza-
tion problems that involve multiple criteria and, thus, let
testers encode all of the constraints that they perceive as
relevant. Third, it can produce solutions for the test-suite
minimization problems that are optimal with respect to all
criteria involved, by leveraging Integer Linear Programming
(ILP) solvers. Our approach is based on encoding the user-
provided minimization problem and related criteria as bi-
nary ILP problems. We defined our encoding so that it can
be fed directly to one or more ILP solvers. If the solvers are
able to compute a solution for the problem, such a solution
corresponds to the minimized test suite that satisfies all the
considered criteria.

To the best of our knowledge, the only existing tech-
nique that considers more than one criteria and computes
optimal solutions is the one proposed by Black and col-
leagues [7]. However, their technique is limited to two crite-
ria and could not be easily extended to a larger number of
criteria. Moreover, our technique gives testers more expres-
siveness in defining their minimization criteria and how to
combine them.

Our framework and approach are implemented in a tool
called mints (MINimizer for Test Suites), whose modular ar-
chitecture allows for plugging in different ILP solvers. More
precisely, mints can be transparently interfaced with any
binary ILP solver that complies with the format used in the
Pseudo Boolean Evaluation 2007 [22].

We used mints to perform an empirical evaluation of our
approach on a set of real programs (and corresponding test
suites) and for several different test-suite minimization prob-
lems. In the evaluation, we assessed the performance of
mints in finding an optimal solution for the considered prob-
lems when using different state-of-the-art solvers (including
both SAT-based pseudo-boolean solvers and simplex-based
linear programming solvers). The results of our study pro-
vide initial evidence that the approach is practical and effec-
tive. For all problems considered, mints was able to com-
pute an optimal solution in just a few seconds, a performance
comparable to that of heuristic approaches.
This paper provides the following contributions:

• A test-suite minimization framework that is general, han-
dles minimization problems involving any number of crite-
ria, and can produce optimal solutions to such problems.

• A prototype tool that implements the framework, can in-
terface out of the box with a number of ILP solvers, and
is freely available.

• An empirical study in which we evaluate the practicality
of the approach on a wide range of programs, test cases,
minimization problems, and solvers.

The rest of the paper is organized as follows. Section 2 in-
troduces a motivating example and provides background in-
formation. Section 3 discusses related work. In Section 4, we
present our approach. Section 5 presents and discusses our
empirical results. Finally, Section 6 concludes and sketches
possible future research directions.

2. MOTIVATING SCENARIO
In this section, we introduce a motivating example that

corresponds to a typical test-suite minimization scenario and
discuss the limitations of existing approaches in handling
such a scenario. We also use the example in the rest of the
paper to illustrate our approach.

2.1 Test-suite Minimization Scenario
Let us assume that we have a program P and an associated

regression test suite T = {ti}, and that the team in charge
of testing P decides that T grew too large and wants to
minimize it to obtain a minimized test-suite MT ⊆ T .

As it is typically the case, we also have a set R of testing
requirements for P . Whether the requirements in R are
expressed in terms of code coverage, functionality coverage,
or coverage of some other entity of relevance for the testing
team is inconsequential for our approach. What matters
is that T achieves some coverage of R. For this example,
we assume to have a single set of requirements expressed in
terms of statement coverage.

Let us also assume that there are three additional param-
eters of interest for the testing team. The first parameter
is the total time required to execute MT . The second pa-
rameter is the setup effort involved in running MT (e.g.,
the number of man-hour required to set up an emulator for
missing parts of the system under test). The final param-
eter of interest is the (estimated) fault-detection capability
of MT . A common way to compute this value is to asso-
ciate with each test case a fault-detection index based on
historical data, that is, based on how many unique faults
were revealed by that test case in previous versions of P .
In our scenario, the testing team’s goal is to produce a test
suite MT that maintains the same coverage as the original
test suite T , minimizes the total time and setup effort, and
maximizes the likelihood of fault-detection.

At this point, our example contains all of the elements of a
typical minimization problem: a set of test-related data and
a set of minimization criteria defined by the testing team.
We list such elements and make the example more concrete
by instantiating it with a specific set of values, as follows:

• Test-related data

– The test suite to minimize: T = {t1, t2, t3, t4}
– The set of requirements: R = {r1, r2, r3}
– Coverage, cost, and fault-detection data:

t1 t2 t3 t4

stmt1 × ×
stmt2 × ×
stmt3 × ×

Time to run 22 4 16 2

Setup effort 3 0 11 9

Fault detection 8 4 10 2

• Minimization Criteria

– Criterion #1: maintain statement coverage

– Criterion #2: minimize time to run

– Criterion #3: minimize setup effort

– Criterion #4: maximize expected fault-detection



As the data shows, T contains four test cases, and R con-
tains three requirements (for the sake of space, we consider
a trivial program with three statements only). The table
provides information on statement coverage, running time,
setup effort, and fault-detection ability for each test case in
the test suite. For example, test case t1 covers statements
stmt1 and stmt2, takes 22 seconds to execute, has a setup
cost of three (i.e., it takes 3 man-hour to setup), and has a
fault-detection ability of eight (i.e., it revealed eight unique
faults in previous versions of P ). The four criteria define
the constraints for the test-suite minimization problem.

