
WITNESS FUNCTIONS IN PROGRAM ANALYSIS AND COMPLEXITY
THEORY

A Dissertation
Presented to

The Academic Faculty

By

Shuo Ding

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

College of Computing

Georgia Institute of Technology

Dec 2024

© Shuo Ding 2024

WITNESS FUNCTIONS IN PROGRAM ANALYSIS AND COMPLEXITY
THEORY

Thesis committee:

Dr. Qirun Zhang
School of Computer Science
Georgia Institute of Technology

Dr. Suguman Bansal
School of Computer Science
Georgia Institute of Technology

Dr. Vijay Ganesh
School of Computer Science
Georgia Institute of Technology

Dr. Jens Palsberg
Computer Science Department
University of California, Los Angeles

Dr. Vivek Sarkar
School of Computer Science
Georgia Institute of Technology

Date approved: December, 2024

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Dr. Qirun Zhang for his help and guidance

through my PhD journey. In particular, his support and encouragement on my explorations

on logic and computability theory is one of the key reason why this thesis can be formed.

I would also like to thank other committee members, Dr. Suguman Bansal, Dr. Vijay

Ganesh, Dr. Jens Palsberg, Dr. Vivek Sarkar, for agreeing to spend time and provide

valuable feedback on my research.

I enjoyed my two internships, one at Amazon and another one at Meta, during my PhD

study. The internship projects broadened my view on industrial needs and inspired some of

my practical research directions.

I thank my friends that I met in US and China for their help and support. They also pro-

vided many unique perspectives to the research problems that I encountered, and stimulated

my interest in interdisciplinary areas.

Finally, I wish to extend my gratitude to my family for their continuous support.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . x

List of Figures . xi

Summary . xiv

Chapter 1: Introduction . 1

1.1 Thesis Statement . 3

1.2 Thesis Contributions . 3

1.2.1 Witnessability of Undecidable Problems 3

1.2.2 On Witness Functions for Complexity Lower Bounds 4

1.2.3 Example: Mutual Refinements of Context-Free Language Reacha-
bility . 4

1.2.4 Example: Fast Constraint Synthesis for C++ Function Templates . . 5

1.3 Thesis Organization . 7

Chapter 2: Preliminary . 8

2.1 Logic Background . 8

2.1.1 Set Theory . 8

iv

2.1.2 Gödel’s Encoding . 9

2.1.3 Numbering of Programs . 10

2.1.4 Type Systems and Natural Number Encoding 11

2.2 Programming Language Background . 11

2.2.1 L-Reachability . 11

2.2.2 The C++ Template System . 12

Chapter 3: Witnessability of Undecidable Problems 14

3.1 Introduction . 14

3.2 Preliminary . 18

3.2.1 Computability Theory . 18

3.2.2 Decidable Approximations . 20

3.3 Witnessable Problems . 21

3.3.1 Diagonal Halting Problem is Witnessable 22

3.3.2 Witnessability is Closed under Complements 24

3.3.3 Witnessability is Closed under Many-One Reductions 24

3.3.4 Iterative Imprecision Witness Computation 26

3.4 Non-Witnessable Problems . 28

3.5 Cardinalities of the Two Classes of Problems 30

3.6 Case Studies . 32

3.6.1 The Lang Programming Language 33

3.6.2 Overview of Constructions . 33

3.6.3 Case Study 1: Program Analyzers 35

v

3.6.4 Case Study 2: SMT Solvers . 39

3.7 Discussions . 41

3.7.1 The Flexibility of Constructing Imprecision Witnesses 41

3.7.2 The Classification of Undecidable Problems 42

3.7.3 Non-Witnessable Problems in Practice 43

3.7.4 A Counter-Intuitive Fact: “Harder” Problems Do Not Prevent Wit-
nessability . 43

3.8 Related Work . 43

3.9 Chapter Conclusion . 45

Chapter 4: On Witness Functions for Complexity Lower Bounds 46

4.1 Introduction . 46

4.2 Preliminary . 48

4.2.1 Partial Functions from N<ω to N 48

4.2.2 The Programming System . 48

4.2.3 Abstract Complexity Measure . 49

4.3 Complexity Classes and Their Representations 53

4.3.1 Complexity Classes . 53

4.3.2 Representations of Complexity Classes 54

4.4 Witness Functions and Universal Reductions 55

4.4.1 Witness Functions . 55

4.4.2 Universal Reductions . 56

4.5 From Witness Functions to Universal Reductions 57

4.5.1 The Unlabeled Case . 58

vi

4.5.2 The Labeled Case . 60

4.6 The Generalized Hierarchy Theorem . 67

4.7 Relations to the Relativization Barrier . 70

4.8 Related Work . 71

4.9 Chapter Conclusion . 72

Chapter 5: Example: Mutual Refinements of Context-Free Language Reacha-
bility . 73

5.1 Introduction . 73

5.2 Motivating Example . 76

5.3 Preliminary . 79

5.3.1 CFL-Reachability . 79

5.4 Mutual Refinement . 82

5.4.1 Overview . 82

5.4.2 Contributing Edges . 83

5.4.3 Tracing Algorithm . 84

5.4.4 Mutual Refinement Algorithm . 88

5.5 Experiments . 91

5.5.1 Experimental Setup . 92

5.5.2 RQ1: Precision Improvement . 96

5.5.3 RQ2: Performance Overhead . 97

5.5.4 RQ3: Combination with the LZR Algorithm 97

5.6 Discussion . 101

5.6.1 Generality of Mutual Refinement 101

vii

5.6.2 Different Grammars for the Same CFL 102

5.6.3 Order of Mutual Refinement . 102

5.6.4 Cost of Mutual Refinement . 102

5.6.5 Generalization to the Single-Pair Case 103

5.6.6 Generalization to Other Algorithms 104

5.7 Related Work . 104

5.8 Chapter Conclusion . 105

Chapter 6: Example: Fast Constraint Synthesis for C++ Function Templates . . 106

6.1 Introduction . 106

6.2 Preliminary . 111

6.2.1 C++ function templates, constraints, and concepts 111

6.2.2 Problem statement and undecidability 113

6.3 Approach . 114

6.3.1 A simplified calculus . 115

6.3.2 Constraint formalization . 117

6.3.3 Inter-procedural constraint map construction 118

6.3.4 Formula map construction . 121

6.3.5 Formula simplification . 124

6.3.6 Soundness versus soundiness . 124

6.4 Experiments . 127

6.4.1 Overall performance . 128

6.4.2 Precision on algorithm . 130

viii

6.4.3 Error message reduction on algorithm and special_functions . 131

6.5 Case studies . 133

6.5.1 Case 1: Real-world error example of std::binary_search from
StackOverflow . 133

6.5.2 Case 2: Real-world error example of std::sort from StackOverflow135

6.5.3 Case 3: Synthetic error example of boost::math::sign from our
experiments . 137

6.6 Discussions . 138

6.6.1 Matching with pre-defined concepts 138

6.6.2 Generalization . 139

6.6.3 Higher-level semantics of programming languages 139

6.6.4 Usage scenarios . 139

6.7 Related work . 140

6.8 Chapter Conclusion . 141

Chapter 7: Conclusion . 142

7.1 Future Directions . 142

7.1.1 Witness Functions for Undecidable Problems 142

7.1.2 Witness Functions for Complexity Classes 143

7.1.3 Mutual Refinement . 143

7.1.4 C++ Template Constraint Analysis 144

References . 145

ix

LIST OF TABLES

5.1 Time/space complexities of Algorithm 1 and Algorithm 2. The CFL size is
assumed to be a constant, and the input graph is G = (V,E). 88

5.2 Benchmark statistics. 96

5.3 Precision and performance results. We present the number of rounds that
mutual refinement takes to converge, as well as the comparison of pre-
cision/time/space between the straightforward intersection (baseline) and
mutual refinement. “-” means time/space limits are exceeded. 98

5.4 A comparison between the original mutual refinement and the one com-
bined with the LZR algorithm, including precision, time, space, and edge
reduction. “-” means time/space limits for mutual refinement are exceeded. 100

6.1 Overall performance. The execution time includes not only the three steps
described in Section 6.3, but also the actions of generating the rewritten
code, reporting statistical results, etc. 128

6.2 Precision on STL algorithm library. The library requirement is obtained
from the standard document, while the synthesized requirement is gener-
ated by our tool. 130

x

LIST OF FIGURES

2.1 An example of Dyck-reachability. 12

2.2 An example illustrating C++ templates and concepts. 13

3.1 Four cases of an undecidable problem P and its decidable approximation
Q. The grey areas (P△Q) represent the imprecision. The trivial case of
Q = ∅ could be classified as either case (a) or case (d). The rectangle
surrounding each case represents the set of all natural numbers. 16

3.2 The iterative imprecision witness computation. For an undecidable prob-
lem P , starting from a decidable under-approximation Q0, after computing
an imprecision witness t0 for Q0, we incorporate t0 to get a better approxi-
mation Q1, and compute an imprecision witness t1 for Q1, and so on. The
big rectangle surrounding P represents the set of all natural numbers. Other
kinds of approximations (Figure 3.1) are similar. 26

3.3 Syntax and semantics of the simple programming language Lang. Any case
not defined in the semantics is considered invalid where the program is
treated as divergent (non-terminating). 34

3.4 Construction overview: (a) constructing a decision problem D, (b) con-
structing a many-one reduction ≤m from K to D, (c) constructing an ap-
proximation for K (the dashed circle in K) based on the approximation for
D (the dashed circle in D), (d) constructing a witness in K (the black point
in K), (e) mapping the witness in K back to a witness in D (the black point
in D). 36

5.1 A taint analysis example for C++. The goal is to decide whether the value
s can flow into t. The fact is that the value of s cannot flow into t. 76

xi

5.2 The taint analysis graph for Figure 5.1. Vertices are variables and edges

model values flowing among variables: i
(c−→ j represents that i flows into

j via the function call at line c; i
)c−→ j represents that i flows into j via the

function return at line c; i
[f−→ j represents that i flows into the f field of j;

i
]f−→ j represents that the f field of i flows into j. 77

5.3 After running CB-reachability and tracing only the edges contributing to its
results, the graph is simplified. Subsequent execution of CP -reachability
can then conclude that t is not reachable from s. 79

5.4 Two important concepts in mutual refinement. L is a formal language
whose reachability problem is computationally hard, andC is a context-free
language over-approximatingL. The set ofC-contributing edges Ctri(C, (V,E))
over-approximates the set of L-contributing edges Ctri(L, (V,E)). 82

5.5 A Graph illustrating contributing edges. 84

5.6 Mutual refinement’s iteration process on the motivating example discussed
in Section 5.2. It takes two rounds to converge. If we only consider (s, t)-
reachability, then the iteration can stop after the second iteration. 92

5.7 The taint analysis formulation and approximation. 93

5.8 The value-flow analysis formulation and approximation. 95

5.9 Mutual refinement’s performance overhead scatter plots (ratios). Time ra-
tios are mutual refinement’s time consumption numbers divided by the
baseline’s time consumption numbers. Memory ratios are similar. 99

6.1 Erroneous C++ template instantiations without/with constraints. 107

6.2 Complicated constraints with type requirements, compound requirements,
simple requirements, and disjunctions of requirement expressions. 108

6.3 The syntax of C++ templates, constraints, and concepts. 112

xii

6.4 An overview of our approach. First, constraint collection (Section 6.3.3)
traverses each function template to collect constraints into the inter-procedural
constraint map. Second, formula map construction (Section 6.3.4) takes the
inter-procedural constraint map and produces the formula graph, which is
a compact representation of all constraints and their dependencies in the
entire translation unit. Finally, formula simplification (Section 6.3.5) uses
a lightweight algorithm to simplify the constraints into versions that are
suitable to be inserted into the source code. 115

6.5 A simplified calculus for modelling C++ function templates. 116

6.6 Rules for inter-procedural constraint map construction. 119

6.7 A piece of C++ code and its corresponding formula map. 123

6.8 An unsound corner case where our tool inserted over-constrained constraints.
The member function f of S should be invoked on r-values, while our tool
ignores references and uses an l-value to invoke f in the constraint. Note
that requires requires is not a typo: the first requires specifies the
constraint for the template while the second requires starts a constraint
expression. 126

6.9 An example function template that our tool didn’t synthesize constraints. . . 129

6.10 Error message length (number of lines) distribution on algorithm. The
y-axis is of logarithm scale, so most lengths reside in [0, 50). The average
lengths are 30.022 for the original code and 13.019 for the constrained code. 132

6.11 Error message length (number of lines) distribution on special_functions.
The y-axis is of logarithm scale, so most lengths reside in [0, 50). The aver-
age lengths are 43.769 for the original code and 15.826 for the constrained
code. 132

6.12 Error messages comparison on std::binary_search. 134

6.13 Error messages comparison on std::sort. 136

6.14 Error messages comparison on boost::math::sign. 138

xiii

SUMMARY

Proving impossibility results is one of the main themes of program analysis theory and

computability/complexity theory. For example, we can prove a program analysis prob-

lem is undecidable, meaning that there does not exist an algorithm to precisely solve the

problem. As another example, we can prove a problem does not belong to a complexity

class, meaning that every correct algorithm for the problem must exceed the given resource

restriction. In general, given a class C of computational problems and a specific computa-

tional problem P not in C, a witness function maps every candidate Q in C to an input on

which P and Q are different.

We investigate the computational properties of such witness functions and discuss their

implications. In program analysis theory, we prove that a large class of undecidable pro-

gram analysis problems have computable witness functions, including every semantic prop-

erty described in Rice’s theorem. This implies the existence of computable functions

mapping every program analyzer to a more precise program analyzer. Through two real

program analysis tasks (1) CFL-reachability based program analysis for Java and LLVM-

IR and (2) template constraint analysis for C++, we demonstrate that computable witness

functions provide guarantees on the progress of developing more and more precise program

analysis techniques. In complexity theory, we prove that witness functions for major com-

plexity classes are closely related to reductions, and discuss the implications in complexity

class separation proofs.

xiv

CHAPTER 1

INTRODUCTION

Computability theory and complexity theory [1, 2] study the hardness of computational

problems. One of the main themes in these areas is to prove impossibility results, e.g. a

problem is undecidable, is complete in a complexity class, or does not belong to a complex-

ity class. Program analysis and related areas, which are trying to automatically determine

semantic properties of computer programs, often deal with undecidable problems [3, 4, 5,

6] and thus is closely related to computability theory.

However, there are still missing pieces of understanding computability-theoretic foun-

dations for program analysis and complexity-theoretic separation proofs. First, in program

analysis, undecidability [7, 8] and degree structures (e.g., many-one degrees, and Turing

degrees [1]) only tell us the impossibility of solving program analysis problems precisely,

but does not shed light on improving program analysis techniques, which are essentially

decidable approximations of undecidable problems [9, 10, 11]. Second, in complexity-

theoretic separation proofs, the known barrier results, such as the relativization barrier [12]

showing relativizing proofs cannot resolve the P versus NP problem, demonstrate what a

separation proof cannot look like but do not demonstrate what a separation proof must look

like.

We use the concept called witness functions to study more about these impossibility

scenarios. Given a class C of computational problems and a specific computational prob-

lem P /∈ C, a witness function maps every candidate Q ∈ C to an input on which P and

Q are different. It is straightforward to see that the existence of such witness functions is

equivalent to the separation P /∈ C. Witness functions [13, 14] or similar concepts (such

as productive functions [15]) has been considered in previous work for other purposes.

Specifically, we investigate the computational properties of witness functions in two

1

settings: (1) the undecidability of program analysis problems P with respect to the class of

computable functions C, which corresponds to program analysis or verification algorithms,

and (2) the separation of computable problems P from complexity classes C. In the first

case, we prove that many program analysis problems, including all the semantic properties

described in Rice’s theorem [16], admit computable witness functions, which implies the

existence of computable transformations converting any program analyzer to a more precise

program analyzer. In the second case, we prove that the complexity of witness functions

for complexity class separations is closely related to a specific type of reductions, called

“universal reductions”, and deduce properties of such witness functions. This eventually

implies that any correct complexity theoretic separation proof, which asserts the existence

of witness functions, essentially transforms the lower-bounded problem P to a form close

to the artificially constructed problems in time / space hierarchy theorems [17, 18].

On the practical side, we consider two program analysis examples: (1) mutual refine-

ment of CFL-reachability-based program analysis for Java and LLVM-IR and (2) template

constraint analysis for C++. In both cases, the exact problems are undecidable [4, 19]. We

demonstrate that the existence of computable witness functions provide formal guarantees

on the progress of improving such practical program analysis techniques. In the two pro-

gram analysis examples, both of our methods (mutual refinement and constraint synthesis)

can serve as total computable approximations to undecidable problems, and thus com-

putable witness functions can take the implementations of these two methods and generate

corresponding counterexamples, from which more precise techniques can be derived. In

practice, precision improvements on these program analysis techniques are often obtained

by domain-specific knowledge and ad-hoc reasoning, but these efforts may not succeed.

Our computable witness functions, on the other hand, provide computable improvements

that are guaranteed to succeed.

Regarding the practical implications on program analysis, another important detail is

that computable witness functions work on decision problems, so we need to first transform

2

the program analysis problem to a decision problem (with Yes/No answers) and then apply

the witness function. For mutual refinement, a decision problem version asks whether a

specific pair of nodes in the graph is a reachable pair. For template constraint synthesis,

a decision problem version asks whether a specific template parameter is constrained by a

specific predicate.

1.1 Thesis Statement

Properties about computability/complexity theoretic witness functions provide theoretical

guarantees on the progress of developing more and more precise program reasoning algo-

rithms and theoretical implications on complexity class separation proofs.

1.2 Thesis Contributions

In this section, we summarize the four pieces of our work about witness functions, which

correspond to Chapter 3-Chapter 6.

1.2.1 Witnessability of Undecidable Problems

Many problems in programming language theory and formal methods are undecidable, and

practical techniques dealing with these problems are often based on decidable approxi-

mations and are always imprecise. Typically, practitioners use heuristics and ad hoc rea-

soning to identify imprecision issues and improve approximations, but there is a lack of

computability-theoretic foundations about whether those efforts can succeed.

This chapter shows a surprising interplay between undecidability and decidable ap-

proximations: there exists a class of undecidable problems, such that it is computable to

transform any decidable approximation to a witness input demonstrating its imprecision.

We call those undecidable problems witnessable problems. For example, if a program

property P is witnessable, then there exists a computable function fP , such that fP takes

as input the code of any program analyzer targeting P and produces an input program w

3

on which the program analyzer is imprecise. We prove the diagonal halting problem K

is witnessable, and the class of witnessable problems is closed under complements and

many-one reductions. In particular, all “non-trivial semantic properties of programs” men-

tioned in Rice’s theorem are witnessable. We also explicitly construct a problem in the

non-witnessable (and undecidable) class and show that both classes have cardinality 2ℵ0 .

These results offer a new perspective on the understanding of undecidability: for witness-

able problems, although it is impossible to solve them precisely, it is always possible to

improve any decidable approximation to make it closer to the precise solution. This fact

formally demonstrates that research efforts on such approximations are promising.

1.2.2 On Witness Functions for Complexity Lower Bounds

For a (possibly hypothetical) complexity theoretic separation such as SAT /∈ P, consider

a “witness function” w transforming any program in P to an input on which it is different

from SAT. The witness function can be regarded as a constructive form of separation.

This chapter discusses detailed properties of such witness functions, including their close

relations with reductions, and shows three implications: (1) constant additive/multiplicative

factors in complexity class definitions are important in constructive separation proofs, (2)

any successful separation of SAT /∈ P implicitly contains an effort to transform SAT to an

artificial problem similar to the ones in hierarchy theorems, and (3) witness functions exist

in real complexity theoretic proofs. The results are presented in an axiomatic way so they

are mostly machine-independent and complexity-class independent.

1.2.3 Example: Mutual Refinements of Context-Free Language Reachability

Context-free language reachability is an important program analysis framework, but the ex-

act analysis problems can be intractable or undecidable, where CFL-reachability approx-

imates such problems. For the same problem, there could be many over-approximations

based on different CFLs C1, . . . , Cn. Suppose the reachability result of each Ci produces a

4

set Pi of reachable vertex pairs. Is it possible to achieve better precision than the straight-

forward intersection
⋂n
i=1 Pi?

