ECS 122A
Algorithm Design and
Analysis

Instructor: Qirun Zhang

Course slides (partially) adopted from the notes by David Luebke.

Agenda

Asymptotic notations
* Merge sort

Course updates

About homework
- Homework 1 has 5 problems

- Submit 5 separate solutions on gradescope (i.e., one for each
problem)

Prerequisite petition
- Send me a reminder email next week

Why asymptotic notation?

+ Asymptotic efficiency

Recap

Simplifications
- Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
- Highest-order term is what counts
- Remember, we are doing asymptotic analysis

- As the input size grows larger it is the high order term that
dominates

Upper Bound Notation

We say InsertionSort's run time is O(n°)
- Properly we should say run time is /n O(n?)
- Read O as "Big-O" (you'll also hear it as "order")

In general a function
- f(n) is O(g(n)) if there exist positive constants ¢ and 7, such
that f(n) < ¢- g(n) for all n> n,
Formally

- 0O(g(n)) = { f(n): 3 positive constants cand 7, such that f(n) <
c-gln)vnxn,

Lower Bound Notation

We say InsertionSort's run time is Q(n)

* Ingeneral a function

- f(n) is Q(g(n)) if 3 positive constants cand 7, such that 0 <
cg(n)<f(n) vn=n,

Asymptotic Tight Bound

+ A function f(n) is ©(g(n)) if 3 positive constants ¢;, ¢,
and 7, such that

c;g(n)<f(n)<c,g(n) vhn=n,

+ Theorem
- f(n) is ©(g(n)) iff f(n) is both O(g(n)) and Q(g(n))

Practical Complexity

250

—e—f(n)=n

—=— f(n) = log(n)
f(n) = n log(n)
f(n) = n"2

—»—f(n) = n"3

—e—f(n) = 2n

1 23 456 7 8 91011121314151617 181920

Practical Complexity

500

—e—f(n)=n

—=— f(n) = log(n)
f(n) = n log(n)
f(n) = n"2

—»—f(n) = n"3

—e—f(n) = 2n

A s === = o e

1 23 456 7 8 91011121314151617 181920

10

Practical Complexity

1000

—e—f(n)=n

—=— f(n) = log(n)
f(n) = n log(n)
f(n) = n"2

—»—f(n) = n"3

—e—f(n) = 2n

0 - e e s = == == &

11

Practical Complexity

5000 j /
4000

/ / —e—f(n)=n

3000 —=—f(n) = log(n)
f(n) = n log(n)

/ f(n) = n"2

2000 —x—f(n) = n"3
—e—f(n) = 2"
1000
0 - A A AR AT IS T AN HE A L

1 3 5 7 9 11 13 15 17 19

12

Practical Complexity

10000000
1000000 /'//’//'//n—
100000
10000 //'//’//’/,

1000
100 —
—
e
1 n I I I I I I I I I I I I I I I I I I I
1 4 16 64 256 1024 4096 16384 65536

13

Other Asymptotic Notations

» A function f(n) is o(g(n)) if V positive constants c,
there exists 7, such that
f(n)<cg(n) vV n>n,
» A function f(n) is o(g(n)) if V positive constants c,
there exists n,such that
cg(n)<f(n)vn=n,
* Intuitively,

=o()islike< =o()islike> = @()is like =
= O()islike< = Q) is like >

14

Summary

Growth Terminology

O(1) constant growth
O(logn) logarithmic growth
O(log" n), for some k >1 polylogarithmic growth
o(n) sublinear growth

O(n) linear growth

O(nlogn) log-linear growth
O(nlog®n), for some k > 1 polylog-linear growth
O(n*) for some k > 1 polynomial growth
Q(n*), for every k > 1 superpolynomial growth

Q(a™) for some a > 1 exponential growth

15

Merge Sort

16

Merge Sort: Example

17

Analysis of Merge Sort

18

The End

19