2.2 Complexity of The Minimization Problem
Minimization problems are NP-complete because they can

be reduced to the minimum set-cover problem [10]. We illus-
trate this point for minimization problems that involve only
one set of requirements and one criterion, also called single-
criterion minimization problems. Consider, for instance, a
typical minimization problem where the goal is to produce
a test suite that contains the smallest possible number of
test cases that achieve the same coverage as the complete
test suite. Let us define cr(t) as the set of requirements cov-
ered by test case t (i.e., cr(t) = {r ∈ R | tcovers r}), and
CovReq as the set of all requirements covered by T (i.e.,
CovReq = {r ∈ R | ∃t ∈ T, r ∈ cr(t)}), with CovReq ⊆ R.
By definition, for each t ∈ T , cr(t) is a subset of CovReq.
Therefore, the solution of the test-suite minimization prob-
lem is exactly a minimum set cover for CovReq—a subset
S of {cr(t) | t ∈ T} such that (1) every element in CovReq
belongs to at least one of the sets in S and (2) |S| is min-
imal. Multi-criteria minimization problems can be reduced
to the set-cover problem in a similar fashion.

As we stated in the Introduction, because of the com-
plexity of the test-suite minimization problem, most ex-
isting minimization techniques focus exclusively on single-
criterion minimization problems (e.g., [12, 24, 29, 34]). By
doing so, these techniques disregard important dimensions
of the problem and are likely to generate test suites that
are suboptimal with respect to such dimensions. For in-
stance, they may generate test suites that contain a mini-
mum number of test cases, but have a longer running time
than other possible minimal test suites. Or they may gener-
ate test suites that are minimal in terms of running time but
have a considerably reduced fault detection ability [24, 33].
Moreover, because even single-criterion problems are NP-
complete, as we demonstrated above, most of these exist-
ing techniques are based on approximated algorithms that
make the problem tractable at the cost of computing solu-
tions that are suboptimal even for the simplified version of
the minimization problem they target.

Without appropriate support, testers cannot fully lever-
age the information they possess about their test cases and
their testing process for generating optimal minimal test
suites. To allow testers to compute minimized test suites
that are optimal with respect to all of the parameters they
consider relevant, we propose a general framework for en-
coding and solving test-suite minimization problems. In the
next two sections, we first discuss the state of the art and
then introduce our approach.

3. RELATED WORK

Several heuristics have been proposed for efficiently com-
puting near-optimal solutions to the single-criterion test-
suite minimization problem. Chavatal [9] proposes the use of
a greedy heuristic that selects test case that covers most yet-
to-be-covered requirements, until all requirements are satis-
fied. When there is a tie between multiple test cases, one
test case is randomly selected. Harrold and colleagues [12]
propose a similar, but improved heuristic that generates so-
lutions that are always as good or better than the ones com-
puted by Chavatal. Agrawal [1] and Marre and Bertolino [20]
propose a different approach. Their approach finds a min-
imal subset Rs of R, the set of all testing requirements,
such that if every requirement in Rs is covered by a test
suite, then every requirement in R will also be covered by
that test suite. In [29], Tallam and Gupta classify these
latter heuristics as exploiting implications among coverage
requirements (or attribute reductions), and Chvatal’s and
Harrold and colleagues’ heuristics as exploiting implications
among test cases (or object reductions). They propose an-
other heuristic, called Delay-Greedy, that combines the ad-
vantages of both types of heuristics. Delay-Greedy works in
three phases: (1) apply object reductions (i.e., remove test
cases whose coverage of test requirements is subsumed by
other test cases); (2) apply attribute reductions (i.e., remove
test requirements that are not in the minimal requirement
set); and (3) build reduced test suite from the remaining test
cases using a greedy method. Their experiments show that
the reduced test suites generated by Delay-Greedy are at
least as good as the ones generating by previous approaches.
All of these approaches suffer from both of the shortcomings
that we discussed in the previous section: they focus on a
single criterion and compute approximated solutions.

Two studies performed by Rothermel and colleagues [24]
and Wong and colleagues [33] investigated the limitations of
single-criterion minimization techniques. Specifically, these
studies performed experiments to assess the effectiveness
of minimized test suites in terms of fault-detection abil-
ity. Their results showed that test suites minimized using a
single-criterion minimization technique may be able to de-
tect considerably less faults than complete test suites.

The approach by Jeffrey and Gupta [15] addresses the
limitations of traditional single-criterion minimization tech-
niques by considering multiple sets of testing requirements
(e.g., coverage of different entities) and introducing selective
redundancy in the minimized test suites. Although their ap-
proach improves on existing techniques, it is still a heuristic
approach. A better attempt at overcoming the limitations of
existing approaches is the technique proposed by Black and
colleagues [7], which consists of a two-criteria variant of tra-
ditional single-criterion test suite minimization approaches
and computes optimal solutions using an integer linear pro-
gramming solver. Also in this case, the approach is limited
in the kinds of minimization problems it can handle. In
defining our approach, we extend and generalize the tech-
nique proposed by Black and colleagues so as to still be able
to compute optimal solutions while letting testers specify
any number of minimization criteria and also how to com-
bine, weight, or prioritize these criteria.



4. OPTIMAL TEST-SUITE MINIMIZATION
APPROACH

4.1 Overview
Figure 1 provides a high-level view of our minimization

framework as implemented in our mints tool. As the figure
shows, mints takes as input a test suite, a set of test related
data, and a set of minimization criteria, and produces a min-
imized test suite—a subset of the initial test suite computed
according to the specified criteria.

