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ABSTRACT
Test suites, once created, rarely remain static. Just like the ap-
plication they are testing, they evolve throughout their lifetime.
Test obsolescence is probably the most known reason for test-suite
evolution—test cases cease to work because of changes in the code
and must be suitably repaired. Repairing existing test cases man-
ually, however, can be extremely time consuming, especially for
large test suites, which has motivated the recent development of
automated test-repair techniques. We believe that, for developing
effective repair techniques that are applicable in real-world scenar-
ios, a fundamental prerequisite is a thorough understanding of how
test cases evolve in practice. Without such knowledge, we risk to
develop techniques that may work well for only a small number
of tests or, worse, that may not work at all in most realistic cases.
Unfortunately, to date there are no studies in the literature that in-
vestigate how test suites evolve. To tackle this problem, in this pa-
per we present a technique for studying test-suite evolution, a tool
that implements the technique, and an extensive empirical study in
which we used our technique to study many versions of six real-
world programs and their unit test suites. This is the first study
of this kind, and our results reveal several interesting aspects of
test-suite evolution. In particular, our findings show that test repair
is just one possible reason for test-suite evolution, whereas most
changes involve refactorings, deletions, and additions of test cases.
Our results also show that test modifications tend to involve com-
plex, and hard-to-automate, changes to test cases, and that existing
test-repair techniques that focus exclusively on assertions may have
limited practical applicability. More generally, our findings provide
initial insight on how test cases are added, removed, and modified
in practice, and can guide future research efforts in the area of test-
suite evolution.
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D.2.5 [Software Engineering]: Testing and Debugging
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1 public void tes tDiscardSemicolons ( ) throws Throwable {
2 Tokenizer t = new JavaTokenizer ( ) ;
3 SourceCode sourceCode = new SourceCode ( " 1 " ) ;
4 S t r i n g data = " p u b l i c c lass Foo { p r i v a t e i n t x ; } " ;
5 Tokens tokens = new Tokens ( ) ;
6 t . token ize ( sourceCode , tokens , new Str ingReader ( data ) ) ; / / Broken statement
7 asser tEquals (9 , tokens . s ize ( ) ) ;
8 }

(a)

1 public void tes tDiscardSemicolons ( ) throws Throwable {
2 Tokenizer t = new JavaTokenizer ( ) ;
3 SourceCode sourceCode = new SourceCode ( " 1 " ) ;
4 S t r i n g data = " p u b l i c c lass Foo { p r i v a t e i n t x ; } " ;
5 Tokens tokens = new Tokens ( ) ;
6 sourceCode . readSource (new Str ingReader ( data ) ) ; / / Added statement
7 t . token ize ( sourceCode , tokens ) ; / / Modi f ied statement
8 asser tEquals (9 , tokens . s ize ( ) ) ;
9 }

(b)
Figure 1: Two versions of a test case from PMD’s unit test suite:
(a) version 1.4, broken, and (b) version 1.6, repaired.

1. INTRODUCTION
Test cases form the first line of defense against the introduction

of software faults (especially when retesting modified software).
With the availability of convenient testing frameworks, such as JU-
nit, and the adoption of agile development methodologies, in par-
ticular, writing unit test cases is an increasingly common practice
nowadays. Developers routinely create test suites that consist of
unit tests and that they run periodically on their code.1

Test suites are not static entities: they constantly evolve along
with the application they test. In particular, changes in the appli-
cation can break test cases—in some cases, even a small change in
the application code can affect a large number of tests. In general,
a test failure on a new version of the software can either expose
application faults or result from a problem with the test itself. On
observing a failure, the first task for the developer is to determine
which of these two is the cause of the failure and, once this distinc-
tion is made, either fix the problem in the code or fix the broken test.

A broken test, if it covers a valid functionality, should ideally be
repaired. Alternatively, if the repair is unduly complex to perform
or if the test was designed to cover a functionality that no longer
exists in the application, the test should be removed from the test
suite. To illustrate with an example, Figure 1 shows two versions of
a unit test case from the test suite of PMD, one of the programs used
in our empirical study. A change in PMD’s API broke the original
version of the test case, which had to be fixed by adding a call to
method SourceCode.readSource and removing one parameter
from the call to method Tokenizer.tokenize (lines 6 and 7 in
Figure 1(b), respectively).

1In this paper we use the terms “test”, “test case”, and “unit test case”
interchangeably to indicate a pair (input, expected output).



Because test repair can be an expensive activity, automating it—
even if only partially—could save a considerable amount of re-
sources during maintenance. This is the motivation behind the de-
velopment of automated test-repair techniques, such as the ones
targeted at unit test cases [7, 8, 17] and those focused on GUI (or
system) test cases [4, 11, 13, 14].

We believe that, to develop effective techniques for assisting
manual test repair, we must first understand how test suites evolve
in practice. That is, we must understand when and how tests are
created, removed, and modified. This is a necessary, preliminary
step because it can (1) provide evidence that test cases do get re-
paired, (2) support the hypothesis that test repairs can be (at least
partially) automated, and (3) suitably direct research efforts. With-
out such understanding, we risk to develop techniques that may not
be generally applicable and may not perform the kind of repairs
that are actually needed in real-world software systems.

To the best of our knowledge, to date there are no studies in the
literature that investigate how unit test suites evolve. To address
this issue, we defined a technique that combines various static- and
dynamic-analysis techniques to compute the differences between
the test suites associated with two versions of a program and cat-
egorize such changes along two dimensions: the static differences
between the tests in the two test suites and the behavioral differ-
ences between such tests.

We implemented our technique in a tool, TESTEVOL, which en-
ables a systematic study of test-suite evolution. TESTEVOL targets
Java programs and JUnit test suites, as Java is a widely used lan-
guage and JUnit is the de-facto standard unit-testing framework for
Java. Given two versions of a program and its test suite, TEST-
EVOL automatically computes differences in the behavior of the
test suites on the two program versions, classifies the actual re-
pairs performed between the versions, and computes the coverage
attained by the tests on the two program versions.

We used TESTEVOL to conduct an extensive empirical study on
how test suites evolved over a number of years for six real-world
open-source software systems. In the study, we investigated sev-
eral questions on test evolution, such as: What types of test-suite
changes occur in practice and with what frequency? How often
do test repairs require complex modifications of the tests? Why
are tests deleted and added? Overall, we studied 88 program ver-
sions, 14,312 tests, and 17,427 test changes (5,111 test modifica-
tions, 2,541 test deletions, and 9,775 test additions). This is the
first study of this kind and magnitude, and our results reveal sev-
eral interesting aspects of test-suite evolution.

In the first part of our study, we focus on test repair. We provide
evidence that, although test repairs are a relatively small fraction of
the activities performed during test evolution, they are indeed rele-
vant. We also show that repair techniques that just focus on oracles
(i.e., assertions) are likely to be inadequate and not applicable in
many cases. Finally, our findings can be used to guide future re-
search efforts in the development of new repair techniques that are
grounded in the realities of how tests actually evolve.

Because our results show that test repair is only part of the pic-
ture, in the second part of our study we investigate the characteris-
tics of deleted and added test cases. Our results provide evidence
that many test cases are not really deleted and added, but rather
moved or renamed. We also show that test cases are rarely re-
moved because they are difficult to fix, but rather because they have
become obsolete. Finally, we discover that test cases are not only
added to check bug fixes and test new functionality, as expected,
but also to validate changes in the code. This result supports the
argument that the development of techniques for test-suite augmen-
tation is useful and can have practical impact.

