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ABSTRACT

Traditional malware-detection research has focused on techniques
for detection on end hosts or passively on networks. In contrast,
global malware detection on the Internet using active Internet scan-
ning remains relatively unstudied, with research still relying on
manual reverse engineering and handwritten scanning code.

In this work, we introduce BluePrint, the first end-to-end sys-
tem for analyzing new samples of “server-like malware” and auto-
matically preparing and executing Internet scans for them. Blue-
Print requires only a low degree of human involvement, requiring
only analysis of results before launching Internet scans. Important
high-level challenges BluePrint must overcome include resiliency
and scalability issues with symbolic execution, state explosion from
some common networking code patterns, and a high number of
duplicate symbolic network signatures with only small, inconse-
quential structural differences. We solve these with novel binary
analysis techniques; respectively, “path sketches” for guided sym-
bolic execution, new symbolic models for accept() and recv(),
and an efficient and effective signature deduplication algorithm.

We evaluate BluePrint on a varied selection of server-like mal-
ware, and demonstrate that it successfully identifies infected devices
both in simulated local network experiments and on the Internet.
We then performmore detailed analyses to characterize the infected
hosts found by our scanning experiments, and find that they span
a wide range of usage scenarios and geographical locations. We
also show that many of these devices seem to have poor general
security posture, and that the infections persist for months.
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1 INTRODUCTION

Malware is a prevalent and increasing threat on the Internet, with
hundreds of thousands of new samples discovered each day [96].
5.5 billion malware attacks were detected in 2022 by SonicWall, up
2% from the previous year [90]. Among others, malware designed
for reconaissance or data exfiltration has a high impact. Mandiant
has reported that “backdoors,” or malware designed for interactive
remote use, was the most commonly observed type of malware in
2021, at 40% of all families [70]. “Remote control software” has been
similarly reported as the second-most-common type of malware
used against Russian government agencies in 2022 [80].

After finding a new malware sample, researchers normally want
to understand its behavior, capabilities, and prevalence as quickly as
possible. While automated analysis of malware behavior and capa-
bilities is a well-developed field, automatically measuring prevalence
on the Internet is less-studied. However, understanding the spread
of malware is critical for response efforts: notifying law enforce-
ment and owners of infected devices will help them direct efforts
to contain and eliminate threats.

Unfortunately, researchers’ options for studying the spread of
malware are limited. Antivirus providers have the ability to deploy
file signatures to their customers and use telemetry data to count
infections, but their large customer bases are a resource that most
researchers do not have access to. Some early studies conducted
measurements of botnets by actively infiltrating their networks [36,
49, 91], but such activities require significant manual effort, and
some forms of infiltration may raise legal issues [24].

For families of malware that listen for incoming connections,
however, a more accessible approach requiring only a fast Internet
connection and a cooperative Internet service provider is possible:
scanning for live instances by connecting to and briefly interacting
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with remote hosts (e.g., all IPv4 addresses) to identify them. How-
ever, despite the existence of mature high-performance scanning
tools [26, 27], configuring them for a new malware sample has
until now been a basically manual process, requiring a researcher
to reverse-engineer the malware and develop a custom scanner
module/plugin for it. This both hinders scalability and lengthens
the delay between malware detection and scanning. To our best
knowledge, no existing work automates this process. In this paper,
we aim to explore the extent to which it can be accomplished with
automatic binary analysis techniques.
Our Contribution. We develop BluePrint, a system to aid an-
alysts by quickly generating “network signatures” for network-
listening, server-like malware. BluePrint then leverages these
signatures to execute whole-Internet scans for the malware.

Key challenges include identifying code path(s) likely to imple-
ment network handshakes, using them to extract a small number of
signatures likely to be scannable, and doing it all efficiently enough
to maintain practical throughput, especially including avoiding the
well-known problem of state explosion. To solve these, we design
and implement techniques such as “path sketches” for symbolic
execution guidance, novel symbolic models for key networking
APIs, and efficient hash-based signature deduplication.

We evaluate BluePrint on 7 different types of server-like mal-
ware (§6), and show that its automatically generated network sig-
natures are sufficient, in most cases, for identifying infections on a
test network (§6.4). We then deploy BluePrint and its automati-
cally generated signatures to conduct whole-Internet scans for the
malware families, finding real infections (§6.4), and perform popula-
tion studies (§6.5). Overall, our results demonstrate that BluePrint
is an effective tool to aid analysts in rapidly producing network
signatures of, and scanning for, server-like malware infections.

2 BACKGROUND

We provide necessary background related to Internet scanning,
server-like malware, and its identification in this section.

2.1 Internet Scanning

The introduction of ZMap, a fast Internet scanning tool, in 2013 has
enabled researchers to answer a wide range of Internet-security-
related questions and understand IPv4 topology at a large scale [27].
Being able to scan the entire IPv4 address space in minutes has
helped monitor and characterize network attacks [30, 71] as well
as detect new security vulnerabilities [102], create new security-
oriented solutions [22, 103], understand censorship better [54, 100],
and also explore the efficacy of vulnerability notifications [64].

Since most of these studies were initially based on ad-hoc,
problem-specific solutions, in-depth analysis was very challenging
and laborsome [26]. As a result, efforts to make IPv4 measurement
more efficient produced public search engines such as Censys [26]
and Shodan [74], which separated active host-discovery-driven
Internet scans from IPv4 security analysis by providing queryable
snapshots of the IPv4 address space, featuring a diverse set of
Internet protocols, services, and ports. The introduction of these
search engines has also led to the development of a new set of
configurable scanning tools such as ZGrab2 that help researchers
gain insights on activity at the application layer of network

protocols effectively and efficiently [26]. While established Internet
scanning tools best support IPv4 due to its smaller address space,
IPv6 scanning is also an active and growing field of research [98].

Although search engines such as Censys and Shodan are effective
for studying well-known protocols, they cannot be used for novel
or ad-hoc protocols such as are implemented by many malware
families, since their scanners cannot recognize and “speak” them.

2.2 Server-like Malware

We refer to malware that behaves like a server—listening for net-
work connections and interacting with remote hosts that connect
to it—as server-like malware.

Listening for connections is required for some types of malware,
including proxies—like the BankShot example we introduce in §3.2—
and peer-to-peer botnets. Other network-enabled malware, such as
RATs and spyware, can either actively connect to pre-configured
command-and-control domains or IP addresses, or passively listen
for connections from them, at the author’s option. The latter design
is less common, because it requires attackers to know a priori who
their victims are, and for victim devices’ ability to listen for external
connections to not be blocked by security systems or NATs. How-
ever, benefits can include reducing the risk of detection [63, 93],
complicating attribution [45, 86], and enabling connections out-
side of scheduled “phone-home” times [2]. As such, this style is
somewhat more common in high-quality, professional malware [5].

Although server-like malware is generally scannable, determin-
ing how to interact with an arbitrary server to identify whether it
is the malware or some other application has until now required
manual reverse-engineering and development effort.

2.3 POSIX Socket APIs

To effectively scan for server-like malware, it is essential to under-
stand their communication protocols, i.e., the formats of accepted
and response packets. BluePrint automatically extracts these for-
mats from malware binaries by symbolically analyzing program
paths processing the packets. To recognize these paths, BluePrint
uses standard POSIX socket APIs as anchor points.

As a representative example, Figure 1a illustrates the socket API
sequence used by the BankShot malware from §3.2. The malware
creates a network socket, binds to it, and monitors it for incoming
connections. Upon accepting one, it receives the incoming data,
processes it, and sends outbound packets in reply. BluePrint is
designed to be robust against some variations in this process (§4.1).

3 OVERVIEW

In this section, we provide a high-level overview of our approach
to automatic scanning of server-like malware. We begin with defi-
nitions of common terms used throughout the paper (§3.1), then
illustrate the workflow of BluePrint with an end-to-end example
featuring BankShot, a real-world malware sample (§3.2).

3.1 Definitions

Packet. In most of the paper, this term refers to a contiguous
portion of a TCP data stream. When discussing socket API calls
(recv() and send()), it refers to the input or output of one call.
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Challenge Packet. The first packet sent from a remote host—
such as a malicious command-and-control (C&C, also commonly
abbreviated in the literature as “C2”) application, or a network
scanning tool—to the server-like malware after connecting to it.
Response Packet. The first packet sent from the malware back to
the remote host in response to the challenge packet.
Generation Signature. The format description of a challenge
packet recognized by the malware, which would trigger a response
packet. The scanner uses it to generate packets to perform a scan.
Validation Signature. The format description of a response packet
in reply to a challenge packet following a given generation signature.
The scanner uses it to validate whether a response packet is correct.
Signature. A pair of generation and validation signatures, de-
scribing a class of expected challenge packets and corresponding
response packets for a server-like malware sample. A handshake is
the simplest signature, but a malware may have multiple signatures
since other interactions can be used as well—e.g., multi-step inter-
actions with the connection simply closed after the first round-trip.

We note that this active scanning-oriented definition is very
different from that used by network intrusion detection systems
(NIDS), i.e., a pattern passively matched against seen network traffic.

3.2 The Workflow of BluePrint

In this section, we use a real-world malware sample—BankShot—to
demonstrate at a high level how BluePrint can automatically scan
for instances of a server-like malware, given only its binary and a
small amount of user guidance as input.
Overview of BankShot. BankShot is a “proxy malware” used for
data exfiltration and attributed by the US Department of Homeland
Security and the Federal Bureau of Investigation to the government
of North Korea [19]. By infecting a device that has access to both the
public Internet and a private corporate network, a malicious opera-
tor can use this proxy as an intermediary to browse the private net-
work and collect confidential information—a technique not unique
to BankShot [38, 48, 53, 69, 87]. Similar malware has also been used
to create illegitimate commercial proxy services [7, 14, 55–58].