This chapter gives an affirmative answer: although CFLs are not closed under inter-

sections, in CFL-reachability we can “intersect” graphs. Specifically, we propose mutual

refinement to combine different CFL-reachability-based over-approximations. Our key in-

sight is that the standard CFL-reachability algorithm can be slightly modified to trace the

edges that contribute to the reachability results of C1, and C2-reachability only need to

consider contributing edges of C1, which can, in turn, trace the edges that contribute to

C2-reachability, etc. We prove that there exists a unique optimal refinement result (fix-

point). Experimental results show that mutual refinement can achieve better precision than

the straightforward intersection with reasonable extra cost.

Regarding each CFL as a decidable approximation, this refinement process gives an

example of improving such decidable approximations. Furthermore, according to the wit-

nessability result, as long as the undecidable problem is witnessable, there exist more pre-

cise approximations that can be computably obtained even after the fix-point is reached,

which makes a guarantee of success for research efforts aiming to further improve the pre-

cision of the mutual refinement method. In particular, in this specific scenario, the witness

function takes the implementation of mutual refinement as input, and produces a graph to-

gether with a pair of vertices which is unreachable, but mutual refinement concludes that it

is a reachable pair.

1.2.4 Example: Fast Constraint Synthesis for C++ Function Templates

C++ templates are a powerful feature for generic programming and compile-time com-

putations. It is well known that C++ compilers often emit overly verbose template error

messages, and even short error messages often involve unnecessary and confusing imple-

mentation details, which are difficult for developers to read and understand. To address

this problem, C++20 introduced constraints and concepts, which impose requirements on

5

template parameters. The new features can define clearer interfaces for templates and can

improve the compiler diagnostics for failed template instantiations. However, manually

specifying template constraints can still be a non-trivial task, and precise constraint in-

ference is undecidable due to C++ templates’ flexibility. This task becomes even more

challenging when working with legacy C++ projects or with frequent code changes during

development.

This chapter bridges the gap and proposes the first automatic approach to synthesizing

constraints for C++ function templates. Our approach utilizes a lightweight static analysis

to analyze the usage patterns within the template body and summarizes them into con-

straints for each type parameter of the template. The analysis is inter-procedural and uses

disjunctions of constraints to model function overloading. We have implemented our ap-

proach based on the Clang frontend and evaluated it on two C++ libraries chosen separately

from two popular library sets: algorithm from the Standard Template Library (STL) and

special_functions from the Boost library, both of which extensively use templates. Our

tool can process over 110k lines of C++ code in less than 1.5 seconds and synthesize non-

trivial constraints for 30%-40% of the function templates. Furthermore, the constraints

synthesized for algorithm align well with the standard documentation, and on average,

the synthesized constraints can reduce error message lengths by 56.6% for algorithm and

63.8% for special_functions.

Because of the undecidability and witnessability of precise constraint synthesis, our

lightweight method, which is a decidable approximation, can be computably transformed

into a more precise approximation. Thus, properties about witness functions can also pro-

vide guarantees on this seemingly different scenario of program analysis. In particular,

the witness function takes the implementation of the constraint synthesis algorithm as in-

put, and produces a C++ program together with a constraint on a template parameter, such

that the parameter does not require that constraint in reality, but the constraint synthesis

algorithm concludes that it requires that constraint.

6

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents basic concepts and no-

tations used throughout later chapters. Chapter 3 presents the existence of computable

witness functions in a large class of undecidable problems. Chapter 4 studies the wit-

ness functions in the complexity theory setting and proposes implications on complexity

class separation proofs. Chapter 5 presents our first program analysis scenario of formal

language reachability. Chapter 6 presents our second program analysis scenario of C++

template constraint inference. Finally, Chapter 7 concludes the thesis and presents some

future directions.

7

CHAPTER 2

PRELIMINARY

This chapter presents an overall preliminary for the entire document, which includes the

most fundamental concepts and definitions used throughout later chapters. Examples are

provided to illustrate these basic concepts.

2.1 Logic Background

2.1.1 Set Theory

We adopt the standard set theory notations [20]: the “belongs to” relation ∈, the strict

subset relation ⊂, the non-strict subset relation ⊆, the set difference operator \, and the set

symmetric difference operator△. In particular,△ is defined as follows.

A△B = (A \B) ∪ (B \ A).

In addition to that, we use N to denote the set of all natural numbers. Upper case letters

X, Y, Z · · · denote subsets of N, and lower case letters x, y, z · · · denote natural numbers.

Given a set S ⊆ N, the complement of S with respect to N is denoted as Sc, the power set

of S is denoted as P(S), and the characteristic function χS of S is a function from N to the

set {0, 1} defined as follows:

χS(x) =

 1 if x ∈ S

0 if x /∈ S.

We use boldface letters A,B,C, . . . to represent sets of subsets of N, or equivalently, sub-

sets of P(N).

8

2.1.2 Gödel’s Encoding

Two common ways to formulate computability theory and complexity theory are formal

languages [2] and sets of natural numbers [1, 21]. We follow the second approach: studying

the (possibly relative) computability of subsets of N and partial functions from N to N.

Gödel’s encoding [22, 23] is a technique used to encode finite objects (e.g. strings,

trees, etc.) as natural numbers, which is the rationale behind using natural numbers to

discuss computability/complexity. For example, given an alphabet Σ = {a, b, c}, one way

to encode strings in Σ∗ into natural numbers is to first assign a fixed natural number to

every character in the alphabet.

a 7→ 1, b 7→ 2, c 7→ 3

Then we can utilize the infinite list of prime numbers to encode a finite string such as

“aacbb” into products of prime number powers:

21315372112.

By the fundamental theorem of arithmetic [24], every integer greater than 1 can be rep-

resented uniquely as a product of prime numbers, and thus the decoding process is also

computable.

Another way to encode finite objects as natural numbers is to fix an ordered enumeration

of such objects, and then use the index in the list as the encoding of the corresponding

object. For example, we can list all binary strings in the following order.

ϵ, 0, 00, 01, 10, 11, . . .

Then the natural number encoding of 00 is 2, because its index is 2 in the above enumer-

ation. The encoding and decoding of this situation is still computable, because we can

9

enumerate the list until we find the correspondence.

In general, in computability settings, the specific ways of encoding is flexible as long

as both the encoding and the decoding processes are computable.

2.1.3 Numbering of Programs

We will use the notation ϕi(x) frequently in Chapter 3 and Chapter 4, which refers to

program i’s value on input x. Both i and x are natural numbers, and other data types

can be encoded as natural numbers (or equivalently, the binary representations of natural

numbers). In particular, multi-input programs can be represented as single-input programs

via encoding of pairs and tuples. In this way we can enumerate all partial computable

functions {ϕ0, ϕ1, . . .}. The notation “ϕi(x) ↓” means that ϕi is defined on x and the

notation “ϕi(x) ↑” means that ϕi is undefined (or divergent) on x. As an analogy, the

undefined case of partial computable functions corresponds to the error state or the non-

termination state of computer programs on a specific input. A partial computable function

is total if and only if it is defined on every input.

Note that there are infinitely many different indices corresponding to any single partial

computable function, resembling the fact that there are infinitely many ways to implement

the same function in common programming languages. This fact holds for all admissible

numberings according to Rogers’ equivalence theorem [25]: in fact, there exist computable

bijections between any two admissible numberings. A numbering is admissible (which is

also called acceptable [15]) if and only if it satisfies the following conditions.

• The universal function u(e, x) = ϕe(x) is a partial computable function.

• {ϕi : i ∈ N} includes all partial computable functions.

• The S-m-n theorem holds: there exists a total computable function s such that ∀e, x, y ∈

N, ϕs(e,x)(y) = ϕe(x, y).

10

2.1.4 Type Systems and Natural Number Encoding

In real programming languages, type systems [26, 27, 11] are often employed to classify

data types, so a program’s inputs do not need to be natural numbers. Under specific defini-

tions of programming language concepts such as interpreters, the presence of types systems

can affect the computability/complexity theoretic conclusions: for example, the normaliza-

tion barrier does not hold under typed representations of inputs [28].

However, using Gödel’s encoding or similar techniques we can always encode typed

inputs as natural numbers, and in this case the type system’s effects can be reflected using

type error messages, which can be encoded as natural numbers as well. In particular, real-

world typed language interpreters like Haskell GHCi [29] does type-checking inside their

interpreters, emitting type errors (which are essentially special values printed) on ill-typed

input programs. Since programs are eventually represented as strings (and thus can be en-

coded as natural numbers), type checkers built inside interpreters are the common practice.

Under this setting where everything has an untyped representation, the normalization bar-

rier can be recovered [30]. In summary, in computability settings, it is often sufficient to

only consider natural number inputs, and the type system’s effects can be embedded into

natural numbers as well.

2.2 Programming Language Background

2.2.1 L-Reachability

In program analysis, the L-reachability problem is to find pairs (s, t) of vertices such that

there exists a path from s to t, and the edge labels along that path form a string in L.

Definition 1 (L-Reachability). Given a formal language L with a finite alphabet Σ and a

finite graph G = (V,E), where each edge e ∈ E is labeled with a character in Σ, vertex

t ∈ V is L-reachable from vertex s ∈ V if and only if there exists a finite path (with possibly

duplicate vertices and edges) p = s
l1−→ v1

l2−→ . . .
ln−1−−→ vn−1

ln−→ t in the graph such that the

11

s

v1 v2 v3

v4 v5 v6

t

(
()

)

(
) (

(

Figure 2.1: An example of Dyck-reachability.

string l1l2 . . . ln is in the given formal language. R(p) = l1l2 . . . ln is the path string of p.

The zero-length path from a vertex to itself forms the empty string. (s, t) is an L-reachable

pair. The L-reachability problem is to find the set of all L-reachable pairs.

Example 1. Consider the following example of Dyck-reachability, where the Dyck lan-

guage is specified by the following context-free grammar D.

D → D D | (D) | ϵ.

Then the edge-labeled graph shown in Figure 2.1 is an instance of Dyck-reachability. In

this specific case, (s, t) is a D-reachable pair because the path s
(−→ v1

(−→ v2
)−→ v3

)−→ t

forms a string in D.

Fix a formal language L. Any graph G = (V,E) whose edges are labeled with char-

acters in the alphabet of L essentially gives an instance of the L-reachability problem. We

denote this instance as ⟨L, (V,E)⟩. There also exist other variants of L-reachability, such

as the single-pair reachability, which only cares about the reachability between a specific

pair of vertices. In Chapter 5, we focus on all-pairs reachability unless otherwise noted.

2.2.2 The C++ Template System

In C++, a function template F defines a family of functions. Abstractly, F takes a list of

template arguments a⃗ and returns a concrete C++ function F (⃗a); this computation, nor-

mally called template instantiation, is done in compile-time. Since template arguments a⃗

might result in type errors during the instantiation of function template F , a constraint can

be associated with F to specify requirements on F ’s template arguments. A named set

12

#include <concepts>

template <std::integral T>
T three(T x) {

return x + x + x;
}

int main() {}

Figure 2.2: An example illustrating C++ templates and concepts.

of such constraints is called a concept. A concept C is a compile-time predicate taking a

list of template arguments a⃗ and returning true or false, and C can be used to specify

requirements for multiple function templates.

Example 2. Figure 2.2 illustrates the basic mechanism of C++ templates and constraints/-

concepts. The function template three has one template argument T, which is constrained

by the built-in concept std::integral. Constraints and concepts were introduced in

C++20. The constraint specifies that T must be integer types, which can detect erroneous

instantiations early and emit short and easy-to-understand error messages.

13

CHAPTER 3

WITNESSABILITY OF UNDECIDABLE PROBLEMS

3.1 Introduction

Many problems in programming language theory and formal methods (program analy-

sis [3, 4], program verification [5, 6], SMT solving [31, 32], type systems [26, 27, 11],

etc.) consider complicated objects such as programs written in Turing-complete languages,

and those problems are proved to be undecidable. It has been well-known since Turing and

Church [7, 8] that undecidable problems cannot be solved precisely. In practice, perhaps

the best-known technique for handling undecidable problems is utilizing decidable approx-

imations [9, 10, 11]. Undecidability implies that all approximations must be imprecise

on infinitely many inputs—although theoretically important, it is a relatively discouraging

result, and it does not shed light on improving the approximations encountered in practice.

This chapter goes beyond previous work by presenting a surprising interplay between

undecidability and decidable approximations. Specifically, we show that for a large class

of undecidable problems, there exist computable functions that take as input the imple-

mentation (source code) of a decidable approximation and output a witness on which the

approximation is imprecise. At first glance, this result appears counter-intuitive because,

due to the nature of undecidability, for any arbitrarily given input, there is no general way

to tell whether the approximation is imprecise on it. Otherwise, the problem would be de-

cidable. Our result shows that there exists an algorithm that can compute imprecise inputs

from the approximations. Our result does not aim to decide whether the approximations are

imprecise on arbitrary inputs, thus bypassing the undecidability. Furthermore, this enables

an iterative process: after computing a witness and improving the existing approximation,

our result shows that we can always obtain a new witness, i.e., the iterative process leads to

14

more and more precise approximations. Note that this is fundamentally different from the

idea of CounterExample-Guided Abstraction Refinement (CEGAR) [33]: (1) in program

verification, CEGAR often refines abstractions for each input program while we refine the

program verifier itself; and (2) even if we apply the idea of CEGAR to refine a sound1 pro-

gram verifier when the verifier fails to prove the correctness of a program, it is, in general,

undecidable to know whether that is a false positive. On the contrary, our approach directly

constructs correct programs that cannot be proved correct by the verifier.

We state and prove our results using the terminology of computability theory. In the

literature, computability theory has been primarily discussed using formal languages [2]

and sets of natural numbers [1, 21], and the two approaches are equivalent. Our work

adopts the second approach: undecidable problems and their decidable approximations

are both modeled as sets of natural numbers. Our result is general and applies to any

Turing-complete programming language. In particular, natural numbers can encode any

finite amount of information by computable encodings [22, 23]. Consider an undecidable

problem P and its decidable approximations Q in Figure 3.1. Different approximation

abstractions can lead to several set relationships between P and Q: Q is a subset of P

(Figure 3.1a), Q is a superset of P (Figure 3.1b), Q intersects with P but is neither a subset

nor a superset of P (Figure 3.1c), Q is disjoint from P (Figure 3.1d). To discuss all cases

uniformly, we call the symmetric difference P△Q = (P \Q)∪ (Q \P) the imprecision of

the approximation. For example, ifQ is an under-approximation of P , then P△Q = P \Q,

which represents the area of P not covered by Q. Utilizing the symmetric difference P△Q

makes our results more general because the approximations are not restricted to under-

approximations (Figure 3.1a) or over-approximations (Figure 3.1b).

We say an undecidable problem P is witnessable if and only if there exists a partial

computable function wP only depending on P , such that for any decidable approximation

1“Sound” means if the verifier concludes the program is correct, then the program is indeed correct. In
other words, the verifier forms an under-approximation of the set of correct programs, which is typically
implemented by over-approximating programs’ behaviors (thus rejecting some correct programs). This con-
vention is used throughout chapter.

15

P

Q

(a) Under-approximation.

P

Q

(b) Over-approximation.

P Q

(c) Non-disjoint.

P Q

(d) Disjoint.

Figure 3.1: Four cases of an undecidable problem P and its decidable approximation Q.
The grey areas (P△Q) represent the imprecision. The trivial case of Q = ∅ could be
classified as either case (a) or case (d). The rectangle surrounding each case represents the
set of all natural numbers.

Q and its characteristic function2 ϕq (the program implementing ϕq is encoded as a natural

number q), wP (q) is defined (denoted as wP (q) ↓) and wP (q) ∈ P△Q. Therefore, wP (q)

is an imprecision witness of Q and wP is a witness function of P . Our definition resembles

the definition of productive sets in computability theory [16], but we focus on decidable

approximations and do not require the approximation Q to be a subset of P .

This chapter proves the following main results.

1. The diagonal halting problem3 K = {i | ϕi(i) ↓} is witnessable (Theorem 2);

2. If P is witnessable, then its complement P c is also witnessable (Theorem 3);

3. If P1 is witnessable and P1 is many-one reducible to P2, P2 is also witnessable (The-

orem 4).

These facts show that witnessable problems cover many undecidable problems in pro-

gramming language theory and related fields. In particular, all “non-trivial semantics

properties of programs” mentioned in Rice’s theorem [1] and all “non-trivial complexity
2Recall that a set S’s characteristic function is a 0-1 valued function f such that f(x) = 1⇔ x ∈ S.
3The diagonal halting problem and the traditional form of halting problem [2] are many-one reducible to

each other.

16

cliques” mentioned in intensional Rice’s theorem [21] are witnessable. The satisfiability

and validity of first-order logic formulas [7] and the Post correspondence problem [34]

are also witnessable. Witnessability cannot be achieved via simple enumeration: in Fig-

ure 3.1b, by naively enumerating all programs and checking each of them using the char-

acteristic function of Q, we are only guaranteed to find programs in Q or Qc. But for

programs in Q, we may never know whether they are in the symmetric difference area

P△Q (marked as grey in Figure 3.1) because P is undecidable. Our approach, however,

can directly compute a program that belongs to P△Q.

The implications of our result are threefold.

1. It shows the existence of universal ways to identify the precision issues of many al-

gorithms in programming language theory and formal methods, including but not

limited to program analyzers, program verifiers, SMT solvers, etc. The only restric-

tion is that the algorithms should be total (i.e., they terminate on every input).

2. It shows common undecidable problems encountered in programming language the-

ory and formal methods are more “tangible” than the folklore intuition of “being

impossible to solve.” In particular, although they are undecidable, the process of

improving any given decidable approximation is computable. This provides a the-

oretical foundation for justifying why research efforts targeting those problems are

promising and work well in practice.

3. Many mathematical methods used in undecidability proofs are commonly regarded

as ways to prove negative results (e.g., undecidability). However, our results show

that they also give ways to improve any given decidable approximation (thus, they

also have positive effects).

The rest of chapter is organized as follows. Section 3.2 explains our basic notations

and reviews computability theory. Section 3.3 gives our main results about witnessable

problems. Section 3.4 explicitly constructs a non-witnessable problem. Section 3.5 shows

17

the cardinalities of the two classes of problems. Section 3.6 uses two examples (program

analyzers and SMT solvers) to discuss the implications for programming language theory

and related fields. Section 3.7 presents discussions. Section 3.8 surveys related work.

Section 3.9 concludes and discusses future research directions.

3.2 Preliminary

Section 3.2.1 reviews computability theory, and Section 3.2.2 introduces our definition of

decidable approximations.

3.2.1 Computability Theory

Partial Computable Functions We use the standard notion of k-ary partial computable

functions (from Nk to N, 1 ≤ k < +∞), which are partial functions computable by Turing

machines, lambda calculus, or any equivalent models of computation [2, 1]. The default

arity of a partial computable function is one if it is not specified, and we mainly focus

on 1-ary partial computable functions in chapter. In general, discussing 1-ary functions

in computability theory suffices because a k-tuple of natural numbers can be computably

converted to a single natural number and also be computably converted back (e.g., Gödel’s

encoding [22]). The domain of a partial computable function ϕ is the set of inputs on

which ϕ is defined: {x⃗ |ϕ(x⃗) ↓}. If two partial computable functions f and g have the same

domain and output the same value on every input from the domain, then f = g because

they are the same partial computable function.

Numberings For each arity k, we fix an admissible numbering [25] (enumeration) of k-ary

partial computable functions (e.g., the one generated by Kleene’s normal form theorem [1],

or the one corresponding to an enumeration of all Turing machines):

ϕk0, ϕ
k
1, ϕ

k
2, · · · ,

18

where each ϕki , i ∈ N is a partial computable function from Nk to N. If k = 1 we write

ϕi, i ∈ N. As introduced in Section 2.1.3, an index i in the numbering is analogous

to a “program (code)” implementing the corresponding partial computable function, and

Φ(i, x) = ϕi(x) is analogous to an interpreter for the corresponding programming lan-

guage.

Computational Problems A (computational) problem is formulated as a subset of N. For

example, the diagonal halting problem K = {i | ϕi(i) ↓} is the set of natural numbers

representing programs that halt on themselves. The two names “problem” and “set” (of

natural numbers) are used interchangeably throughout this chapter. A problem is decidable

if and only if its characteristic function is a total computable function, where any index for

the characteristic function is called a decider for the problem. Otherwise, the problem is

undecidable.

The following two facts are used in the proofs of our main results.

Fact 1. Decidable sets are closed under complements, finite unions, finite intersections, and

addition/removal of finitely many natural numbers. In particular, any finite set is decidable.

Proof. Those operations can easily be implemented using any Turing-complete program-

ming language. By the Church-Turing thesis, the proof is completed.

