
ECS 122A
Algorithm Design and

Analysis

Instructor: Qirun Zhang

1Course slides (partially) adopted from the notes by David Luebke.

Agenda

• Asymptotic notations

• Merge sort

2

Course updates

• About homework
– Homework 1 has 5 problems

– Submit 5 separate solutions on gradescope (i.e., one for each
problem)

• Prerequisite petition
– Send me a reminder email next week

3

Why asymptotic notation?

• Asymptotic efficiency

4

Recap

• Simplifications
– Ignore actual and abstract statement costs

– Order of growth is the interesting measure:
• Highest-order term is what counts

– Remember, we are doing asymptotic analysis

– As the input size grows larger it is the high order term that
dominates

5

Upper Bound Notation

• We say InsertionSort’s run time is O(n2)
– Properly we should say run time is in O(n2)

– Read O as “Big-O” (you’ll also hear it as “order”)

• In general a function
– f(n) is O(g(n)) if there exist positive constants c and n0 such

that f(n)  c  g(n) for all n  n0

• Formally
– O(g(n)) = { f(n):  positive constants c and n0 such that f(n) 

c  g(n)  n  n0

6

Lower Bound Notation

• We say InsertionSort’s run time is (n)

• In general a function
– f(n) is (g(n)) if  positive constants c and n0 such that 0 

cg(n)  f(n)  n  n0

7

Asymptotic Tight Bound

• A function f(n) is (g(n)) if  positive constants c1, c2,
and n0 such that

c1 g(n)  f(n)  c2 g(n)  n  n0

• Theorem
– f(n) is (g(n)) iff f(n) is both O(g(n)) and (g(n))

8

Practical Complexity

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

9

Practical Complexity

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

10

Practical Complexity

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

11

Practical Complexity

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

12

Practical Complexity

1

10

100

1000

10000

100000

1000000

10000000

1 4 16 64 256 1024 4096 16384 65536

13

Other Asymptotic Notations

• A function f(n) is o(g(n)) if  positive constants c,
there exists n0 such that

f(n) < c g(n)  n  n0

• A function f(n) is (g(n)) if  positive constants c,
there exists n0 such that

c g(n) < f(n)  n  n0

• Intuitively,

 o() is like <

 O() is like 

 () is like >

 () is like 

 () is like =

14

Summary

15

Merge Sort

16

Merge Sort: Example

17

Analysis of Merge Sort

18

The End

19