The set of test related data can include a number of types
of data, such as the ones used in our scenario (e.g., coverage
data, various cost data, fault-detection data). In general,
our framework lets testers provide any set of data that is
of interest for them. For example, testers may provide data
about the last time each test case was run, which could be
used to favor the inclusion in the minimized test suite of test
cases that have not been executed recently [16].

The minimization criteria are specified by the testers and
consist of two main parts. The first part is a set of one
or more criteria, each of which defines either a constraint
or a sub-goal for the minimization (e.g., minimizing the
test-execution time). The second part is a minimization
policy that specifies how the different sub-goals should be
combined to find an optimal minimal test suite. Our cur-
rent technique supports three different minimization poli-
cies: weighted, prioritized, and hybrid. (We describe these
three policies in details in Section 4.3.)

Our approach takes the set of criteria specified by the
testers, combines them according to the associated mini-
mization policy, and transforms them into a binary Integer
Linear Programming (ILP) problem. A binary ILP problem
consists of optimizing a linear objective function, in which
all unknown variables can only have values 0 or 1, while sat-
isfying a set of linear equality and inequality constraints [32].
Binary ILP problems are also called pseudo-boolean prob-
lems [3]. We discuss our encoding approach in Section 4.4.

After encoding the minimization problem at hand as a
binary ILP problem, our approach feeds the resulting prob-
lem to one or more back-end solvers. The solvers either
return an optimal solution or stop after a given timeout. If
an optimal solution is found, our approach reports to the
testers the minimized test suite corresponding to that solu-
tion. Otherwise, it reports the partial results obtained by
the solvers and notifies the user that no optimal solution was
found. Although finding a solution to a binary ILP prob-
lem is an NP-complete problem, last-generation ILP solvers
have been successful in finding solutions to such problems
efficiently, thanks to recent algorithmic advances and imple-
mentation improvements [22].

In the rest of this section, we discuss the different types
of minimization criteria supported within our framework,
present the three minimization policies that our framework
provides, and illustrate in detail our approach for model-
ing such minimization criteria and policies as binary ILP
problems and for computing optimal solutions to the mini-
mization problem.

4.2 Minimization Criteria
In our framework, each minimization criterion involves

one set of test related data and can be of one of two kinds:
absolute or relative. An absolute criterion is one that in-
troduces a constraint for the minimization problem, such as

Criterion #1 in our example. In this case, the set of test re-
lated data involved is statement coverage data, and the con-
straint is that the minimized test suite must have the same
coverage as the complete test suite. An absolute criterion
corresponds to a linear constraint in a binary ILP problem.
A relative criterion introduces an objective, rather than a
constraint, for the minimization problem, such as Criteria
#2, #3, and #4 in our example. In the case of Criteria #2,
for instance, the set of test related data involved is test tim-
ing data, and the objective is to minimize the testing time.
A relative criterion corresponds to an objective function in
a binary ILP problem.

Note that each type of test-related data can be used in
both relative and absolute criteria. For example, although
coverage data is typically used in absolute criteria, nothing
prevents testers from defining a relative criterion that intro-
duces the maximization of coverage as an objective. Anal-
ogously, timing data could be used to define an absolute
criterion in cases where there is a maximum amount of time
that can be allocated to the testing process.

4.3 Minimization Policies
When performing a multi-criteria test suite minimization,

it is typically the case that more than one criterion is a
relative criterion and, thus, there is more than one objective
specified. In these cases, testers can define how the different
objectives should be combined by specifying a minimization
policy. Our framework provides three different minimization
policies: weighted, prioritized, and hybrid.

The weighted minimization policy lets testers associate a
relative weight to each objective. Such weight defines the ex-
tent to which that specific objective will affect the solution
and lets testers put different emphasis on different criteria
based on their perceived importance. For our example, for
instance, the testers may have very limited man power and,
therefore, be mostly concerned with reducing the setup ef-
fort. In such a case, they could assign a weight of .8 to
Criterion #3 and a weight of .1 to Criteria #2 and #4.1 In
this way, the solution will be skewed in favor of Criterion
#3. However, test cases that are slightly worse according to
Criterion #3, but considerably (an order of magnitude, in
this case) better according to Criteria #2 and/or #4 may
still be selected.

The prioritized minimization policy allows testers to spec-
ify in which order the different objectives in a minimiza-
tion problem will be considered. Unlike the weighted policy,
where all objectives are weighted differently but considered
at once, the prioritized policy considers one objective at a
time. Intuitively, a prioritized policy first computes the set
S1 of optimal solutions for the objective with highest prior-
ity. Then, if S1 is not empty, it computes the set of optimal
solutions S2 ⊆ S1 for the objective with the second highest
priority. The process continues until all of the objectives
have been considered. Considering again our example, a
tester may specify that Criterion #3 has priority one, Cri-
terion #2 has priority two, and Criterion #4 has priority
three. In that case, our technique would first try to compute
the set of solutions S1 that minimize the setup effort while
providing the same level of coverage as the complete test
suite, then compute subset S2 of S1 with minimal testing
time, and finally compute the subset S3 of S2 with maximal

1Without loss of generality, weights are normalized to 1 to
make their relative nature explicit.
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Figure 1: Overall view of our approach.

fault detection. In this case, test cases that are worse ac-
cording to Criterion #3 would never be selected over better
test cases for that criterion, no matter how much better they
are according to Criteria #2 and/or #4.