Fact 2. If P is an undecidable problem, then both P and P c are infinite.

Proof. If P or P c is finite, then P is decidable by Fact 1, which is a contradiction.

We use the standard definition [1] of computably enumerable (c.e.) problems (also

called recursively enumerable (r.e.) problems). A problem is c.e. if and only if it is the

domain of a partial computable function. A problem is co-c.e. if and only if its complement

is c.e.

Many-One Reductions We use many-one reductions [1] to propagate imprecision wit-

nesses among different problems.

19

Definition 2 (Many-One Reductions). A problem P is many-one reducible to another prob-

lem Q (written as P ≤m Q) if and only if there exists a total computable function f such

that the following holds. f is called a many-one reduction from P to Q.

∀x ∈ N, x ∈ P ⇔ f(x) ∈ Q.

Intuitively, a set P is many-one reducible to a set Q shows that Q is harder than P . In

the above definition, to decide whether a natural number x belongs to P , we can first apply

f on x and then test whether f(x) belongs to Q. Thus if we can decide Q, we can also

decide P .

S-M-N Theorem We extensively use the S-m-n theorem [1] in our proofs. This theorem is

analogous to partial evaluation [35] in programming languages.

Theorem 1 (S-m-n). For any m,n ∈ N, there exists an (m + 1)-ary total computable

function ψmn such that the following holds for all i, x1, · · · , xm, y1, · · · , yn ∈ N.

ϕnψm
n (i,x1,··· ,xm)(y1, · · · , yn) = ϕm+n

i (x1, · · · , xm, y1, · · · , yn).

ψmn roughly corresponds to partial evaluators in programming languages. A trivial im-

plementation of ψmn is wrapping the code of ϕm+n
i (which is i) using fixed values of the first

m inputs.

3.2.2 Decidable Approximations

Decidable approximations are commonly used in program analysis, program verification,

etc., to deal with undecidable problems. Technically, for an undecidable set P , any de-

cidable set of natural numbers could be regarded as an approximation of P , and different

approximations have different precision/guarantees (Figure 3.1).

Definition 3 (Decidable Approximations). Given an undecidable set P , any decidable set

20

Q ⊆ N is a decidable approximation of P . In addition, if Q ⊂ P , then Q is called

a decidable under-approximation of P ; if P ⊂ Q, then Q is called a decidable over-

approximation of P .

Fact 3. If P is an undecidable set, Q is a decidable approximation of P , then P△Q is

infinite.

Proof. If P△Q is finite, because Q is decidable, P is also decidable by Fact 1, which

contradicts the assumption that P is undecidable.

3.3 Witnessable Problems

This section formally defines witnessable problems and presents three main results in Sec-

tion 3.3.1, Section 3.3.2, and Section 3.3.3, respectively. Section 3.3.4 demonstrates that

we can iteratively compute infinitely many imprecision witnesses for each decidable ap-

proximation.

Definition 4. We say an undecidable problem P ∈ P(N) is witnessable if and only if there

exists a partial computable function wP , such that for any decidable approximation Q ⊆ N

and any natural number q such that ϕq = χQ, wP (q) is defined and wP (q) ∈ P△Q. The

partial computable function wP is called a witness function of P , and wP (q) is called an

imprecision witness of Q.

The definition of wP is general. First, it only depends on the problem P and works

on any “implementation” (index) q of any decidable approximation Q. Second, it does not

require the witness function wP to be total computable: it only requires that wP is defined

on all indices of characteristic functions of decidable sets. This definition gives us more

flexibility to construct such witness functions. In this chapter, however, all constructed wit-

ness functions are total computable functions. Third, it only requires the existence of wP .

Whether there exists computable functions mapping P to wP depends on how P is repre-

sented. In particular, many undecidability proofs [1, 21, 36] rely on many-one reductions

21

from the halting problem or its complement. If P is given together with such a many-one

reduction, then we can directly construct wP from the given reduction (Theorems Theo-

rem 2, Theorem 3, and Theorem 4).

Another important observation is that we can decide whether the imprecision witness

is a false positive or a false negative. Indeed, because Q is decidable, if χQ(wP (q)) = 0,

then wP (q) ∈ P \ Q; if χQ(wP (q)) = 1, then wP (q) ∈ Q \ P . This observation enables

iterative imprecision witness computation described in Section 3.3.4.

3.3.1 Diagonal Halting Problem is Witnessable

Our proof idea is inspired by reconsidering the classical undecidability proof [1, 2] of the

diagonal halting problem K based on diagonalization. Specifically, replacing the hypothet-

ical decider for K with an actual decider for any of K’s decidable approximation Q yields

an index in K△Q.

Theorem 2 (Witnessability of Halt). K = {i | ϕi(i) ↓} is witnessable.

Proof. It is well-known that K is undecidable [1, 2]. For any decidable approximation

Q ⊆ N and a natural number q such that ϕq is the characteristic function of Q, we construct

a 2-ary partial computable function f using the universal function (interpreter) for all 1-ary

partial computable functions (which interprets q as ϕq):

f(q, x) =

 ↑ if ϕq(x) = 1

0 if ϕq(x) = 0.

Because f is a 2-ary partial computable function, there exists an index j such that f(q, x) =

ϕ2
j(q, x) for all q, x ∈ N. By the S-m-n theorem, there exists a 2-ary total computable

function ψ such that ϕ2
j(q, x) = ϕψ(j,q)(x) for all q, x ∈ N. Next, we claim that ψ(j, q) ∈

K△Q by case analysis. To demonstrate this, we show that ψ(j, q) /∈ K ∩Q and ψ(j, q) /∈

(K ∪Q)c both by contradiction, and these two facts imply ψ(j, q) ∈ K△Q.

22

1. If ψ(j, q) ∈ K ∩Q, then naturally ψ(j, q) ∈ Q, so we have

ϕq(ψ(j, q)) = 1

=⇒ f(q, ψ(j, q)) ↑

=⇒ ϕ2
j(q, ψ(j, q)) ↑

=⇒ ϕψ(j,q)(ψ(j, q)) ↑ .

However, because ψ(j, q) ∈ K, we have ϕψ(j,q)(ψ(j, q)) ↓, which is a contradiction.

2. If ψ(j, q) ∈ (K ∪Q)c, in particular ψ(j, q) /∈ Q, so we have

ϕq(ψ(j, q)) = 0

=⇒ f(q, ψ(j, q)) = 0

=⇒ ϕ2
j(q, ψ(j, q)) = 0

=⇒ ϕψ(j,q)(ψ(j, q)) = 0.

But on the other hand, since ψ(j, q) /∈ K, we have ϕψ(j,q)(ψ(j, q)) ↑, which is a

contradiction.

Combining the above two facts, we conclude that ψ(j, q) ∈ K△Q. The witness function

can be set as wK(q) = ψ(j, q). In particular, this wK is a total function.

The above theorem shows K is witnessable by constructing a valid witness function

wK . However, there exists more than one witness function for K as discussed in Sec-

tion 3.7.1. Moreover, we show in Sections Section 3.3.2 and Section 3.3.3 that the class

of witnessable problems is closed under complements and many-one reductions. In that

sense, K is the starting point for deriving witnessable problems, but this does not mean

that K is the only such starting point.

23

3.3.2 Witnessability is Closed under Complements

The proof expresses the witness function for the complement problem P c using the witness

function for the original problem P .

Theorem 3 (Complement Closure). If an undecidable problem P is witnessable, then its

complement P c is also witnessable.

Proof. Suppose P is witnessable, and then there exists a partial computable function wP

such that for any decidable set Q and any natural number q such that ϕq computes χQ,

wP (q) is defined and wP (q) ∈ P△Q. Now consider P c. For any decidable set R and

any natural number r such that ϕr computes χR, consider the following 2-ary partial com-

putable function:

g(r, x) =

 0 if ϕr(x) = 1

1 if ϕr(x) = 0.

Without loss of generality, assume that g(r, x) = ϕ2
l (r, x). By the S-m-n theorem, there

exists a 2-ary total computable function ψ such that ϕ2
l (r, x) = ϕψ(l,r)(x) for all r, x ∈ N.

Clearly, ϕψ(l,r)(x) is the characteristic function ofRc. Now considerwP (ψ(l, r)): according

to the definition of wP , wP (ψ(l, r)) is defined and wP (ψ(l, r)) ∈ P△Rc = P c△R. Thus,

we can set wP c(r) = wP (ψ(l, r)).

3.3.3 Witnessability is Closed under Many-One Reductions

Assume that P1 ≤m P2 and P1 has a witness function; we show that P2 also has a witness

function. The proof composes a decidable approximation Q2 of P2 with the reduction from

P1 to P2; this gives a decidable approximation Q1 of P1. Because we assume P1 has a

witness function, we can use that witness function to compute an imprecision witness for

Q1, and finally convert it back to an imprecision witness for Q2.

The main technique used in our proof of Theorem 4 shares the same insight with [37]’s

proof showing that if A is a creative set, A ≤m B, and B is c.e., then B is creative. But

24

[37]’s proof only targets one set relation (by definition, the productive function only con-

siders c.e. subsets of the creative set’s complement), while our proof handles symmetric

difference, which covers all possible relations between a witnessable problem and its de-

cidable approximations.

Theorem 4 (Many-One Reduction Closure). If an undecidable problem P1 is witnessable,

and P1 ≤m P2, then P2 is also witnessable.

Proof. Because P1 is witnessable, there exists a witness function wP1 for P1. With the

assumption P1 ≤m P2, let f be a many-one reduction (a total computable function) from

P1 to P2. According to the definition of many-one reductions (Definition Definition 2),

∀x ∈ N, x ∈ P1 ⇔ f(x) ∈ P2. To prove that P2 is witnessable, we show that there exists a

witness function wP2 , such that for any computable set Q2 and any natural number q2 such

that ϕq2 = χQ2 , wP2(q2) is defined and wP2(q2) ∈ P2△Q2. Consider the total computable

function g(x) = ϕq2(f(x)). It is a total computable function with function values in {0, 1},

so it is a characteristic function of some decidable set Q1. We can construct the following

partial computable function:

h(i1, i2, x) = ϕi1(ϕi2(x)).

Suppose the index of h is j. By the S-m-n theorem, there exists a 3-ary total computable

function ψ such that h(i1, i2, x) = ϕψ(j,i1,i2)(x) for all i1, i2, x ∈ N. Because f is known,

suppose it has an index k, and we have g(x) = h(q2, k, x) = ϕψ(j,q2,k)(x). Thus, we

obtained an index q1 = ψ(j, q2, k) for χQ1 . By the definition of wP1 , wP1(q1) ∈ P1△Q1.

Now we claim that f(wP1(q1)) ∈ P2△Q2.

1. If f(wP1(q1)) ∈ P2∩Q2, then naturally we also have f(wP1(q1)) ∈ Q2, so wP1(q1) ∈

f−1(Q2) = Q1. But on the other hand, because f(wP1(q1)) ∈ P2, according to the

definition of f , wP1(q1) ∈ P1. Combining those two, we have wP1(q1) ∈ P1 ∩ Q1,

which is a contradiction because wP1(q1) ∈ P1△Q1.

25

P

Q0

Q1

Q2

t0 t1 t2
· · ·

Figure 3.2: The iterative imprecision witness computation. For an undecidable problem P ,
starting from a decidable under-approximation Q0, after computing an imprecision witness
t0 for Q0, we incorporate t0 to get a better approximation Q1, and compute an imprecision
witness t1 for Q1, and so on. The big rectangle surrounding P represents the set of all
natural numbers. Other kinds of approximations (Figure 3.1) are similar.

2. If f(wP1(q1)) ∈ (P2 ∪ Q2)
c, then we have wP1(q1) /∈ f−1(Q2) = Q1. According

to the definition of f , we also have wP1(q1) /∈ P1. Combining those two, we have

wP1(q1) ∈ (P1 ∪Q1)
c, which contradicts the fact that wP1(q1) ∈ P1△Q1.

Clearly,wP2(x) = f(wP1(ψ(j, x, k))) is a witness function for P2, so P2 is witnessable.

There are many undecidable problems that can be proved by many-one reductions from

K. In particular, all non-trivial semantic properties of programs mentioned in Rice’s theo-

rem are many-one reducible from K [1], and thus they are all witnessable according to the

above theorem. Formally, an index set I is a subset of N satisfying ∀i ∈ I,∀j ∈ N, (ϕi =

ϕj =⇒ j ∈ I). An index set I is non-trivial if and only if I ̸= ∅ and I ̸= N.

Corollary 1. All non-trivial index sets are witnessable.

Proof. Since there exists a many-one reduction fromK to any non-trivial index set [1], this

corollary immediately follows from Theorem 2 and Theorem 4.

3.3.4 Iterative Imprecision Witness Computation

This section shows that we can compute infinitely many imprecision witnesses for each

approximation of each witnessable problem: computing an imprecision witness, incor-

26

porating it into the approximation (in possibly naive ways), and repeating this process.

Figure 3.2 illustrates this process based on under-approximations.

Note that a similar iterative process can also be done for productive sets and their c.e.

subsets [16], but in that case, the iterative process can only be done for subsets by definition,

while our construction uses symmetric difference to handle more general set relations. This

requires our observation “P \Q and Q \ P can be distinguished by the computable set Q,”

so that we can determine whether the witness is a false positive or a false negative.

Theorem 5 (Iterative Witnesses). If a problem P is witnessable and Q is a decidable ap-

proximation of P , then there is a 2-ary total computable function t such that for any ϕq

computing χQ, {t(q, 0), t(q, 1), . . .} is an infinite list of different imprecision witnesses for

Q.

Proof. We describe how t works. First, t(q, 0) is defined as wP (q). Let t0 = t(q, 0). We

mainly discuss the case where t0 ∈ P \ Q and the other case (t0 ∈ Q \ P) is similar. The

two cases can be computably distinguished (becauseQ is decidable), so we can let t choose

the correct case.

When t0 ∈ P \ Q, we augment Q to obtain Q′ = Q ∪ {t0}. The index for χQ′ can be

obtained using the following process. Consider the partial computable function g defined

as follows:

g(y, z, x) =

 1 if x = z

ϕy(x) if x ̸= z.

Obviously, h(x) = g(q, t0, x) computes χQ′ . Suppose the index of g is j. By the S-m-n

theorem we have a 3-ary total computable function ψ such that g(y, z, x) = ϕψ(j,y,z)(x) for

all y, z, x ∈ N. Thus, ψ(j, q, t0) is an index for χQ′ . If we apply the witness function wP for

P again on ψ(j, q, t0), then we havewP (ψ(j, q, t0)) ∈ P△Q′, so t1 = wP (ψ(j, q, t0)) ̸= t0.

When t0 ∈ Q \ P , the set Q \ {t0} is also computable, and a similar construction of t1

can be done.

27

We define t(q, 1) as t1. For any n ∈ N and n ≥ 1, repeating these computation steps

n-times gives the definition of t(q, n).

The above theorem leads to an important implication: any witnessable problem must

contain an infinite c.e. set because we can start from letting Q = ∅. This serves as a

cornerstone for our construction of non-witnessable problems discussed in Section 3.4.

3.4 Non-Witnessable Problems

Section 3.3 shows that witnessable problems include many undecidable problems. In this

section, we construct an undecidable problem that is non-witnessable.

Lemma 1. Given a witnessable problem P ∈ P(N), there exists a computably enumerable

set E ⊆ P , such that both E and Ec are infinite.

Proof. Suppose P is witnessable and let Q = ∅ be a decidable under-approximation

of P . According to Theorem 5, we can compute infinitely many imprecision witnesses

t0, t1, t2, · · · ∈ P△Q = P . This list is clearly computably enumerable, and we let

E = {t0, t1, t2, · · · } ⊆ P . Because P c is infinite by Fact 2 and Ec ⊇ P c, it is imme-

diate that Ec is infinite.

Based on the above lemma, we can construct an undecidable problem X not containing

any c.e. set E such that both E and Ec are infinite. These sets are known as immune

sets [16]. Specifically, a set I ⊂ N is immune if and only if I is infinite but does not

contain any infinite c.e. set. Instead of directly adopting this definition, we provide our own

construction to form a basis for proving Theorem 8 and make chapter more self-contained.

Our proof of Theorem 6 first lists all co-c.e. sets where both the sets and their comple-

ments are infinite (there are only countably many co-c.e. sets). Then, by a diagonalization-

style construction, we can get a set X and prove that X is non-witnessable. The con-

struction inherits some techniques of the construction in [38]. However, [38] constructs a

simple set (i.e., a c.e. set whose complement is immune), so its construction process needs

28

to be c.e. On the contrary, we construct an immune set directly and do not require the

construction process to be c.e.

Theorem 6 (Non-Witnessable Problem). There exists a non-witnessable undecidable prob-

lem X .

Proof. We list all co-c.e. sets C0, C1, C2, · · · such that for all i ∈ N, both Ci and Cc
i are

infinite. It is easy to see that we can make this listC0, C1, C2, · · · and also this list is infinite,

because there are countably infinitely many c.e. sets such that both themselves and their

complements are infinite. Now we construct a set Y by the following (infinite) process.

• Pick an arbitrary number y0 from Cc
0, and include y0 into Y .

• For each i ∈ N and i ≥ 1, pick an arbitrary number yi fromCc
i such that yi > yi−1+1,

and include yi into Y .

This process is infinite because Cc
i is infinite for every i ∈ N. Now let X = Y c, and we

claim that X is non-witnessable.

1. It is easy to see that both X and Y are infinite, because Y = {y0, y1, y2, · · · } is an

infinite set and because we ensure that yi > yi−1 + 1, the infinite set {y0 + 1, y1 +

1, y2 + 1, · · · } is not included in Y .

2. We then show that X is undecidable. Indeed, if X is decidable, then Y = Xc is also

decidable, and because decidable sets are co-c.e., we have Y = Cj for some j ∈ N.

However, due to the construction, Y is different from every Ci (because we pick at

least one element from Cc
i and include it into Y), which is a contradiction.

3. Finally, we show that X does not contain any c.e. set E such that both E and Ec

are infinite. Suppose there exists such an E, then X ⊇ E, Y ⊆ Ec, and Ec is an

infinite co-c.e. set. Therefore, there exists a j ∈ N such that Y ⊆ Cj . However, due

to the construction of Y , we know that Y contains at least one element from every

Cc
i , which is a contradiction.

29

Lemma 1 claims that every witnessable problem must contain an infinite c.e. subset whose

complement is also infinite, but X does not contain such a subset, so X cannot be witness-

able.

Explicitly constructing different kinds of “imprecision witnesses” is prevalent in math-

ematical logic. For example, Cantor’s theorem states that for any set S, the cardinality of

P(S) is strictly greater than the cardinality of S, and the typical proof is for any given

injection f from S to P(S), we explicitly construct a set {x ∈ S | x /∈ f(x)} that is not

in f ’s range [20]. As another example, in the classical proof of Gödel’s first incomplete-

ness theorem [22], for each formal system satisfying the conditions of that theorem, we

can explicitly construct a “Gödel sentence” that is neither provable nor disprovable from

the axioms of the formal system. In our case, witness functions only exist for witnessable

problems.

3.5 Cardinalities of the Two Classes of Problems

The classes of witnessable problems and non-witnessable problems are both large. This

section discusses the flexibility of constructing witnessable problems and non-witnessable

problems and then proves that both classes of problems have cardinality 2ℵ0 .

We show that the class of witnessable problems has cardinality 2ℵ0 based on the fact

that this class is closed under many-one reductions (Theorem 4). Indeed, for the diagonal

halting problem K, it is easy to construct a many-one reduction f from K to another

problem such that N \ (f(K) ∪ f(Kc)) is infinite. The exact boundary between f(K) and

f(Kc) can vary a lot: we can construct continuum many problems reducible from K. An

immediate consequence is that many witness functions are shared by different witnessable

problems, because the number of witness functions is countable.

Theorem 7 (Witnessable Class’ Cardinality). There are 2ℵ0 witnessable problems.

Proof. By Theorem 2 and Theorem 4, we know that any problem P such that K ≤m P

30

is witnessable. We show that there are continuum many such problems. First, it is easy

to construct a decidable set H such that H is infinite and H ⊂ K. This could be done,

for example, by letting H be all Gödel numbers of terms that do not use the unbounded

minimization operator. Pick a Gödel number j ∈ K \H (so ϕj is a total recursive function

and the term corresponding to j uses the unbounded minimization operator) and consider

the following total computable function:

f(x) =

 j if x ∈ H

x else.