The main contributions of this paper are:

• The identification of the problem of understanding how test
suites evolve as a prerequisite for performing research in the
area of test repair (and test evolution in general).
• A technique for studying test-suite evolution and a publicly

available tool, TESTEVOL,2 that implements the technique
for Java programs and JUnit test cases.
• An extensive analysis, performed using TESTEVOL, of the

evolution of six real-world systems and their unit test suites
over a number of years, versions, and test changes.
• Results and findings that allow for assessing existing tech-

niques for supporting test evolution and can guide future re-
search in the broader area of test maintenance.

The rest of the paper is organized as follows. The next section
presents definitions and terminology. Section 2 describes our ap-
proach for studying test-suite evolution. Section 3 presents the
TESTEVOL tool. Section 4 presents our empirical study and results.
Section 5 discusses related work. Finally, Section 6 summarizes the
paper and lists possible directions for future research.

2. OUR APPROACH FOR STUDYING TEST-
SUITE EVOLUTION

2.1 Definitions and Terminology
A system S = (P, T ) consists of a program P and a test suite T .

A test suite T = {t1, t2, . . . , tn} consists of a set of unit test cases.
Test(P , t) is a function that executes test case t on program P and
returns the outcome of the test execution. A test outcome can be of
one of four types:

• Pass: The execution of P against t succeeds.
• FailCE : The execution of P against t fails because a class

or method accessed in t does not exist in P .3

• FailRE : The execution of P against t fails due to an un-
caught runtime exception (e.g., a “null pointer” exception).
• FailAE : The execution of P against t fails due to an asser-

tion violation.

We use the generic term Fail to refer to failures for which the
distinction among the above three types of failures is unnecessary.

Cov(P , t) is a function that instruments program P , executes
test case t on P , and returns the set of all statements in P covered
by t. Cov(P ,T ) returns the cumulative coverage achieved on P
by all the tests in test suite T .

Given a system S = (P, T ), a modified version of S, S′ =
(P ′, T ′), and a test case t in T ∪ T ′, there are three possible sce-
narios to consider: (1) t exists in T and T ′, (2) t exists in T but
not T ′ (i.e., t was removed from the test suite), and (3) t exists in
T ′ but not in T (i.e., t was added to the test suite). These scenarios
can be further classified based on the behavior of t in S and S′, as
summarized in Figure 2 and discussed in the rest of this section.

2TESTEVOL can be downloaded at http://www.cc.gatech.
edu/~orso/software/testevol.html.
3These failures can obviously be detected at compile-time. For the sake
of consistency in the discussion, however, we consider such cases to be
detected at runtime via “class not found” or “no such method” exceptions.
In fact, our TESTEVOL tool detects such failures at runtime by executing
the tests compiled using the previous version of P on P .



(a) Test t exists in S and S′ and is modified
Test(P ′, t) = Fail ∧ t is repaired
Test(P ′, t ′) = Pass [TESTREP]

Test(P ′, t) = Pass ∧
Test(P ′, t ′) = Pass

t is refactored, updated to test a different
scenario, or is made more/less discriminating

[TESTMODNOTREP]

(b) Test t is removed in S′

Test(P ′, t) = FailRE |FailAE
t is too difficult to fix

[TESTDEL(AE|RE)]

Test(P ′, t) = FailCE
t is obsolete or is too difficult to fix

[TESTDEL(CE)]

Test(P ′, t) = Pass
t is redundant

[TESTDEL(P)]

(c) Test t′ is added in S′

Test(P , t ′) = FailRE |FailAE
t′ is added to validate a bug fix

[TESTADD(AE|RE)]

Test(P , t ′) = FailCE

t′ is added to test a new functionality
or a code refactoring

[TESTADD(CE)]

Test(P , t ′) = Pass
t′ is added to test an existing feature
or for coverage-based augmentation

[TESTADD(P)]

Figure 2: Scenarios considered in our investigation. Given two
system versions S = (P, T ) and S′ = (P ′, T ′), the three sce-
narios are: (a) t exists in T and T ′ and is modified, (b) t exists
in T but not in T ′, (c) t′ exists in T ′ but not in T .

2.2 Test Modifications
Figure 2(a) illustrates the scenario in which t is present in the test

suites for both the old and the new versions of the system. To study
different cases, we consider whether t is modified (to t′) and, if so,
whether the behaviors of t and t′ differ. (We have not considered
the cases in which t is not modified because they are irrelevant for
studying test evolution.) For behavioral differences, there are two
cases, shown in the two rows of the table: either t fails on P ′ and
t′ passes on P ′ or both t and t′ pass on P ′.

2.2.1 Category TESTREP: Repaired Tests
The TESTREP category corresponds to the case where t is re-

paired so that, after the modifications, it passes on P ′. As dis-
cussed in the Introduction, Figure 1 shows an example of such a
test repair. The code fragments in Listings 1 and 2 present an-
other example of repair that involves a simpler code modification
than the one in Figure 1. The example is taken from Gson, one
of the programs used in our empirical study, and involves a test
case from Gson version 2.0 that was fixed in the subsequent ver-
sion 2.1. (Section 4.1 describes the programs used in the empirical
study.) Test testNullField had to be fixed because constructor
FieldAttributes(Class<?> declClazz, Field f) from ver-
sion 2.0 was modified in version 2.1 to take only one parameter (of
type Field).

Listing 1: Unit test for class FieldAttributes (Gson v2.0)
public void t e s t N u l l F i e l d ( ) throws Except ion {

t ry {
new F i e l d A t t r i b u t e s ( Foo . class , nul l ) ;
f a i l ( " F i e l d parameter can not be n u l l " ) ;

} catch ( Nu l lPo in te rExcep t ion expected ) { }
}

Listing 2: Unit test for class FieldAttributes (Gson v2.1)
public void t e s t N u l l F i e l d ( ) throws Except ion {

t ry {
new F i e l d A t t r i b u t e s ( nul l ) ;
f a i l ( " F i e l d parameter can not be n u l l " ) ;

} catch ( Nu l lPo in te rExcep t ion expected ) { }
}

For this category, we wish to study the types of modifications
that are made to t. A test repair may involve changing the sequence
of method calls, assertions, data values, or control flow. Based on
our experience, for method-call sequence changes, we consider five
types of modifications:

1. Method call added: a new method call is added.
2. Method call deleted: an existing method call is removed.
3. Method parameter added: a method call is modified such

that new parameters are added.
4. Method parameter deleted: a method call is modified such

that existing parameters are deleted.
5. Method parameter modified: a method call is modified via

changes in the values of its actual parameters.

A test repair may involve multiple such changes. For example,
the repair shown in Figure 1 involves the addition of a method
call (in line 6) and the deletion of a method parameter (in line 7).
The repair illustrated in Listings 1 and 2 also involves the deletion
of a method parameter. For assertion changes, we consider cases
in which an assertion is added, an assertion is deleted, the expected
value of an assertion is modified, or the assertion is modified but the
expected value is unchanged. Finally, we currently group together
data-value changes and control-flow changes.

The rationale underlying our classification scheme is that differ-
ent classes of changes may require different types of repair anal-
yses. Although this is not necessarily the case, at least the search
strategy for candidate repairs would differ for the different cate-
gories of changes. Consider the case of method-parameter deletion,
for instance, for which one could attempt a repair by simply delet-
ing some of the actual parameters. Whether this repair would work
depends on the situation. For the code in Figure 1, for example, it
would not work because the deletion of one of the parameters in the
call to tokenize() is insufficient by itself to fix the test—a new
method call (to readSource()) has to be added as well for the test
to work correctly. Similarly, for the case of method-parameter ad-
dition, one could conceivably attempt straightforward fixes by con-
structing equivalence classes for the new parameters and selecting
a value from each equivalence class (e.g., positive, negative, and
zero values for an integer parameter). In our study, we found cases
where such an approach would in fact repair broken tests. In this
case too, however, such a solution is in general not enough.