BankShot uses a custom communication protocol. An example
exchange is shown in Figure 1. To help evade packet-filter-based
detection, its initial configuration traffic is obscured with an XOR
cipher, with a random seed value prepended to each message.

After establishing a new connection, BankShot can recognize
several enciphered commands related to preparing the proxy. One
of these is the “ping” or “heartbeat” command 0x12348E, to which
it simply responds with “ack” command 0x123484.

A key observation is that, in principle, any remote host can
connect to BankShot and positively identify it by checking if it
responds correctly to a “ping” command. This makes it possible to
perform active network scans for the malware by attempting this
interaction with many hosts on the Internet. BluePrint automates
this, including both analysis and scanning, as described below.
(1) Identifying Packet Processing Paths. Given the BankShot
binary, our first step is to recognize program paths that may be
responsible for receiving and validating challenge packets, and
generating and sending responses. To achieve this, BluePrint
connects POSIX socket API calls, as mentioned in §2.3. BluePrint

overcomes several challenges in this process, such as incomplete
socket API sets and paths that may be too short, which we describe
in depth in §4.1. Eventually, BluePrint successfully recovers a set
of candidate paths, including the one illustrated in Figure 1.
(2) Signature Extraction. With the paths identified above,
BluePrint proceeds to extract network signatures using
under-constrained symbolic execution. More specifically, it tries to
collect all constraints imposed upon the inbound (i.e., received
with recv()) and outbound (i.e., sent by send()) packet data
buffers. Although conceptually simpler, we avoid concrete
execution (emulation/sandboxing) in our design, because it would
suffer from coverage issues in terms of both code paths covered
and concreteness of values (e.g., if the malware’s response involves
random numbers, BluePrint must be able to recognize any
random numbers as valid responses, not just those that were
chosen one time in a simulated environment).

In the case of BankShot, as shown in Figure 1, a valid chal-
lenge packet must include an XOR cipher key followed by the
enciphered (with the key) data; furthermore, to trigger a response
packet, the deciphered data must begin with the specific value
0x12348E. The response packet must begin with a randomly gen-
erated XOR cipher key as well, followed by the enciphered plain
byte sequence 84 34 12 00 00 00. BluePrint automatically de-
duces these packet formats, including these complex and subtle
constraints, efficiently (e.g., minimizing the potential for state explo-
sion commonly seen in symbolic execution), and encodes them into
symbolic signatures. We cover more details of signature extraction
in §4.2. In total, BluePrint extracts 12 signatures from BankShot.

To select a specific signature to scan with, the extracted signa-
tures are next presented to the user for manual inspection. Approval
by an expert analyst is needed before any scanning can begin, as
not only would it be wasteful to launch a full Internet scan using a
false-positive signature, but some signatures could possibly trigger
undesirable behaviors in the malware. This is the only manual step
in the entire process, and is unavoidable for safety and ethics rea-
sons. Besides correctness (the malware actually behaves according
to the signature), the analyst needs to select a signature that is
both safe (does not trigger any malicious behavior) and distinctive
(is unlike any known protocols implemented by other software).
For BankShot, 8 of the 12 signatures are equivalent and correct
(our deduplication algorithm, described in §4.2, strikes a balance
between speed and completeness, and so does not always catch all
duplicates), any of which can be selected.
(3) Internet Scanning. The symbolic signature extracted in the
previous step enables accurate Internet scanning for live BankShot
instances. BluePrint first uses the generation signature to gener-
ate a set of challenge packets that can elicit recognizable response
packets from the malware. For instance, one challenge packet we
generate for BankShot is D3 A4 D9 50 5D 71 6F 71 49 96, where
the first four bytes are an XOR cipher key that can be used to de-
cipher the remaining bytes to 8E 34 12 00 2E E1, of which the
leading four bytes match the magic value required to trigger a
response packet. BluePrint then performs Internet scanning us-
ing the well-established tools ZMap [27] and ZGrab2 [26], with
a custom ZGrab2 module developed by us. We essentially probe
Internet hosts with the generated challenge packets, and match any
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Remote Host (e.g., Scanner)

recv()

send()

socket()

connect()

BankShot

7-8. recv() × 2 

9. xor cipher 

10. switch/case by cmd.

11. fixed response msg. 

12. rand() for xor key

13. xor cipher

14-15. send() × 2*

5. accept() 

6. (new thread)

1. (new thread) 

2. socket()

3. bind()

4. listen()

(waiting)

(a) Operations performed by BankShot, and its interac-

tion with a remote host. BankShot’s calls to socket APIs

are highlighted. *The local TCP/IP stack buffers and com-

bines the two send() calls, allowing them to be received

by the remote host with a single recv().

Command: 0x12348e (“ping”) 

24  6b  70  92

XOR key (signed int):

-0x6d8f94dc

Message:

8e  34  12  00

Length of body: -0x3d29 (≤ 0: “no body”)

d7  c2

aa  17  6f  71  b0  1c
7 8

9

10

(b) Example challenge data (operations 7-10 in Figure 1a).

The data shown here was produced automatically by

BluePrint.

Command: 0x123484 (“ack”) 

d4  e0  b0  00

XOR key:

0xb0e0d4

Message:

84  34  12  00

Length of body: 0 (≤ 0: “no body”)

50  41  29  e9  57  75

00  00

14 15

13

11

12

(c) Example response data (operations 11-15 in Figure 1a).

Figure 1: Overview of a “ping” (0x12348E) interaction with BankShot, and the packet data exchanged.

response packets against the previously extracted validation signa-
ture (e.g., for BankShot, we use the first four bytes to XOR-decipher
the remaining bytes and look for the expected plain byte sequence).
A successful match indicates a live malware instance.

4 DESIGN

We show the architecture of BluePrint in Figure 2. In this section,
we detail the technical challenges BluePrint must overcome and
our design choices for each phase of its workflow.

4.1 Packet Processing Path Identification

As mentioned in §3.2, we use symbolic execution to extract packet
signatures (data buffer constraints). Rather than executing all pro-
gram paths—prohibitively slow, since most code is unrelated to the
signature—it is essential to provide more detailed guidance to the
symbolic executor to reduce its exploration space.

The form of this guidance needs careful consideration, however.
If too constrained, valid signatures encoded in alternative paths
could be missed. Furthermore, the guidance cannot be expressed
as a simple sequence of basic blocks, as it would be inaccurate due
to loops and other conditional branches that cannot be precisely
predicted statically. To strike a balance between performance and
soundness, we introduce the notion of a path sketch, which refers
to a sequence of nested function calls that we expect to encompass
a signature-encoding path. A path sketch provides a valuable yet
relaxed hint to the symbolic executor regarding path exploration:
on one hand, there is a concrete goal of exploring a path “connect-
ing” all the function calls in the sketch, avoiding the blind walk
of an unguided symbolic execution, and on the other hand, the
executor has the freedom to explore any path fulfilling the sketch,
maximizing the possibility of obtaining valid packet signatures.

Formally, let 𝐹 be the set of all function addresses in the binary,
𝐶 the set of all intra-binary function calls (each represented as a
pair, 〈call_addr, target_addr〉), and 𝑆 the set of all addresses of calls
to send(). A path sketch is a triple, 〈start_addr, calls, end_addr〉,
where start_addr ∈ 𝐹 , calls is a sequence of elements from 𝐶 , and
end_addr ∈ 𝑆 . In a well-formed path sketch, each call_addr lies
within the function pointed to by the previous call’s target_addr,
and the start and end addresses lie in the same functions as the first
call’s address and last call’s target, respectively.

In our BankShot motivating example, the correct path sketch for
the scannable network signature starts at WinMain() (0x4026F0),
includes five function calls, and ends at a call to send() at 0x40124E.

Intuitively, to extract signatures for server-like malware, we can
construct path sketches by finding and chaining POSIX socket APIs
in the malware binary, as mentioned in §2.3. We detail practical
challenges with this approach in the remainder of this section.
Incomplete API Set. Ideally, a signature-encoding path sketch
should include all the standard socket APIs appearing in a typical
network packet-receiving or -sending session, as described in §2.3.
However, it is often hard or impossible to recover such a complete
API sequence at the binary level: static analysis often has difficulties
accurately resolving indirect calls, and dynamic analysis fundamen-
tally suffers from low code coverage. To maximize the likelihood of
finding correct sketches, BluePrint just looks for paths that pass
through a call to accept(), or any ancestor thereof, and end at a
call to send(). This is valid because a call to accept() implies the
presence of earlier calls like listen() (according to POSIX socket
API semantics), which are also less important for packet constraint
collection. recv() is also not required, as some malware sends data
immediately, without waiting for a challenge packet.
Initial Constraints. If a path sketch were to begin at a call
to accept(), we could miss essential constraints that should be
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Figure 2: Overview of the BluePrint system architecture.

formed before that point (e.g., initialization of important data struc-
tures). We therefore extend each sketch backward through direct
caller functions, up to the highest we can detect. If there are multiple
callers, some sketches may be partially duplicated.

The full path sketch construction algorithm, designed around
these considerations, is presented in Appendix A.

4.2 Signature Extraction

Using the path sketches constructed in the last phase, BluePrint
proceeds to symbolically execute the malware binary for signature
extraction (i.e., collect the constraints of the sent and received
packets). In this section, we describe how BluePrint can efficiently
perform guided symbolic execution and reliably extract signatures,
overcoming various technical challenges.
Hybrid State Exploration. As mentioned in §4.1, we guide the
symbolic executor with path sketches for more efficient signature
extraction. However, evenwith this guidance, the symbolic executor
still needs to explore feasible paths fulfilling the sketch. To accel-
erate this, BluePrint employs a hybrid state exploration strategy
(of breadth-first and depth-first search) to decide which successor
basic blocks to symbolically execute after the current one.