Finally, the hybrid minimization policy combines the two
former policies. Testers can divide objectives into groups,
weigh the set of objectives within each group, and assign a
priority for each group. In this case, our approach would
consider each group of objectives as a single objective func-
tion, given by the weighted combination of the objectives in
the group, and process the different groups in order based
on their assigned priority.

4.4 Modeling Multi-criteria Minimization as
Binary ILP Problems

As we discussed in Section 4.1, our framework encodes
test-suite minimization problems in terms of binary ILP
problems, and then leverages ILP solvers to compute an
optimal solution to such problems. Test suite minimization
problems are amenable to being represented as binary ILP
problem. (1) A minimized test suite MT for a test suite T
can be encoded as a vector of binary values o, of size |T |,
where a 1 (resp., 0) at position i in the vector indicates that
the ith test case in T is (resp., is not) in MT ; (2) Minimizing
|MT | means minimizing the number of 1s in o and can be
expressed as a binary integer linear objective function; and
(3) Each criterion can be presented as a linear equality or
inequality constraint. More precisely, we represent inputs
and outputs of our problem as follows.

Test suite: T = {ti}
Test related data: Each type of test-related data can be

represented as a set of values associated with the test cases
in T . Therefore, we represent test related data as an n×
|T | matrix, where n is the number of types of test related
data: Test related data = {di,j}, 1 < i ≤ n, 1 < j ≤ |T |
We represent a single type x of test-related data (i.e.,
a row in the Test related data matrix) as vector dx =

{dx,j}, 1 < j ≤ |T |
Minimized test suite (output): OUT = {oi}, 1 < i < |T |,

where oi = 1 if test case ti is in the minimized test suite,
oi = 0 otherwise.

Minimization criteria (absolute): We express an abso-
lute criterion involving the ith type of test-related data as

a constraint in the form
P|T |

j=1 di,joj ⊕ const, where ⊕ is
one of the binary operators <, ≤, =, ≥, or >, and const
is a constant value.

Minimization criteria (relative): Similar to what we do
for absolute criteria, we express a relative criterion involv-
ing the ith type of test-related data as an objective that
consists in either maximizing or minimizing the following

expression:
P|T |

j=1 norm(di,j)oj , where norm(di,j) is the

value of di,j normalized such that
P|T |

j=1 norm(di,j) = 1

Minimization policies: The encoding of minimization poli-
cies is fairly straightforward. A weighted policy is ex-
pressed as a set of weights, {αi}, one for each relative
minimization criterion. A prioritized policy is encoded as
a function that maps each relative minimization criterion
to an integer representing its priority. Finally, a hybrid
policy is encoded as a partition of the relative minimiza-
tion criteria plus a function that maps each set in the
partition to an integer representing its priority.

We now discuss how this encoding lets us model the test-
minimization problem as a set of pseudo-boolean constraints.
If the tester defines n relative minimization criteria involv-
ing test-related data dx1 to dxn , m absolute minimization
criteria involving test-related data dy1 to dym , and uses a
weighted policy, the resulting encoding is in the form:2

2Note that, in the following formulation, αi is positive or
negative depending on whether the corresponding criterion
involves a minimization or a maximization, respectively.



minimizePn
i=1 αi

P|T |
j=1 norm(dxi,j)oj

under the constraintsP|T |
j=1 dy1,joj ⊕ const1P|T |
j=1 dy2,joj ⊕ const2

...P|T |
j=1 dym,joj ⊕ constm

This formulation expresses the minimization problem as
an optimization problem where the objective function is the
expression to be minimized and is defined in terms of OUT—
all other values (i.e., di,j , αi, and consti) are known. This
encoding can be fed to a binary ILP solver, which would
try to find a solution consisting in a set of assignments of
either 0 or 1 values to each oi ∈ OUT . The set of test cases
defined as {ti | oi = 1} would then correspond to the optimal
minimized test suite for the initial minimization problem.

In the case of a prioritized policy, the situation would be
similar, but the solution would be computed in stages. More
precisely, the formulation would consist in a list of objective
functions, one for each relative criterion, to be considered in
the order specified by the tester.

The first optimization would invoke the solver to mini-
mize the first objective function,P|T |

j=1 norm(dx1,j)oj , under the constraintsP|T |
j=1 dy1,joj ⊕ const1, ...,

P|T |
j=1 dym,joj ⊕ constm.

If the solver found a solution, our technique would then save

the (minimal) value of
P|T |

j=1 norm(dx1,j)oj corresponding to
the solution, val1.

The technique would then perform a second invocation of
the solver to minimize the second objective function,P|T |

j=1 norm(dx2,j)oj , under the constraintsP|T |
j=1 dy1,joj ⊕ const1, ...,

P|T |
j=1 dym,joj ⊕ constm,P|T |

j=1 norm(dx1,j)oj = val1.

Notice how the set of constraints now includes an additional
constraint that encodes the result of the first optimization.
Intuitively, this corresponds to finding a solution for the sec-
ond optimization problem only among the possible solution
for the first problem, as we discussed in Section 4.1. Again,
our technique would then save the minimal value of the ob-
jective function corresponding to the solution found by the
solver, if any, use it to create an additional constraint, and
continue in this way until either the solver cannot find a
solution, or the last optimization has been performed. At
this point, the solution for the last optimization, in terms of
values of OUT ’s elements, would correspond to the minimal
test suite for the initial minimization problem.

The computation of a solution in the case of a hybrid
policy derives directly from the previous two cases. The so-
lution is computed in stages, as for the prioritized policy,
but each objective function corresponds to a set in the par-

tition of relative criteria and involves a set of weights for the
relative criteria in the set.

