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Algorithm Design and 

Analysis

Instructor: Qirun Zhang

1Course slides (partially) adopted from the notes by David Luebke.



Agenda

• Asymptotic notations

• Merge sort 
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Course updates

• About homework
– Homework 1 has 5 problems

– Submit 5 separate solutions on gradescope (i.e., one for each 
problem)

• Prerequisite petition
– Send me a reminder email next week
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Why asymptotic notation?

• Asymptotic efficiency
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Recap

• Simplifications
– Ignore actual and abstract statement costs

– Order of growth is the interesting measure:
• Highest-order term is what counts

– Remember, we are doing asymptotic analysis

– As the input size grows larger it is the high order term that 
dominates
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Upper Bound Notation

• We say InsertionSort’s run time is O(n2)
– Properly we should say run time is in O(n2)

– Read O as “Big-O” (you’ll also hear it as “order”)

• In general a function
– f(n) is O(g(n)) if there exist positive constants c and n0 such 

that f(n)  c  g(n) for all n  n0

• Formally
– O(g(n)) = { f(n):  positive constants c and n0 such that f(n) 

c  g(n)  n  n0
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Lower Bound Notation

• We say InsertionSort’s run time is (n)

• In general a function
– f(n) is (g(n)) if  positive constants c and n0 such that 0 

cg(n)  f(n)   n  n0
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Asymptotic Tight Bound

• A function f(n) is (g(n)) if  positive constants c1, c2, 
and n0 such that 

c1 g(n)  f(n)  c2 g(n)  n  n0

• Theorem
– f(n) is (g(n)) iff f(n) is both O(g(n)) and (g(n))
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Practical Complexity
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Practical Complexity
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Practical Complexity
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Practical Complexity
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Practical Complexity

1

10

100

1000

10000

100000

1000000

10000000

1 4 16 64 256 1024 4096 16384 65536

13



Other Asymptotic Notations

• A function f(n) is o(g(n)) if  positive constants c,
there exists n0 such that 

f(n) < c g(n)  n  n0

• A function f(n) is (g(n)) if  positive constants c, 
there exists n0 such that 

c g(n) < f(n)  n  n0

• Intuitively,

 o() is like < 

 O() is like 

 () is like > 

 () is like 

 () is like =
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Summary
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Merge Sort
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Merge Sort: Example
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Analysis of Merge Sort
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The End
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