More specifically, a path sketch will naturally be divided into
path segments, each of which refers to all possible paths between
two consecutive function call sites in the sketch. We use the path
segment as the basic unit of our symbolic execution; at each step,
the executor tries to find feasible paths within one segment. To do
this, BluePrint first utilizes breadth-first search (BFS) for state
exploration, the default strategy employed by widely used sym-
bolic executors such as angr [94]. The advantage of BFS is that it
explores multiple paths evenly, increasing the chance of hitting a
short, feasible one. However, if within a configurable time limit (6
minutes by default) no feasible paths can be found for a particular
path segment, BluePrint switches to depth-first search (DFS) until
another configurable timeout (4 minutes by default) expires. The
intuition is that BFS likely times out because there are too many
paths to explore, with the executor making only shallow progress
on each—leading to DFS hopefully finding a feasible path more effi-
ciently. This unique hybrid strategy helps BluePrint find feasible

1 int recv_all(
2 int sockfd, void *buf, size_t size, int flags) {
3 int total = 0;
4 while (total < size) {
5 int received = recv(
6 sockfd, &buf[total], size - total, flags);
7 if (received <= 0) break;
8 total += received; }
9 return total; }

Figure 3: An example of a calling recv() in a loop to reach a

target amount of data.

paths satisfying the sketch more effectively than either strategy
alone. We show more details in §6.3.
Function Modeling. A common practice in symbolic execution is
to model frequently invoked functions (e.g., library functions) with
handwritten symbolic summaries, avoiding expensive computation
and potential state explosion for complex functions. To implement
more accurate and efficient symbolic execution, BluePrint models
common library functions such as memcpy() (inlined or otherwise—
more details can be found in §5) in a standard way, and some socket
APIs in unique ways specific to our goal. We describe our special
socket API modeling below.
(1) recv(). The application invokes recv() to request a specific
amount (via a size parameter) of packet data, and it will indicate
the actual amount obtained as the return value. This could be less
than the requested size, or –1 indicating an error. A straightfor-
ward symbolic modeling of recv() will thus return a symbolic
value between –1 and size, potentially leading to a large number
of symbolic states if the application conditionally branches on this
value. To make matters worse, recv() is often invoked in a loop to
iteratively receive a target amount of data (a typical loop is shown
in Figure 3), frequently causing state explosion in practice.

To address this issue, we design a new symbolic model of recv()
that avoids state explosion in the common scenario of looped
recv() invocations. We present our model in Algorithm 1. The first
time recv() is invoked from a given calling context, the model fills
the symbolic buffer with all size requested bytes, enabling a quick
exit of the wrapping loop shown in Figure 3 and preventing it from
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producing state explosion. For further recv() invocations from
the same calling context, if any, our model returns 0, because in
this situation it is likely that the wrapping loop will only terminate
when recv() returns 0 (i.e., no more data is available).

In addition, after recv() returns 0, the socket is marked via
metadata in the symbolic execution state to never return any more
symbolic packet data in the future, regardless of calling context. This
is because making recv() return data after previously returning 0
would require the scanner to send more data timed between the two
calls—a timing window impossible to hit reliably over the Internet,
making such a signature effectively a false positive.

Algorithm 1 State-explosion-resistant symbolic recv()

function recv(sockfd, buf, size, flags)
⊲ 𝐸𝑟 (exhausted sockets) and 𝐶𝑟 (previously seen call
stacks) are sets stored in the symbolic execution state.

stack← get_current_call_stack( )
if sockfd ∈ 𝐸𝑟 then ⊲ Socket is already exhausted

return 0
else if stack ∉ 𝐶𝑟 then ⊲ First invoc. from this call stack

add stack to 𝐶𝑟
write_symbolic_bytes(buf, size)
return size

else ⊲ Later invocations from the same call stack
add sockfd to 𝐸𝑟
return 0

(2) accept(). Similar to recv(), accept() is frequently called
in a loop, in this case to support accepting multiple connections.
To prevent this from causing state explosion, we model accept()
with Algorithm 2. It is structurally similar to Algorithm 1, but omits
the no longer applicable “exhausted socket” condition, and behaves
differently in the remaining two cases.

Our goal here is to simulate the scenario of scanning, in which
the malware receives and accepts exactly one connection. On a
real machine, a second call to accept() in a loop would block
forever if no second connection ever arrived. To model this, we
have accept() kill the symbolic state if invoked twice from the
same calling context. The intuition is that since the second call to
accept() blocks forever, any code following it is unreachable, i.e.,
the state is dead at that point. We show that our function modeling
can significantly improve symbolic execution efficiency in §6.3.

Algorithm 2 State-explosion-resistant symbolic accept()

function accept(sockfd, addr, addrlen)
⊲ 𝐶𝑎 (previously seen call stacks) is a set stored in the
symbolic execution state.

stack← get_current_call_stack( )
if stack ∉ 𝐶𝑎 then ⊲ First invoc. from this call stack

add stack to 𝐶𝑎
return create_new_uniqe_socket_fd( )

else ⊲ Later invocations from the same call stack
kill_symbolic_state( ) ⊲ Equiv. to blocking forever

Constraint Minimization for Signatures. For network scan-
ning, it suffices to include only symbolic constraints relevant to the

received and sent packets. However, by default, the symbolic exe-
cution engine will record and include constraints for all variables
along the executed paths—relevant to the packet data or not—in the
symbolic states, incurring extra uncertainties and costs for the SMT-
solver-based packet generation and validation in the next phases
(§4.3). To solve this, we filter out those constraints which are not
relevant to the packet data. It is crucial to retain constraints that
are transitively relevant: for example, “5 ≤ 𝑥 < 10” is transitively
relevant if a constraint “packet bytes 8–11 are equal to 𝑥” exists. We
thus build the signature using a standard worklist algorithm, adding
constraints involving variables from the worklist to the signature,
and those constraints’ other variables to the worklist, until empty.

Transitive constraint identification captures an extra 71 con-
straints in the validation signature for Soul, one of our evaluation
samples (see §6). These are mostly constraints on a time-and-date
struct (e.g., “1 ≤ 𝑚𝑜𝑛𝑡ℎ ≤ 12”) and symbolic format strings.
Signature Deduplication. As the symbolic executor explores
feasible paths under the guidance of the path sketches, we collect
packet signatures associated with different paths. However, the
path differences may not translate to signature differences (e.g.,
an “if” statement which occurs on the packet-generation path but
does not affect the packet itself). As a result, there could be many
duplicated signatures (in some cases, over an order of magnitude
more than unique signatures, as shown in Table 2) that should
be eliminated. To efficiently deduplicate, BluePrint uses a recur-
sive, graph-based hash algorithm over SMT files. Essentially, the
algorithm syntactically compares the SMT expressions of packet
signatures to decide whether they are identical, in a way resilient to
trivial differences such as variable renaming and rearrangement of
commutative constraints (e.g., a && b and b && a are equivalent).
The full detailed algorithm is presented in Appendix B.

Although we may miss some duplicates with this algorithm (e.g.,
semantically equivalent expressions with different syntax struc-
tures), we never wrongly identify any duplicates—we intentionally
trade comprehensiveness (e.g., could be achieved by amore accurate
but also expensive SMT-solver-based solution) for performance.
Signature Format Considerations. We choose the original SMT
expression format to encode the packet signatures, instead of trans-
forming them to another widely used packet representation for
network scanners, such as the Snort rules commonly used in NIDS
for malicious packet recognition, or Perl-Compatible Regular Ex-
pressions (PCRE) that are also popular in many scanners. Although
those representations would be compatible with existing scan-
ning infrastructures, they are mostly designed for simple pattern-
matching-based packet recognition, and are far less expressive than
SMT expressions. Signatures in those formats are traditionally hand-
written, with an analyst picking out a few features they believe
to be distinctive and which can be easily pattern-matched for. In
contrast, our automatic system extracts the full constraints of bi-
nary packet data, which can be complex (e.g., bit-level operations,
possibly some light cryptography as in BankShot).

4.3 Challenge Packet Generation

After an analyst selects one of the symbolic signatures extracted in
the previous step (§4.2), BluePrint next generates concrete chal-
lenge packets for scanning, by using an SMT solver to find solutions
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Figure 4: Top: the first 48 bytes of the 500th packet gener-

ated from Derusbi’s signature (one of our evaluation samples

from §6) by blocking evaluations. Bottom: the same, but us-

ing randomization instead. Not pictured is the similarity

between packets in each set: with blocking evaluations, the

501st packet differs from the 500th in only one bit, compared

to 1015 (of 2048) when using randomization.

to the constraints. BluePrint by default generates 1000 challenge
packets, to balance between scan robustness and performance. Each
remote host is sent one packet at random during the scan.

An important question is how to generate multiple packets with
the SMT solver. Although we could configure it to simply generate
unique solutions (e.g., by blocking evaluations [8]), the outputs tend
to have low randomness, both individually and with respect to each
other. We instead configure the SMT solver to generate randomized
solutions. We find that this also happens to be faster in most cases,
because blocking evaluations accumulates constraints over time
(i.e., the next packet must be unequal to all of the previous packets).
An example of the difference in output is shown in Figure 4.

4.4 Host Probing

Asmentioned in §3.2, BluePrint relies on ZMap and ZGrab2, which
are high-performance, research-oriented Internet scanning tools,
for host probing. To support our workflow, we extend the default
toolchain with a customized module that allows us to specify the
packets to send to the remote hosts and efficiently log the responses
for offline processing in the next step.
Separation from Generation and Validation. Since Internet-
wide scanning has high performance requirements (i.e., there are
millions of remote hosts to probe in the full IPv4 address space),
which our SMT-based packet generation and validation cannot
meet in general, regardless of our optimizations (see Table 3 from
the Evaluation section), we perform those steps offline, separate
from the host probing process. Specifically, challenge packets are
generated in advance (§4.3) so that the scanner can send them
immediately, and the scanner also only records the response packets,
to be validated afterwards (§4.5).