It is easy to verify that f(K) = K \H and f(Kc) = Kc. Now, we can map the elements in

the set 2N (whose elements are countably infinite sequences of 0’s and 1’s) to the subsets of

H in a straightforward way, using an injection η from 2N to P(H). For each point s in 2N,

we obtain a unique witnessable set f(K)∪ η(s), because K ≤m f(K)∪ η(s) by the above

total computable function f . On the other hand, it is clear that there is an injection from the

class of witnessable problems to P(N). Because both P(H) and P(N) have the cardinality

2ℵ0 , due to the Cantor-Bernstein theorem [20], the cardinality of the class of witnessable

problems is 2ℵ0 .

The fact that there are continuum many non-witnessable problems is established by

considering the diagonalization-style construction ofX in Theorem 6: we are free to tweak

the choice of each element in X so that we have two choices on each step. This gives

continuum many versions of X .

Theorem 8 (Non-Witnessable Class’ Cardinality). There are 2ℵ0 non-witnessable prob-

lems.

Proof. Similar to the proof of Theorem 7, we only need to construct an injection from 2N

to the class of non-witnessable problems. To this end, we generalize the construction of the

set Y in Theorem 6 as follows.

31

• Pick two arbitrary numbers y0,0 and y0,1 from Cc
0, and include either y0,0 or y0,1 into

Y .

• For each i ∈ N and i ≥ 1, pick two arbitrary numbers yi,0 and yi,1 from Cc
i such that

min(yi,0, yi,1) > max(yi−1,0, yi−1,1) + 1, and include either yi,0 or yi,1 into Y .

Because there are two choices for each step and there are countably infinitely many steps

for constructing Y , we can easily correspond different elements in 2N with different con-

structed versions of Y , resulting in different versions ofX = Y c. This is indeed an injection

from 2N to the class of non-witnessable problems, and it completes the proof.

Because the two classes of undecidable problems have the same cardinality, we can

regard these two classes as “having the same size.” Because witnessable problems can be

regarded as having a computable property (we can computably construct imprecision wit-

nesses for any given approximation), this fact contrasts with decidable sets: the cardinality

of the class of decidable sets is ℵ0, which is strictly “smaller” than the cardinality of the

class of undecidable sets (2ℵ0).

3.6 Case Studies

This section presents two examples to demonstrate witness constructions using a simple

programming language (defined in Section 3.6.1). Specifically, we convert the code of a

sound sign analyzer to a program on which the analyzer is imprecise (Section 3.6.3), and

convert the code of a sound string solver to a string formula on which the solver is imprecise

(Section 3.6.4).

The constructions are not restricted to the two case studies. Moreover, the constructions

are independent of the implementations of the program analyzers and SMT solvers. The

analyzers and solvers do not need to be sound or complete. The only requirement is that

they are written in Turing-complete programming languages and are total. In practice, both

program analyzers and SMT solvers can be designed to run forever on certain cases, but

32

it is easy to convert them to total programs by reporting ”unknown” when their executions

exceed certain resource limits.

Finally, the constructions discussed in this section do not intend to be the most cost-

effective realizations to be used in practice, but show the theoretical possibility of com-

puting such imprecision witnesses. Also, Section 3.7.1 shows that we can apply code

optimizations on many steps during the construction, which creates more possible ways to

realize this construction.

3.6.1 The Lang Programming Language

We discuss the construction based on a simple, but Turing-complete dynamically-typed

programming language Lang defined in Figure 3.3. Lang resembles a very small subset

of Racket [39]. Lang supports two basic types: (unbounded) integers and strings. Data

structures definable in other programming languages can be encoded to (or decoded from)

integers or strings.

The term (F e∗) in Lang’s definition represents all basic operations on basic types

(such as integer arithmetic and comparisons). In the extreme case, we can stipulate F to

represent all total computable functions, which is similar to [40]’s language definition.

We show our construction using Lang, but our construction is completely language-

agnostic, i.e., specific language features such as syntax, semantics, and type systems do not

affect our construction as long as the language is Turing-complete.

3.6.2 Overview of Constructions

Figure 3.4 gives an overview of our case studies. Without loss of generality, we assume the

analyzers and solvers are sound, meaning that they give under-approximations for the cor-

responding decision problems. Similar constructions can always be done for other kinds of

approximations. Our construction consists of five steps based on our proofs of Theorem 2,

Theorem 3, and Theorem 4.

33

var ∈ Var
e ::= var | a ∈ Int | s ∈ Str | (lambda (var∗) e)
| (F e∗)
| (letrec ((var e)∗) e)
| (if e e e)
| (call e e∗)

(a) Syntax of Lang. The notation “∗” means the preceding symbol or parenthesized symbols occur
zero or more times.

Jenv, varK = deref[env[var]]
Jenv, aK = a
Jenv, sK = s

Jenv, (lambda (var∗) e)K = ⟨env, ⟨var∗, e⟩⟩
Jenv, (F e∗)K = F [Jenv, eK∗]

Jenv, (letrec ((var e1)∗) e2)K = Jenv + bindrec[env, var∗, e1∗], e2K
Jenv, (if e1 e2 e3)K = ite[Jenv, e1K, env, e2, e3]
Jenv, (call e1 e2∗)K = Jenv0 + {(var 7→ new[Jenv, e2K])∗}, e0K

where ⟨env0, ⟨var∗, e0⟩⟩ = Jenv, e1K

bindrec[env, var∗, e∗] = (deref[env1[var]]← Jenv + env1, eK)∗; env1
where env1 = {(var 7→ new[undefined])∗}

ite[true, env, e1, e2] = Jenv, e1K
ite[false, env, e1, e2] = Jenv, e2K

new[val] = Memory← Memory ∪ {loc 7→ val}; loc
deref[loc] = Memory[loc]

(b) Semantics of Lang. Jenv, eK means the evaluation result of the expression e in the environment
env (mapping variables to memory locations). The order in env realizes variable shadowing. The
initial environment is empty. ⟨⟩ means pairs. a; b means sequencing (evaluating from left to right
and returning the last value).

Figure 3.3: Syntax and semantics of the simple programming language Lang. Any case
not defined in the semantics is considered invalid where the program is treated as divergent
(non-terminating).

34

1. Problem Construction (Figure 3.4a). Construct a target decision problem D.

2. Problem Reduction (Figure 3.4b). Construct a many-one reduction from the diagonal

halting problem K or its complement Kc to D.

3. Approximation Construction (Figure 3.4c). Propagate the under-approximation of D

to an under-approximation of K or Kc.

4. Witness Construction (Figure 3.4d). Construct an imprecision witness in K or Kc.

5. Witness Mapping (Figure 3.4e). Map the imprecision witness in K or Kc back to an

imprecision witness in D.

Theorem 2 give the starting point for constructing witnesses, and Theorem 3 and Theo-

rem 4 gives the flexibility to propagate witness constructions along complements and many-

one reductions. Our construction steps follow these theorems. Overall, the construction

steps specify an algorithm (the witness function) taking as input the under-approximating

program for D (which is obtained by simply wrapping the code of the given program ana-

lyzer/SMT solver), and producing an output on which the original program analyzer/SMT

solver is imprecise. Once the problemD and the many-one reduction fromK orKc toD is

fixed, this algorithm is also fixed, which is independent of any specific under-approximating

program analyzers/SMT solvers.

3.6.3 Case Study 1: Program Analyzers

Given the code of a sound sign analyzer for Lang programs, we construct a program on

which this analyzer is imprecise.

Analyzer Model. We stipulate that a sign analyzer takes as input a program and returns the

following analysis results.

− 0 +

top

35

D

(a) Problem.

K or Kc

≤
m

D

(b) Reduction.

K or Kc

≤
m

D

(c) Approximation.

K or Kc

≤
m

D

(d) Witness.

K or Kc

≤
m

D

(e) Mapping back.

Figure 3.4: Construction overview: (a) constructing a decision problem D, (b) construct-
ing a many-one reduction ≤m from K to D, (c) constructing an approximation for K (the
dashed circle in K) based on the approximation for D (the dashed circle in D), (d) con-
structing a witness in K (the black point in K), (e) mapping the witness in K back to a
witness in D (the black point in D).

Specifically, “−,” “0,” and “+” denote that the input program, on every input, always halts

and produces a negative integer, the integer 0, and a positive integer, respectively. The

special value “top” indicates either the program does not satisfy any of the aforementioned

cases or the sign analyzer is unable to determine the program’s output sign. In particular,

practical program analyzers typically produce error messages on invalid programs, and our

construction can wrap those analyzers so that they return “top” on invalid programs.

The Construction. Our construction requires a sound sign analyzer written in Lang for

Lang programs and a Lang interpreter written in Lang. Their internal implementations

are unconstrained. The sign analyzer is a (total) lambda taking an arbitrary Lang lambda

(represented as a string) as input, and outputting “+,” “−,” “0,” or “top.”

1 (lambda (program)

2 (...code_of_analyzer...))

The Lang interpreter is a (partial) lambda that takes as input a single-parameter Lang

lambda (represented as a string) with its input (also represented as a string), and returns

the execution result of running the input lambda on the input (if it terminates). If the in-

put is invalid4 or a runtime error occurs during the interpretation, the interpreter enters an

infinite loop.

4The interpreter can also perform static type checking before the execution.

36

1 (lambda (program, input)

2 (...code_of_interpreter...))

Step 1: Problem Construction We convert the sign analysis problem to the problem D

of verifying whether the input program returns a positive integer on every input. The sign

analyzer can be converted to a program verifier for D, which is shown as follows. The

return values of the verifier could be “correct” or “unknown.” By the soundness of the sign

analyzer, the verifier is an under-approximation of D. Note that “=” is one of the basic

operations F in Lang’s definition.

1 (lambda (program)

2 (letrec ((analyzer

3 (lambda (program)

4 (...code_of_analyzer...))))

5 (if (= (call analyzer program) "+")

6 "correct"

7 "unknown")))

Step 2: Problem Reduction We construct a many-one reduction from the diagonal halt-

ing problem to the problemD constructed in Step 1. The reduction, assuming that the input

is the code of a program p1, returns the code of another program p2 such that p2 returns a

positive integer on every input if and only if p1 terminates on itself. The function format

denotes filling placeholders ([]) in a string with extra string arguments (preserving quotes).

For example, (format "A[]C" "b") evaluates to "A\"b\"C". Note that format is one of the basic

operations F in Lang’s definition.

1 (lambda (program)

2 (format

3 "(lambda (input)

4 (letrec ((interpreter

5 (lambda (program, input)

6 (...code_of_interpreter...))))

7 (if (call interpreter [] [])

8 1

9 0)))"

37

10 program program))

Step 3: Approximation Construction Using the reduction in Step 2, we convert the

verifier in Step 1 to the following program q that under-approximates K.

1 (lambda (program)

2 (letrec ((verifier (...code_of_verifier...))

3 (reduction (...code_of_reduction...)))

4 (if (= (call verifier (call reduction program)) "correct")

5 "terminating"

6 "unknown")))

Step 4: Witness Construction Now we have the code of q that under-approximates K.

Based on the proof of Theorem 2, we construct the following imprecision witness (pro-

gram) witnessing the imprecision of q: the code of this program is in K, but q returns

“unknown” on it.

1 (lambda (program)

2 (letrec ((q (...code_of_q...)))

3 (if (= (call q program) "terminating")

4 (letrec ((loop (lambda () (call loop)))) (call loop))

5 0)))

Step 5: Witness Mapping According to the definition of the reduction in Step 2, the

returned string of the following function call is an imprecision witness for the verifier that

we constructed in Step 1, meaning that this witness terminates and returns a positive integer

on every input, but the verifier returns “unknown” on it. As a result, the sign analyzer

returns “top” on it.

1 (letrec ((reduction (...code_of_reduction...)))

2 (call reduction "(...code_of_the_witness_for_K...)"))

38

3.6.4 Case Study 2: SMT Solvers

This section discusses our construction for a specific type of SMT solvers: string solvers.

Specifically, we consider the validity problem of the set of sentences written as a ∀∃ quanti-

fier alternation applied to positive word equations described in [36]’s work. For simplicity,

we use S to denote the set of such sentences. Given the code of a sound solver for the va-

lidity problem of S sentences, we construct a valid S sentence on which the solver cannot

conclude its validity.

Solver Model. We stipulate that a string solver takes an S sentence and returns either

“valid,” “invalid,” or “unknown.” Because the validity problem of S sentences is undecid-

able [36], any such solver must return “unknown” for some actually valid sentences.

The Construction. Our construction only requires a sound S solver written in Lang. The

solver is a (total) lambda taking an S sentence (represented as a string) as input and out-

putting “valid,” “invalid,” or “unknown.” If the input is not an S sentence, the solver should

return “unknown.”

1 (lambda (sentence)

2 (...code_of_solver...))

Step 1: Problem Construction The first step is to construct a decision problem D: the

validity problem of S sentences. Because we assume the solver can return three different

values, we wrap it into a lambda that returns only two values: “valid” or “unknown.” By

the soundness of the original solver, the wrapped solver results in an under-approximation

of D.

1 (lambda (sentence)

2 (letrec ((solver

3 (lambda (sentence)

4 (...code_of_solver...))))

5 (if (= (call solver sentence) "valid")

6 "valid"

7 "unknown")))

39

Step 2: Problem Reduction The second step is to construct a many-one reduction from

Kc to the problem D constructed in Step 1. This step is based on a result due to [36].

Specifically, given a two-counter machine M and a finite string w, [36] construct an S

sentence such that M does not halt on w if and only if this sentence is valid, and we denote

this construction as f . For simplicity, we encode M and w into a single string Mw. On the

other hand, because two-counter machines can simulate arbitrary Turing machines [36], we

also have a computable function g such that for any pair of Lang program and input (L, v),

both of which are represented as strings, g((L, v)) = Mw is a string encoding a two-

counter machine and its input such that M applied to w behaves the same as L applied to

v. Finally, we construct the following reduction from Kc to D using f and g. Specifically,

the input Lang program does not halt on itself if and only if the output is a valid S sentence.

1 (lambda (program)

2 (letrec ((f (lambda (Mw) (...code_of_f...)))

3 (g (lambda (L v) (...code_of_g...))))

4 (call f (call g program program))))

Step 3: Approximation Construction Using the reduction in Step 2, we convert the

wrapped solver in Step 1 to the following program q that under-approximates Kc.

1 (lambda (program)

2 (letrec ((wrapped_solver (...code_of_wrapped_solver...))

3 (reduction (...code_of_reduction...)))

4 (if (= (call wrapped_solver (call reduction program)) "valid")

5 "non-terminating"

6 "unknown")))

Step 4: Witness Construction Now we have the code of q that under-approximates Kc.

Based on the proofs of Theorem 2 and Theorem 3, we construct the following impreci-

sion witness (program) witnessing the imprecision of q: its code is in Kc but q returns

“unknown” for it.

1 (lambda (program)

2 (letrec ((q (...code_of_q...)))

40

3 (if (= (call q program) "non-terminating")

4 0

5 (letrec ((loop (lambda () (call loop)))) (call loop)))))

Step 5: Witness Mapping According to the definition of the many-one reduction in

Step 2, the returned string of the following function call is an imprecision witness for the

wrapped solver that we constructed in Step 1, meaning that it is a valid S sentence but

the wrapped solver returns “unknown” on it. As a result, the original solver also returns

“unknown” on it.

1 (letrec ((reduction (...code_of_reduction...)))

2 (call reduction "(...code_of_the_witness_for_Kc...)"))

3.7 Discussions

3.7.1 The Flexibility of Constructing Imprecision Witnesses

In general, the construction of imprecision witnesses is flexible. For example, for a specific

undecidable problem P such thatK ≤m P (via the many-one reduction f), the construction

of imprecision witnesses for a decidable approximation Q of P is parameterized by at least

the following factors:

• Different programs (indices) of Q;

• Different programs (indices) of f−1(Q); and

• Different reductions f from K to P .

In particular, we can apply program optimizations on the program of Q and the program

of f−1(Q). In addition, Theorem 5 states that we can perform iterative construction of

imprecision witnesses indefinitely, where the method to “improve” the approximation at

each step is also flexible.

Moreover, as mentioned in Section 3.3.1, K might not be the only starting point of

the reduction. In particular, the construction of imprecision witnesses for K might be

41

generalized to other diagonalization-based undecidability proofs, which we leave for future

work.

3.7.2 The Classification of Undecidable Problems

Degree structures (e.g., many-one degrees, and Turing degrees [1]) are commonly used to

classify problems based on their relative computability. Our witnessable/non-witnessable

problems, on the other hand, classify undecidable problems based on their “computable

approximability”: witnessable problems admit computable approximation improvements,

while non-witnessable problems do not. We can still design decidable approximations

for non-witnessable problems, but we do not have computable ways to automatically find

imprecision witnesses.

We also compare our definition with several other classes of sets in computability the-

ory. First, the class of witnessable problems is indeed different from the class of produc-

tive sets [16] (despite the similarities between their definitions): productive sets cannot

be recursively enumerable, but the recursively enumerable set K is witnessable. Second,

it is easy to see that our class of witnessable problems is not contained in the class of

all c.e. sets, because we prove that the cardinality of the class of witnessable problems

is 2ℵ0 while there are only countably many c.e. sets. One direct implication is that, in

general, the infinite sequence of imprecision witnesses constructed in Theorem 5 may not

cover all points in the undecidable problem being approximated (otherwise, the problem is

c.e.). Third, our witnessable problems are different from the concept of limit computabil-

ity. Indeed, the limit lemma [41] states that a problem P is limit computable if and only if

P ≤T ∅′, i.e., P is Turing reducible to the first Turing jump of the empty set, where actually

∅′ = K. Our class of witnessable problems includes the set of indices of all total functions

L = {i | ∀x ∈ N, ϕi(x) ↓} (because L is a non-trivial index set and thus is many-one

reducible from K), and the Turing degree of L is 0′′, so L is not Turing-reducible to ∅′.

42

3.7.3 Non-Witnessable Problems in Practice

Section 3.4 explicitly constructs a non-witnessable problem but does not relate that problem

to any real scenarios in programming language theory and related fields. The spirit of

that construction is similar to constructions in typical proofs of the time/space hierarchy

theorems [2]: the constructed problems’ main goal is to serve as a theoretical example to

support the theorem instead of modeling any practical scenarios.

3.7.4 A Counter-Intuitive Fact: “Harder” Problems Do Not Prevent Witnessability

A counter-intuitive fact is that although many-one reduction is considered as a hardness

comparison (i.e., ifA ≤m B thenB is considered “harder” thanA), accumulation of many-

one reductions cannot make a witnessable problem hard enough to be non-witnessable.

Imagine a finite but arbitrarily long chain of problems P0 <m P1 <m P2 <m · · · <m Pn,

where A <m B is the strict version of A ≤m B. Once we prove P0 is witnessable, we

know that Pn is still witnessable, despite that the many-one reductions show that Pn is

much “harder” than P0.

3.8 Related Work

Extensive work exists on the undecidability of problems in programming language theory

and related fields [3, 4, 5, 6, 31, 32, 26, 27, 11]. Our work goes beyond that: we analyze the

“computable approximability” of different problems and provides computable imprecision

witnesses for decidable approximations of certain undecidable problems.

There also exists work focusing on intensional aspects of computability results [21, 42,

43]. Our result does not focus on extensional aspects or intensional aspects in particular, but

rather on transforming the proofs of undecidability to witness functions. In other words, our

result is applicable to both the traditional Rice’s theorem [1] and some intensional versions

of Rice’s theorem [21].

43

[44] and [40] propose constructions of incomplete cases for abstract interpretation, and

abstract interpretation has been shown to be quite general to cover some other apparently

different techniques [45]. Our approach is even more general: we do not make any assump-

tions about what framework the program analyzer is based on (it could be based on abstract

interpretation, but could also be based on arbitrary combinations of program analysis tech-

niques [9, 46, 47] and arbitrary heuristics), and we do not require the program analyzer to

be sound or complete.

In computability theory, the classes of problems that are similar to our class of witness-

able problems include c.e. sets and limit computable sets, because they all describe certain

kinds of “approximating” processes. In Section 3.7.2, we discussed the difference between

those two classes and our class, showing that our witnessable problems are indeed a new

class of problems. Our classification motivation is also different from classifications based

on relative computability with respect to oracles (such as Turing degrees and m-degrees):

we classify undecidable problems based on decidable approximability.