To illustrate with a concrete example, we show how our
approach would operate for the minimization scenario that
we introduced in Section 2.1:

• T = {t1, t2, t3, t4}

• Test related data =

1 0 1 0
1 1 0 0
0 0 1 1
22 4 16 2
3 0 11 9
8 4 10 2

• Criterion #1:P4
j=1 d1,joj = o1 + o3 ≥ 1P4
j=1 d2,joj = o1 + o2 ≥ 1P4
j=1 d3,joj = o3 + o4 ≥ 1

• Criterion #2:
minimize

P4
j=1 norm(d3,j)oj = .5o1 + .1o2 + .36o3 + .04o4

• Criterion #3:
minimize

P4
j=1 norm(d4,j)oj = .13o1 + .48o3 + .39o4

• Criterion #4:
maximize

P4
j=1 norm(d5,j)oj = .3o1+.17o2+.42o3+.08o4

Given this encoding, if we consider the case of a tester who
specifies a weighted minimization policy with weights 0.1,
0.8, and 0.1 for Criteria #2, #3, and #4, respectively, we
obtain the following encoding for the minimization problem:

minimize

0.1(.5o1 + .1o2 + .36o3 + .04o4) + 0.8(.13o1 + .48o3 + .39o4) −
0.4(.3o1 + .17o2 + .42o3 + .08o4)

under the constraints

o1 + o3 ≥ 1, o1 + o2 ≥ 1, o3 + o4 ≥ 1

This encoding can be fed to a binary ILP solver, and the
solution to the problem, if one is found, would consist of a
set of assignments of either 0 or 1 values to o1, ..., o4. Such
solution identifies a test suite that solves the minimization
problem described in the scenario. The test suite, defined
as {ti | oi = 1}, would be in this case test suite {t2, t3}.

Relation with Traditional Optimization Problems. We
defined our three minimization policies based on our expe-
rience with and knowledge of test-suite minimization. In-
terestingly, they correspond to well-known types of multiple
criteria optimization problems, as described by Yager [35].
Specifically, our weighted policy corresponds to the gener-
alized Ordered Weight Aggregation (OWA) model, our pri-
oritized policy corresponds to the hierarchically prioritized
criteria, and our hybrid policy corresponds to the OWA pri-
oritized criteria aggregation.

5. EMPIRICAL EVALUATION
To assess the practicality of our approach, we performed

an extensive empirical evaluation involving multiple versions
of several software subjects, a number of minimization prob-
lems, and several ILP solvers. In our evaluation, we investi-
gated the following research questions:



Table 1: Subject programs used in the empirical study.
Subject Description LOCs # Test Cases # Versions
tcas Aircraft altitude separation monitor 173 1608 5
schedule2 Priority queue scheduler 307 2700 5
schedule Priority queue scheduler 412 2650 5
tot info Information measure 406 1052 5
replace String pattern match and replace 562 5542 5
print tokens Lexical analyzer 563 4130 5
print tokens2 Lexical analyzer 570 4115 5
flex Fast lexical analyzer generator 12421 548 5

RQ1: How often can mints find an optimal solution for a
test-suite minimization problem in a reasonable time?

RQ2: How does mints’s performance compare with the per-
formance of a heuristic approach?

RQ3: To what extent does the use of a specific solver affect
the performance of the approach?

Sections 5.1 and 5.2 present the software subjects that we
used in the study and our experimental setup. Section 5.3
illustrates and discusses our experimental results.

5.1 Experimental Subjects
For our studies, we used eight subjects. Table 1 provides

summary information about our subject programs. For each
program, the table shows a description, the program size in
terms of non-comment lines of code, the number of test cases
available for the program, and the number of versions of the
program that we considered.

The first seven subjects, from print tokens to tot info,
consist of the programs in the Siemens suite [13]. We se-
lected these programs because they have been widely used in
the testing literature and represent an almost de-facto stan-
dard benchmark. In addition, and most importantly, they
are available together with extensive test suites and multiple
versions. For each program, the set of versions includes a
golden version and several faulty versions, each containing
a single known fault. In our studies, we considered the last
five versions of each program.

The programs in the Siemens suite, albeit commonly used,
are fairly small, with sizes that range from 173 to 570 lines
of code. Therefore, to increase the representativeness of our
set of subject programs, we included an additional program,
flex, which we obtained from the Software-artifact Infras-
tructure Repository at UNL [27]. Program flex is also avail-
able in multiple versions, and each version contains several
seeded faults that can be manually switched on or off indi-
vidually. Because in flex we can easily seed multiple faults in
a single version, we chose to seed faults in a way that mim-
ics a realistic scenario, where new faults are introduced by
revisions, and not all faults are fixed going from one version
to the next. To do this, we built five faulty versions of flex
v2.4.7, f 1 through f 5, containing ten, seven, five, three, and
one faults, respectively. Faults in version fn include both
new faults and faults already present in version f(n− 1), as
shown in Table 2. (In the table, faults are identified using a
unique fault id.)