4.5 Response Packet Validation

After receiving response packets in reply to our sent challenge pack-
ets, we verify whether they match the corresponding validation
signature extracted from the malware binary. To do this, BluePrint
checks the feasibility of the conjunct constraints of the validation
signature and the concrete packet: for example, if a data field 𝑓

is symbolically constrained to 𝑓 < 8 in the signature and set to
a concrete value of 2 in the actual response, we check whether
𝑓 < 8 ∧ 𝑓 == 2 is satisfiable. If so, we mark the response as from a

malware instance. To improve the performance of validating multi-
ple response packets, the symbolic signature constraints are shared
in the SMT solver stack, and we only “push/pop” the constraints
imposed by different concrete response packets.

One additional case BluePrint supports is the validation of
“cross-packet” constraints. For instance, the response packet of
BadCall malware is only valid if it contains a value from a list
provided in the challenge packet. Thus, validation may rely on both
packets. BluePrint supports this by adding concrete constraints
for both packets’ SMT variables during validation.

5 IMPLEMENTATION

In this section, we discuss specifics on howwe implemented a proto-
type of BluePrint. Specifics on software versions and technologies
used (e.g., IDA Pro) can be found in Appendix C.
Handling Packed Binaries. To evade detection or prevent reverse
engineering, some malware authors employ obfuscation such as
encrypting or packing their binary code or dynamically importing
library functions at runtime. While BluePrint cannot directly
analyze such code, obfuscation can often be defeated by simply
running such samples in a sandbox and dumping their memory (e.g.,
with Process Dump [75] or Un{i}packer [81]) or by using specialized
unpackers (e.g., Magicmida [42]). We use Process Dump to resolve
dynamic library imports for two of our evaluation samples in §6,
BankShot and FASTCash, before analyzing them with BluePrint.
Library Function Modeling. As mentioned in §4.2, BluePrint
models standard library functions (e.g., memset()) in its symbolic
execution for efficiency. Our modeling is built upon angr’s existing
models (“SimProcedures”), and we make several extensions.

First, we support modeling statically linked library functions, by
recognizing themwith IDA Pro’s FLIRT signatures [44] andmapping
them to SimProcedures. Second, BluePrint can also recognize and
model certain inlined library functions by pattern-matching their
binary instruction sequences. Third, for binaries that dynamically
import system DLLs (e.g., with LoadLibrary()), BluePrint can
use angr’s SimProcedures and function signature data to synthesize
symbolic DLL models “on the fly.” All of these allow BluePrint to
apply angr’s symbolic function models in more situations, reducing
the risk of state explosion from, e.g., strlen() or memcpy().
Consecutive send() Invocations. Our Path Identification step
aims to find paths that reach any call to send(). However, some
binaries use multiple consecutive calls to send() to respond instead
of just one—an implementation detail on their part, since the host’s
TCP stack can transparently combine such messages. Incorporating
this extra data into the signature could improve precision.

To do this, after completing the final path segment, we execute an
additional “segment” with no target address, allowing the symbolic
execution engine to engage in unguided exploration for a short time.
Restrictions on returning from functions, which normally prevent
backtracking to earlier path segments, are also lifted here.
Handling Multi-Threaded Code in Symbolic Execution. It is
common to use multiple threads in network-related code (e.g., to
handle simultaneous connections and perform asynchronous back-
ground tasks), but precisely reasoning about multi-threaded code
in symbolic execution is a well-known difficult problem. Our obser-
vation, though, is that connection- and background-task-handling
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threads are generally independent from each other, as well as from
their host threads. In other words, there is little inter-thread inter-
action that we need to precisely model. Based on this observation,
when symbolically executing multi-threaded code, BluePrintmod-
els thread creation (e.g., the Windows CreateThread() function)
with a two-way state split, in which one state treats it as a blocking
function call, and the other as a no-op.
Under-Constrained Indirect Function Calls. We find that in
our under-constrained symbolic execution, indirect function calls
often have unconstrained target addresses (e.g., virtual method
calls on objects for which the constructor was not included in the
path sketch). BluePrint is able to skip such calls, using IDA Pro’s
automatically inferred stack-pointer-delta values to “fix up” the
stack pointer. This is functionally similar to angr’s default strategy
for library functions for which it has no model.
Scan Responses with Low Variability. We find that some sam-
ples have only a small number of possible unique responses, despite
complex symbolic constraints. (In this case, these constraints relate
to which packet is sent, rather than to their structures.) As an op-
timization for validation, if a response signature can only match
up to (by default) 16 different packets, we enumerate them and
skip invoking the SMT solver for non-matching responses, and also
memoize solver results. (We do still need the solver, in order to
correctly handle cross-packet constraints (§4.5).)
Randomness. A preliminary scan for Derusbi found fewer re-
sults than we expected based on our domain knowledge of the
malware and its prevalence in the wild. Upon examination, we
find that different versions of Derusbi fill padding bytes using the
rand() function in different ways. As this is not a core aspect of
the signature (which is primarily about specific negation and rota-
tion operations), we adjust our modeling of rand() to return an
unconstrained 32-bit integer1, allowing BluePrint to generate a
signature that can match multiple types of rand() usage.

6 EVALUATION

Our evaluation aims to answer the following research questions:
• RQ1. How accurate are the extracted signatures? Do they faith-
fully encode the formats and constraints of the challenge and
response packets (§6.1)?
• RQ2. How efficiently can BluePrint extract signatures from
malware binaries (§6.2)?
• RQ3. How important is each key technique used by BluePrint?
What are their impacts on effectiveness and performance (§6.3)?
• RQ4. Can BluePrint identify live malware instances on the
Internet (§6.4)?

Setup. Signature extraction and packet validation were performed
on a machine with two Intel Xeon E5-2687W v4 processors at 3.0
GHz and 256 GB RAM, running Ubuntu 20.04. Scanning was done
on a machine with an Intel Xeon X3470 at 2.93GHz and 24 GB RAM,
running Ubuntu 22.04, and with a gigabit Internet connection. Path
identification, signature deduplication, and packet generation were

1The C language standard leaves RAND_MAX, the maximum return value of rand(),
implementation-defined. For example, it is 0x7FFF in Microsoft’s Universal C Runtime
Library, but 0x7FFF_FFFF in glibc. By default, angr uses 0x7FFF_FFFF on all platforms,
including Windows; we instead make rand()’s return value entirely unconstrained.

executed on a machine with an Intel Core i9-11950H at 2.60GHz
and 64 GB RAM, running Ubuntu 22.04.
Dataset. To comprehensively evaluate BluePrint, we assemble a
collection of 7 real-world server-like malware samples with various
characteristics, listed in Table 1. We select these samples by system-
atically studying available technical reports on malware (e.g., [19–
21, 50, 79, 83]), as well as popular malware families, and then select-
ing those meeting the criteria (mainly related to implementation-
level limitations) listed in §8. As shown in Table 1 and Appendix D,
our collected malware samples communicate on different network
ports and for different purposes (e.g., to receive commands from
C&C clients, for proxying, etc.), each with unique challenge and
response packet formats. We believe that such a diverse dataset
can reliably test BluePrint’s capability of automated signature
extraction and scanning for a wide range of server-like malware.

6.1 Signature Accuracy

We take a few different approaches to answer RQ1 in our evaluation.
First, we manually reverse engineer all of the malware samples in
our dataset to figure out the formats and constraints of their ex-
pected challenge and response packets. (These findings are summa-
rized in Table 1, and described in more detail in Appendix E.) Based
on this understanding, we then manually verify the correctness
of our automatically extracted signatures. Where possible, we do
this by directly checking the semantics of the SMT expressions. For
signatures too complex to be verified in this way, we use alternative
techniques, such as generating sample challenge packets from our
signatures and seeing whether they are accepted by the simulated
malware packet parsing code, or manually creating sample response
packets and seeing whether our validation signatures match them.
Furthermore, we also perform scans in a local simulated network
environment to ensure that we can detect live malware instances
with the extracted signatures (§6.4), proving their effectiveness.
With all these approaches, we conclude that BluePrint accurately
extracts signatures for all samples in our collection, except for a
few minor cases discussed later in this section.

In the rest of this section, we discuss technical challenges pre-
sented by our evaluation samples and how BluePrint overcomes
them to generate accurate signatures, as well as observed inaccura-
cies (aforementioned “minor cases”) and how they can be addressed.
Complicated Bit-Level Constraints. As mentioned in §3.2,
packet formats often involve complex bit-level constraints that
have previously required manual effort to deduce. For example, we
show two samples’ challenge packet validation logic in Figure 5.
Derusbi uses bit negation and rotation relations between specific
integers, and FASTCash poses even more complex constraints
between certain bytes whose offsets are derived from another
non-fixed value. These would be difficult or impossible to express
with pattern- or regex-based rules as used in passive NIDS (§4.2).