Some of our proofs share similar ideas and methods with existing work. First, diago-

nalization and many-one reductions are standard techniques in computability [1], but we

apply them to the scenario of our new concept (witnessability). Our proofs of Theorem 4,

Theorem 5, and Theorem 6 share similar ideas with existing work in creative sets [37] and

simple sets [38]. However, our work targets the new concept (witnessability) and more

general set relations (modeled by the symmetric difference). The intent of our paper is

not simply an extension of the existing work. Instead, our focus is witnessability’s im-

plications in programming language theory and formal methods, which shows that real

(undecidable) problems and their approximations have the previously unknown “witness

producing” computability property.

The word “approximation” is also used in algorithm design: for optimization prob-

lems, we can design algorithms whose outputs approximate the optimal solution [48], and

relevant approximability results are also developed [49]. In contrast, our work focuses on

44

decision problems instead of optimization problems, and we use decidable decision prob-

lems to approximate undecidable decision problems.

3.9 Chapter Conclusion

This chapter defined witnessable problems, which are undecidable problems having com-

putable imprecision witnesses for arbitrary decidable approximations. The class of wit-

nessable problems has the same cardinality as the class of all undecidable problems. In

particular, almost all problems in programming language theory and formal methods are

witnessable, and algorithms in those areas are essentially decidable approximations of wit-

nessable problems. Our results justified the research efforts on decidable approximations

of witnessable problems and show the existence of universal ways to improve such approx-

imations.

45

CHAPTER 4

ON WITNESS FUNCTIONS FOR COMPLEXITY LOWER BOUNDS

4.1 Introduction

Consider separating a computational problem X from a complexity class C. Let C be

represented as a set of programs under the corresponding resource restrictions. From now

on, we will use “problems in C” and “programs in C” interchangeably. The proposition

X /∈ C can be formalized as follows.

∀p ∈ C,∃x, p(x) ̸= X(x).

The input x, which witnesses the difference between any candidate program p ∈ C and X ,

typically depends on p. Thus, the proposition essentially claims the existence of a function

p 7→ x, which is called a witness function. If X is computable and C contains only total

programs, then the proposition X /∈ C itself implies the existence of a computable witness

function: for any p ∈ C, enumerate inputs and compare p(x) and X(x) until the first

difference point is found. The existence of such computable witness functions is implicit

in Kozen’s work [14].

In this chapter, we consider additional properties of such witness functions for complex-

ity class separations. We utilize Blum-like axiomatic approach [50, 51] for computational

complexity, which makes our results largely machine-independent and complexity-class in-

dependent. A crucial observation is that most common complexity classes allow arbitrarily

large constant additive/multiplicative factors, so we make the distinction between two types

of representations of C: the unlabeled representation where only the programs are given,

and the labeled representation where every program is equipped with the constant denoting

the specific additive/multiplicative factor for that program’s resource upper bound. The we

46

prove two theorems relating witness functions and universal reductions, where a universal

reduction relates a complexity class C and a computational problem X by reducing every

problem Y ∈ C to X . The two theorems can be roughly stated as follows.

• For unlabeled representations, under mild conditions, if w is a witness function for

any X /∈ C, then there exists a linear complexity function w such that w ◦ w is a

universal reduction from any other class D to X .

• For labeled representations, under mild conditions, if w is a witness function for any

X /∈ C, then there exists a O(n(log n)2) complexity function w such that w ◦ w is a

universal reduction from a slightly smaller class C′ to X .

Kozen’s work [14] contains a preliminary version of these theorems, but didn’t analyze the

detailed complexity nor distinguish the difference between unlabeled representations and

labeled representations. As we will show in Section 4.6, the witness functions implicitly

contained in well-known complexity theoretic proofs are labeled, i.e. they assume the

knowledge of the exact constant additive/multiplicative factors.

We identify three implications from our results.

1. For unlabeled representations of complexity classes, there is no reasonable complex-

ity upper-bound for any witness function w for X /∈ C. This means constant addi-

tive/multiplicative factors are important in constructive complexity class separation

proofs.

2. For labeled representations of complexity classes, suppose w is a witness functions

forX /∈ C. There is a fast universal reduction from any problem in C′ toX ◦w. This

alludes that although X itself may not be a problem directly encoding all programs

in C′, X ◦w is directly encoding all programs in C′, making X ◦w be similar to the

artificial problems constructed in time/space hierarchy theorems [17, 18]. In other

words, any separation proof, which claims the existence of w, is implicitly showing

the conversion of X to an artificial problem X ◦ w.

47

3. We show that the proofs for the time/space hierarchy theorems [17, 18] on Turing ma-

chines implicitly contain labeled witness functions, which shows witness functions

are real concepts existing in well-known complexity theoretic proofs.

4.2 Preliminary

4.2.1 Partial Functions from N<ω to N

Let N<ω = {(x1, x2, . . . , xn) | n ∈ N ∧ xi ∈ N}. As usual, ⇀ denotes partial functions

and→ denotes total functions. Let α(f) denote the arity of the function f . We write f = g

for

α(f) = α(g) ∧ (∀x⃗, (f(x⃗) ↑ ∧g(x⃗) ↑) ∨ (f(x⃗) ↓ ∧g(x⃗) ↓ ∧f(x⃗) = g(x⃗))).

We assume natural numbers are represented in their binary forms, and use ∥x⃗∥ to denote

the total length of the binary representations of each element
∑
∥xi∥. Ordinary Turing

machines’ inputs and outputs encoded as binary strings can be stipulated to always start

with a “1” and thus can be represented as natural numbers.

We use lightface symbols A,B, . . . to represent sets of natural numbers, and use bold-

face symbols A,B, . . . to represent sets of such sets.

4.2.2 The Programming System

Let the set of all partial computable functions PF = {ϕi : N<ω ⇀ N | i ∈ N} be

enumerated by an admissible numbering [52], where the indices i can be seen as programs

in a fixed Turing-complete programming language. When the arity n of ϕi is clear from

the context, we use ∀i as an abbreviation for ∀i ∈ {j ∈ N | α(ϕj) = n}. Furthermore, ϕi

satisfies the following two well-known conditions [1].

48

• (Universal Functions) For any n ∈ N, there exists a program un ∈ N such that

∀i, λx⃗.ϕun(i, x⃗) = λx⃗.ϕi(x⃗)

where x⃗ ∈ Nn. We use u to denote u1.

• (S-m-n) For any m,n ∈ N, there exists a total computable function snm such that

∀i, λx⃗y⃗.ϕsnm(i,x⃗)(y⃗) = λx⃗y⃗.ϕi(x⃗, y⃗)

where x⃗ ∈ Nm and y⃗ ∈ Nn.

Let TF ⊊ PF be the set of total computable functions. It is well-known [15] that

there doesn’t exist a computable enumeration e such that TF = {ϕe(i) | i ∈ N}. Let TF1

be the set of 1-ary, {0, 1}-valued total computable functions, corresponding to the set of

computable subsets of N.

4.2.3 Abstract Complexity Measure

We utilize Blum’s axiomatic complexity measure [50] for the complexity of programs.

Concrete complexity measures such as time / space complexities for Turing machines sat-

isfy the basic axioms of Blum’s approach [50].

Definition 5. A function (λi.Φi) : N→ PF is a Blum (computational) complexity measure

if and only if it satisfies the following two basic axioms.

• ∀i, α(ϕi) = α(Φi) ∧ (∀x⃗, ϕi(x⃗) ↓ ⇔ Φi(x⃗) ↓).

• The set {⟨i, x⃗, t⟩ | Φi(x⃗) = t} is decidable.

Φi(x⃗) is the cost (time, space, etc.) of program i on input x. By definition, this cost is

49

a natural number and is thus non-negative. The big-O notation is defined as follows. 1

f = O(g) ⇔ ∃C, ∀x⃗, g(x⃗) ↓⇒ f(x⃗) ≤ Cg(x⃗) + C.

Similar to the spirit of Asperti [51], axiomatization is not our focus, and we introduce

convenient axioms that make sense on common cost models along our discussions. In

particular, the following axioms are always assumed.

Axiom 1 (Redundancy). For any m,n ∈ N, there exists a total computable function rnm

satisfying

∃r, ϕr = rnm ∧ Φr = O(λi.∥i∥);

∀i,

 λx⃗y⃗.ϕrnm(i)(x⃗, y⃗) = λx⃗y⃗.ϕi(x⃗)

λx⃗y⃗.Φrnm(i)(x⃗, y⃗) = O(λx⃗y⃗.Φi(x⃗))

where x⃗ ∈ Nm and y⃗ ∈ Nn.

This is saying that rnm(i) can ignore the redundant y⃗ argument and behave similarly to

i. In particular, when n = 0, choosing r0m(i) = i satisfies the requirements. Axiom 1 also

implies that constant functions can be implemented using constant complexity programs:

α(i) = 0 ∧ ϕi() = C

⇒ λy⃗.ϕrn0 (i)(y⃗) = λy⃗.ϕi() = C ∧ λy⃗.Φrn0 (i)
(y⃗) = O(λy⃗.Φi()) = constant.

Axiom 2 (Efficient S-m-n). For any m,n ∈ N, there exists a total computable function snm

satisfying

∃s, ϕs = snm ∧ Φs = O(λix⃗.∥i∥+ ∥x⃗∥);

∀i,

 λx⃗y⃗.ϕsnm(i,x⃗)(y⃗) = λx⃗y⃗.ϕi(x⃗, y⃗)

λx⃗y⃗.Φsnm(i,x⃗)(y⃗) = O(λx⃗y⃗.∥x⃗∥+ Φi(x⃗, y⃗))

1There are other definitions for the multi-variable big-O notation, and we choose one that is suitable for
our purposes.

50

where x⃗ ∈ Nm and y⃗ ∈ Nn.

In real computation models such as Turing machines, the first condition corresponds to

the cost of concatenating the source code i with the fixed input x⃗, and the second condition

corresponds to the cost of copying the hardcoded arguments x⃗ onto the tape before invoking

ϕi.

Axiom 3 (Efficient Composition). For any m,n ∈ N, there exists a total computable func-

tion hnm satisfying

∃h, ϕh = hnm ∧ Φh = O(λi⃗j.∥i∥+ ∥⃗j∥);

∀i, j⃗,

 λx⃗.ϕhnm(i,⃗j)(x⃗) = λx⃗.ϕi(ϕj1(x⃗), . . . , ϕjm(x⃗))

λx⃗.Φhnm(i,⃗j)(x⃗) = O(λx⃗.Φi(ϕj1(x⃗), . . . , ϕjm(x⃗)) + Φj1(x⃗) + . . .+ Φjm(x⃗))

where j⃗ ∈ Nm and x⃗ ∈ Nn.

In real computation models such as Turing machines, the first condition corresponds to

the cost of concatenating source code fragments, and the second condition corresponds to

the cost of applying ϕi on the outputs of ϕj1 , . . . , ϕjm . For space complexity of Turing ma-

chines, the bound of λx⃗.Φhnm(i,⃗j)(x⃗) may be optimized toO(λx⃗.max{Φi(ϕj1(x⃗), . . . , ϕjm(x⃗)),Φj1(x⃗)+

. . .+ Φjm(x⃗)}). But the above bound is sufficient for our purposes.

Axiom 4 (Efficient Branching). For any m ∈ N, there exists a total computable function

bm satisfying

∃b, ϕb = bm ∧ Φb = O(λij1j2.∥i∥+ ∥j1∥+ ∥j2∥);

∀i, j,



λx⃗.ϕbm(i,j1,j2)(x⃗) = λx⃗.

 ϕj1(x⃗) if ϕi(x⃗)

ϕj2(x⃗) else

λx⃗.Φbm(i,j1,j2)(x⃗) = O

λx⃗.∥x∥+
 Φj1(x⃗) + Φi(x⃗) if ϕi(x⃗)

Φj2(x⃗) + Φi(x⃗) else


where x ∈ Nm.

51

The branch condition is treated as false if and only if ϕi(x⃗) = 0. The cost associ-

ated with the branching program bm(i, j1, j2) is also conditioned on which branch is taken.

In both cases, the costs of duplicating the input and evaluating the branch condition are

incorporated.

Axiom 5 (Interpretation Overhead). For any n ∈ N, the complexity overhead introduced

by the universal function ϕun can be expressed as

∀i ∈ N, ∀x⃗ ∈ Nn,Φun(i, x⃗) ≤ Γn(∥i∥+ ∥x⃗∥) + γn(i)Jn(Φi(x⃗))

where Γn is a constant, γn is a total function and Jn is a total, non-decreasing function. We

use Γ, γ, J to denote Γ1, γ1, J1.

The factor γ(i) in the overhead is a fixed constant for every program i. For single

tape Turing machines simulating other single tape Turing machines, it can be achieved that

J(y) = y by organizing two tracks of the tape [18], where one track holds the description

and state of the machine being simulated (which is moved together with the head), and

the other track actually holds the tape of the machine being simulated. Also note that

when ϕi(x⃗) is undefined, according to Blum’s basic axioms (Definition 5), Φi(x⃗) is also

undefined.

Axiom 6 (Efficient Linear Operations). For any m ∈ N and x⃗ ∈ Nm, any finite linear

expression e(x⃗) generated from the following grammar

e := xi | xi + xj | xi − xj | xi < xj | xi ≤ xj | xi > xj | xi ≥ xj | xi = xj | xi ̸= xj

can be implemented in linear time:

∃i, ϕi = e ∧ Φi = O(λx⃗.∥x⃗∥).

Since natural numbers are assumed to be represented in binary forms, the cost is pro-

52

portional to ∥x⃗∥ = O(log x) if x is interpreted as a natural number.

4.3 Complexity Classes and Their Representations

4.3.1 Complexity Classes

We focus on the complexity of 1-ary, {0, 1}-valued total computable functions (TF1),

which correspond to computable decision problems. A direct way to define a complexity

class of such decision problems is to pose an exact complexity bound t : N→ N:

{f ∈ TF1 | ∃i ∈ N, ϕi = f ∧ ∀x ∈ N,Φi(x) ≤ t(x)}.

However, since it is straightforward to hardcode finitely many function values in a program,

the complexity on finitely many points of a function is not very interesting. Also, Turing

machines’ linear speedup theorem [53] shows that on such computation models, constant

multiplicative factors are not essential. In our setting, we consider a generalized version

of the well-known concept of asymptotic complexity [54]. Here the additional parameter

k serves as additive/multiplicative factors or similar purposes, and we will see throughout

this chapter that there are great flexibilities for defining the complexity function t(k, x)

with respect to k, even for the same complexity class.

Definition 6. Given a 2-ary total computable function t ∈ TF, define the corresponding

complexity class as

CC(t) = {f ∈ TF1 | ∃i ∈ N, ϕi = f ∧ ∃k ∈ N,∀x ∈ N,Φi(x) ≤ t(k, x)}.

Example 3. Fix the abstract complexity measure λi.Φi to be the usual time complexity on

53

deterministic Turing machines. We can define the usual complexity classes as follows.

∀d ∈ N,TIME(nd) = CC(λkx.k + k∥x∥d)

∀d ∈ N,TIME(dn) = CC(λkx.k + k · d∥x∥)

P = CC(λkx.k + ∥x∥k)

EXP = CC(λkx.2k+∥x∥
k
)

Note that these usual complexity classes are defined only in terms of the input length,

while Definition 5 is more general and can depend on specific input values of the same

length. Under Definition 5, the usual linear complexity of a program i is expressed as

Φi(x) = O(∥x∥) = O(log x).

4.3.2 Representations of Complexity Classes

Complexity classes are sets of functions, but we often need concrete representations of

those (usually infinite) sets. Given a complexity class, the most straightforward way is to

consider the set of programs with the corresponding complexity upper bound. The same

functions can also be computed by time-wasting programs exceeding the upper bound (e.g.

manually adding redundant loops), but ignoring those programs will not change the com-

plexity class being defined.

Because of the asymptotic behavior of complexity upper bounds, the complexity bound

includes a constant k as defined in Definition 6. This constant often serves as the constant

additive or multiplicative factors as shown in Example 3. Due to this phenomenon, we

distinguish unlabeled representations and labeled representations of complexity classes,

where the difference is whether the constant k is encoded in the representation.

Definition 7. The unlabeled representation of a complexity class CC(t) is the following

set.

UR(t) = {i ∈ N | ϕi ∈ TF1 ∧ ∃k ∈ N,∀x ∈ N,Φi(x) ≤ t(k, x)}

54

Definition 8. The labeled representation of a complexity class CC(t) is the following set.

LR(t) = {⟨i, k⟩ ∈ N2 | ϕi ∈ TF1 ∧ ∀x ∈ N,Φi(x) ≤ t(k, x)}

UR(t) and LR(t) are not required to be computable. We can also consider computable

sets of complexity-bounded programs, such as the set of Turing machines associated with

step counters and polynomial step upper bounds, where the step counter terminates the

program with a default return value when the number of steps exceeds the limit. But for

our purposes, the above definitions are sufficient.

4.4 Witness Functions and Universal Reductions

In this section, we define the concept of witness functions, whose existence is equivalent to

complexity lower bounds. We then define an auxiliary concept called universal reductions,

which generalizes many-one reductions.

4.4.1 Witness Functions

Complexity lower bounds correspond to non-memberships of total computable functions

with respect to complexity classes. For example, the proposition P ̸= NP is equivalent to

SAT /∈ CC(λkx.k+∥x∥k). The non-membership can be equivalently expressed as having

a witness function, which is implicit in Kozen’s work [14].

Definition 9. Given a function g ∈ TF1 \ CC(t), a partial function w : N ⇀ N is an

unlabeled witness function for the non-membership g /∈ CC(t) if and only if

∀i ∈ UR(t), ϕi(w(i)) = ¬g(w(i));

a partial function w : N2 ⇀ N is a labeled witness function for the non-membership

55

g /∈ CC(t) if and only if

∀⟨i, k⟩ ∈ LR(t), ϕi(w(i, k)) = ¬g(w(i, k)).

The negation operator ¬ naturally means flipping 0/1. The witness function w gives,

for every program i in the representation of the complexity class, an input on which ϕi

and g have different values. There could be many different witness functions for the same

non-membership relation g /∈ CC(t). In particular, assuming g /∈ CC(t), there exists the

following naive, unlabeled witness function w that is computable on the domain UR(t).

Procedure 1. Suppose g ∈ TF1 \ CC(t). For i ∈ UR(t), compute w(i) as follows:

enumerate all inputs x and compare ϕi(x) and g(x) until we find the first different point.

Since both of ϕi and g are total, and g ∈ TF1 \ CC(t), this procedure will terminate on

every i ∈ UR(t).

The complexity of this naive procedure, however, could be high if CC(t) “approxi-

mates” g well.

Labeled witness functions are used in classical complexity theoretic proofs, such as the

typical proof of time / space hierarchy theorems [17, 18]. In other words, those proofs need

the knowledge of the specific k in the complexity bounds in order to construct the desired

witness. We will prove a generalized hierarchy theorem and analyze its witness function in

Section 4.6.

4.4.2 Universal Reductions

On the other hand, various types of reductions are the common way to compare the hardness

of problems. Specifically, for two decision problems A,B ⊆ N, a many-one reduction

r ∈ TF from A to B satisfies ∀x ∈ N,A(x) ⇔ B(r(x)). We denote the many-one

reducibility relationship as A ≤m B. In complexity theory, we usually pose additional

restrictions on the complexity of r. A ≤m B means that the hardness of A does not exceed

56

the hardness of B.

In the setting of non-membership g /∈ CC(t), we are not comparing two problems, but

comparing one problem g with a set of problems in CC(t). To describe this relationship,

we introduce the notion of universal reductions.

Definition 10. Given a function g ∈ TF1, a partial function r : N2 ⇀ N is an unlabeled

universal reduction from CC(t) to g if and only if

∀i ∈ UR(t), ∀x ∈ N, ϕi(x) = g(r(i, x));

a partial function r : N3 ⇀ N is a labeled universal reduction from CC(t) to g if and only

if

∀⟨i, k⟩ ∈ LR(t),∀x ∈ N, ϕi(x) = g(r(i, k, x)).

In the case of time complexity of Turing machines, the Cook-Levin theorem [55, 56,

18] is typically proved by a labeled universal reduction r(i, k, x) from NP (and thus also

P) to SAT. The time complexity of that r is polynomially-bounded with respect to ∥x∥ for

any fixed i and k, but may not be polynomially-bounded with respect to ∥⟨i, k⟩∥.

Note that in Definition 10, the function g can be generalized to non-total or non-

computable functions as long as the equations hold for programs in CC(t). For this gener-

alization, we also implicitly use the following simple fact throughout this chapter.

Fact 4. Let f, r, g be partial functions. If f ◦ r is a universal reduction from CC(t) to g,

then r is a universal reduction from CC(t) to g ◦ f .