5.2 Experimental Setup
Test-related data. In our studies, we considered test-related
data similar to the ones that we used in our example of Sec-
tion 2.1: code coverage, running time, and fault-detection
data. We gathered these data by collecting measures while
running each version of each subject against its complete

Table 2: Faults seeded in the versions of flex.
Version New Faults Id Existing Faults Id

f1 2, 3, 6, 7, 8, 12, 14, 16, 17, 18
f2 11, 15 3, 7, 8, 12, 14
f3 1, 4 3, 12, 15
f4 5 1 15
f5 1

test suite. To gather coverage data, we used gcov, a GNU
utility that can be used in conjunction with the GCC com-
piler to perform coverage analysis. We gathered the execu-
tion time using the UNIX time utility. Finally, we gathered
fault-detection data to be used for a version n by identify-
ing which test cases revealed at least one fault in version
n − 1. Because all programs come with a golden version,
failures can be identified by simply comparing the output of
the golden version with the output of a faulty version when
run against the same test case.

Minimization criteria. The only absolute minimization cri-
terion we considered in our experiments involves code cov-
erage, which corresponds to Criterion #1 in our example.
We specified that the minimized test suite should achieve
the same code coverage as the complete test suite.

We also considered three relative minimization criteria:
minimizing the number of test cases in the test suite, mini-
mizing the execution time of the test suite, and maximizing
the number of test cases that are error revealing.

Minimization policies. We considered eight different min-
imization policies: seven weighted policies and one priori-
tized policy. The weighted policies consist of one where all
three relative minimization criteria are assigned the same
weight and six where the weights are 0.6, 0.3, and 0.1 and
are assigned to the different criteria in turn. The priori-
tized policy orders the criteria as follows: minimizing the
test suite’s size first, minimizing execution time second, and
maximizing fault-detection capability last.

Solvers considered. For our experiments, we interfaced
our mints tool with six different ILP solvers. Four of these
are SAT-based pseudo-boolean solvers: bsolo [19], Min-
iSat+ [11], opbdp [4], and pbs4 [2]. We chose this set
of pseudo-boolean solvers based on their performance in the
Pseudo Boolean Evaluation 2007 [22]. The other two solvers,
which are not based on a SAT engine, are cplex [14] and
glpPB [26]. cplex is a generic solver for large linear pro-
gramming problems that was also used in previous work [7],
whereas glpPB is a pure ILP solver. We ran all pseudo-
boolean solvers except cplex on Linux, on a 3 Ghz Pentium
4 machine with 2 GB of RAM running RedHat Enterprise
Linux 4. Because we have a Windows-only license for cplex,
we ran it on a Windows XP machine with a 1.8 GHz Pen-
tium 4 CPU and 1 GB of RAM.



Overall, our experiments involved 320 different minimiza-
tion problems. For each of the minimization problems, we
provided the input data to our mints tool, which encoded
the data as a binary ILP problem, as described in Sec-
tion 4.4, and fed the problem to the different solvers. To
provide data to the solvers, mints used the OPB format [22].
(For cplex, which uses a proprietary format, we built a filter
that transforms the OPB format into cplex’s format.)

In a normal usage scenario, mints would submit the prob-
lem to all solvers and return a solution as soon as one of the
solvers terminate. Because the solvers only compute exact
solutions, waiting for additional solvers to terminate would
simply result in solutions that are equivalent to the one al-
ready obtained. For our experiments, however, we let all
solvers run, either to completion or until a four-hour time
threshold was reached, so as to gather information about the
performance of the different solvers. We chose four hours as
a threshold because we considered a possible scenario where
minimization is performed overnight or between shifts.

5.3 Results and Discussion

5.3.1 RQ1 – How often can mints find an optimal
solution for a test-suite minimization problem
in a reasonable time?

To answer RQ1, we first analyzed the data collected in
our experiments and checked for how many of the 320 mini-
mization problems considered mints was able to compute an
optimal minimized test suite (i.e., at least one of the solvers
was able to compute a solution). By looking at the data, we
found that mints was able to compute a solution for all of
the cases considered. Next, we measured how long it took
mints to compute such a solution. Figure 2 shows the re-
sults of this analysis in the form of a bar chart with bars
of alternating colors to improve readability. The bar chart
contains a bar for each of the minimization problems con-
sidered, grouped by subject. The height of a bar represents
the amount of time that it took mints to compute a solution
for the corresponding minimization problem. For example,
it took mints slightly more than one second to solve the first
minimization problem involving subject schedule.

Within subjects, the entries are in turn grouped by ver-
sion, that is: the first eight entries for a subject correspond
to the results for the seven weighted policies plus the prior-
itized policy when applied to Version 1 of the subject; the
second eight entries correspond to analogous results for Ver-
sion 2; and so on. Finally, the subjects are ordered based
on a complexity indicator, computed as their size multiplied
by their number of test cases. We define the complexity in-
dicator this way because (1) the number of test cases for a
subject defines the number of variables involved in the min-
imization problem, and (2) the size of the subject affects
the number of constraints in the problem. Therefore, the
product of these two values for a subject can be considered
an indicator of the complexity of the minimization problems
involving that subject.

Overall, the results in Figure 2 show that mints was able
to find an optimal solution for all minimization problems
in less than seven seconds, and in most cases the solution
was computed in less than two seconds. Although these re-
sults may not generalize, they are nevertheless encouraging
and show that our minimization approach is practical and
efficient.