BluePrint correctly recognizes all these subtle constraints and
encodes them into the generated signatures. It achieves this through
its use of in-depth symbolic execution to systematically analyze the
malware binary, capable of reasoning about fine-grained bit-level
operations such as these.
Signature Variants Resulting fromDifferent Paths. Some sam-
ples, such as Gh0st and BadCall, have more than one valid signature
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Sample Type Conn. Listening

Purpose

Handshake (Distinctive Signature) (see also Appendix E)

Challenge Response

➊ BadCall Proxy Proxying Fake TLS ClientHello Fake TLS ServerHello, Certificate, and ServerHelloDone
➋ BankShot Proxy Proxying XOR cipher seed and ciphered six-byte message XOR cipher seed and ciphered six-byte message
➌ Derusbi RAT C&C Packet with three ints with “magic” relationship Packet with three ints with “magic” relationship
➍ FASTCash RAT C&C Fake TLS packet with two ints with “magic” relationship Fake TLS packet with two ints with “magic” relationship
➎ Gh0st RAT Proxying SOCKS5 handshake: first byte 05, third 00 or 02 SOCKS5 handshake: 05 00 or 05 02
➏ Slingshot Loader Payload retrieval None/ignored B2 7F 23 43

➐ Soul RAT C&C None/ignored Fixed HTTP GET header with compressed payload

Table 1: Summary of collected samples. More details are provided in Appendix D.

Sample Num

Skch

Signature Extraction Gen
2

Time

Ablation

Time/ Skch Dedup P H S F

Avg Max Count Time

➊ BadCall 100 15:39 21:25 368→ 23 0:45 5:29 ∅ ∅ ∅ ∅

➋ BankShot 65 9:13 13:20 36→ 12 <0:01 0:21 ∅ ∅

➌ Derusbi 1 0:03 0:03 1→ 1 <0:01 0:01 ∅

➍ FASTCash 75 18:43 36:18 5429→ 16 3:05 0:08 ∅ ∅ ✗

➎ Gh0st 159 9:34 22:49 31→ 3 <0:01 27:05 ∅ ✗

➏ Slingshot 6 18:52 25:05 6→ 1 <0:01 - ∅

➐ Soul 63 35:59 1:05:57 2→ 2 <0:01 - ∅ ∅

Table 2: Results of BluePrint’s automatic analysis of each

sample, and our ablation study (§6.3). Times are mm:ss or

h:mm:ss. Ablation: P = path-sketch guidance for symbolic

execution, H = hybrid exploration, S = recv() and accept()
state explosion avoidance, F = static and inline function mod-

eling. “∅” = no signatures can be exported when the tech-

nique is disabled, “✗” = disabling the technique reduces the

quality of the signature (see §6.3 for details).

1 uint32_t *packet = (...);
2 bool success = (packet[1] == ~packet[0]) // ">>>" =

3 && (packet[2] == packet[0] >>> 7); // right rot.

(a) Derusbi

1 uint8_t *packet = (...);
2 uint16_t offset = *(uint16_t*)(&packet[0x15]);
3 offset = 5 + ~offset; // 5 bytes for fake
4 // TLSCiphertext header
5 uint32_t X = ((uint32_t*)(&packet[offset]))[0];
6 uint32_t Y = ((uint32_t*)(&packet[offset]))[1];
7 bool success = (((~X ^ 0x3CADEED) << 6) + 0x18472735)

8 ^ 0xFC0A397F == Y;

(b) FASTCash

Figure 5: Key challenge packet validation logic from selected

malware samples. (Code refactored for brevity and clarity.)

associated with different packet processing paths. BluePrint there-
fore supports using the disjunction of multiple signatures when
validating scan results. For robust scanning, it is important that
it extract all possible validation signatures, as missing any could
cause false negatives in identifying malware responses. BluePrint
reliably achieves this by allowing the symbolic executor to explore
21000 packets were generated from the most correct signature. Samples labeled “-” do
not need challenge packets to invoke responses (see Table 1).

different paths fulfilling each path sketch, striking a good balance
between performance and comprehensiveness (§4.1).
Discussion of Inaccuracies. We next summarize and discuss
the reasons behind BluePrint’s inaccuracies when handling some
minor cases, as well as our current workarounds and the potential
fixes that we will pursue in the future.
(1) Unsupported code features in the implementation.We observed
inaccuracies from code features unsupported by our prototype.

First, BadCall has a special “abortive shutdown” mechanism [76]
in its code, after the send() call. Specifically, some code paths will
send the response packet before the challenge packet has been fully
validated. Failure of the postponed verification will cause abortive
shutdown, preventing the response packet from actually being
sent out in practice. BluePrint cannot capture these additional
constraints for the challenge packet beyond the send() site, since
our path sketches currently end with send() (§4.1). This leads to
the generation of challenge packets that cannot trigger the response.

Second, the primary network component of Derusbi is not im-
plemented with standard POSIX socket APIs (§2.3), making it un-
analyzable by our prototype (§4.1). Instead, we analyze the POSIX
API-based secondary component which receives packets relayed
from the primary one, but with a difference in the expected maxi-
mum packet size (256 vs. 64 bytes).

To fix these inaccuracies, we currently manually “patch” the
signatures or packets generated by BluePrint, which generally
only requires trivial effort (e.g., simply replace “256” with “64”).
In the future, we plan to further improve the implementation of
BluePrint to support these code features (e.g., post-send() verifi-
cation and non-POSIX socket APIs), which we do not consider as
fundamental design limitations of BluePrint.
(2) Inherent difficulties of symbolic execution. It is well known that
symbolic execution can have difficulties analyzing complex
cryptographic- or compression-related code, whose sophisticated
logic can easily lead to state explosion. We identify one such case
in Soul, which applies DEFLATE compression to the response’s
HTTP body. As a result, BluePrint has to employ concretization
strategies in analyzing such code, causing inaccuracies.

Fortunately, BluePrint can still precisely extract the signature
of Soul’s HTTP header, which constitutes most of the packet and
is by itself already distinctive enough for accurate scanning. Thus,
as a workaround, we limit packet validation to the first 95% of the
validation signature (about 1160 bytes, essentially corresponding to
the header). We believe this problem can be solved generally with
better modeling of specific compression algorithms, or improved
concretization strategies, which we leave as future work.
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6.2 Efficiency

To answer RQ2, we summarize the time cost of BluePrint when
processing our malware collection in Table 2. Path sketches are con-
structedwithin seconds for all samples, and there are typically fewer
than 80 (max: 159) unique sketches per sample. BluePrint then
spends on average around 20 minutes per path sketch on symbolic
execution, in a single thread—parallelism would be straightforward
because each sketch is executed independently. Our deduplication
algorithm can efficiently (within minutes) reduce the number of
signatures per malware sample from up to thousands to fewer than
25. Packet generation from a specific signature can also be finished
in minutes. As will be shown later in Table 3, BluePrint can also
validate the response packets in a reasonable amount of time for
real-world scanning.

The only significant manual step in the BluePrint pipeline is
signature selection. As mentioned in §3.2, this is an ethical require-
ment as much as a technical one, as the signature and binary must
be inspected by a human to ensure that a scan will not trigger
any malicious behavior. BluePrint provides the path sketch from
which each signature came in a simple format, making it easy for
an analyst to check it in the binary. The signature itself is some-
times human-readable, but to help with complex cases, BluePrint
also provides tools to generate and validate example packet data.
Ultimately, the speed of this step varies based on the complex-
ity of the sample and its extracted signatures, and the experience
level of the analyst. Samples such as Slingshot can be studied and
greenlit in a matter of minutes, whereas malware with relatively
complex signature-related behavior such as Soul will likely take
several hours. We note that this is much faster and easier than fully
reverse-engineering the malware without the help of BluePrint.

6.3 Effectiveness of Analysis Techniques

To answer RQ3 and gain a deep understanding of how each key
technique (as described in §4) benefits signature extraction, we
conduct an ablation evaluation for each of them and summarize the
results in Table 2. We discuss the impact of each technique below.
Path-Sketch-Guided Symbolic Execution. We disable the use
of path sketches to guide symbolic execution (§4.1), and instead
run unguided symbolic exploration from pre-specified entry points.
After 1 hour of execution with the BFS path exploration strategy
and 1 hour with DFS, the results show that no signatures can be
extracted, since the relevant packet processing code has not been
explored by the symbolic executor. This highlights the importance
of path sketch guidance for efficient signature extraction.
Hybrid Path Exploration Strategy. To assess the impact of our
hybrid path exploration strategy (§4.2), we replace it with angr’s
default BFS strategy and rerun the symbolic execution. In this set-
ting, we find that the symbolic execution cannot finish for BadCall
within the time limit, due to its complex packet validation and
generation logic. Our hybrid strategy, however, can employ DFS to
finish analyzing some feasible packet processing paths in time.
recv() and accept() State Explosion Avoidance. We disable
our state-explosion-avoidance algorithms (§4.2) for recv() and
accept()—keeping recv()’s packet lengths symbolic, and remov-
ing our “block forever” / “kill the symbolic state” condition for
accept()—and rerun the symbolic execution.

State explosion prevents us from extracting signatures from
BadCall and FASTCash in this case. Due to a hard-coded limit on
symbolic packet lengths in angr , we initially also find that the length
of Gh0st’s generation signature is reduced from 0x5000 bytes to
256. Although the shorter signature would still work correctly for
Gh0st, it would not necessarily work in other, similar situations. We
disabled the limit and tested again, and found that no signatures
were produced this time, due to the higher constraint complexity.
Function Modeling. We disable BluePrint’s detection and mod-
eling of static and inlined library functions (§5), leaving only DLL
functions modeled, and rerun the symbolic execution. We find that
the resulting state explosion prevents BluePrint from finding any
signatures for three of our 7 samples.

For a fourth sample, FASTCash, the state explosion from a par-
ticular memcpy() loop “splits” the signature into many different
versions, one for each possible length of the response packet (which
the malware randomizes). While BluePrint supports validation
using the disjunction of multiple signatures, as mentioned in §6.1,
the range of possible packet lengths in this case leads to several
hundred separate signatures being produced, and in fact most of
them cannot even be exported before a timeout expires. We thus
find that BluePrint’s function modeling techniques are key.