4.5 From Witness Functions to Universal Reductions

Apparently, witness functions only require one difference point between every ϕi, i ∈

CC(t) and g, while universal reductions require g to “encode” the information of every

point for every ϕi, i ∈ CC(t). However, due to compositions of programs, the existence of

57

witness functions for common complexity classes naturally leads to the existence of uni-

versal reductions. On the other hand, the complexity relations between witness functions

and universal reductions depend on whether the representations of CC(t) is unlabeled or

labeled. In this section we prove two theorems converting witness functions to universal

reductions, for unlabeled and labeled representations, respectively. We can then deduce

properties of witness functions from properties of universal reductions.

4.5.1 The Unlabeled Case

Definition 11. A complexity class CC(t) is constant-closed if and only if ∀c ∈ N, ∃k ∈

N,∀x ∈ N, t(k, x) ≥ c.

Almost all realistic complexity classes are constant-closed, meaning that they include

all constant complexity computable functions.

Theorem 9 (Witness Functions to Universal Reductions, Unlabeled). Given a constant-

closed complexity class CC(t) and an unlabeled witness function w for g ∈ TF1 \CC(t),

there is a linear complexity computable function w such thatw◦w is an unlabeled universal

reduction from any complexity class CC(t′) to g. In particular, we can choose t′ = t.

Proof. Consider the following computable function with index j

∀i ∈ UR(t′),∀x, y ∈ N, ϕj(i, x, y) = ¬ϕu(i, x) = ¬ϕi(x).

According to the S-m-n property, ϕs12(j,i,x)(y) = ϕj(i, x, y) = ¬ϕi(x). Because CC(t) is

constant-closed and s12(j, i, x) is a program of constant complexity independent of y (note

that ϕi(x) ↓ because i ∈ UR(t′)), we have

s12(j, i, x) ∈ UR(t).

58

By our assumption, the unlabeled witness function w works on it:

ϕs12(j,i,x)(w(s
1
2(j, i, x))) = ¬g(w(s12(j, i, x))).

Overall we have

∀i ∈ UR(t′), ∀x ∈ N, ϕi(x) = ¬ϕs12(j,i,x)(w(s
1
2(j, i, x)))

= g(w(s12(j, i, x)).

Letting w(i, x) = s12(j, i, x), we have

∀i ∈ UR(t′),∀x ∈ N, ϕi(x) = g((w ◦ w)(i, x)).

w is linear complexity computable because s12 is, according to Axiom 2.

In Section 4.6, we will define constructible functions (as complexity upper bounds) and

prove the generalized hierarchy theorem. With that in mind, Theorem 9 alludes that if we

restrict our discussion to constructible complexity upper bounds, then for g ∈ TF1\CC(t)

where CC(t) is constant-closed, there is no upper bound for any unlabeled witness func-

tion, including the naive witness function implemented in Procedure Procedure 1. Indeed,

since g’s complexity is fixed, choosing higher and higher t′ forces w to have higher and

higher complexity lower bounds.

Moreover, in the unlabeled case, we have the following corollary that does not need the

notion of “constructible functions”.

Corollary 2. For any constant-closed complexity class CC(t) and any g ∈ TF1 \CC(t),

for any 1-ary computable function v ∈ TF1, there exists a linear complexity computable

many-one reduction from v to g ◦ w.

Proof. Let ϕiv = v and construct ϕl(x, y) = ϕiv(x). By the S-m-n property ϕs11(l,x)(y) =

59

ϕl(x, y) = ϕiv(x). Since s11(l, x) ∈ UR(t), according to Theorem 9 with t′ = t we have

∀x ∈ N, v(x) = ϕs11(l,x)(0) = g((w ◦ w)(s11(l, x), 0)) = (g ◦ w)(w(s11(l, x), 0)).

Here λx.w(s11(l, x), 0) is the desired many-one reduction, which is linear complexity com-

putable by Axiom 1-Axiom 3.

4.5.2 The Labeled Case

To prove the labeled version of Theorem 9, we need the following axiom, which says the

resulting parameterized program must be larger than every argument in x1, . . . , xm when

interpreted as natural numbers. This axiom holds on reasonable programming systems

since the snm function hardcodes the x1, . . . , xm values into the final program.

Axiom 7 (S-m-n Size). For any m,n ∈ N, the snm function satisfies

snm(i, x⃗) ≥ max{x1, . . . , xm}

where x ∈ Nm.

We also need some assumptions on the witness function w and the complexity bound t

for proving the main theorem in this section. These conditions hold in common complexity

classes.

First, if g /∈ CC(t), then in typical scenarios, a witness function w has infinitely many

choices of inputs for every candidate program p in CC(t). That is because if there are only

finitely many different points between p and g, we can hardcode those different points in

p to let p compute g, which is a contradiction for complexity classes closed under finite

modifications. For this reason, we can consider witness functions such that w(i, k) ≥ i.

Second, we consider a specific class of complexity functions that are robust.

Definition 12. A complexity function t(k, x) is robust if and only if it is non-decreasing

60

with respect to k, x, and satisfies

∀c, k, x ∈ N, t(ck + c, x) ≥ ct(k, x) + c;

∀k, x ∈ N, t(k, x) ≥ ∥x∥.

A complexity class is robust if and only if it can be defined as CC(t) where t is a robust

complexity function.

In other words, a robust complexity function is non-decreasing, uses the label k as

(at least) both additive and multiplicative factors, and is at least linear with respect to the

input length. Note that many complexity classes can be re-defined using robust complexity

functions, in which cases k might play slightly different roles. For example, P can be re-

defined as CC(tp) where tp(k, x) = λkx.k + (k + 1)∥x∥k+1. It is obvious that tp(k, x) is

non-decreasing with respect to k and x, tp(k, x) ≥ ∥x∥, and tp(0k+0, x) ≥ 0tp(k, x)+0 =

0. For c ≥ 1, we have

tp(ck + c, x) = (ck + c) + (ck + c+ 1)∥x∥ck+c+1

≥ c+ ck + c(k + 1)∥x∥k+1

= c+ c(tp(k, x)).

Thus P is a robust complexity class. Robust complexity classes are constant-closed, be-

cause ∀c ∈ N, t(2c, x) = t(c · 1 + c, x) ≥ ct(1, x) + c ≥ c.

Recall that Γ(∥i∥ + ∥x⃗∥) + γ(i)J(Φi(x⃗)) is the interpretation overhead described in

Axiom 5. We use the (fixed) functions γ and J in the following theorem.

Theorem 10 (Witness Functions to Universal Reductions, Labeled). Given a robust com-

plexity class CC(t) where t is a robust complexity function, suppose w is a labeled witness

function for g /∈ CC(t) such that w(i, k) ≥ i. For any complexity function t′ such that

∀k, x ∈ N, J(t′(k, x)) ≤ t(k, x), there exist a linear complexity computable function w0

61

and a constant C such that

w ◦ λikx.⟨w0(i, k, x), C(∥i∥+ ∥x∥+ 1)(γ(i) + 1)(k + 1)⟩

is a labeled universal reduction from CC(t′) to g.

Remark 1. Before giving the proof, we first explain this result in terms of complexity. The

term C(∥i∥+∥x∥+1)(γ(i)+1)(k+1) is a natural number represented in binary form. We

estimate the time needed to compute it on common computation models such as single-tape

Turing machines.

First, the interpretation overhead coefficient γ(i) can be made O(∥i∥2) on single-tape

Turing machines, because we can divide the tape into two tracks, use the first track to con-

tain machine i’s tape, and use the second track to contain machine i’s description and states

(which are moved along with the simulation). One step of such simulation and movement

takes O(∥i∥2) time.

Let n = ∥⟨i, k, x⟩∥. Assuming γ(i) = O(∥i∥d), the natural number C(∥i∥ + ∥x∥ +

1)(γ(i) + 1)(k + 1) in Theorem 10 can be computed by multiplying three numbers of

(binary) lengths O(log n), O(log n), O(n), respectively. Note that the value of ∥i∥ is of

order O(n), so its binary representation length is of order O(log n). The other two cases

can be similarly analyzed. Thus under common computation models, the multiplication

takes O(n(log n)2) complexity with respect to the input length, which is close to linear

complexity.

Proof. Consider the partial computable function

f(i, x, y) =

 ¬ϕu(i, x) if y ≥ x

0 else
.

62

Let
ϕa(i, x, y) = y ≥ x,

ϕb(x) = ¬x,

ϕc() = 0.

Note that a, b, c are all fixed programs. According to our axioms, we can define

ϕb3(a,h31(b,r12(u)),r30(c)) = f(i, x, y).

Let e = b3(a, h
3
1(b, r

1
2(u)), r

3
0(c)), which is a fixed 3-ary program.

For ⟨i, k⟩ ∈ LR(t′) and y ≥ x, we have

λixy.Φs12(e,i,x)
(y)

= O(λixy.∥i∥+ ∥x∥+ Φe(i, x, y))

= O(λixy.∥i∥+ ∥x∥+ ∥y∥+ Φh31(b,r
1
2(u))

(i, x, y) + Φa(i, x, y))

= O(λixy.∥i∥+ ∥x∥+ ∥y∥+max{Φb(0),Φb(1)}+ Φr12(u)
(i, x, y) + Φa(i, x, y))

= O(λixy.∥i∥+ ∥x∥+ ∥y∥+ Φu(i, x))

= O(λixy.∥i∥+ ∥x∥+ ∥y∥+ γ(i)J(Φi(x)))

≤ O(λixy.∥i∥+ ∥x∥+ ∥y∥+ γ(i)J(t′(k, x)))

≤ O(λixy.∥i∥+ ∥x∥+ ∥y∥+ γ(i)t(k, x))

≤ O(λixy.∥i∥+ ∥x∥+ ∥y∥+ γ(i)t(k, y))

where the last inequality utilizes the fact that t is non-decreasing. An important observation

is that the last three≤ signs does not introduce new constants hidden by the big-O notation.

In other words, those hidden constants do not depend on k.

63

For ⟨i, k⟩ ∈ LR(t′) and y < x, we have

λixy.Φs12(e,i,x)
(y)

= O(λixy.∥i∥+ ∥x∥+ Φe(i, x, y))

= O(λixy.∥i∥+ ∥x∥+ ∥y∥+ Φr30(c)
(i, x, y) + Φa(i, x, y))

= O(λixy.∥i∥+ ∥x∥+ ∥y∥+ Φc())

= O(λixy.∥i∥+ ∥x∥+ ∥y∥).

Overall, there exists a constant C ∈ N independent of i, k, x, y such that

λixy.Φs12(e,i,x)
(y) ≤ O(λixy.∥i∥+ ∥x∥+ ∥y∥+ γ(i)t(k, y))

≤ λixy.C(∥i∥+ ∥x∥+ 1) + C(γ(i) + 1)t(k, y)

where the last inequality utilizes the fact t(k, y) ≥ ∥y∥.

It is necessary to compute a k′ satisfying ∀y ∈ N,Φs12(e,i,x)
(y) ≤ t(k′, y) before invok-

ing w on ⟨s12(e, i, x), k′⟩. Let D = C(γ(i) + ∥i∥ + ∥x∥ + 1). Because t is robust, we

have

t(D(k + 1), y) = t(Dk +D, y) ≥ Dt(k, y) +D ≥ Φs12(e,i,x)
(y).

Thus we can choose any k′ ≥ D(k + 1) = C(γ(i) + ∥i∥ + ∥x∥ + 1)(k + 1). Let k′ =

C(∥i∥+ ∥x∥+ 1)(γ(i) + 1)(k + 1) and define

w0(i, k, x) = s12(e, i, x),

w(i, k, x) = ⟨w0(i, k, x), k
′⟩.

w0 is linear complexity computable. Applying the labeled witness function on ⟨w0(i, k, x), k
′⟩

gives

ϕs12(e,i,x)(w(s
1
2(e, i, x), k

′)) = ¬g(w(s12(e, i, x), k′)).

On the other hand, because we assume ∀i, k ∈ N, w(i, k) ≥ i and Axiom 7, the first branch

64

in ϕs12(e,i,x)(y) = f(i, x, y) is taken:

w(s12(e, i, x), k
′) ≥ s12(e, i, x) ≥ x⇒ ϕs12(e,i,x)(w(s

1
2(e, i, x), k

′)) = ¬ϕu(i, x) = ¬ϕi(x).

Overall we have

∀⟨i, k⟩ ∈ LR(t′),∀x ∈ N, ϕi(x) = ¬ϕs12(e,i,x)(w(s
1
2(e, i, x), k

′))

= g(w(s12(e, i, x), k
′))

= g((w ◦ w)(i, k, x)).

Example 4. Consider the time complexity of single-tape Turing machines where we can set

J(x) = x. The condition ∀k, x ∈ N, J(t′(k, x)) ≤ t(k, x) in Theorem 10 is slightly tricky:

we may need to adjust the k in common complexity classes in order to let this condition be

satisfied. For any fixed d ≥ 1, consider the following definitions of TIME(nd) and P.

TIME(nd) = CC(t′(k, x)) = CC(λkx.(k + (k + 1)∥x∥)d),

P = CC(t(k, x)) = CC(λkx.(k + (k + 1)∥x∥)k+d).

In the labeled representation LR(t) for P, an element ⟨i, k⟩ means “i is a program whose

execution time is upper-bounded by (k + (k + 1)∥x∥)k+2d”. Obviously, if we know some

other polynomial upper bound for i, we can find such a k as well.

First of all, t(k, x) is a robust complexity function, because it is non-decreasing with

respect to both k and x, it is lower-bounded by ∥x∥, and it is easy to verify that ∀c ≥ 1,

t(ck + c, x) = (ck + c+ (ck + c+ 1)∥x∥)ck+c+d

≥ c+ (ck + c(k + 1)∥x∥)ck+c+d

≥ c+ c(k + (k + 1)∥x∥)k+d

= c+ ct(k, x).

65

Second, we have

J(t′(k, x)) = t′(k, x) ≤ t(k, x).

so Theorem 10’s conditions are satisfied.

Suppose SAT /∈ P and let w be a labeled witness function for SAT /∈ CC(t) = P such

that w(i, k) ≥ i. According to Theorem 10, there exist a linear complexity computable

function w0, such that

w ◦ λikx.⟨w0(i, k, x), C(∥i∥+ ∥x∥+ 1)(γ(i) + 1)(k + 1)⟩

is a labeled universal reduction from CC(t′) = TIME(nd) to SAT. Fixing ⟨i, k⟩ ∈

CC(t′), the function λikx.⟨w0(i, k, x), C(∥i∥+∥x∥+1)(γ(i)+1)(k+1)⟩ is computable in

linear time with respect to ∥x∥. So we get a linear time many-one reduction from i to SAT◦

w. This is very different from the Cook-Levin theorem’s reduction from NTIME(nd), and

thus also TIME(nd), to SAT, where the O(nd) length execution trace is expanded to

a Boolean formula, resulting in a reduction of (unoptimized) O(p(n)3 log(p(n))) time or

(optimized) O(p(n) log(p(n))) [57] time where p(n) is a d-degree polynomial. Since our

reduction from i to SAT ◦ w is linear, where only limited transformations can be done in

such limited time, this alludes that SAT ◦w directly encodes i’s semantics without expand-

ing its execution trace.

Overall, as discussed in Remark Remark 1, the universal reduction is of O(n(log n)2)

time under common computation models. This provides further allusions to the structure of

SAT◦w. While the previous paragraph shows that SAT◦w directly encodes the semantics

of each specific program in TIME(nd) without expanding its execution trace, the overall

complexity of the universal reduction shows that SAT ◦ w directly encodes every program

in TIME(nd). This makes SAT ◦ w be similar to the artificial problems constructed in

time / space hierarchy theorems [17, 18], which are themselves defined as sets of programs

/ inputs.

66

4.6 The Generalized Hierarchy Theorem

In this section we prove a generalized hierarchy theorem, of which the time / space hierar-

chy theorems [17, 18] on Turing machines are special cases. We will show that the proof

implicitly includes a labeled witness function, which means witness functions are concrete

entities existing in well-known proofs.

First, we introduce the following definition, which is a natural generalization of time /

space constructible functions on Turing machines.

Definition 13. A function t ∈ TF is constructible if and only if

∃j ∈ N, ϕj = t ∧ Φj = O(t).

Constructible functions are suitable for being complexity upper bounds in hierarchy

theorems because of the following axiom.

Axiom 8 (Bounded Execution). For any n, i, v ∈ N and any constructible function t, there

exists b ∈ N such that∀x⃗ ∈ Nn, ϕb(x⃗) =

 1 if ϕi(x⃗) = v ∧ Φi(x⃗) ≤ t(x⃗)

0 otherwise

∧Φb = O(λx⃗.t(x⃗)+∥x⃗∥+K(t(x⃗)))

where K is a total, non-decreasing function.

For time complexity under realistic computation models such as single tape Turing

machines, the program b on input x⃗ can first compute T = t(x⃗) on one track of the tape and

then execute ϕi on x⃗ on the other track while moving and decreasing the step counter T .

Updating and moving the step counter adds a logarithmic overhead, resulting in K(y) =

y log y. Finally b can effectively check whether ϕi(x⃗) halts within T steps with the result v,

all in constant time. Note that ϕb does not take i as input. This means b can just hardcode

i’s transition table instead of implementing a logic to simulate any given Turing machine i.

67

This is why the bound of Φb does not need terms depending on i, which is different from

Axiom 5.

The following axiom states that any program can be padded with an arbitrarily large

redundant code fragment, such that the resulting program still has the same extensional

behavior and the same complexity, both on the bare metal computation model and on the

interpreter ϕu. As an example in real programming languages, the interpreter can ignore

some obviously redundant texts in the program such as comments.

Axiom 9 (Padding). There exists a 2-ary computable function p such that for any i, n ∈ N.

p(i, n) > n ∧ ϕi = ϕp(i,n) ∧ Φi = Φp(i,n) ∧ λx.Φu(i, x) = λx.Φu(p(i, n), x).

Theorem 11 (Generalized Hierarchy Theorem). If t1, t2 are constructible functions such

that

∀c,∃x0,∀x > x0, c+ c∥x∥+ cJ(c+ ct1(x))) ≤ t2(x),

then we have

CC(λkx.k + kt1(x)) ⊊ CC(λkx.k + k(t2(x) + ∥x∥+K(t2(x)))).

Proof. Let ϕe(x) = x and ϕh12(u,e,e) = ϕu(x, x). Let j = h12(u, e, e). According to our

axioms we have

λx.Φj(x) = O(λx.Φu(x, x) + Φe(x)) = O(λx.Φu(x, x) + ∥x∥).

That means there exists C0 such that

Φj(x) ≤ C0 + C0(Φu(x, x) + ∥x∥).

68

According to Axiom 8, there exists b ∈ N such that

ϕb(x) =

 1 if ϕj(x) = 0 ∧ Φj(x) ≤ t2(x)

0 otherwise
∧ Φb = O(λx.t2(x) + ∥x∥+K(t2(x))).

Obviously ϕb ∈ CC(λkx.k+ k(t2(x) + ∥x∥+K(t2(x)))). Suppose for contradiction that

ϕb ∈ CC(λkx.k + kt1(x)). Then there exists d ∈ N such that

ϕd = ϕb ∧ Φd = O(t1).

Let C1 be the constant such that Φd(x) ≤ C1 + C1t1(x). For this d, according to Axiom 5

we have

Φu(d, x) ≤ Γ(∥d∥+ ∥x∥) + γ(d)J(Φd(x)) ≤ Γ(∥d∥+ ∥x∥) + γ(d)J(C1 + C1t1(x)).

According to the theorem’s premise of the relation between t1 and t2, we can choose a large

enough n such that

∀x > n,C0 + C0(Φu(d, x) + ∥x∥)

≤ C0 + C0(Γ(∥d∥+ ∥x∥) + γ(d)J(C1 + C1t1(x)) + ∥x∥)

= (C0 + C0Γ∥d∥) + (C0Γ + C0)∥x∥+ C0γ(d)J(C1 + C1t1(x))

≤ t2(x).

According to Axiom 9, let d1 = p(d, n) > n where

ϕd = ϕd1 ∧ Φd = Φd1 ∧ λx.Φu(d, x) = λx.Φu(d1, x).

In this case, we have

Φj(d1) ≤ C0 + C0(Φu(d1, d1) + ∥d1∥) = C0 + C0(Φu(d, d1) + ∥d1∥) ≤ t2(d1).

69

On the other hand, according to the assumption ϕd1 = ϕd = ϕb, we have ϕd1(d1) = 1 ⇔

ϕd1(d1) = 0, which is a contradiction.