We also observe that there is a set of problems that are
solved either considerably faster or considerably slower than
the other problems involving the same subject. Interest-
ingly, we found that both cases correspond to minimization
problems involving a prioritized policy. Our conjecture—
partially confirmed by our investigation of a subset of these
cases—is that this behavior is due to two conflicting factors.
On the one hand, in the case of weighted policies, mints
combines all criteria together and then feeds the resulting
combined criterion to the underlying solvers. The solvers are
likely to take a longer time to solve this combined, more com-
plex criterion than to solve any of the original single criteria.
On the other hand, in the case of prioritized policies, mints
finds optimal solutions for one criterion at a time, which
involves multiple interactions with the underlying solvers
(three interactions for the three-criteria minimization prob-
lems considered in our study). In other words, weighted
policies involve a single optimizations of a more complex
problem, whereas prioritized policies involve several opti-
mization of simpler problems. The relative importance of
these factors varies depending on the subject, and so prob-
lems involving weighted criteria are solved faster than prob-
lems involving prioritized criteria for some subjects (e.g.,
tcas), and vice versa (e.g., tot info).

Another set of results that deserve further investigation
are the ones for subject flex. Whereas the performance of
mints is fairly similar across the different versions of the
seven Siemens programs, for flex we can observe a higher
variability. In particular, the eight minimization problems
involving the second version of the subject (eight to 15th

bars in flex’s section of the bar chart) were all solved in
about 0.3 seconds, which is a much shorter time than that
required for most of the other problems involving flex. A
more in-depth analysis of the data revealed that the specific
combination of faults in that version of flex caused an early
termination of the program. Therefore, most test cases in
flex’s test suite only covered the same few statements in that
version, which resulted in a small number of constraints for
the minimization and in an easy-to-find solution (because
most test cases are equivalent from a coverage standpoint).

As a final observation about the results in Figure 2, we
note that there seems to be a correlation between a subject’s
complexity indicator, defined earlier in this section, and the
time required to solve minimization problems involving that
subject. This correlation can be observed by remembering
that the subjects are ordered by increasing complexity index
in the chart and by noting how the solution time for the
subjects grows almost monotonically while going from left
to right on the chart. Note, however, that although the
cost of the approach grows with the size of the problem, the
growth appears to be almost linear, which is encouraging in
terms of scalability. For example, the average solution time
for tcas, which has 173 lines of code and 1608 test cases, is
around 0.5 seconds, whereas the average solution time for
replace, which has 564 lines of code and 5542 test cases is
around three seconds.

Using lines of code and number of test cases as a measure
of complexity is obviously a gross approximation. First of
all, the number of constraints in the minimization problems
we consider depends on the number of statements covered
by the complete test suite, and not on the total number of
statements, as demonstrated by the results for the second
version of flex discussed above. Second, the characteristic of



Figure 2: Timing results for mints when applied to the 320 minimization problems considered.

the test suites considered, such as the amount of redundancy
among test cases, are likely to have a considerable effect on
the results. Finally, the performance of ILP solvers depends
on many characteristics of the optimization problem that
go beyond the sheer size of the data sets [6]. Nevertheless,
our results provide some initial evidence that the approach
can scale. Additional evidence is provided by the results of
the Pseudo Boolean Evaluation 2007 [22], where some of the
solvers involved where able to compute optimal solutions in
a handful of minutes for problems with more than 170,000
constraints (which in our context corresponds to the num-
ber of requirements) and more than 75,000 variables (which
in our context corresponds to the number of the test cases).
In summary, although more empirical studies are needed to
confirm our results, we believe that such results are promis-
ing, show the potential effectiveness and efficiency of our
approach, and motivate further research.

5.3.2 RQ2: How does mints’s performance compare
with the performance of a heuristic approach?

To answer RQ2, we cannot simply evaluate the perfor-
mance of existing heuristic approaches when applied to the
320 minimization problems that we targeted in our studies;
such approaches, as we already discussed extensively, can-
not handle multi-criteria minimization problems. To per-
form at least a partial comparison between our approach
and existing ones, we (1) considered a set of (simpler) mini-
mization problems analogous to the single-criteria ones used
to evaluate Tallam and Gupta’s heuristic approach, Delay-
Greedy, and (2) compared our results with the ones they
presented [29]. We chose Delay-Greedy as a representative
of approximated approaches because it is one of the latest
heuristic approaches presented and has been shown to be
superior to other existing techniques.

Our set of minimization problems for this study consists
of computing, for all five versions of each of the Siemens
subjects, a reduced test suite that minimizes the number of
test cases while maintaining the same coverage level as the
original test suite. We did not consider flex in this study be-
cause only the Siemens programs where used by Tallam and
Gupta. Moreover, because they did not use the complete
test suites available for the Siemens programs, but coverage-
adequate subsets of these suites, we also generated similar
test suites for this experiment. In particular, we made sure
to use initial test suites of the same size as theirs.

Given this setup, we then used mints to solve these min-
imization problems, measured the time necessary for mints
to compute the solution to the problems, and compared our
results with the ones for Delay-Greedy. Because we are not
using exactly the same experimental settings used in [29], we
cannot perform a precise comparison of our results with the
ones presented there. In particular, we cannot compare our
results in terms of sizes of minimized test suites. However,
we use the same subjects, the same minimization problems,
and similar test suites and test data. We can therefore per-
form at least a qualitative comparison of the performance of
the two approaches in terms of time required for the mini-
mization.

Overall, mints was able to compute optimal solutions to
all 35 problems considered in a time that ranges between
0.003 and 0.07 seconds, with an average time per problem of
0.017 seconds. To compute approximated solution for the set
of minimization problems targeted in its evaluation, Delay-
Greedy took between 0.003 and 0.027 seconds, with an aver-
age time per minimization problem of 0.049 seconds. These
results show that, for the subjects and test suites consid-
ered (and with the limitations of the comparison discussed
above), the performance of our approach is at least compa-



Table 3: Performance of the different ILP solvers.