6.4 Network Scans

To answer RQ4 and verify whether the signatures extracted by
BluePrint can locate live malware instances, we perform network
scans both in a local simulated environment and on the real-world
Internet. We detail our network scan evaluation in this section.
Setup. For the local simulated scans, we use two VirtualBox vir-
tual machines connected by a virtual internal network. One runs
Windows 11 and is used to host malware instances in a sandboxed
environment (e.g., to simulate a victim host), and the other runs
Debian 11 Bullseye and is used to perform the scan.

We use the same machine as in the previous evaluations to
compare the response packets to validation signatures (§6). The
specifications of the machine used for the real-world Internet scans
are in §6. We validate the response packets in 48 parallel processes.
Local Scan Results. To verify the effectiveness of our extracted
signatures, we first run scans in a controlled local-network setting
with two connected virtual machines. In these experiments, we
successfully detect all of the livemalware instances in our collection,
except for Derusbi and Slingshot, whose execution environments
are difficult to prepare in a virtual machine and we thus skipped.
Nevertheless, the accuracy of our signatures for those two samples
is manually verified as described in §6.1. This demonstrates the
reliability of the signatures generated by BluePrint, and makes a
solid preparation for the subsequent Internet scans.
Internet Scan Results. After validating the effectiveness of our
signature generation and scanning tools locally, we conduct a se-
ries of whole-IPv4-space scans using BluePrint. Table 3 shows
a summary of those results, whereby we find tens of real-world
advanced persistent threat (APT) infections. There are two core
challenges associated with conducting these scans: expectations
and ports.

We note that broadly, we would not expect to find significant
real-world infections. This is due to both that our samples are
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Sample Port Date Validation

Time

Num.

Results

Num.

Confirmed

➊ BadCall 80 Nov. 2023 26:28:35 0 0
443 Nov. 2023 26:24 0 0
8000 Dec. 2023 42:28 0 0

➋ BankShot 80 Dec. 2023 55:50:41 0 0
110 Dec. 2023 5:50:18 0 0
443 Dec. 2023 15:38:14 0 0

➌ Derusbi 80 Apr. 2023 16:43 14 14
443 Apr. 2023 5:52 7 7

➍ FASTCash 80 Nov. 2023 16:09:21 0 0
443 Nov. 2023 2:32:39 0 0

➎ Gh0st 80 Apr. 2023 5:54 2,174 0
443 Apr. 2023 4:19 1,461 0
1080 Dec. 2023 1:43:55 55,649 0

➏ Slingshot 80 Apr. 2023 2:53 0 0
443 Apr. 2023 1:00 0 0

➐ Soul 80 Apr. 2023 2:33:21 0 0
443 Apr. 2023 57:55 0 0

Table 3: Internet scan results. Slingshot and Soul do not need

challenge packets, so we reused Derusbi’s scan data for them.

of well-known malware that has already been analyzed by the
community and with mitigations deployed, and the relatively short
lifespan of most malware campaigns [89]. Any infections we find
are likely remnants of prior campaigns, or abandoned installations.

Malware may run on any port, and it is prohibitive to exhaus-
tively scan all IPv4 addresses and ports. Thus, we must select a set
number of ports to explore, while weighing the cost of Internet
scans vs. the likelihood of success. We observed in prior analysis
that for server-like malware, port 80 and 443 were often used, given
their likelihood to be open by firewalls [79]. Thus, for each sample,
we scan on ports 80 and 443, plus any default ports (Appendix D).

BluePrint successfully identifies multiple active infections of
the APT malware Derusbi, demonstrating its potential. We describe
this population of infections more subsequently (§6.5). We envi-
sion BluePrint deployed as a framework to continuously analyze
emerging malware and monitor network hosts, significantly im-
proving the community’s responsiveness to network malware.
False Positives. Our tool also identified a population of poten-
tial Gh0st infections, that upon inspection, are actually SOCKS5
proxies. This is due to the sample leveraging the SOCKS5 proxy
protocol [61]. Although the signature BluePrint extracts is correct,
a signature matching a standardized protocol like this naturally
risks false-alarm scan results, as it may match other, non-malicious
applications. We therefore manually identify some unusual imple-
mentation details of Gh0st’s SOCKS5 handshake, and confirm these
hosts to indeed be SOCKS5 proxies and not Gh0st infections.

6.5 Derusbi Population Studies

In this section, we conduct a series of population studies for the
Derusbi-positive hosts from Table 3. We aim to characterize these
hosts and understand their continued activity after almost a year.

Country # of ASes # of /24

Subnets

# of Derusbi-
Positive IPs

South Korea 3 4 4
Sweden 1 1 3
India, Vietnam (each) 1 1 2
Italy, Taiwan, USA (each) 1 1 1

Total 9 10 14

Table 4: The country, autonomous system (AS), and /24 sub-

net breakdown of Derusbi-positive hosts. The most common

country is South Korea with 3 unique ASes and 4 hosts, fol-

lowed by Sweden with 3 hosts under one /24 network.

Locations and Autonomous Systems (ASes). We show the
breakdown of the countries, ASes, and /24 subnets for the 14Derusbi-
positive hosts in Table 4. We see that four of the hosts are located
in South Korea, each belonging to a separate /24 subnet, two of
which are in the same AS. Sweden, with one AS, is the second most
common country, accounting for three hosts.

We use ASdb [104] to map ASes to organizations. We found that
6 of the ASes are in the Internet Service Providers (ISPs) class, two
of which are also Hosting/Cloud Providers. Separately, two ASes
are classified under Education & Research, being operated by a
university and a science institute. This infection pattern aligns with
the authors’ experiences regarding this malware.
Reverse DNS (PTR) Lookups. To see if any of the hosts are
mapped to a domain name, we performed reverse DNS lookups to
get their PTR records. Using ZDNS [47] on Google’s Public DNS
server [39], we successfully mapped nine hosts to at least one
domain name. One IP address returned four records for different
versions of a website for summer internship programs at a science
institute in South Korea. The other Education & Research-category
host has a record for a language program at a university in Tai-
wan. Four addresses have records indicating they may be used in
infrastructure serving static content for three ASes. Lastly, three
addresses under a single /24 mapped to domain names that, we
believe, indicate they may be used as Web Feature Service servers.
These last three domain names serve the Microsoft IIS 7 default
landing page on port 80, supporting this.
Longitudinal Activeness. As of March 2024, slightly less than
a year since the original scanning experiments, 10 out of 14 (six
out of seven for port 443) Derusbi-positive hosts remain active
(i.e., respond to pings), though one of them resets connections on
both ports 80 and 443. Six hosts remain infected (five for port 443).
Therefore, our longitudinal experiment shows that the majority of
infected hosts remain accessible (71.4% for port 80, 85.7% for port
443) roughly a year later, and of those, the majority remain infected
as well (60.0% for port 80, 83.3% for port 443).
OpenPorts. To better understandwhich ports are publicly exposed
by 9 still-active Derusbi-positive hosts, we performed a Nmap [68]
scan of the 100 most common ports. Across all hosts, only ports 53,
80 and 443 were found to be open. Eight hosts had both 80 and 443
open, and one had 80 open and 443 active but closed (i.e., no service
is listening on it). The remaining two had all three ports open, and
one was responsive to a DNS query for example.com, indicating
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an open DNS resolver. One host also had ports 7, 23, 110, and 8000
active but closed. We should also note that when we crawled one of
the IP addresses in India, the webpage, served on port 80 without
TLS, appears to provide access to the ISP’s historical Telecom Con-
sumer Complaints Monitoring System database for both read and
write access (based on function names on the webpage). However,
we did not interact with the webpage for the ethical reasons. We
believe these port patterns are problematic, considering these types
of services should not be publicly exposed.
TLS Logs and Certificates. We used ZGrab2’s HTTP module
to scan on port 443 the active hosts still infected with Derusbi, to
obtain TLS and website information in order to better categorize
the kinds of hosts compromised by the malware.

The TLS landscape varied significantly, with some being self-
signed, some being formerly trusted but having expired years ago,
and others being current active certificates. In Sweden, the discov-
ered hosts included a small business, as well as the tourist website
for a local municipality. Interestingly, one of the hosts in South
Korea was also a tourist website for a local municipality. In addition
to the above hosts, we also found Derusbi on a website purporting
to be a corporation providing air navigation services, as well as on
a device displaying a pfSense [77] firewall appliance login page.
Conclusion. Our population study of Derusbi-positive hosts finds
open DNS servers, critical ISP infrastructure and internal services,
and firewalls exposed to the public, across a wide range of coun-
tries and ASes. In addition, many infected hosts belong to ISPs,
universities, and science institutes, making the severity of the in-
fections more sensitive and concerning. The fact that BluePrint
can identify infections of well-known malware families for which
signatures have long been known indicates the usefulness of the
system and the need to develop systems to conduct global Internet
scans for malware to identify and remediate infections.

6.6 Ethics

When conducting Internet scans, we followed community norms
and best practices [27]. These included randomizing IP addresses
to avoid straining individual networks, using IP addresses with
WHOIS and DNS records that identify the academic research na-
ture of the networks, hosting a webpage on the scanning IPs and
machines with contact information and opt-out instructions, and
honoring all opt-out requests.

Scanning for malware, however, presents a specific new set of
ethical challenges. We need to ensure that our communication
with these devices does not in any way constitute authentication,
commands, or any form of action that could harm infectedmachines.
Thus, when selecting network signatures to use for our scanning
experiments, we carefully checked the reverse-engineered malware
code to ensure that our packets would not trigger any malicious
behavior on infected hosts, and we performed local experiments to
verify this. We also ensured that the scanning signatures generated
did not “complete” authentication, application-level connections, or
command behaviors, and were the minimum viable set of packets
to identify infection. Development and local scanning experiments
were run only on virtual machines with no Internet access.

We have provided our information on Derusbi infections to law
enforcement.