In Theorem 11, ϕd1 = ϕd always holds, but with the assumption ϕd(d1) = ϕb(d1) we

can derive a contradiction. This means ϕd(d1) ̸= ϕb(d1), i.e. the function d 7→ d1 is a

witness function for ϕb /∈ CC(λkx.k + kt1(x)). More precisely, d1 can be defined as

d1 = p(d, anyn{∀x > n, (C0+C0Γ∥d∥)+(C0Γ+C0)∥x∥+C0γ(d)J(C1+C1t1(x)) ≤ t2(x)})

where “any” means any such n constitutes a valid definition of d1. The constants C0,Γ

and functions γ, t1, t2 are all independent of d, but C1 could depend on d. Indeed, C1 is an

additive and multiplicative factor in Φd = O(t1) = λx.C1 + C1t1(x). This implies that the

witness function w is labeled, i.e., it needs k as a parameter such that w(d, k) = d1.

4.7 Relations to the Relativization Barrier

In 1975, Baker, Gill, and Solovay [12] constructed oracles A and B such that PA = NPA

and PB ̸= NPB. This shows that any technique being capable of resolving the P versus

NP problem must not generalize to all oracles. Since many existing diagonalization proofs

generalize to all oracles [12, 58, 59], this result became the well-known relativization bar-

rier in complexity theory, showing the limitation of techniques relativizing to arbitrary or-

acles. The relativization barrier was frequently mentioned as evidence showing the limits

of diagonalization [12, 58, 59, 60], while because of the lack of formal definitions of “di-

agonalization”, the exact relation between “relativizing techniques” and “diagonalization”

is unclear. Aaronson [58] described diagonalization and relativization barrier as:

The magic of diagonalization, self-reference, and counting arguments is how

abstract and general they are [. . .] the price of generality is that the logical

techniques are extremely limited in scope.

70

Nevertheless, Kozen [14] proposed a formalization of diagonalization and claims “if P ̸=

NP is provable at all, then it is provable by diagonalization”. Combining with Baker, Gill,

and Solovay’s result, Kozen claimed:

[. . .] there must exist diagonalizations which do not relativize.

Fortnow [61] commented on Kozen’s result as:

I believe this result says more about the difficulty of exactly formalizing the

notion of a “diagonalization proof” than of actually arguing the diagonalization

technique is the only technique we have for class separation.

Since witness functions exist as long as the separationX /∈ C is true (on the standard model

of arithmetic), our results are not restricted to relativizing techniques. Indeed, Kozen’s

result [14] is essentially saying the existence of witness functions as long as X /∈ C is

provable (and is thus true assuming the soundness of the proof system). So if witness

functions are regarded as a general definition of “diagonalization”, then it is “the” technique

that we must (explicitly or implicitly) resort to for class separations.

4.8 Related Work

Kozen’s work [14] concluded that if P ̸= NP is provable at all, then it is provable by di-

agonalization. That argument was based on the existence of computable witness functions,

which is equivalent to the separation itself. Notably, Kozen’s work [14] also concluded a

preliminary form of our main constructions: if g /∈ C and if w is a witness function for this

fact, then the universal function of C is reducible to the pair ⟨g, w⟩. However, the detailed

complexity of w and the difference between unlabeled and labeled representations were

not discussed. Subsequent work by Joseph and Young [13] discussed the complexity of

witness functions in the setting of P, NP, coNP, but didn’t discuss it in a more general

setting nor discuss the fine-grained complexity of the witness functions.

71

Nash, Impagliazzo, and Remmel [62] defined strong and weak diagonalizations and

argued that those two notions are indeed different. For separating two complexity classes

A ⊋ B, their definition of strong diagonalization require the “weak universal language” to

be in A. In our case, however, we do not require the universal reduction to belong to any

complexity class; instead, we only show that universal functions can be expressed by the

witness function, whose complexity could be unbounded as shown in Theorem 9.

Witness functions or similar forms had also been considered in computability settings,

such as productive functions for computably enumerable subsets [15] and witness functions

for computable subsets [63]. In our complexity settings, however, we need to consider the

complexity of sets and functions and thus we introduce Blum-like axioms [50] to develop

our theorems in a general way.

4.9 Chapter Conclusion

We studied the properties of witness functions in the complexity theory setting. We showed

that labeled witness functions are the ones implicitly used in real complexity theoretic

proofs, and relating these witness functions to universal reductions can shed light on the

possible ways to separate complexity classes, including long-standing open problems in

complexity theory.

72

CHAPTER 5

EXAMPLE: MUTUAL REFINEMENTS OF CONTEXT-FREE LANGUAGE

REACHABILITY

5.1 Introduction

Context-free language reachability (CFL-reachability) is arguably the best-known graph

reachability framework in program analysis [64, 65, 66, 67, 68, 69]. Typically, the frame-

work consists of a frontend and a backend, where the frontend constructs a graph from the

source code, and the backend runs CFL-reachability on the graph to obtain properties of

the source code [70]. The graphs and grammars depend on specific analyses, but CFL-

reachability has a dynamic programming style (sub)cubic-time algorithm [71, 70, 72, 73]

for arbitrary graphs and grammars. Faster algorithms exist on special cases [74, 75, 76].

However, due to the inherent hardness of program analysis, CFL-reachability may not

be able to model the exact formulation of the problem [4, 77]. A typical example is the

interleaved-Dyck-reachability formulation [4, 78], which is widely used to simultaneously

model function calls/returns [66, 4], field reads/writes [79, 80], locks/unlocks [81], etc. The

interleaved-Dyck language is not context-free [82], and the corresponding graph reachabil-

ity problem is undecidable [4]. In practice, CFL-reachability can over-approximate com-

putationally hard language reachability problems [4]: the idea is to design a context-free

language C that over-approximates the non-context-free language L (meaning that C con-

tains more strings than L).

For a computationally hard L-reachability problem, different CFL-reachability-based

approaches over-approximate the solution from different angles. We can straightforwardly

intersect the results to achieve better precision. Synchronized pushdown systems [83] es-

sentially employ this idea. The linear conjunctive language reachability work [77] also

73

shows this straightforward intersection can improve precision. However, in this case, dif-

ferent CFL-reachability instances are executed independently. On the other hand, CFLs are

not closed under intersection [84, 82], so in general, we cannot intersect different CFLs to

obtain a new CFL for CFL-reachability. For example, the interleaved-Dyck language [78,

77], which is not a CFL, is the intersection of two or more CFLs.

This chapter proposes a more synergistic way to “intersect” multiple CFL-reachability-

based over-approximations. Specifically, typical CFL-reachability algorithms are of dy-

namic programming style, which generate “summary edges” from existing graph edges.

Our key insight is that when those algorithms generate a summary edge, the existing edges

directly contributing to the generation can be recorded. This augmented algorithm can

eventually trace a set of original graph edges that contribute to the final reachability results.

Therefore, when combining CFL-reachability-based over-approximations based on CFLs

C1, C2, . . . , Cn, we can run C2-reachability on the contributing edges of C1-reachability, as

opposed to all edges in the original graph. This process can happen between different Ci’s

multiple times, which is called mutual refinement.

Is the execution order of different CFL-reachability over-approximations important for

mutual refinement? We prove in Section 5.4 that given a set of CFL-reachability over-

approximations, there exists a unique fix-point, and any order of executing different CFL-

reachabilities will reach the fix-point. This is similar to the fix-point theorem [85] and

chaotic-iteration algorithms [86, 87] in dataflow analysis. The soundness of the fix-point

and the fact that it is at least as precise as the straightforward intersection are also proved in

Section 5.4. As for the complexity, suppose the CFL is fixed and the number of vertices in

the graph is n, then the time complexities of the standard CFL-reachability algorithm [71,

70, 72] and our augmented algorithm are both Õ(n3), and the space complexity is Õ(n2)

for the standard algorithm and is Õ(n3) for our augmented algorithm.

For a fixed set of CFL-reachability over-approximations, the fix-point described in the

previous paragraph is the best precision that can be achieved by the mutual refinement

74

method. However, mutual refinement is itself a decidable approximation of the undecid-

able problem. According to witnessability described in Chapter 3, as long as there is a

many-one reduction from the halting problem to the undecidable problem here, there ex-

ists a computable witness function transforming mutual refinement to a counterexample on

which mutual refinement is imprecise.

We conduct experiments on two applications: a taint analysis for Java programs ob-

tained from Android apps [88], and a value-flow analysis for LLVM IR programs obtained

from the SPEC CPU 2017 benchmark [89]. On average, compared with the straightfor-

ward intersection, mutual refinement achieves a 50.95% precision improvement (measured

by the number of reachable pairs) with a 2.65× time increase and a 3.23× space increase on

the taint analysis benchmarks, and achieves a 9.37% precision improvement with a 2.55×

time increase and a 2.22× space increase on the value-flow analysis benchmarks.

The fast graph simplification algorithm [78] proposed by Li, Zhang, and Reps (ab-

breviated as the LZR algorithm) also simplify graphs, but the LZR algorithm only works

for interleaved-Dyck-reachability while mutual refinement works for any L-reachability

preserving CFL-reachability-based over-approximations, and the LZR algorithm is a pre-

processing algorithm while mutual refinement is a complete solver. Our taint analysis ex-

periment is interleaved-Dyck reachability, and thus we also evaluate mutual refinement on

those graphs simplified by the LZR algorithm: LZR preprocessing can, on average, bring a

further precision improvement of 3.27% and reduces the time/space consumption in certain

cases. The value-flow analysis experiment is not interleaved-Dyck reachability, so the LZR

algorithm is not applicable.

In summary, this chapter makes the following main contributions.

• We propose mutual refinement for combining different CFL-reachability over-approximations

for hard formal language reachability problems.

• We prove the existence and uniqueness of the fix-point, the soundness, the precision

guarantee (being at least as precise as the straightforward intersection), and time/s-

75

1 #include ...
2

3 class Pair {
4 int first, second;
5 Pair(int fi, int se) : first(fi), second(se) {}
6 }
7

8 int getFirst(Pair p1) { return p1.first; /* represented by ret1 */ }
9

10 int getSecond(Pair p2) { return p2.second; /* represented by ret2 */ }
11

12 int main() {
13 int s = getSecret();
14 Pair a(0, s), b(0, 0), t(0, 0);
15 if (getInput() == "first") {
16 int x = getFirst(a);
17 t.first = x;
18 } else {
19 send(getSecond(a));
20 int y = getSecond(b);
21 t.second = y;
22 }
23 ...
24 }

Figure 5.1: A taint analysis example for C++. The goal is to decide whether the value s
can flow into t. The fact is that the value of s cannot flow into t.

pace complexities for mutual refinement.

• We evaluate mutual refinement on two program analysis applications. Experimental

results show that mutual refinement can achieve better precision than the straightfor-

ward intersection with reasonable extra cost.

This chapter is organized as follows. Section 5.2 gives a motivating example. Sec-

tion 5.3 reviews backgrounds and definitions. Section 5.4 presents mutual refinement and

its properties. Section 5.5 gives experimental results. Section 5.6 presents discussions.

Section 5.7 surveys related work, and Section 5.8 concludes.

5.2 Motivating Example

This section motivates mutual refinement using an example of context-sensitive and

field-sensitive taint analysis. The analysis first generates a graph from the source code being

analyzed, then the source-sink relation from the source code is reduced to the reachability

of two vertices in the graph. This is an extended version of the taint analysis in the work

76

s t

a

b

p1

p2

ret1

ret2

x

y

[second
(22]first)22

(25

]second(26)26

[first

[second

Figure 5.2: The taint analysis graph for Figure 5.1. Vertices are variables and edges model

values flowing among variables: i
(c−→ j represents that i flows into j via the function call at

line c; i
)c−→ j represents that i flows into j via the function return at line c; i

[f−→ j represents

that i flows into the f field of j; i
]f−→ j represents that the f field of i flows into j.

of Huang et al [88]. The original analysis is based on interleaved-Dyck reachability, but

our example is not. We compare mutual refinement with the straightforward intersection of

two different CFL-reachability-based over-approximations.

Example Code. Figure 5.1 shows a C++ code snippet. The analysis goal is to decide

whether the value of the variable s could flow into the variable t. Because t can only

contain the first field of a or the second field of b, the value of s cannot flow into t.

Graph Reachability Formulation. We use vertices to represent variables and use edges

to represent values flowing among variables (Figure 5.2). To achieve context-sensitivity

and field-sensitivity, we use parenthesis-labeled edges for function calls/returns, and use

bracket-labeled edges for field writes/reads.

The taint analysis decides whether the value of s can flow into t (including t’s fields).

The answer is “yes” if and only if there is a path whose edge labels can be concatenated to

a string that is an interleaving of matched parentheses, matched brackets, and unmatched

open brackets. Formally, given an alphabet Σ, we define the interleaving operator [78]

⊙ : Σ∗ × Σ∗ → P(Σ∗) as follows, where s, s1, s2 are strings and c1, c2 are characters.

ϵ⊙ s = {s}

s⊙ ϵ = {s}

c1s1 ⊙ c2s2 = {c1w | w ∈ (s1 ⊙ c2s2)} ∪ {c2w | w ∈ (c1s1 ⊙ s2)}.

For the taint analysis, we are interested in LT -reachability problem, where LT =
⋃
{s1 ⊙

77

s2 | s1 ∈ P, s2 ∈ B} and CFLs P and B are defined as follows. Note that we use P or B to

denote both the languages and the starting symbols in the grammars. LT is not context-free

(which is proved in Section 5.6). We also extend the definition of the interleaving operator

⊙ to languages, and thus we write LT = P ⊙B.

P → P P | (1 P)1 | . . . | (m P)m | ϵ

B → D B | [1 B | . . . | [n B | ϵ.

D → D D | [1 D]1 | . . . | [n D]n | ϵ.

In Figure 5.2, there are only two possible paths from s to t. None of these paths satisfy

our requirement, so the value of s cannot flow into t.

CFL-Reachability-Based Over-Approximations. We devise two CFLsCP andCB to over-

approximate LT . CP considers only parentheses and treats brackets as empty symbols. CB

considers only brackets and treats parentheses as empty symbols. Both algorithms can be

implemented using the well-known CFL-reachability algorithm [71, 70, 72]. In Figure 5.2,

bothCP -reachability andCB-reachability conclude that t is reachable from s. For example,

for CP , t is reachable from s via the path s
[second−−−→ a

(22−→ p1
]first−−→ ret1

)22−→ x
[first−−→ t, and for

CB, t is reachable from s via the path s
[second−−−→ a

(25−→ p2
]second−−−→ ret2

)26−→ y
[second−−−→ t. These

two conclusions are both false positives.

Straightforward Intersection. One possible method to combine the above two over-approximations

is to directly intersect their results, as synchronized pushdown system [83] and linear con-

junctive language reachability [77] did. In Figure 5.2, however, this method still concludes

that t is reachable from s, because the two algorithms both conclude that they are reachable.

Mutual Refinement. To further improve the precision, we first run CB-reachability, which

concludes that t is reachable from s, and the edges contributing to all reachable pairs can

be shown in Figure 5.3 (parentheses are treated as empty symbols so edges labeled with

parentheses are preserved). Now the graph has been simplified. Running CP -reachability

78

s t

a

b

p1

p2

ret1

ret2

x

y

[second
(22)22

(25

]second(26)26

[first

[second

Figure 5.3: After running CB-reachability and tracing only the edges contributing to its
results, the graph is simplified. Subsequent execution of CP -reachability can then conclude
that t is not reachable from s.

on the graph in Figure 5.3 concludes that t is not reachable from s. Thus CB-reachability

“refines” the subsequent execution of CP -reachability. This example shows that mutual

refinement can achieve better precision compared with the straightforward intersection.

5.3 Preliminary

We review the standard dynamic programming style algorithm for CFL-reachability in Sec-

tion 5.3.1. CFL-reachability can over-approximate other L-reachability problems.

5.3.1 CFL-Reachability

In L-reachability described in Section 2.2.1, when L is a context-free language, the prob-

lem is a CFL-reachability problem. CFL-reachability exhibits a popular dynamic program-

ming style cubic-time algorithm [71, 70, 72], as shown in Algorithm 1. Given an instance

⟨C, (V,E)⟩ of (all-pairs) CFL-reachability problem, we call CFL-REACHABILITY(⟨C, (V,E)⟩)

in Algorithm 1 to compute the results. The CFL C = (Σ, N, P, S) contains the set of ter-

minal symbols Σ, the set of non-terminal symbolsN , the set of productions P , and the start

symbol S. All productions are in the forms X → Y Z, X → Y , and X → ϵ, where X , Y ,

and Z are terminal symbols or non-terminal symbols. Any context-free grammar can be

transformed into this form [82]. Algorithm 1 works as follows.

1. Initially, all edges in the original graph are added to the worklist (line Line 3).

2. Then the productions with empty right-hand sides are applied where new edges are

79

Algorithm 1 The CFL-Reachability Algorithm

1: function CFL-REACHABILITY(⟨C, (V,E)⟩)
2: W ← emptyWorkList()
3: W.addAll(E)
4: for X → ϵ ∈ C do
5: for v ∈ V do
6: if X⟨v, v⟩ /∈ E then
7: add X⟨v, v⟩ to E and W

8: while W.nonEmpty() do
9: Y ⟨i, j⟩ ← W.pop()

10: for X → Y ∈ C do
11: if X⟨i, j⟩ /∈ E then
12: add X⟨i, j⟩ to E and W

13: for X → Y Z ∈ C do
14: for Z⟨j, k⟩ ∈ E do
15: if X⟨i, k⟩ /∈ E then
16: add X⟨i, k⟩ to E and W

17: for X → ZY ∈ C do
18: for Z⟨k, i⟩ ∈ E do
19: if X⟨k, j⟩ /∈ E then
20: add X⟨k, j⟩ to E and W

21: return (V,E)

added to both the graph and the worklist (lines Line 4-Line 7).

3. After that, the algorithm removes an edge Y ⟨i, j⟩ (connecting vertices i, j with label

Y) from the worklist, trying all productions with Y on the right-hand side, adding

newly generated edges to both the graph and the worklist, and repeating this process

until the worklist becomes empty (lines Line 8-Line 20).

4. Finally, the updated graph is returned as the result (line Line 21).

Algorithm 1 shows the process of generating new edges in the graph according to pro-

ductions, which we call production applications. For example, if there is a production

X → Y Z and there are edges Y ⟨i, j⟩ and Z⟨j, k⟩ already in the graph, we add a new edge

X⟨i, k⟩ to the graph via a production application. Note that when we pop an edge e out

from the worklist and process it (lines Line 8-Line 20), depending on the previously pro-

80

cessed edges, some of e’s adjacent edges might not be available in the graph yet, thus the

current iteration of lines Line 8-Line 20 may not add all edges that can be generated from

e via production applications. However, it is well-known that eventually, all possible edges

will be added, and the order of popping out edges from the worklist does not matter.

Theorem 12 (Algorithm 1’s Correctness). When Algorithm 1 terminates, all edges that can

be generated by production applications will be in the graph.

Proof. We prove it by contradiction. Suppose there is an edge en, which could be gen-

erated by a finite number of production applications, and which is not in the graph pro-

duced by Algorithm 1. It is obvious that en cannot be in the original edge set. So en

could be obtained by finitely and positively many production applications. We can denote

this process by a sequence e1, e2, . . . , en, where for all i ∈ {1, 2, . . . , n}, ei is either in

the original graph’s edge set or is obtained by applying a production on a set of edges

{ei1 , ei2 , . . . , eini
} ⊆ {e1, e2, . . . , ei−1}. Suppose ej is the first edge in e1, e2, . . . , en that is

not in the graph produced by Algorithm 1. There must exist such an ej because according

to our assumption, at least en is not in the graph produced by Algorithm 1. Again, ej cannot

be in the original edge set. Suppose ej can be obtained by applying a production on a set of

edges {ej1 , ej2 , . . . , ejnj
} ⊆ {e1, e2, . . . , ej−1}. Since all edges in {ej1 , ej2 , . . . , ejnj

} are in

the graph produced by Algorithm 1, when the last edge was popped out, since all produc-

tions were tried, Algorithm 1 must add ej to the graph since all edges in {ej1 , ej2 , . . . , ejnj
}

were available in the graph at that time. This is a contradiction.