MiniSat+ glpPB opbdp bsolo pbs4 cplex
# times 28 64 1 65 26 144
fastest
# times 79 1 30 22 64 0
timed out

rable to, if not better than the performance of a state-of-the
art heuristic technique. In addition, our technique can han-
dle a wider range of minimization problems and computes
optimal, rather than approximated solutions.

5.3.3 RQ3: To what extent does the use of a specific
solver affect the performance of the approach?

Because mints can feed each minimization problem to a
number of solvers, the performance of the individual solvers
is not important as long as at least one solver can compute
a solution efficiently. However, assessing which ILP solvers
are more suitable for test suite minimization problems may
provide useful insight for improving the approach and for
future research. To gather this information, we examined
the detailed data produced by mints during the minimiza-
tion process and identified how many times each solver was
the fastest in producing a solution and how many times each
solver reached our time threshold without producing a solu-
tion at all. Table 3 provides this information.

As the table shows, there is a considerable amount of vari-
ability in the performance of the different solvers. Interest-
ingly, most solvers produce the fastest solution in a number
of cases, but timed out in many other cases. The exam-
ination of finer-grained data about the results shows that
solvers tend to perform consistently across different versions
of the same subject, but may behave quite differently across
subjects. Some solvers, such as glpPB and cplex, per-
formed extremely well for all problems, with response times
often in the single digits. bsolo also performed fairly well
in most cases, although it was not able to complete within
the timeout for some of the minimization problems involving
a prioritized policy. The performance of MiniSat+, pbs4,
and opbdp was in many cases disappointing, in that they
did not terminate before the timeout for minimizations that
were completed in a few seconds by other solvers.

As discussed in [6], pseudo-boolean solvers use different
techniques to prune the search space, which can be more
or less appropriate for a specific problem. Since the best
performing solvers for our problem—glpPB, cplex, and
bsolo—all utilize simplex-based approaches, we conjecture
that such approaches are more suitable to the characteris-
tics of the test-suite minimization problem than approaches
based purely on SAT solving used in most other pseudo-
boolean solvers.

A deeper analysis of the performance of the various ILP
solvers when used in this context is out of the scope of this
paper, but would be an interesting direction for future work.
As far as this work is concerned, our results provide evidence
that, although the performance of the different solvers varies
across subjects, a test-suite minimization approach that re-
lies on ILP solvers can be practical, especially if it can lever-
age several solvers in parallel, as mints does.

5.4 Threats to Validity
The main threat to the external validity of our results

is the fact that we consider only eight applications of lim-

ited size. Experiments with additional and larger subjects
collected from different sources and with different character-
istics may generate different results. However, the applica-
tions we use in our studies are real programs, used in many
previous studies, and one of them is a widely used program.
Moreover, despite the size of the applications, in the studies
we use test suites of considerable size. Threats to internal
validity involve possible faults in the implementation of our
tool or of the underlying solvers. To mitigate this threat,
we spot checked a large number of results and carefully ex-
amined results obtained on a set of test programs.

6. CONCLUSION AND FUTURE WORK
Test-suite minimization techniques try to reduce the cost

of regression testing by eliminating redundant test cases
from a test suite based on some criteria. Unfortunately,
test-suite minimization is an NP-complete problem, so most
existing techniques (1) target simpler versions of the mini-
mization problem and (2) are based on heuristic algorithms
that compute approximated, suboptimal solutions. To ad-
dress these limitations of existing techniques, we proposed
a framework that lets testers specify a wide range of multi-
criteria test-suite minimization problems and can compute
optimal minimal solutions for such problems by encoding
them as binary ILP problems and leveraging existing ILP
solvers. We also presented a tool, mints, that implements
our approach and is freely available for download.3 Finally,
we presented a set of empirical results that show that our ap-
proach is practical and effective—using mints, we were able
to compute optimal solutions for more than 300 minimiza-
tion problems involving eight different subjects. Our results
also show that, for the cases considered, our approach can
be as efficient as heuristic approaches.

We are currently considering several directions for future
work. First, we will perform additional empirical studies
with larger subjects to further assess the scalability of our
approach. It is worth noting that, due to the intimate con-
nection between the characteristics of a minimization prob-
lem and the performance of a solver on that problem, evalu-
ating our approach using randomly generated large data sets
would be unlikely to provide any meaningful information.
Instead, we will collect larger programs, together with test
cases and test-related data, and replicate our experiments
on such subject programs and data. Our current results are
promising in terms of scalability, and we hope to confirm
these results in future studies.

Second, we will continue to analyze our results to get bet-
ter insight on the reasons for the large variance in the perfor-
mance of different ILP solvers. We believe that a deeper un-
derstanding of this issue could help us improve our approach
and possibly provide interesting data for the developers of
such solvers.

Finally, we will investigate the possibility of extending
our approach to the test-case prioritization problem, that is,
the identification of the ordering of test cases in a test suite
that maximizes the likelihood of early detection of faults. In
our preliminary investigation we discovered that, because of
the NP-hard nature of the minimization problem, straight-
forward extensions of our approach would not work in this
context, and more sophisticated (or alternative) approaches
should be investigated.

3http://www.cc.gatech.edu/∼orso/software.html
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