2.2.2 Category TESTMODNOTREP: Refactored Tests
The TESTMODNOTREP category captures scenarios in which a

test t is modified in S′ even though t passes on P ′. Listings 3 and 4
show an example of one such change from Commons Math. Unit
test testDistance was refactored to invoke method sqrt() in
class FastMath, a newly added class in the new release, instead
of the same method in java.lang.Math. There are different rea-
sons why changes in this category might occur, as we discuss in
Section 4.3.

Listing 3: Unit test from class Vector3DTest (Commons Math v2.1)
public void t es tD is tance ( ) {

Vector3D v1 = new Vector3D (1 , −2, 3 ) ;
Vector3D v2 = new Vector3D(−4, 2 , 0 ) ;
asser tEquals ( 0 . 0 , Vector3D . d is tance ( Vector3D . MINUS_I , Vector3D . MINUS_I ) , 0 ) ;
asser tEquals ( Math . s q r t ( 50 ) , Vector3D . d is tance ( v1 , v2 ) , 1.0e−12);
asser tEquals ( v1 . sub t r ac t ( v2 ) . getNorm ( ) , Vector3D . d is tance ( v1 , v2 ) , 1.0e−12);

}

Listing 4: Unit test from class Vector3DTest (Commons Math v2.2)
public void t es tD is tance ( ) {

Vector3D v1 = new Vector3D (1 , −2, 3 ) ;
Vector3D v2 = new Vector3D(−4, 2 , 0 ) ;
asser tEquals ( 0 . 0 , Vector3D . d is tance ( Vector3D . MINUS_I , Vector3D . MINUS_I ) , 0 ) ;
asser tEquals ( FastMath . s q r t ( 50 ) , Vector3D . d is tance ( v1 , v2 ) , 1.0e−12);
asser tEquals ( v1 . sub t r ac t ( v2 ) . getNorm ( ) , Vector3D . d is tance ( v1 , v2 ) , 1.0e−12);

}



2.3 Test Deletions
Figure 2(b) illustrates the scenario in which a test t is deleted. To

study the reasons for this, we examine the behavior of t on the new
program version P ′ and consider three types of behaviors.

2.3.1 Category TESTDEL(AE|RE): Hard-To-Fix Tests
This category includes tests that fail on P ′ with a runtime excep-

tion or an assertion violation. These may be instances where the
tests should have been fixed, as the functionality that they test in P
still exists in P ′, but the tests were discarded instead. One plausi-
ble hypothesis is that tests in this category involve repairs of undue
complexity, for which the investigation of new repair techniques
to aid the developer might be particularly useful. We performed a
preliminary investigation of this hypothesis by manually examining
ten randomly selected tests in this category and found that all the
examined tests were in fact obsolete (we further discuss this point
in Section 4.4).

2.3.2 Category TESTDEL(CE): Obsolete Tests
A test that fails with a compilation error on the new program

version is obsolete because of API changes. Listing 5 illustrates a
test in this category taken from JodaTime. This test was deleted
because the tested method Chronology.getBuddhist() was re-
moved in the subsequent version of JodaTime.

Listing 5: Unit test from class TestChronology (JodaTime v2.0)
public void tes tGetBuddh is t ( ) {

asser tEquals ( BuddhistChronology . ge t Ins tance ( ) , Chronology . getBuddhis t ( ) ) ;
}

Although for this category of deletion too, one could postulate
that the tests were removed because they were too difficult to fix,
we believe this not to be the case in most practical occurrences.
Instead, the more likely explanation is that the tests were removed
simply because the tested methods were no longer present. Also in
this case, we investigated our hypothesis by manually examining
ten randomly selected cases. Indeed, our manual investigation con-
firmed that, for the cases we analyzed, the tested functionality was
either removed or provided through alternative methods, which re-
quires the development of new tests rather than fixes to the existing
ones.

2.3.3 Category TESTDEL(P): Redundant Tests
This category includes tests that are removed even though they

pass on P ′. Listing 6 illustrates an example of one such test, taken
from Commons Lang. In the new version, this test was replaced by
a more sophisticated one, shown in Listing 7.

Listing 6: Unit test from class MatrixIndexExceptionTest (Commons
Lang v2.1)
public void testConstructorMessage ( ) {

S t r i n g msg = " message " ;
Mat r ix IndexExcept ion ex = new Matr ix IndexExcept ion (msg ) ;
asser tEquals (msg , ex . getMessage ( ) ) ;

}

Listing 7: Unit test implemented to replace the removed one (Commons
Lang v2.2)
public void testParameter ( ) {

Mat r ix IndexExcept ion ex =
new Matr ix IndexExcept ion (INDEX_OUT_OF_RANGE, 12 , 0 , 5 ) ;

asser tEquals (12 , ex . getArguments ( ) [ 0 ] ) ;
asser tEquals (0 , ex . getArguments ( ) [ 1 ] ) ;
asser tEquals (5 , ex . getArguments ( ) [ 2 ] ) ;

}

2.4 Test Additions
Figure 2(c) illustrates the cases of test-suite augmentation, where

a new test t′ is added to the test suite. The behavior of t′ on the old
program can indicate the reason why it may have been added.

2.4.1 Category TESTADD(AE|RE): Bug-Fix Tests
This category includes added tests that fail on P with a runtime

exception or an assertion violation. In this case, the functional-
ity that the added test t′ was designed to test exists in P but is
not working as expected (most likely because of a fault). The pro-
gram modifications between P and P ′ would ostensibly have been
made to fix the fault, which causes t′ to pass on P ′. Thus, t′ is
added to the test suite to validate the bug fix. Listing 8 illustrates a
test that fits this profile, as it was added to Commons Math version
2.1 to validate a bug fix (https://issues.apache.org/jira/
browse/MATH-391). In the previous version of ArrayRealVector,
the creation of a zero-length vector results in a runtime exception.

Listing 8: Unit test from class ArrayRealVectorTest (Commons Math v2.2)
public void tes tZeroVectors ( ) {

asser tEquals (0 , new ArrayRealVector (new double [ 0 ] ) . getDimension ( ) ) ;
asser tEquals (0 , new ArrayRealVector (new double [ 0 ] , true ) . getDimension ( ) ) ;
asser tEquals (0 , new ArrayRealVector (new double [ 0 ] , fa lse ) . getDimension ( ) ) ;

}

2.4.2 Category TESTADD(CE): New-Features Tests
The added tests in this category fail on P with a compilation er-

ror, which indicates that the API accessed by the tests does not exist
in P . Thus, the added test t′ is created to test new code in P ′, where
the code could have been added as part of a refactoring or, more
likely, to add new functionality. Listing 9 illustrates a test from
JFreeChart that covers a new functionality: method getMinY()

did not exist in previous versions of class TimeSeries.