7 RELATEDWORK

Malware Internet Scanning. Although tools like Nmap [68],
ZMap [27] or ZGrab2 [26] can be used to detect some security vul-
nerabilities [27, 103], they cannot automatically extract network
signatures from malware samples. Population studies of server-like
malware are thus often done as part of larger analyses of cam-
paigns (e.g., of botnets [71]), for which reverse engineering is being
done anyway. These tools are also often used to find possibly in-
fected hosts, by fingerprinting devices or filtering on specific open
ports [16, 37, 51]. Services such as Censys [26], Shodan [74], and
GreyNoise [40] can be used as historical search engines, but lack
customizability and are often slow to provide new labels.

Most malware-related Internet scanning studies focus on either
botnets, by mimicking their peer-to-peer traffic [28, 43, 60], or RATs,
by mimicking infected machines connecting to C&C servers [72].
Botnet scanners are generally ad-hoc [28, 43], though ZMap has also
been used [60]. ShodanMalwareHunter continuously scans for RAT
C&C servers from a few known families [41, 73]. Narrower RAT
scanning studies have investigated state-sponsored campaigns [72],
amateur operators [30], and victims [29]. Of studies searching for
server-like malware using active Internet scanning, BluePrint is
the first to mostly automate network signature extraction.
Automatic Protocol Reverse Engineering. Network signature
generation is a form of automatic protocol reverse engineering, which
can include protocols such as file formats and USB. Tools in this
space are often classified by whether they use network traces or
execution traces as input [25, 46, 52, 88]. The latter approach, used
by BluePrint, has a higher potential for accuracy because the
program code serves as ground truth for the logic applied to the
protocol data; however, it has lost popularity over time [46], likely
due to its invasiveness. Despite this, we believe that the accuracy
that can be gained through this method is important for real-world
applicability, so we focus here only on studies that use it.

Additionally, we discuss only studies on the recovery of protocol
fields and their constraints (“PF recovery”), as research on extracting
protocol finite state machines (“PFSM recovery”) is not useful for
Internet scanning, where only the initial interaction is relevant.

Several early works [11, 12, 78] address only the relatively sim-
ple “replay problem”: identifying certain fields (e.g., hostnames
and checksums) that must be edited before a network trace can
be replayed. These were followed by research aimed at generating
more general descriptions of application input data formats, start-
ing with Polyglot [13] and subsequently improved with techniques
such as using multiple sample messages [99], using call stack in-
formation [66], careful loop analysis [18], and analyzing control
dependencies [67]. A few works, such as FFE/x86 [65] and P2C [59],
have studied automatic characterization of application output for-
mats. ReFormat [97] is notable for its ability to analyze encrypted
protocols by finding plain-text data in memory.

Most of these studies use ad-hoc packet description formats
instead of SMT, limiting their expressiveness in favor of human
understandability. In addition, none use full symbolic execution
with state forking, likely to avoid state explosion. Our novel ap-
proach using path sketches (§4.1) creates an effective middle ground
between concrete execution and empirically non-scalable full sym-
bolic exploration, though BluePrint could potentially be further
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improved with some of these techniques such as improved handling
of loops and detection and handling of encrypted protocols.

BluePrint is also, to our best knowledge, the first to imple-
ment both generation of input data and validation of output data.
We believe it important for our program-recognition use case that
these tasks be combined in a single tool, as using separate tools
for the extraction of input and output formats would lose the tem-
poral/dependency relationships between corresponding inputs and
outputs, and would be unable to identify or express “cross-packet”
constraints that span across them (§4.5).
Automatic Analysis of Malware Network Protocols. In ad-
dition to Dispatcher [11], two other works have used automatic
techniques to study malware protocols. [3] uses symbolic execution
to generate example packets for a RAT, in order to exercise its func-
tionality in a sandbox. Their research is limited to one direction
of communication, and does not involve analysis of the malware’s
responses as would be needed for scanning. [10] increases the effec-
tiveness by introducing additional symbolic execution techniques,
but has the same goal as [3] and ignores malware response data.

8 CONCLUDING DISCUSSION

In this work, we introduce BluePrint, the first system able to
automatically analyze server-like malware samples and prepare
and execute Internet scans for them. Our evaluation shows that
BluePrint can successfully analyze and scan for a wide variety of
server-like malware, using novel techniques to address challenges
such as incomplete path visibility, state explosion, and duplicate
network signatures. We show this by using BluePrint to identify
14 real malware infections on the Internet, on devices found to have
widely varying purposes and geographic locations.
Limitations. As BluePrint relies on static analysis and symbolic
execution, it requires malware that is not obfuscated or packed,
or can be dumped from memory in a plain form. It also currently
uses standard POSIX socket APIs (§2.3) to construct path sketches,
but as shown earlier in §6.1, not all malware implements network
functionality with these APIs, making it difficult for BluePrint
to analyze them. It cannot create path sketches passing through
most indirect calls, as resolving indirect call targets is a difficult
problem in static code analysis generally. BluePrint also may not
be able to handle signatures involving multiple variable-length TCP
response packets, as aligning the symbolic buffers to the concrete
TCP datastream (e.g., two calls to send() but only one to recv())
is a combinatorially difficult problem. It currently only targets x86
Windows malware written in compiled languages like C and C++,
but this is constrained only by implementation, not methodology.

No matter how advanced BluePrint or similar systems become,
malware using passive connections can be made completely un-
scannable, e.g., by requiring all requests to be digitally signed with
an attacker’s key. Since other common analysis techniques like sym-
bolic execution can also be intentionally thwarted [4, 85], but are
still useful in many cases, we do not consider this limitation signifi-
cant. Alternatively, malware could detect scanning by BluePrint,
e.g., by providing commands not used during normal operation.
Since scans should be conducted openly according to best prac-
tices [27], detection itself is not a concern. If malware were to
specifically trigger malicious behavior upon detecting scanning,

this fact would be spotted by an analyst during signature selection,
and the signature rejected like any other malicious command.
Future Work. In principle, BluePrint could support scans for
server-like applications in general; however, we have not explored
this area in depth. We did investigate applying BluePrint to
command-and-control software, but found that most are written in
managed languages such as C#, unsupported by our prototype.

Production symbolic execution engines often trade accuracy
for performance, using techniques such as symbolic-address con-
cretization [95] and introduction of artificial constraints (e.g., angr
by default limits the size of memory allocations to 128 bytes) to
reduce the amount of symbolic variability being tracked. However,
today’s symbolic execution engines do not provide any means of
tracking when, where, or how this occurs, which in BluePrint’s
case can lead to generated signatures being overly constrained,
potentially limiting their usefulness for scanning in some cases.
This issue affected Soul as described in §6.1, but similar problems af-
fected other samples during testing of early versions of BluePrint.
These were alleviated when we improved our symbolic exploration
and function modeling techniques, but nevertheless, we believe this
problem to be general, and that it would be worthwhile to develop a
technique to reliably track symbolic values affected by these types
of heuristics. The user could then be alerted to potential problems
with the signature, and affected byte ranges or constraints could be
skipped when validating scan responses.

BluePrint could also be extended to scan for multiple similar
samples (“variants”) simultaneously. A simple approach would be
to analyze each one separately, and take the conjunction of each
correct signature’s challenge-packet constraints and the disjunction
of their response-packet constraints. Analysis time could potentially
be saved by reusing results across variants, and in cases where no
single scan can cover all of the variants, a minimal set of scans could
be produced. A more ambitious extension would be to generalize
signatures to unavailable variants—e.g., “based on theways inwhich
five given variants of BankShot differ from each other, create a
signature that should work with any similar BankShot variants.”

Finally, several of our evaluation samples use ad-hoc implemen-
tations of established network protocols such as TLS and SOCKS5,
with slight deviations from the official specifications. Such signa-
tures can lead to false-positive scan results, as seen with Gh0st
in §6.4. By adding built-in knowledge of common protocols, Blue-
Print could warn the user of such similarities, or even automati-
cally tailor generated challenge packets to exercise any deviations
from the corresponding protocol specification in order to reduce or
eliminate false-positive results.
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A PATH SKETCH CONSTRUCTION

ALGORITHM

A function call is defined as a pair: 〈call_addr, target_addr〉. A path
sketch is defined as a triple: 〈start_addr, calls, end_addr〉, where
calls is a sequence of function calls.

function call_addresses_traversed(𝑝: path sketch)
return {c.call_addr for 𝑐 in p.calls} + {p.end_addr}

function functions_traversed(𝑝: path sketch)
return {get_containing_function(c)

for 𝑐 in call_addresses_traversed(𝑝)}

function all_path_sketches_to(𝑐: function call address)
⊲ Initialize worklist with a single path sketch.
𝑊 ← {〈get_containing_function(c), [], c〉}

⊲ Extend path sketches as far backwards as possible.
𝐹 ← ∅ ⊲ “Finished” path sketches
while𝑊 ≠ ∅ do

𝑝 ← remove arbitrary member from𝑊

𝐶𝑛 ← all_call_addresses_to(p.start_addr) ⊲ “New”
calls

𝐶𝑒 ← call_addresses_traversed(𝑝) ⊲ “Existing” calls
𝑏 ← false ⊲ “Added any new path sketches” flag
for 𝑐𝑛 ← members of 𝐶𝑛 do

⊲ “𝑐𝑛 ∉ 𝐶𝑒 ” ensures the algorithm terminates.
if 𝑐𝑛 ∉ 𝐶𝑒 ∧ is_within_a_function(𝑐𝑛) then

add 〈get_containing_function(𝑐𝑛),
[〈𝑐𝑛 , p.start_addr〉] + p.calls,
p.end_addr〉 to𝑊

𝑏 ← true
if not 𝑏 then ⊲ No possible extensions were found.

add 𝑝 to 𝐹

return 𝐹

function all_path_sketches_to_any(𝐶 : set of call addresses)
return

⋃
𝑐∈𝐶 all_path_sketches_to(𝑐)

function construct_path_sketches( )
⊲ Get set of function addresses to filter by: ancestors
of accept().

