
Why a New OS?!
!  Problems with current OSs:"

!  Interference with parallel applications"
!  Scalability as the number of cores increases"

!  How we propose to solve these problems:"
!  Asymmetrically structured OS"

!  Increases scalability"
!  Gets the kernel off userspaceʼs cores"

!  Guaranteed, partitioned resources (QoS)"
!  Parallel applications are more sensitive to 

dynamically changing resources"
!  Enables predictable application performance"
!  Increases isolation between processes"

!  Changes to the traditional process abstraction"
!  No longer a single thread in a virtual processor"
!  Multiple cores ʻownedʼ by a single process"
!  All cores gang scheduled"
!  Information exposed up, requests sent down"

!  Private Memory Ranges"
!  Per core / per context virtual memory mappings"
!  Enables fast page remapping"
!  Eases data parallel application development"

Private Memory Ranges!

Guaranteed, Partitioned Resources"

Process Model! Implementation Status!

Asymmetrically Structured OS!

!  Problem:  Parallel applications are very sensitive to dynamic changes in 
underlying resource allocations"

!  Solution: "
!  Resources partitioned amongst processes based on explicit requests"
!  Processes scheduled based on meeting resource guarantees (QoS)"
!  Resources include ʻdiscreteʼ resources and ʻrate-basedʼ resources"

!  Discrete: cores, physical memory pages, cache, etc."
!  Rate-based: memory / network / disk BW, etc."

!  Resource guarantees enforced either in hardware or in software in 
the Partition Mechanism Layer"

!   Advantages:"
!  No locks needed to modify data in 

private memory ranges"
!  Can do page re-mappings in 

private regions without requiring 
cross core TLB shootdowns"

!  Eases development for data 
parallel applications"

!  Allows for fast page remapping for 
streaming data applications"

!  Why do we want to structure the OS 
asymmetrically?"
!  Increase per core cache locality"
!  Decrease cross core lock contention"
!  Limits kernel interference with applications"
!  Asymmetric Control"
!  Manages what processes run where"
!  Eliminates need for per core run queues"
!  Asynchronous System Calls"
!  Syscalls services asynchronously / remotely"
!  Communication done via message passing"

!  Provides scalability advantages over traditional process models"
!  No mapping of user-level threads to kernel threads                                            

(the kernel is completely event-based)"
!  No per-core run queues"

!  Provides richer set of resource guarantees to processes"
!  Kernel exposes more information about resources provided by the system "
!  Processes make explicit requests to access those resources"

!  Allows multiple contexts per process, but kernel manages them as a unit"
!  All cores granted to a process are gang scheduled"
!  Processes can provide hints for co-scheduling with other processes"

!  Blocking system calls and interrrupts donʼt limit user level processing"
!  Can direct interrupts to designated interrupt handling cores"
!  Asynchronous I/O interfaces notifying user-space when threads block"

!  Provide means for out of band processing of time-critical events"
!  Always runnable, not gang-scheduled"
!  Examples: UI events, TCP acks, etc."

!  Supports traditional single core-processes without guarantees as well as       
multi-core processes with lots of resource guarantees."
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!   Disadvantages:"
!  More complex user-space interface"
!  More memory needed to maintain 

extra page directories"
!  O(n) cost to maintain consistency 

between shared entries (on x86)"
!  Ideally we want per-context private 

memory, but per-core is less costly"
!  Hardware support could reduce 

many of these costs"

!  Reserve range of addresses in an Address Space for processing per-
context (or per-core) private data "

!  Logically the same address space, but specific ranges of the virtual 
address space are mapped to different physical pages"

!  Most data is shared (e.g. file descriptors, security properties)"
!  But not everything (e.g. data to be processed in SIMD fashion) "
!  Similar to Coreyʼs Address Ranges"
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!  Prototype implementation running on 2 platforms"
!  x86: on QEMU / KVM and our 8-core Nehalem test machines"
!  Sparc: on RAMP software simulator / FPGA hardware simulator"

!  Compiled with support for applications written using newlib"
!  Not all syscalls implemented natively"
!  Use remote syscall server to handle unimplemented syscalls"

!  Implementation Features:"
!  Kernel includes a slab based memory allocator"
!  Page coloring support for cache partitioning"
!  NE2000 and Realtek 8111D network driver support"
!  Preliminary TCP/UDP stack using LWIP"
!  Arbitrary routing of interrupts using the x86 IO APIC"
!  Asynchronous remote system calls"
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