Listing 9: Unit test from class TimeSeriesTests (JFreeChart v1.0.14)
public void testGetMinY ( ) {

TimeSeries s1 = new TimeSeries ( "S1" ) ;
asser tTrue ( Double . isNaN ( s1 . getMinY ( ) ) ) ;
s1 . add (new Year (2008) , 1 . 1 ) ;
asser tEquals ( 1 . 1 , s1 . getMinY ( ) , EPSILON ) ;
s1 . add (new Year (2009) , 2 . 2 ) ;
asser tEquals ( 1 . 1 , s1 . getMinY ( ) , EPSILON ) ;
s1 . add (new Year (2002) , −1.1);
asser tEquals (−1.1, s1 . getMinY ( ) , EPSILON ) ;

}

2.4.3 Category TESTADD(P): Coverage-Augmentation
Tests

This category considers cases where the added test t′ passes on
P . Clearly, t′ would have been a valid test in the old system as
well. One would expect that the addition of t′ increases program
coverage (i.e., Cov(P ′,T ′) ⊃ Cov(P ′,T ′ − {t ′})). Moreover,
if t′ covers different statements in P and P ′ (assuming that there
is a way of matching statements between P and P ′), the plausible
explanation is that t′ was added to test the changes made between
P and P ′. However, if t′ covers the same statements in both pro-
gram versions, it would have been added purely to increase code
coverage (and not to test any added or modified code). Listing 10
illustrates an added test case that increases code coverage: the new
test method testFindRangeBounds covers the case where the pa-
rameter of method findRangeBounds() is null.

Listing 10: Unit test from class XYErrorRendererTests (JFreeChart
v1.0.14)
public void testFindRangeBounds ( ) {

XYErrorRenderer r = new XYErrorRenderer ( ) ;
a s s e r t N u l l ( r . findRangeBounds ( nul l ) ) ;

}



Figure 3: High-level architecture of TESTEVOL.

3. IMPLEMENTATION
We implemented a tool, called TESTEVOL, which facilitates a

systematic study of test-suite evolution for Java programs and JUnit
test suites. TESTEVOL analyzes a sequence of versions of a soft-
ware system, where each version consists of application code and
test code. The versions can be actual releases or internal builds.
TESTEVOL consists of five components, as illustrated in the archi-
tecture diagram shown in Figure 3.

The compiler component builds each system version and cre-
ates two jar files, one containing the application classes and the
other containing the test classes. The test-execution engine ana-
lyzes each pair of system versions (S, S′), where S = (P, T ) and
S′ = (P ′, T ′). First, it executes T on program P and T ′ on pro-
gram P ′ (i.e., it runs the tests on the respective program versions).
Then, it executes T ′ on P and T on P ′. For each execution, it
records the test outcome: Pass,FailCE ,FailAE , orFailRE . The
differencing component compares T and T ′ to identify modified,
deleted, and added tests. This component is implemented using the
WALA analysis infrastructure for Java (wala.sourceforge.net).

The test outcomes, collected by the test-execution engine, and
the test-suite changes, computed by the differencing component,
are then passed to the test classifier, which analyzes the information
about test outcomes and test updates to classify each update into
one of the eight test-evolution categories presented in Section 2.
For each pair of broken test case and its repaired version, the test
classifier also compares the test cases to identify the types of repair
changes—different types of method-sequence changes and asser-
tion changes—as discussed in Section 2.2.1; this analysis is also
implemented using WALA.

TESTEVOL performs a further step for the test cases in categories
TESTDEL(P)and TESTADD(P). For these tests, the test classifier
leverages the coverage analyzer to compute the branch coverage
achieved by each test; this facilitates the investigation of whether
the deleted or added tests cause any variations in the coverage at-
tained by the new test suite.

4. EMPIRICAL STUDY
Using TESTEVOL, we conducted an empirical study on several

Java open-source software systems to investigate different aspects
of test-suite evolution. In this section, we discuss the results of
our analysis of this information and the insight on test-suite evo-
lution that we gained. Specifically, we discuss our experimental
setup, analyze the overall occurrence—in the programs and ver-
sions considered—of the categories of test changes presented in
Section 2, and investigate the different categories (i.e., tests modi-
fied, deleted, and added) in detail.

4.1 Programs, Tests, and Versions Investigated
Table 1 lists the programs that we used in our study, which are

all real-world open-source programs that we selected from popu-
lar websites, such as SourceForge (www.sourceforge.net). The
general criteria that we used in selecting the programs were that
they had to be popular, be actively maintained, and have a JUnit
test suite. For each of the programs selected, we downloaded all of
its official releases (with the exception of PMD, as explained below).
Columns 3 and 4 of the table show the number of versions of each
program and the IDs of these versions, respectively. Columns 5–8
show various metrics for the first version of the program: number
of classes, number of methods, number of JUnit tests, and release
date. Columns 9–12 show the same data for the last version con-
sidered. Finally, the last column in the table shows the cumulative
number of tests for each program over all of its versions.

Note that one of the programs, PMD, appears twice in the table
(the second time indicated as PMD-2004). For this program, we
studied two sets of versions: the official releases from November
2002 to November 2011 and 17 versions from January to December
2004. (The 17 versions are between one and six weeks apart and
were selected, using Kenyon [2], so as to contain at least one test
change. Because of the way we selected them, the sets of versions
for PMD and PMD-2004 may be completely disjoint.) We used this
second set of versions to assess whether our findings depended on
the granularity of the changes considered, as further discussed in
Section 4.6.

We ran TESTEVOL on each pair of subsequent versions of each
program. TESTEVOL analyzed each pair and produced the infor-
mation described in Section 2. This information, together with the
actual programs and test versions, were the basis for our study.

4.2 Occurrence of Test-Change Categories
In the empirical evaluation, we first studied how often tests change,

during program evolution, and how they change. To do this, we
used the information computed by TESTEVOL to answer the fol-
lowing research question:

• RQ1. How often do the different categories of test-suite
changes that we consider occur?

To answer RQ1, we used the data about the distribution of test-
change categories in the programs, which are reported in Tables 2
and 3. Table 2 shows the distribution in absolute numbers, which
gives a sense of the relevance of each category throughout the life-
time of a program. For example, the table shows that, for Commons
Math, our study analyzed more than 4,300 test changes overall.

Although looking at absolute numbers is useful to get an idea of
the magnitude of the number of test changes, it makes it difficult to
compare the results across programs, as different programs could
have different versions and lifetime spans. We thus normalized the
distribution of test changes with respect to the number of studied
versions by considering the test differences between each pair of
versions of the programs. We report these numbers in Table 3.

The columns in both tables contain analogous data. Column 2
reports the number of test updates (modifications, deletions, or ad-
ditions), whereas columns 3–10 report the distribution of the eight
categories of test changes.

Let us first consider the total number of test-suite updates. Over
all programs, we observed 17,427 test changes, of which 5,111
(29%) were test modifications, 2,541 (15%) were test deletions, and
9,775 (56%) were test additions. The average number of test up-
dates per version pair ranged from 112, for PMD, to 732 for Commons
Math. Consider now the data for test modifications (columns 3–4 of
Tables 2 and 3). Among the 5,111 modifications, only 1,121 (22%



Table 1: Programs used in our empirical study.
Number of First Version Last Version ⋃vn

v1
Tests

Program Description Versions Versions Classes Methods Tests Release Classes Methods Tests Release
Commons Lang Extra utilities for the java.lang

API
11 1.0, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5,

2.6, 3.0, 3.0.1, 3.1
31 373 318 Dec/2002 137 1174 2027 Nov/2011 2531

Commons Math Java mathematics and statistics
library

7 1.0, 1.1, 1.2, 2.0, 2.1, 2.2, 3.0 83 758 501 Dec/2004 534 4329 2415 Mar/2012 3164

Gson Library for converting Java ob-
jects into their JSON represen-
tation and viceversa

16 1.0, 1.1, 1.1.1, 1.2, 1.2.1,
1.2.2, 1.2.3, 1.3, 1.4, 1.5, 1.6,
1.7, 1.7.1, 1.7.2, 2.0, 2.1