𝐶𝑎 ← all_call_addresses_to(“accept”)
𝑃𝑎 ← all_path_sketches_to_any(𝐶𝑎)
𝐴𝑎 ←

⋃
𝑝∈𝑃𝑎 functions_traversed(𝑝)

⊲ Get all path sketches leading to send(), and filter them.
𝐶𝑠 ← all_call_addresses_to(“send”)
𝑃 ← ∅ ⊲ Final set of path sketches
for 𝑝 ← members of all_path_sketches_to_any(𝐶𝑠 ) do

⊲ Only include path sketches that pass through ancestors
of accept().

if functions_traversed(𝑝) ∩ 𝐴𝑎 ≠ ∅ then

add 𝑝 to 𝑃

return 𝑃
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B SMT FILE HASHING ALGORITHM FOR

DEDUPLICATION

function normalized_text(𝑡 : SMT2 term)
return 𝑡 ’s SMT2 “(let” string representation, with all

variable names replaced with a placeholder (e.g., “x”),
and not including the inner term itself

⊲Here, the “children” of a term are any others to which it directly
refers (e.g., (let ((a (and b c))) ...) has two, b and c).

⊲ Not shown: hash_term should be memoized.
function hash_term(𝑡 : SMT2 term)

if 𝑡 is “declare-fun” type then ⊲ Base case
return hash(〈𝑡 .var_name, 𝑡 .var_size〉)

else if 𝑡 is commutative then ⊲ “and,” “or,” etc.
𝐻𝑐 ← sum(hash_term(𝑐) for 𝑐 in 𝑡 .children)
return hash(〈normalized_text(𝑡 ), 𝐻𝑐〉)

else

𝐻𝐿𝑐 ← [hash_term(𝑐) for 𝑐 in 𝑡 .children]
return hash(〈normalized_text(𝑡 ), 𝐻𝐿𝑐〉)

function hash_smt_file(𝑓 : SMT2 file)
⊲ “Flatten” any nested “and”s or “or”s.
for 𝑡 ← terms in 𝑓 do

if 𝑡 is “and” or “or” type then
merge 𝑡 with all direct children of same type

return hash_term(𝑓 .root) ⊲ The innermost term

C SUMMARY OF TECHNOLOGIES USED IN

PROTOTYPE IMPLEMENTATION

Component Runtime Library or API LoC

Path Ident. CPython 3.10.12 IDA Pro 7.7 1433
Sig. Ext. PyPy 7.3.12 (3.10) angr 9.2.54 [101] 3796
Packet Gen. PyPy 7.3.12 (3.10) Z3 4.10.2.0 [23] 687
Net. Scan. Go 1.19.4 ZGrab2 c9a9ac1 [26] 1352
Packet Val. CPython 3.10.13 Z3 4.10.2.0 1289

D ADDITIONAL DETAILS OF EVALUATED

MALWARE SAMPLES

“PE Year” is the timestamp embedded in the executable header,
which could indicate the compilation date, but may be spoofed. “Lit.
Year” is the earliest known reference in the literature, forming an
upper bound.

Sample .text Size Year (PE; Lit.) Default Port

➊ BadCall 51 KB 2016; 2019 [21] 8000
➋ BankShot 439 KB 2016; 2017 [19] 110
➌ Derusbi 28 KB 2012; 2014 [82] All3

➍ FASTCash4 81 KB 2016; 2018 [20] 443
➎ Gh0st 379 KB 2017; 2015 [15]5 10806

➏ Slingshot 25 KB 2016; 2018 [50] 443
➐ Soul 134 KB 2017; 2021 [92] Unknown7

Sample SHA-256

➊ BadCall d1f3b9372a6be9c02430b6e452620297

4179a674ce94fe22028d7212ae6be9e7

➋ BankShot 780a9da4b933d0eb457f71666a72f596

163b6ef22756e760a7e222e920d0cf4b

➌ Derusbi dfb81afc08cd1510319c2a41101bfeb9

872c4ffcce979122018bdf904b654e7d

➍ FASTCash ab88f12f0a30b4601dc26dbae57646ef

b77d5c6382fb25522c529437e5428629

➎ Gh0st fcda71cec001e447be7bf0120b0fd7c1

84d2c6a58ae32e209721505266f696d8

➏ Slingshot fa513c65cded25a7992e2b0ab03c5dd5

c6d0fc2282cd64a1e11a387a3341ce18

➐ Soul 69a9ab243011f95b0a1611f7d3c333eb

32aee45e74613a6cddf7bcb19f51c8ab

E NETWORK SIGNATURE DESCRIPTIONS

We describe here only the network signatures that we selected for
our scanning experiments, based on distinctiveness and safety (i.e.,
the interaction does not trigger any malicious behavior). Some of
the samples implement additional signatures that could be used.

E.1 BadCall
Implements a “fake” TLS 1.0 [1] handshake (i.e., no meaningful
information is exchanged, and subsequent communication uses a
custom protocol with no relation to TLS). The challenge packet
is a ClientHello, and the response is a sequence of ServerHello,
Certificate, and ServerHelloDone. The interaction largely follows
the specification, but with a few simplifications:
• TLSPlaintext.fragment.length is ignored.
• TLSPlaintext.fragment.body.client_version is ignored.
• The cipher suite is selected from the client-supplied list at
random, without considering its validity.

The “abortive shutdown” behavior described in §6.1 occurs if
the challenge packet does not include a Server Name Indication
extension [9] with any of 20 names it recognizes.

E.2 BankShot
This signature is also described in §3.2 and illustrated in Figure 1.
Challenge. Receives 10 bytes. The first four form an XOR cipher
key used to encipher the remaining six. After deciphering, the
next four bytes must be 83 34 12 00, and the last two, read as a
signed little-endian integer, indicate an amount of additional data
to receive. (Zero or a negative value indicates no additional data.)
3Derusbi uses a localhost socket to connect to a malicious kernel driver that relays all
TCP connections starting with its signature [6, 79, 82].
4This RAT is described as “FASTCash-related malware” in [20]; we refer to it as “FAST-
Cash” for brevity.
5Gh0st is a well-known and highly varied [84] family of remote-access trojans (RATs)
dating back to 2008 [17]. Since there are no references to our specific sample (by
hash) in the literature, we broaden our search to include any mentions of the strings
“jingtisanmenxiachuanxiao.vbs” or “Game Over Good Luck By Wind”, which
only appear in certain Gh0st strains similar to ours.
6This default port is defined by the C&C application, not in the malware sample itself.
7Our sample did not initially include configuration data for passive listening.
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Response. Sends 10 bytes. The first four form a randomly selected
XOR cipher key used to encipher the remaining six, which decipher
to 84 34 12 00 00 00.

E.3 Derusbi
Challenge. Receives 256 bytes (specifically 64 when considering
the entire malware platform, as explained in §6.1) satisfying the
following condition:

1 uint32_t *packet = (...);
2 bool success = (packet[1] == ~packet[0]) // ">>>" =

3 && (packet[2] == packet[0] >>> 7); // right rot.

Response. Sends 64 bytes satisfying the same condition as above,
and otherwise randomized.

E.4 FASTCash
Implements a “fake” exchange of TLS 1.0 [1] packets. In contrast
to the highly structured TLS handshake implemented by Bad-
Call (§E.1), this signature mimics regular encrypted traffic (i.e., not
a beginning-of-connection handshake), so most of the challenge
data is ignored and most of the response data is randomized.
Challenge. Receives 237–381 bytes (depending on the “offset”
value shown below) satisfying the following condition:

1 uint8_t *packet = (...);
2 uint16_t offset = *(uint16_t*)(&packet[0x15]);
3 offset = 5 + ~offset; // 5 bytes for fake
4 // TLSCiphertext header
5 uint32_t X = ((uint32_t*)(&packet[offset]))[0];
6 uint32_t Y = ((uint32_t*)(&packet[offset]))[1];
7 bool success = (((~X ^ 0x3CADEED) << 6) + 0x18472735)

8 ^ 0xFC0A397F == Y;

Response. Sends 389–900 (randomized length) bytes. The first five
form a TLSCiphertext header: 17 03 01, followed by a two-byte
length field. The rest satisfy the condition described above for the
challenge packet, and are otherwise randomized.

E.5 Gh0st
Implements proxying with a variation of the SOCKS5 protocol [61,
62]. We use the authentication interaction as the signature, to avoid
performing actual proxying for safety and ethical reasons.
Challenge. Receives 0x5000 bytes. The first must be 05 (represent-
ing SOCKS‘5’) and the third must be 00 or 02 (requested authenti-
cation method: “none” or “username/password”).

The “NMETHODS” field specified in [61] (i.e., the second byte)
is ignored. This is the primary “unusual implementation detail” we
use in our follow-up scan (§6.4) to identify Gh0st.
Response. Sends 05 00 or 05 02, depending only on whether the
malware was configured with a SOCKS5 username and password.

This is a second quirk we use in §6.4, as compliant implementa-
tions should only choose from authentication methods requested
by the client [61]. The third is that authentication method 01 (“GSS-
API”), mandated by [61], is not supported (the connection is closed).

E.6 Slingshot
Challenge. None required.
Response. Sends four constant bytes, B2 7F 23 43.

E.7 Soul
This sample’s protocol is described in more detail in [83].
Challenge. None required.
Response. Sends an HTTP “GET” request consisting of a highly
distinctive fixed 1115-character-long string followed by an accurate
Date header timestamp, Content-Length header, and DEFLATE-
compressed buffer with information about the infected system.
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