N/ \ TESSELLATION OS
/ } 1—\\ Kevin Klues, Barret Rhoden, David Zhu,

Paul Pearce, Eric Brewer, John Kubiatowicz

Par Lab, CS Division, University of California at Berkeley Kevin Klues Paul Pearce Barret Rhoden David Zhu

Abstractions for Scalable Operating Systems on Manycore Architectures

Why a New OS?

O Problems with current OSs: /<> OO0 0 0)Gem O Why do we want to structure the OS (7) Jeerspace Process
0 Interference with parallel applications Virus asymmetrically? 7\:/) spann Proces, Scheduing || |
O Scalability as the number of cores increases QL@ @,,@@D ntrusion 0O Increase per core cache locality Q Q G =\ Resource Manager /| | (Come
O How we propose to solve these problems: €) Q@G@“Q |(monitor O Decrease cross core lock contention C Q Q C O Scheduler Revacation

O Asymmetrically structured OS LYY I YT @‘a‘“?@ O Limits kernel interference with applications /C @ C @ <t 0 allcate resources | i
O Increases scalability - _ \(Vieeo w) 0 Asymmetric Control é () e
O Gets the kernel off userspace’s cores Real-Time indow 0 Manages what processes run where é 8 kb b et

0 Guaranteed, partitioned resources (QoS) : PP J{ privers) O Eliminates need for per core run queues Time @ Q @ L égg)gstfhggg;;gg;;; !
o Parallel applications are more sensitive to (persistent)(*)" &) (" Hcl/) O Asynchronous System Calls —_— S Hardware

dynamically changing resources jm ;ﬁ) Ec,\j,@ §> ?;'ze O Syscalls services asynchronously / remotely pace

O Enables pr.edlctgble application performance k / O Communication done via message passing 0 Problem: Parallel applications are very sensitive to dynamic changes in
O Increases isolation between Processes under|ying resource allocations

O Changes to the traditional process abstraction Kernel: Process:
O No longer a single thread in a virtual processor Poll for request| < | Make request O Solution:
O Multiple cores ‘owned’ by a single process Work Do whatever 0 Resources partitioned amongst processes based on explicit requests
0 All cores gang scheduled Channel between Userspace and you want O Processes scheduled based on meeting resource guarantees (QoS)
O Information exposed up, requests sent down the Kernel O Resources include ‘discrete’ resources and ‘rate-based’ resources

0 Private Memory Ranges | Enqueve |, .| checkor o Discrete: cores, physical memory pages, cache, etc.
O Per core / per context VWtU?' memory mappings response response O Rate-based: memory / network / disk BW, etc.
O Enables fast page remapping 0 Resource guarantees enforced either in hardware or in software in
O Eases data parallel application development Core 0 Core N the Partition Mechanism Layer

Process Model

Implementation Status

Private Memory Ranges

Traditional 1:1 Process Multi-Cored Process

O Reserve range of addresses in an Address Space for processing per- O Prototype implementation running on 2 platforms
User threads man 1:1 onto underlvin User threads scheduled ; context (or per-core) private data 5 | O x86: on QEMU / KVM and our 8-core Nehalem test machines
Cornel thoead 11’1 tulod by th ky gl Ser threads schedulied 1In User-5pace 0 Logically the same address space, but specific ranges of the virtual 0 Sparc: on RAMP software simulator / FPGA hardware simulator
ernel threads scheduled by the kKerne Cores allocated by kernel for users use address Space are mappeq to d|ffe_rent physma! pages .] Compiled with SUppOI’t for applications written using newlib
Lc ¢ ¢ ¢ ¢) O But not everything (e.g. data to be processed in SIMD tashion) 0 Use remote syscall server to handle unimplemented syscalls
_________ ¢cneauler . e . :
Seheduler - . Traditional Process Private Memory Ranges O Kernel mclgdes a slab based memory allpcator
O Page coloring support for cache partitioning
Core 0 || Core 1 || Core 2 || Core 3 |» = Core n Greo Core 1 || Core2 || Core 3 |n = Com Page Table Page Table | - Page Table 2 Page Table N O NE2000 and Realtek 8111D network driver support
| = - ;‘jﬁ; A A ENI 0 Preliminary TCP/UDP stack using LWIP
O Provides sca_lablllty advantages over traditional process models PPN 100 0 Arbitrary routing of interrupts using the x86 10 APIC
0 No mapping of user-level threads to kernel threads PEN3 R PPN3 _Fme==1 PPN O Asynchronous remote system calls
(the kernel Is completely event-based) PPN 4 PPN 4 PPN 4 PPN 4
O No per-core run queues - . . -
O Provides richer set of resource gu_arantees to processes | B e e o Acknowled gements
O Kernel exposes more information about resources provided by the system
O Processes make explicit requests to access those resources Core 0 Corel mmmmi CoreN Core 0 Corel mmmm{ CoreN . _
O Allows multiple contexts per process, but kernel manages them as a unit From fche UC Berkeley Parallel Computl_ng Lal:_:..
o All cores granted to a process are gang scheduled o Advantages: o Disadvantages: Ben Hindman, Juan Colmenares, Sarah Bird, Heidi Pan,
0 Processes can provide hints for co-scheduling with other processes 0 No locks needed to modify datain o More complex user-space interface £8ch Anderson, Andrew Waterman, Krste Asanovic
O Blocking system calls and interrrupts don’t limit user level processing private memory ranges 0 More memory needed to maintain _ _
0 Can direct interrupts to designated interrupt handling cores 0 Can do page re-mﬁppmgs n. extra page directories From Lawrence Berkeley National Labs:
o Asynchronous I/O interfaces notifying user-space when threads block private regl_cl)_E% W;;[OUJ requiring 0 O(n) cost to maintain consistency ~ Eric Roman, Steven Hofmeyr, John Shalf,
: : o Apit Cross core shootdowns between shared entries (on x86) Costin lancu, Kathy Yelick
O Provide means for out of band processing of time-critical events _
O Eases development for data o Ideally we want per-context private
_ P PP | memory, but per-core is less costly Research supported by Microsoft (Award #024263)
O Examples.. _UI events, TCP acks, etc. | O Allows for fast page remapping for 5 Hardware support could reduce and Intel (Award #024894) funding and by matchin
O Supports traditional single core-processes without guarantees as well as streaming data applications many of these costs)] g y g
multi-core processes with lots of resource guarantees. funding by U.C. Discovery (Award #DIG07-10227).