73 414 131 May/2008 57 424 800 Dec/2011 1200

JFreeChart Chart creation library 12 1.0.03, 1.0.04, 1.0.05, 1.0.06,
1.0.07, 1.0.08a, 1.0.09, 1.0.10,
1.0.11, 1.0.12, 1.0.13, 1.0.14

423 5790 1297 Nov/2006 510 7736 2186 Nov/2011 2211

JodaTime Replacement for the Java date
and time API

15 0.9.8, 0.9.9, 1.0, 1.1, 1.2,
1.3, 1.4, 1.5, 1.5.1, 1.5.2, 1.6,
1.6.1, 1.6.2, 2.0, 2.1

177 2619 1950 Nov/2004 201 3436 3887 Feb/2012 3963

PMD Java source-code static ana-
lyzer

27 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,
2.1, 2.2, 2.3, 3.0, 3.2, 3.3, 3.4,
3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1,
4.1.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5,
4.2.6, 4.3

316 1846 340 Nov/2002 602 4266 596 Nov/2011 1243

PMD-2004 17 r2515, r2559, r2567, r2628,
r2679, r2723, r2750, r2769,
r2781, r2832, r2846, r2911,
r2936, r2962, r2975, r3016,
r3065

288 1908 425 Jan/2004 343 2241 504 Dec/2004 573

Total – 88 – 1103 11800 4537 – 2041 21365 11911 – 14312

Table 2: Distribution of the test-change categories in the programs we analyzed—absolute numbers.
Number of Test Modification Test Deletion Test Addition

Program Test Updates TESTREP TESTMODNOTREP TESTDEL(AE|RE) TESTDEL(CE) TESTDEL(P) TESTADD(AE|RE) TESTADD(CE) TESTADD(P)

Commons Lang 4284 257 (6.0%) 1274 (29.7%) 25 (0.6%) 393 (9.2%) 122 (2.8%) 200 (4.7%) 1679 (39.2%) 334 (7.8%)
Commons Math 4387 204 (4.7%) 701 (16.0%) 18 (0.4%) 673 (15.3%) 128 (2.9%) 203 (4.6%) 2313 (52.7%) 147 (3.4%)
Gson 1761 195 (11.1%) 97 (5.5%) 20 (1.1%) 237 (13.5%) 143 (19.8%) 284 (16.1%) 422 (24.0%) 363 (20.6%)
JFreeChart 1318 59 (4.5%) 320 (24.3%) 6 (0.5%) 0 (0%) 19 (1.4%) 292 (22.2%) 345 (26.2%) 277 (21.0%)
JodaTime 2786 145 (5.2%) 552 (19.8%) 0 (0%) 18 (0.6%) 58 (2.1%) 166 (6.0%) 1576 (56.6%) 271 (9.7%)
PMD 2891 261 (9.0%) 1046 (36.2%) 43 (1.5%) 161 (5.6%) 477 (16.5%) 213 (7.4%) 418 (14.5%) 272 (9.3%)
Total 17427 1121 (6.4%) 3990 (22.9%) 112 (0.6%) 1482 (8.5%) 947 (5.4%) 1358 (7.8%) 6753 (38.8%) 1664 (9.5%)

of the modifications and 6% of all test changes) were performed to
fix broken tests (i.e., they were actual test repairs). The remaning
3,990 modifications (78% of the modifications and 23% of all test
changes) were changes made to passing tests, that is, changes made
for reasons other than fixing broken tests. This data supports the ob-
servation that test repairs are only one type of change in test-suite
evolution, and definitely not the most frequent. It may therefore
be worth investigating techniques that support other kinds of test
modifications and test changes in general.

Test repairs are only part of the story: test repair, and test
modifications in general, are a minority of all test changes.

Looking at the data in more detail, however, we can also observe
that test repairs, although not prevalent, are not irrelevant either.
If we ignore the case of added and deleted tests, which we will
discuss in detail in Section 4.4, test repairs represent a significant
fraction of test modifications; the percentage of actual test repair
instances over all test modifications varies, in fact, from 16%, for
JFreeChart, to 67%, for Gson. This data seems to provide a fair
amount of motivation for the development of automated unit test-
repair techniques [7, 8, 17].

Test repairs occur often enough in practice to justify the de-
velopment of automated repair techniques.

Based on the above observations, we further analyzed the data to
get a better understanding of the kinds of both repair and non-repair
modifications that occur in practice. We discuss our findings in the
next section.

4.3 Test Modifications
The goal of our in-depth analysis of test modification was twofold.

Our main goal was to study the types of repairs that are performed
in practice, so as to gauge the applicability of existing repair tech-
niques. Another, secondary goal was to understand what kinds of
non-repair modifications occur in real programs, so as to assess
the feasibility of developing automated techniques that can support
these types of modifications too.

The starting point for the first part of our analysis were existing
test-repair techniques. To the best of our knowledge, most existing
techniques in this arena at the time of this study (e.g., [7, 8]) focus
on repairing the assertions associated with the failing test cases.
(The main exception is the technique recently presented by Mirza-
aghaei, Pastore, and Pezzé [17], which aims to handle changes in
method signatures and which we discuss in Section 5.) Daniel and
colleagues [7], in particular, present seven repair strategies for au-
tomatically fixing broken JUnit test cases. Six of these focus on
modifying the failing assert statement in different ways, such as
by replacing the expected value with the actual value, inverting a re-
lational operator, or expanding object comparisons. (The final strat-
egy applies in cases where a test fails with a runtime exception and
works by surrounding the failing method call with a try-catch

block that catches a particular exception type.) To study the appli-
cability of assertion-focused repair, we investigated the following
research question:

• RQ2. How often do test repairs involve modifications to ex-
isting assertions only? How often they require more complex
modifications of the tests instead?



Table 3: Distribution of the test-change categories in the programs we analyzed—averaged over version pairs.
Number of Test Modification Test Deletion Test Addition

Program Test Updates TESTREP TESTMODNOTREP TESTDEL(AE|RE) TESTDEL(CE) TESTDEL(P) TESTADD(AE|RE) TESTADD(CE) TESTADD(P)

Commons Lang 429 26 (6.0%) 127 (29.7%) 3 (0.6%) 39 (9.2%) 12 (2.8%) 20 (4.7%) 168 (39.2%) 33 (7.8%)
Commons Math 732 34 (4.7%) 117 (16.0%) 3 (0.4%) 112 (15.3%) 21 (2.9%) 34 (4.6%) 386 (52.7%) 25 (3.4%)
Gson 118 13 (11.1%) 6 (5.5%) 1 (1.1%) 16 (13.5%) 10 (8.1%) 19 (16.1%) 28 (24.0%) 24 (20.6%)
JFreeChart 121 5 (4.5%) 29 (24.3%) 1 (0.5%) 0 (0%) 2 (1.4%) 27 (22.2%) 31 (26.2%) 25 (21.0%)
JodaTime 200 10 (5.2%) 39 (19.8%) 0 (0%) 1 (0.6%) 4 (2.1%) 12 (6.0%) 113 (56.6%) 19 (9.7%)
PMD 112 10 (9.0%) 40 (36.2%) 2 (1.5%) 6 (5.6%) 18 (16.5%) 8 (7.4%) 16 (14.5%) 10 (9.4%)
PMD-2004 28 6 (20.3%) 5 (17.6%) 0 (0%) 1 (3.6%) 6 (21.7%) 1 (3.6%) 2 (7.7%) 7 (25.4%)
Average 285 16 (6.7%) 60 (21.9%) 2 (0.7%) 29 (7.4%) 11 (5.7%) 20 (10.2%) 124 (35.5%) 23 (12.0%)

Table 4: Types of modifications made to repair broken tests.
Assertion Method-Call Changes Assertion Changes

