
Why a New OS?!
!  Problems with current OSs:"

!  Interference with parallel applications"
!  Scalability as the number of cores increases"

!  How we propose to solve these problems:"
!  Asymmetrically structured OS"

!  Increases scalability"
!  Gets the kernel off userspaceʼs cores"

!  Guaranteed, partitioned resources (QoS)"
!  Parallel applications are more sensitive to

dynamically changing resources"
!  Enables predictable application performance"
!  Increases isolation between processes"

!  Changes to the traditional process abstraction"
!  No longer a single thread in a virtual processor"
!  Multiple cores ʻownedʼ by a single process"
!  All cores gang scheduled"
!  Information exposed up, requests sent down"

!  Private Memory Ranges"
!  Per core / per context virtual memory mappings"
!  Enables fast page remapping"
!  Eases data parallel application development"

Private Memory Ranges!

Guaranteed, Partitioned Resources"

Process Model! Implementation Status!

Asymmetrically Structured OS!

!  Problem: Parallel applications are very sensitive to dynamic changes in
underlying resource allocations"

!  Solution: "
!  Resources partitioned amongst processes based on explicit requests"
!  Processes scheduled based on meeting resource guarantees (QoS)"
!  Resources include ʻdiscreteʼ resources and ʻrate-basedʼ resources"

!  Discrete: cores, physical memory pages, cache, etc."
!  Rate-based: memory / network / disk BW, etc."

!  Resource guarantees enforced either in hardware or in software in
the Partition Mechanism Layer"

!  Advantages:"
!  No locks needed to modify data in

private memory ranges"
!  Can do page re-mappings in

private regions without requiring
cross core TLB shootdowns"

!  Eases development for data
parallel applications"

!  Allows for fast page remapping for
streaming data applications"

!  Why do we want to structure the OS
asymmetrically?"
!  Increase per core cache locality"
!  Decrease cross core lock contention"
!  Limits kernel interference with applications"
!  Asymmetric Control"
!  Manages what processes run where"
!  Eliminates need for per core run queues"
!  Asynchronous System Calls"
!  Syscalls services asynchronously / remotely"
!  Communication done via message passing"

!  Provides scalability advantages over traditional process models"
!  No mapping of user-level threads to kernel threads

(the kernel is completely event-based)"
!  No per-core run queues"

!  Provides richer set of resource guarantees to processes"
!  Kernel exposes more information about resources provided by the system "
!  Processes make explicit requests to access those resources"

!  Allows multiple contexts per process, but kernel manages them as a unit"
!  All cores granted to a process are gang scheduled"
!  Processes can provide hints for co-scheduling with other processes"

!  Blocking system calls and interrrupts donʼt limit user level processing"
!  Can direct interrupts to designated interrupt handling cores"
!  Asynchronous I/O interfaces notifying user-space when threads block"

!  Provide means for out of band processing of time-critical events"
!  Always runnable, not gang-scheduled"
!  Examples: UI events, TCP acks, etc."

!  Supports traditional single core-processes without guarantees as well as
multi-core processes with lots of resource guarantees."

PPN 100!

PPN M!

PPN 4!
PPN 3!

PPN 1!
Page Table 1!

PPN 200!

PPN M!

PPN 4!
PPN 3!

PPN 1!
Page Table 2!

Core 0! Core 1!

PPN 300!

PPN M!

PPN 4!
PPN 3!

PPN 1!
Page Table N!

Process with !
Private Memory Ranges!

Core N!Core 0! Core 1! Core N!

Traditional Process!

PPN M!

PPN 4!
PPN 3!

PPN 1!
Page Table!

PPN 2!

!  Disadvantages:"
!  More complex user-space interface"
!  More memory needed to maintain

extra page directories"
!  O(n) cost to maintain consistency

between shared entries (on x86)"
!  Ideally we want per-context private

memory, but per-core is less costly"
!  Hardware support could reduce

many of these costs"

!  Reserve range of addresses in an Address Space for processing per-
context (or per-core) private data "

!  Logically the same address space, but specific ranges of the virtual
address space are mapped to different physical pages"

!  Most data is shared (e.g. file descriptors, security properties)"
!  But not everything (e.g. data to be processed in SIMD fashion) "
!  Similar to Coreyʼs Address Ranges"

Multi-Cored Process!

Core 0!

Traditional 1:1 Process!

Core 1! Core 2! Core 3! Core n!

User threads map 1:1 onto underlying !
kernel threads scheduled by the kernel!

Core 1! Core 2! Core 3! Core n!

User threads scheduled in user-space!
Cores allocated by kernel for users use!

Core 0!

!  Prototype implementation running on 2 platforms"
!  x86: on QEMU / KVM and our 8-core Nehalem test machines"
!  Sparc: on RAMP software simulator / FPGA hardware simulator"

!  Compiled with support for applications written using newlib"
!  Not all syscalls implemented natively"
!  Use remote syscall server to handle unimplemented syscalls"

!  Implementation Features:"
!  Kernel includes a slab based memory allocator"
!  Page coloring support for cache partitioning"
!  NE2000 and Realtek 8111D network driver support"
!  Preliminary TCP/UDP stack using LWIP"
!  Arbitrary routing of interrupts using the x86 IO APIC"
!  Asynchronous remote system calls"

Acknowledgements!
From the UC Berkeley Parallel Computing Lab: !
Ben Hindman, Juan Colmenares, Sarah Bird, Heidi Pan,
Zach Anderson, Andrew Waterman, Krste Asanovic"

From Lawrence Berkeley National Labs: !
Eric Roman, Steven Hofmeyr, John Shalf, "
Costin Iancu, Kathy Yelick"

Research supported by Microsoft (Award #024263) !
and Intel (Award #024894) funding and by matching !
funding by U.C. Discovery (Award #DIG07-10227).!