Number of Changes Parameter Parameter Parameter Assertion Assertion Assertion Exp Value
Program Test Repairs Only Call Added Call Deleted Added Deleted Modified Added Deleted Modified Modified

Commons Lang 257 6 (2.3%) 138 109 0 161 28 59 35 17 8
Commons Math 204 48 (23.5%) 79 73 0 70 11 94 89 17 10
Gson 195 18 (9.2%) 85 76 13 100 28 23 25 2 14
JFreeChart 59 4 (6.8%) 21 4 1 53 19 3 3 0 3
JodaTime 145 11 (7.6%) 36 125 2 53 1 4 55 0 10
PMD 261 24 (9.2%) 171 143 25 103 31 50 64 1 16
PMD-2004 84 2 (0.8%) 41 29 20 12 55 5 2 0 2
Total 1121 111 (9.9%) 530 (47.3%) 530 (47.3%) 40 (3.6%) 540 (48.2%) 118 (10.5%) 233 (20.8%) 271 (24.2%) 37 (3.3%) 61 (5.4%)

Table 4 presents the analysis data relevant for the investigation
of RQ2. Column 2 of the table shows the overall number of test re-
pairs for each program (this is the same information that is shown
in column 3 of Table 2). Column 3 reports the number of test re-
pairs that involved changes to assertions only. Columns 4–8 list
the number of occurrences of the five types of changes in method
calls that we discussed in Section 2.2. Similarly, columns 9–12 list
the number of occurrences of the four types of changes in assert

statements.
The data in the first column of the table clearly shows that, for

the programs considered, test repairs that involve only changes to
assertions are rare—less than 10% overall for all programs except
Commons Math. Looking at the remaining columns, we can also
clearly observe that test repairs tend to involve changes to method
calls considerably more often than changes to assertions. Over
all programs considered, nearly 50% of the repairs involved the
addition of a method call, the deletion of a method call, or the
deletion of a method parameter. Assertion additions and assertion
deletions (which occurred in 21% and 24% of the repairs, respec-
tively) are also fairly common, but much less frequent than method-
call changes. Also in this case, the only exception to this trend
is Commons Math, for which assertion changes (210 in total) oc-
curred nearly as often as method-call changes (233 in total).

Overall, this data provides strong indications that existing test-
repair techniques, although useful in some cases, must be extended
to be widely applicable (e.g., by including the capability of generat-
ing and adapting method calls). Based on the data, we can therefore
make the following observation:

Test-repair techniques that focus exclusively on assertions
can target only a small subset of all broken (repairable) test
cases and must be extended to achieve a wider applicability
of automated test repair.

As stated earlier, in this part of the study we were also interested
in gaining a better understanding of non-repair modifications. To
this end, we analyzed the occurrences of such changes in our pro-
grams and discovered that there are different reasons why changes
in this category are performed. In some of the cases that we ob-

served, test cases were simply refactored. This was the case, for
instance, for the example shown in Section 2.2.2 (Listings 3 and 4).
In other cases, a test was updated to cover a different program func-
tionality, which indicates that the old functionality either was re-
moved or did not need to be tested by this particular test case. To
distinguish between these two cases, we used coverage information
because, intuitively, we would expect a test refactoring not to alter
the coverage of the program achieved by the original and the mod-
ified tests. Therefore, if Cov(P ′, t) = Cov(P ′, t ′), we consider
the change as a test refactoring; otherwise, we conclude that the test
has been changed to cover a different functionality. Although these
two cases were prominent, we also observed other cases in which
tests were made more discriminating, by the addition of assertions,
or less discriminating, by the deletion of assertions.

For these three types of test changes, it seems difficult to define
techniques that could automatically perform the changes. All three
types of changes we observed, in fact, seem to involve a consid-
erable amount of human judgement. Moreover, these changes are
typically not strictly necessary, at least when compared to fixing
a broken test. Providing support for them seems, therefore, to be
less of a priority. Finally, standard refactoring and advanced edit-
ing tools, such as the ones provided in modern IDEs, may already
provide enough support for performing these changes.

Investigating techniques for automated support of non-repair
changes does not appear to be a promising research avenue.
These techniques would require considerable manual guid-
ance and may end up being similar to traditional refactoring
tools.

4.4 Test Deletions
Although studying test modifications and, in particular, test re-

pairs was the main focus of our study, we also investigated the
characteristics of deleted and added test cases. In this section, we
describe our findings with respect to test deletions, for which we
investigated the following research question:

• RQ3. Why are tests deleted? Are tests in different categories
deleted for different reasons?



To answer RQ3, we use the data provided in columns 5–7 of
Tables 2 and 3. As the data shows, test deletions occur often.
Moreover, failing tests are more often deleted (1,594 instances of
deletions) than repaired (1,121 instances of repairs). Among the
deleted failing tests, tests fail predominantly (over 92%) with com-
pilation errors, whereas the remaining ones fail with assertion or
runtime errors.

This phenomenon indicates that, in most cases, the deleted tests
cover obsolete functionality, as the application API exercised by the
tests no longer exists. The interesting question, however, is whether
this is true also for tests in the TESTDEL(AE|RE) category. Given
that these tests could be run, but failed, on the modified system,
an interesting additional question arises. Were these tests truly ob-
solete and served no purpose in the new version of the system?
Or could they have been fixed instead, but fixing was too com-
plex? To address this question, we randomly examined 30 instances
from category TESTDEL(AE|RE) and found that, in all the observed
cases, the tests were indeed obsolete, and it did not make sense to
repair them.

To illustrate, Listing 11 shows a test from Commons Lang that
belongs to this category. After examining the history of deleted
test testBigDecimal, we discovered that it was added in ver-
sion 2.4 to test a new functionality in class EqualsBuilder, and
that the functionality was later removed due to a side effect (see
https://issues.apache.org/jira/browse/LANG-393). In
this case, and in the other cases that we examined, the test was
indeed obsolete and was correctly removed.

Listing 11: Unit test from class EqualsBuilderTest (Commons Lang
v2.4)
public void tes tB igDec imal ( ) {

BigDecimal o1 = new BigDecimal ( " 2.0 " ) ;
BigDecimal o2 = new BigDecimal ( " 2.00 " ) ;
asser tTrue (new EqualsBu i lder ( ) . append ( o1 , o1 ) . isEquals ( ) ) ;
asser tTrue (new EqualsBu i lder ( ) . append ( o1 , o2 ) . isEquals ( ) ) ;

}

As another example, Listing 12 shows a code fragment from
JFreeChart version 1.0.10. In this version, any year before 1900
is considered invalid, and method Year.previous returns null for
such a year. This is no longer true for the following version of
JFreeChart; therefore, in this case too, the test was correctly re-
moved.

Listing 12: Unit test from class YearTests (JFreeChart v1.0.10)
public void test1900Prev ious ( ) {

Year cu r ren t = new Year (1900) ;
Year prev ious = ( Year ) cu r ren t . prev ious ( ) ;
a s s e r t N u l l ( prev ious ) ;

}

Tests that fail in the new version of a program—because
of a compilation error, a runtime exception, or a failed
assertion—tend to be deleted not because they are difficult
to repair, but because they are obsolete.

Another interesting fact highlighted by the data is that many tests
that pass (and are valid tests) in both the old and new systems are
deleted. In fact, category TESTDEL(P), with 947 members, accounts
for over 5% of all test updates and over 37% of all test deletions.
In general, if t passes on P ′, it is not obvious why it would be re-
moved. One possibility is that many of these deletions are actually
cases where tests were renamed or moved to a different class. To
investigate this hypothesis, we studied the effects of the deletions
of passing tests on code coverage. Specifically, we investigated

Table 5: Effects of deleted passing tests on branch coverage.
Same Reduced

Program TESTDEL(P) Branch Coverage Branch Coverage
Commons Lang 122 120 (98.4%) 2 (1.6%)
Commons Math 128 50 (39.1%) 78 (60.9%)
Gson 143 140 (97.9%) 3 (2.1%)
JFreeChart 19 15 (78.9%) 4 (21.1%)
JodaTime 58 46 (79.3%) 12 (20.7%)
PMD 477 341 (71.5%) 136 (28.5%)
Total 947 712 (75.2%) 235 (24.8%)

whether the removal of each deleted test t resulted in any loss in
coverage. (Cov(P ′,T ′) − Cov(P ′,T ′ ∪ {t}) indicates the loss
in coverage, if any, that results from the deletion of t.) The effects
on coverage can, in fact, strongly indicate whether a test is truly
deleted (if the removal of the test from the test suite reduces the
coverage of the suite) or simply renamed or moved (if the removal
of the test causes no change in coverage).

Table 5 presents data on the effects of the deletion of passing
tests on branch coverage. As the table shows, in most cases (over
75%) the removal of a test does not reduce branch coverage, a con-
sistent result across all programs except Commons Math. This data
suggests that many of the deletions that occur in category TEST-
DEL(P) may not be actual deletions.

It is worth noting that the tests might have been deleted and
might have simply been redundant coverage-wise. The manual
examination of ten randomly selected samples, however, seemed
to eliminate this possibility. As an example, Listing 13 illustrates
a test that was moved and renamed in Gson. Initially, in version
1.1.1, the test was part of class JsonSerializerTest. In version
1.2, however, it was moved to class ArrayTest and renamed to
testArrayOfStringsSerialization.

Listing 13: Unit test from class JsonSerializerTest (Gson v1.1.1)
public void t e s tA r rayO fS t r i ngs ( ) {

S t r i n g [ ] t a r g e t = { " He l lo " , " World " } ;
asser tEquals ( " [ \ " He l lo \ " , \ " World \ " ] " , gson . toJson ( t a r g e t ) ) ;

}

The data in Table 5 also shows that test deletions that cause re-
duction in branch coverage are a minority but do occur (24% of the
cases). Although we could not find any definite explanation of the
phenomenon, we conjecture that this may simply be due to differ-
ences in the structure of the code that cause the moved or renamed
test to cover different instructions in some parts of the program.
To assess the validity of this conjecture, we plan to investigate this
category further in the future.

Tests that would pass in the new version of a program but
appear to have been deleted have, in most cases, simply been
moved or renamed.

4.5 Test Additions
In this final part of our investigation, we study the characteristics

of added tests. Similar to what we did for deleted tests, in this case
we investigate the following research question:

• RQ4. Why are tests added? Are tests in different categories
added for different reasons?

Among the three types of test updates we studied, test additions
are the ones that occur most frequently. This is somehow expected,
if we consider that all the programs we studied grew significantly
over the time period of the study, as demonstrated by the number
of classes and methods in the first and last versions of the systems
(see columns 5, 6, 9, and 10 of Table 1). Of the 9,775 instances



Table 6: Effects of the added passing tests on branch coverage.
Same Increased

Program TESTADD(P) Branch Coverage Branch Coverage
Commons Lang 334 139 (41.6%) 195 (58.4%)
Commons Math 147 99 (67.3%) 48 (32.7%)
Gson 363 155 (42.7%) 208 (57.3%)
JFreeChart 277 162 (58.5%) 115 (41.5%)
JodaTime 271 198 (73.1%) 73 (26.9%)
PMD 272 177 (65.1%) 95 (34.9%)
Total 1664 930 (55.9%) 734 (44.1%)

of test additions, 1,358 (14%) failed in the previous version of the
program with a runtime exception or an assertion failure. As we
discussed and illustrated with an example in Section 2.4.1, these are
tests that were added to validate a bug fix. However, the majority
of the added tests (6,753—69%) simply did not compile for the old
program. This fact indicates that they were most likely added to
validate newly added code.

New test cases that would fail with a runtime error for the
old version of the program are added to validate bug fixes;
new tests that would not compile against the old version of
the program are likely added to validate new functionality.

The remaining 1,664 added tests (17%) represent an interesting
case, as they would both compile and pass on the previous version
of the program, as shown by the column for TESTADD(P) in Table 2.
Similar to what we did for the deleted tests, we used coverage in-
formation to investigate these added tests further.

Table 6 presents the branch coverage data that we collected and
used to perform this investigation. As the table shows, and some-
how unsurprisingly, a large portion of the added tests did not in-
crease branch coverage. This is particularly significant for Commons
Math, JodaTime, and PMD. Considering our findings for the case
of deleted tests (see Section 4.4), some of these added tests must
correspond to old tests that were moved or simply renamed.

As the table also shows, the added tests did increase coverage in
many cases. The increase in percentage ranges from about 27%,
for JodaTime, to over 58%, for Commons Lang, with the average
being 44%. To better understand this phenomenon, we collected
additional coverage data and studied whether these tests traversed
modified parts of the code. Interestingly, in most cases (over 90%),
the tests exercised one or more changes in the code. Albeit this is
just preliminary evidence and would require a more in-depth anal-
ysis, it seems to indicate that developers do perform test augmen-
tation not only to cover newly added code, but also to exercise the
changes they made to existing code. If confirmed by further studies,
this result would justify existing research in test-suite augmentation
(e.g., [19]) and could provide input for further efforts in that area.

A significant number of new tests are added not necessarily
to cover new code, but rather to exercise the changed parts
of the code after the program is modified.

4.6 Summary and Threats to Validity
Our empirical analysis of 6 real-world programs, 88 versions,

14,312 tests and 17,427 test changes allowed us to make a num-
ber of interesting observations. In this section, we summarize the
most relevant of such observations. As far as test repair is con-
cerned, our results show that (1) test repairs are needed, although
they are not the majority of the test changes that we observed, and
(2) techniques that just focus on assertions may not be applicable
in a majority of cases.

As for test additions and deletions, we found initial evidence that
(1) in many cases tests are not really deleted and added, but rather
moved or simply renamed, (2) failing tests are deleted not because
they are difficult to fix, but because they are obsolete, and (3) tests
are added to check bug fixes, test new functionality, and validate
changes made to the code.

Like any empirical study, there are threats to the validity of our
results. Threats to internal validity may be caused by errors in
our implementation of TESTEVOL that might have produced in-
correct results. To mitigate this threat, we have thoroughly tested
TESTEVOL with a number of small examples that contained the
test changes targeted by our analysis. Moreover, in our analysis
of the results, we have manually inspected many real cases of test
changes computed by TESTEVOL and found them to be correct,
which further increases our confidence in the tool.

There are also threats to the external validity of our results related
to the fact that our findings may not generalize to other programs
or test suites. One of the potential external threats, in particular,
is the granularity at which we selected the program versions—that
of external, official releases. Our results could change if evolution
were to be studied at a finer grain by analyzing internal builds, with
greater frequency. To perform a preliminary investigation of this
issue, we obtained 17 internal builds of PMD (as mentioned in Sec-
tion 4.1) and analyzed them using TESTEVOL. The data for these
builds, shown in Tables 3 and 4 under the label PMD-2004, illus-
trates that a finer-grained study of test evolution can indeed pro-
duce some variations in the results. For example, we can observe a
larger percentage of test repairs, which is probably due to the fact
that tests can be repaired multiple times, in different internal builds,
between two releases. In such cases, a coarser release-level analy-
sis cannot identify the multiple repairs, whereas a finer build-level
analysis can do so. These preliminary results show that there may
be value in performing further studies at different levels of version
granularity.

Overall, we considered applications from different domains, many
versions for each application, large test suites, and numerous real-
world test changes. Although more studies are needed to confirm
our results, we believe that our initial findings provide a solid start-
ing point on which we and other researchers can build.

5. RELATED WORK
Daniel and colleagues [7] presented the first automated tech-

nique and tool, called ReAssert, for repairing broken JUnit tests.
ReAssert employs different repair strategies, whose common goal
is to fix the failing assert statements to make the tests pass. For
example, one repair strategy replaces the expected value of an as-
sertion with the actual value observed, and another strategy inverts
the relational operator in the assert condition. In subsequent
work [8], Daniel and colleagues presented a symbolic-analysis-
based repair technique that overcomes some of the limitations of
ReAssert (e.g., its ineffectiveness in the presence of conditional
control flow). However, this technique also focuses exclusively on
repairing assertions. As our results indicate, assertion-focused re-
pair may have limited applicability in practice—test repairs pre-
dominantly involve changes, such as synthesis of new sequences of
method calls, that leave the assertions unmodified.

More recently, Mirzaaghaei, Pastore, and Pezzé [17] presented
a repair technique for fixing JUnit test cases that are broken be-
cause of changes in method signatures, that is, addition, deletion, or
modification of parameters. Their technique identifies the broken
method call and attempts to create a modified call in which new pa-
rameters are initialized with suitable values. Using data-flow anal-
ysis, program differencing, and runtime monitoring, the technique



searches for initialization values from existing data values gener-
ated during the execution of the test case against the original appli-
cation. Although its general effectiveness is unclear, the technique
may work well for specific types of changes (e.g., where a formal
parameter is replaced with a type that wraps the parameter). This
technique, by trying to handle changes in method signatures, is a
right step in the direction of developing more widely applicable
automated repairs. Based on our evidence, however, the effective-
ness of the technique is still limited, and the development of more
sophisticated approaches is required. In particular, the technique
attempts to fix a broken method call by adding, deleting, and mod-
ifying parameters, but it does not synthesize new method calls. As
the data from our study shows, the synthesis of new method calls is
often needed when repairing test cases in practice (see column 4 of
Table 4). The test repair illustrated in Figure 1, for instance, cannot
be handled by this technique.

Test-repair techniques have also been developed for GUI tests
(e.g., [1, 4, 11, 13, 15]); such tests are sequences of events on an
application user interface. Memon and Soffa [15] present a repair
technique that constructs models of the original and modified GUI
components, where the models represent the possible flow of events
among the components. Their technique compares the models to
identify deleted event flows and attempts to repair the tests that tra-
verse such (invalid) flows. The repair strategy deletes one or more
events from a test sequence, or splices one or more events with a
different event, so that the resulting sequence can be executed on
the modified GUI. Grechanik, Xie, and Fu [11] present a similar
approach for repairing broken GUI test scripts: their approach con-
structs models of the original and modified GUIs, compares the
models to identify modified GUI elements, and identifies the test-
script actions that access such modified GUI elements. Choudhary
and colleagues [4] present a repair technique for web-application
test scripts. Their technique collects runtime data for test execution
on the original and modified web application. By analyzing the
broken script commands and the runtime data, it attempts to repair
the commands to make the broken test scripts pass on the modified
application. An empirical study similar to ours, but that focuses on
the evolution of GUI test scripts, would be useful in assessing the
practical applicability of these techniques and in identifying inter-
esting research problems in GUI test repair.

Recently, several techniques for automated program repair have
been developed (e.g., [3, 10, 21, 22]). Some of these techniques
rely on formal specifications of correct program behavior [10, 21],
whereas others use a suite of passing tests as the specification of
intended program behavior [3, 22]. It would be worth investigating
whether these techniques, and especially the ones based on sym-
bolic analysis (e.g., [3]), could be adapted to be used in the context
of automated support for test repair.

Our study revealed that, in many cases, changes in the appli-
cation cause tests to fail with compilation errors. Such failures
are similar in nature to the failures that result in client code when
library APIs evolve in ways that are incompatible with the API
clients. Therefore, ideas from existing research on automated API
migration and adaptation (e.g., [5, 6, 9, 12, 18]) could also be fruit-
fully leveraged for developing repair techniques for tests. Dagenais
and Robillard [6], for instance, presented an approach for assisting
with migrating client code to updated versions of framework APIs.
Their key idea is to guide the client changes based on the frame-
work code’s own adaption to its API changes. Nguyen and col-
leagues [18] described a related approach where the adaptation of
a client is guided by how other clients have adapted to the evolved
API. Similar techniques could be developed for fixing unit tests
based on the application’s adaptation to API-level changes.

The notion of generating abstract “edit scripts” (e.g., [16]) that
apply a given program transformation in similar, but not identical,
contexts may also be useful for developing test-repair techniques.

Finally, techniques for constraint-based synthesis of method se-
quences (e.g., [20, 23]) could be leveraged for developing repair
techniques that generate method sequences to satisfy the failing as-
sertions in broken test cases.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an extensive empirical study of how

test suites evolve. Our study, which focuses on JUnit test suites, is
the first of its kind in terms of its goals and magnitude. Although
software evolution has been extensively studied, test suites—which
can be large software systems in their own right and can also require
continuous development and maintenance—have not been the ob-
jective of large empirical studies to date. Such studies, however,
are essential if we are to develop automated techniques and tools
for supporting test-suite evolution that are grounded in real-world
scenarios. Our goal for this work was therefore to study test-suite
evolution in a systematic and comprehensive manner to understand
how and why tests evolve (i.e., how and why tests are modified,
added, and deleted). Toward that goal, we studied the evolution
history, over a substantial period of time, of several open-source
software systems that have large JUnit test suites.

Our study has provided several relevant insights. First, we found
that test repair does occur in practice: on average, we observed 16
instances of test repairs per program version, and a total of 1,121
test repairs. Therefore, automating test repair can clearly be useful.
Second, test repair is not the only, or even the predominant, reason
why tests are modified: for the programs studied, non-repair test
modifications occurred nearly four times as frequently as test re-
pairs. Third, test repairs that focus mainly on fixing assertions (i.e.,
oracles), as most existing techniques do, may have limited applica-
bility: less than 10% of the test repairs in our study involved fixes
to assertions only. Fourth, test repairs frequently involve changes
to method calls and method-call sequences. Thus, the investigation
of automated repair techniques targeted toward synthesizing new
method sequences for making existing assertions pass is likely to
be a worthwhile research direction to pursue. Fifth, we observed
that test deletions and additions are often refactorings. Finally, a
considerable portion of real additions occur for the purpose of aug-
menting a test suite to make it more adequate, which lends support
for research on the topic of test-suite augmentation.

We are considering two main future research directions for this
work. One direction involves extending our empirical study by con-
sidering additional programs and, especially, additional static and
dynamic analysis techniques that can help refine our results. In
particular, we plan to use code-clone detection techniques to bet-
ter distinguish tests that are truly deleted or added from tests that
are renamed or moved to different classes. The second direction in-
volves research on actual test repair driven by our empirical results.
A particularly interesting research problem, in this context, is the
development of repair techniques that are intent-preserving, that is,
techniques that ensure that the repaired tests preserve the “intent”
behind the original tests. Often, tests can be repaired in different
ways, and selecting the repair that most closely mirrors the original
test intent is obviously desirable. The intriguing question is to what
extent test intent can be characterized formally and accurately.
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