We briefly explain our notations for time/space complexity. To make the analysis rigor-

ous, we should also consider the time/space complexity of handling numbers. For example,

if there are n vertices in the graph and we use 0, 1, . . . , n− 1 to represent the vertices, then

the number n − 1 itself requires memory of O(log n), and arithmetic operations on those

numbers are not of constant complexity. To focus on dominating factors, instead of using

the big-O notation, we use the Õ notation [90] to hide logarithm factors: Õ(f(n)) repre-

81

C-Contributing Edges:

L-Contributing Edges:

Ctri(C, (V,E))

Ctri(L, (V,E))

over-approximates

Figure 5.4: Two important concepts in mutual refinement. L is a formal language whose
reachability problem is computationally hard, and C is a context-free language over-
approximating L. The set of C-contributing edges Ctri(C, (V,E)) over-approximates the
set of L-contributing edges Ctri(L, (V,E)).

sents O(f(n)(log n)k) for some constant natural number k.

Complexity Analysis for Algorithm 1. Suppose the grammar of the CFL is fixed, adding

one edge to the graph takes constant time, accessing each graph vertex’s adjacent vertices

takes linear time, and pushing/popping elements to/from the worklist takes constant time.

There could be at most Õ(|V |2) edges popped out from the worklist at line Line 9, and

for each edge popped out, there could be at most Õ(|V |) adjacent edges to try in the main

while loop. Thus the time complexity is Õ(|V |3). The space complexity is Õ(|V |2) since

there could be at most Õ(|V |2) edges in the graph and in the worklist.

5.4 Mutual Refinement

This section formalizes mutual refinement. Specifically, Section 5.4.1 gives an overview;

Section 5.4.2 presents the important definition of contributing edges; Section 5.4.3 presents

the algorithm used as individual steps in mutual refinements; Section 5.4.4 presents the

complete mutual refinement algorithm.

5.4.1 Overview

Suppose we have a set of CFL-reachability-based over-approximations using CFLsC1, C2, . . . , Cm

for a computationally hard L-reachability problem. For an instance ⟨L, (V,E)⟩ of the prob-

lem, we first run C1-reachability. Then we only keep edges that directly or indirectly par-

ticipated in the construction of S1 (the start symbol of C1’s grammar) edges. Then we

82

run C2-reachability and only keep edges participated in the construction of S2 edges. This

process continues until we reach the fix-point: no more edges can be removed. The final

reachability result is obtained by executing C1, C2, . . . , Cm-reachability on the minimum

graph and taking the intersection.

5.4.2 Contributing Edges

The key step of mutual refinement is to over-approximate the set of “useful” edges. This is

achieved via formal language over-approximations.

Definition 14 (Formal Language Over-Approximation). Given two formal languages L1

and L2, L1 over-approximates L2 if and only if L1 ⊇ L2.

Definition 15 (L-Contributing Edges). For a specific formal language L, given an instance

⟨L, (V,E)⟩ of the L-reachability problem, an edge e ∈ E is an L-contributing edge for this

instance if and only if there exists a pair of vertices u, v ∈ V , such that e is part of a finite

path p connecting u and v and R(p) ∈ L. The set of such L-contributing edges is denoted

as Ctri(L, (V,E)).

In certain undecidableL-reachability problems (e.g., the interleaved-Dyck-reachability),

it can be shown that computing the set Ctri(L, (V,E)) is also undecidable in general [78].

So we need to approximate this set. Suppose we have a context-free language C over-

approximating L, then it is straightforward to see that Ctri(L, (V,E)) ⊆ Ctri(C, (V,E)),

because every L-path is also a C-path. Figure 5.4 summarizes the situation.

Example 5 (Contributing Edges). Consider the following example of interleaved-Dyck-

reachability, where each string in the interleaved-Dyck language L is an interleaving of

two strings from the following two CFLs, respectively.

P → P P | (P) | ϵ

B → B B | [B] | ϵ.

83

s

v1 v2 v3

v4 v5 v6

t

(
[)

]

(
] [

)

Figure 5.5: A Graph illustrating contributing edges.

We use the following context-free language C, which only considers matched parentheses

and treats brackets as empty symbols, to over-approximate the interleaved-Dyck language.

C → C C | (C) | [|] | ϵ.

In the instance of interleaved-Dyck-reachability shown in Figure 5.5, the set ofL-contributing

edges is {s (−→ v1, v1
[−→ v2, v2

)−→ v3, v3
]−→ t}, while the set of C-contributing edges in-

cludes all edges in the original graph.

5.4.3 Tracing Algorithm

The set of CFL-contributing edges is computable via augmenting the standard CFL-reachability

algorithm to trace the edges, which results in Algorithm 2. Given an instance ⟨C, (V,E)⟩

of a CFL-reachability problem, we first make the function call RECORD(⟨C, (V,E)⟩) to

run the CFL-reachability algorithm and record the meta-information “metaInfo”, where

“metaInfo[e]” contains all edges that directly contributed to the construction of e. Notice

that RECORD is almost the same as the standard CFL-reachability algorithm (Algorithm 1),

except that we add the highlighted lines to record the meta-information. Then the original

graph’s C-contributing edges could be obtained by calling COLLECT(metaInfo, E), which

recursively collects the contributing edges.1

1COLLECT can be implemented using either breadth-first-search or depth-first-search.

84

Algorithm 2 The Tracing Algorithm
1: function RECORD(⟨C, (V,E)⟩)

2: metaInfo← emptyMap()

3: W ← emptyWorkList()

4: W.addAll(E)

5: for X → ϵ ∈ CFG do

6: for v ∈ V do

7: if X⟨v, v⟩ /∈ E then

8: add X⟨v, v⟩ to E andW

9: while W.nonEmpty() do

10: Y ⟨i, j⟩ ←W.pop()

11: for X → Y ∈ CFG do

12: metaInfo[X⟨i, j⟩].add(Y ⟨i, j⟩)

13: if X⟨i, j⟩ /∈ E then

14: add X⟨i, j⟩ to E andW

15: for X → Y Z ∈ CFG do

16: for Z⟨j, k⟩ ∈ E do

17: metaInfo[X⟨i, k⟩].add(Y ⟨i, j⟩, Z⟨j, k⟩)

18: if X⟨i, k⟩ /∈ E then

19: add X⟨i, k⟩ to E andW

20: for X → ZY ∈ CFG do

21: for Z⟨k, i⟩ ∈ E do

22: metaInfo[X⟨k, j⟩].add(Z⟨k, i⟩, Y ⟨i, j⟩)

23: if X⟨k, j⟩ /∈ E then

24: add X⟨k, j⟩ to E andW

25: return ((V,E),metaInfo)

26:

27: function COLLECT(((V,E),metaInfo))

28: visited← ∅

29: con← ∅

30: function COLLECTDFS(e)

31: if e /∈ visited then

32: visited.add(e)

33: if e’s label is a terminal symbol then

34: con.add(e)

35: for e′ ∈ metaInfo[e] do

36: COLLECTDFS(e′)

37: for e ∈ E do

38: if e’s label is the start symbol then

39: COLLECTDFS(e)

40: return con

85

The following theorem demonstrates the correctness of Algorithm 2.

Theorem 13 (Tracing Algorithm’s Correctness). For any instance of CFL-reachability

⟨C, (V,E)⟩, we have

COLLECT(RECORD(⟨C, (V,E)⟩)) = Ctri(C, (V,E)).

Proof. Suppose e ∈ COLLECT(RECORD(⟨C, (V,E)⟩)). According to Algorithm 2, we

have e ∈ E, and there exists a finite sequence of edges e1 = e, e2, . . . , en (we can move

e to the beginning), where each edge is either from the original edge set or obtained from

applying one production in C to some preceding edges, e directly or indirectly contributes

to en, and en’s label is C’s start symbol. So e ∈ Ctri(C, (V,E)). Conversely, suppose e ∈

Ctri(C, (V,E)), then e ∈ E and there exists a finite sequence of edges e1 = e, e2, . . . , en,

where each edge is either from the original edge set or obtained by applying one production

in C to some preceding edges, e directly or indirectly contributes to en, and en’s label is

C’s start symbol. According to Theorem 12, every edge in this sequence must be added to

the edge set by Algorithm 1 (and thus also by Algorithm 2). Now let us consider en. It is

not in the original edge set because its symbol is a non-terminal symbol. Thus en can only

be obtained by applying one production on some previous edges {ei1 , ei2 , . . . , eini
} (which

are called the dependency edges of en). Since all dependency edges of en were added

by the algorithm, one edge must be the last one added, and when that one was added, all

of en’s dependency edges were added to the meta-information of en (i.e., metaInfo(en)).

Thus the COLLECTDFS procedure can visit all dependency edges of en. Such dependency

edges can be reasoned similarly in a depth-first-search manner, and because e1 directly

or indirectly contributes to en, eventually COLLECTDFS visits the edge e1 = e. So e ∈

COLLECT(RECORD(⟨C, (V,E)⟩)).

Complexity Analysis for Algorithm 2. For RECORD, suppose the grammar of the CFL

is fixed, the graph supports constant time edge addition and linear time adjacent ver-

86

tices traversal, the worklist supports constant time pushing/popping, and the operations

on metaInfo and the edge set corresponding to each key have logarithmic time complex-

ity and linear space complexity with respect to the number of elements. There could be

at most Õ(|V |2) edges popped out from the worklist at line Line 10, and for each edge

popped out, there could be at most Õ(|V |) adjacent edges to try in the main while loop.

The size of metaInfo is bounded by Õ(|V |2) and the size of the edge set corresponding to

each key is bounded by Õ(|V |), so each addition operation to metaInfo has a complexity

of Õ(log(|V |2) + log |V |) = Õ(log |V |), which can be hidden by our Õ notation. Thus

the time complexity of RECORD is Õ(|V |3). The space complexity of RECORD is Õ(|V |3)

since metaInfo dominates the space complexity and there could be at most Õ(|V |3) edge

additions to metaInfo. For COLLECT, suppose visited and con also supports logarithm time

operations. Consider a new graph where vertices are edges in E, and if e2 ∈ metaInfo[e1]

then we have a “super edge” from e1 to e2. It is easy to see that in this new graph, there are

at most Õ(|V |2) vertices, and the in-degree and out-degree of each vertex are both bounded

by Õ(|V |). Then COLLECT essentially did a depth-first search on this new graph, whose

time complexity is determined by the maximum number of “super edges” in this new graph:

Õ(|V |2×|V |× c · log |V |) = Õ(|V |3). The logarithm factor is due to operations on visited,

metaInfo, and con, but is hidden by our notation Õ. The space complexity is bounded

by the sizes of the graph (Õ(|V |2)), visited (Õ(|V |2)), con (Õ(|V |2)), metaInfo (Õ(|V |3)),

and the maximum depth of recursive calls (Õ(|V |2)). Therefore, the space complexity of

COLLECT is Õ(|V |3).

Table 5.1 compares the time/space complexities of the standard CFL-reachability al-

gorithm (Algorithm 1) and our tracing version (Algorithm 2). In practice, however, the

running time and space also depend on the constant and logarithm factors, the computer

architecture, etc.

87

Table 5.1: Time/space complexities of Algorithm 1 and Algorithm 2. The CFL size is
assumed to be a constant, and the input graph is G = (V,E).

Algorithm Time Complexity Space Complexity
Algorithm 1 (The Standard Algorithm) Õ(|V |3) Õ(|V |2)
Algorithm 2 (Our Tracing Algorithm) Õ(|V |3) Õ(|V |3)

5.4.4 Mutual Refinement Algorithm

This section precisely defines the mutual refinement algorithm for a computationally hard

L-reachability problem with multiple CFL approximations.

Definition 16 (Refinement Sequence). Given an instance ⟨L, (V,E)⟩ of L-reachability

problem and m different CFLs C1, . . . , Cm (m ≥ 2), each of which over-approximates L, a

refinement sequence is a finite sequence of sets of edges E1, . . . , En, such that E1 = E and

for all i ≥ 2, Ei is either Ctri(Cj, (V,Ek)) where j ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , i−

1}, or Ej ∩ Ek where j, k ∈ {1, 2, . . . , i− 1}.

There exists a global minimum edge set (with respect to the set inclusion relation)

that can be computed via a fix-point algorithm. This is due to the following monotonicity

property of contributing edges.

Lemma 2 (Monotonicity of Contributing Edges). Given a formal languageL, the following

formula holds for all problem instances.

E1 ⊆ E2 =⇒ Ctri(L, (V,E1)) ⊆ Ctri(L, (V,E2))

Proof. This is because any L-path in E1 is also an L-path in E2.

Theorem 14 (Minimum Edge Set). Given an instance ⟨L, (V,E)⟩ of the L-reachability

problem and m different CFLs C1, C2, . . . , Cm (m ≥ 2), each of which over-approximates

L, there exists an edge setEmin, which could be obtained by a specific refinement sequence,

and which is a subset of all edge sets in all refinement sequences.

88

Proof. Consider the process of applying m algorithms successively in an arbitrary order

to refine the edge sets: apply Ci1-reachability on E to get E1, apply Ci2-reachability on

E1 to get E2, . . . , apply Cim-reachability on Em−1 to get Em, where Ci1 , Ci2 , . . . , Cim is

an arbitrary permutation of C1, C2, . . . , Cm. For simplicity, we still denote this order as

C1, C2, . . . , Cm. This is called one round. By doing such rounds multiple times until a

state where applying another round does not change the edge set, we get the set Emin.

First, we prove its termination: after each round, the size of E either decreases or

remains the same, but the size of E cannot decrease indefinitely.

Second, we show that Emin is indeed the globally minimal set with respect to the sub-

set relation: given any refinement sequence E1, . . . , En, since it is non-increasing with

respect to the set inclusion relation, we just need to prove Emin ⊆ En. We prove this

by induction on the lengths of refinement sequences. First, there is only one possible

refinement sequence of length 1, which is E itself, and it is obvious that Emin ⊆ E.

Now suppose that for all refinement sequences of length at most n, Emin is a subset of

the last edge set in the sequence. Consider an arbitrary refinement sequence of length

n + 1: E1, . . . , En+1. Here En+1 is either the intersection of two previous edge sets or

obtained by applying Cj-reachability (j ∈ {1, . . . ,m}) to one of the previous edge sets.

In the first case, by the induction hypothesis, the two previous edge sets all contain Emin,

so En+1 also contains Emin. In the second case, suppose Cj-reachability is applied to Ei

(1 ≤ i ≤ n). By the induction hypothesis, we have Emin ⊆ Ei, and because the set of con-

tributing edges is monotonic in the sense described in Lemma Lemma 2, we further have

Emin = Ctri(Cj, (V,Emin)) ⊆ Ctri(Cj, (V,Ei)) = En+1, where the first equality holds

according to the definition of Emin.

89

Algorithm 3 The Mutual Refinement (MR) Algorithm

1: function MR((V,E), {C1, . . . , Cm})

2: G← (V,E)

3: while true do

4: s← G.E.size()

5: for Ci ∈ {C1, . . . , Cm} do

6: G.E ← COLLECT(RECORD(⟨Ci, G⟩))

7: if G.E.size() == s then

8: return G

Algorithm 3 (mutual refinement) gives the complete procedure for finding the mini-

mum edge set described in Theorem 14. It keeps iterating over the given set of algorithms

(line Line 5) until the edge set’s size does not change (line Line 7). Due to Theorem 14,

this algorithm is guaranteed to terminate and produce the optimal result among all possible

refinement sequences.

Theorem 15 (Mutual Refinement Soundness). If every CFL in {C1, . . . , Cm} over-approximates

L, then Algorithm 3 does not miss any L-contributing edges.

Proof. This is immediate from Theorem 13 and Theorem 14.

The final reachability result can be obtained by executing C1, C2, . . . , Cm-reachability

on the minimum graph produced by Algorithm 3, and reporting the pairs that all those

CFL-reachability executions report as reachable. In fact, the last iteration of the while loop

in Algorithm 3 already does this.

Theorem 16 (Precision Guarantee). Suppose we have an instance ⟨L, (V,E)⟩ ofL-reachability

problem and m different CFLs C1, . . . , Cm, each of which over-approximates L. Let Emin

be the set of edges obtained by executing Algorithm 3 on (V,E) and C1, . . . , Cm. Sup-

pose P1, . . . , Pm are the sets of reachable pairs obtained by executing C1, . . . , Cm reach-

90

abilities on (V,E), and Q1, . . . , Qm are the sets of reachable pairs obtained by executing

C1, . . . , Cm reachabilities on (V,Emin). Then
⋂m
i=1Qi ⊆

⋂m
i=1 Pi.

Proof. Since Emin ⊆ E, it is immediate that ∀i ∈ {1, . . . ,m}, Qi ⊆ Pi, because any

Ci-path connecting two vertices in (V,Emin) is also present in (V,E).

The time and space complexities of Algorithm 3 depend on the number of iterations,

which highly depends on the graph structure and the CFLs. O(|E|) is a very loose upper

bound of the number of iterations because in each iteration before the last one, we remove

at least one edge. Our evaluation (Section 5.5) shows that for specific program analysis

problems and graphs with edge sizes up to 184k, the number of iterations can still be within

five.

Example 6 (Mutual Refinement Example). If we apply mutual refinement to the motivating

example discussed in Section 5.2, where in each round we apply CB-reachability and CP -

reachability in sequence, then after two rounds, the graph stabilizes. Figure 5.6 shows this

process.

5.5 Experiments

We evaluate mutual refinement on two applications: a taint analysis for Java programs ob-

tained from Android apps [88], and a value-flow analysis for LLVM IR programs obtained

from the SPEC CPU 2017 benchmark [89].

When processing experimental data, we use arithmetic means (1
n

∑n
i=1 xi) for the av-

erage of absolute numbers, and use geometric means (n
√∏n

i=1 xi) for the average of ra-

tios [91]. Also, for the measurement of precision (the number of reachable pairs), we

exclude trivial pairs (u, u) and only consider pairs (u, v) where u ̸= v.

91

s t

a

b

p1

p2

ret1

ret2

x

y

[second
(22)22

(25

]second(26)26

[first

[second

(a) After running CB-reachability in the first round

s t

a

b

p1

p2

ret1

ret2

x

y

[second

]second(26)26

[first

[second

(b) After running CP -reachability in the first round

s t

a

b

p1

p2

ret1

ret2

x

y

[second

(26)26

[first

[second

(c) After running CB-reachability in the second round

s t

a

b

p1

p2

ret1

ret2

x

y

[second [first

[second

(d) After running CP -reachability in the second round

Figure 5.6: Mutual refinement’s iteration process on the motivating example discussed in
Section 5.2. It takes two rounds to converge. If we only consider (s, t)-reachability, then
the iteration can stop after the second iteration.

5.5.1 Experimental Setup

Taint Analysis. We apply our approach to a context-sensitive field-sensitive taint analysis

for Java programs obtained from Android apps [88]. The analysis goal is to determine all

pairs of variables (s, t) where sensitive information from variable s can flow into variable

t. Parentheses model context-sensitivity and brackets model field-sensitivity. A valid path

string is an arbitrary interleaving of two strings derived from the two CFLs P and B shown

92

P → P P | (1 P)1 | . . . | (k P)k | ϵ

B → B B | [1 B]1 | . . . | [l B]l | ϵ

L = P ⊙B

(a) The taint analysis is formulated as the well-known interleaved-Dyck-reachability problem.

CP → CP CP | (1 CP)1 | . . . | (k CP)k | I | ϵ
I → [1|]1 | . . . | [l|]l

CB → CB CB | [1 CB]1 | . . . | [l CB]l | J | ϵ
J → (1|)1 | . . . | (k|)k | ϵ

(b) We use the above two CFLs CP and CB to over-approximate the interleaved-Dyck language.

Figure 5.7: The taint analysis formulation and approximation.

in Figure 5.7a. This is the interleaved-Dyck reachability problem, which is undecidable [4].

Unlike the example in Section 5.2, which considers sources/sinks within one function

(matched parentheses) and counts flowing into fields as leaks (unmatched brackets), in our

experiments, we only count leaks from variables to variables, thus disallowing unmatched

brackets. One reason is that this is the formulation in the original work [88], and the other

reason is that we also evaluate the LZR algorithm [78] on these benchmarks, which only

supports matched brackets. In general, the grammar can be adjusted according to needs.

To use mutual refinement, we choose two CFLs (CP , CB) over-approximating the

interleaved-Dyck language L, where CP models parentheses matching and CB models

brackets matching. Their grammars are shown in Figure 5.7b. The execution order is

CP , CB in each round of mutual refinement.

The benchmarks are selected from the original paper [88]. Specifically, we chose the

Contagio malware apps and used the implementation of the client analysis to obtain the

graphs.2 We excluded benchmarks that our tool or the original reference’s tool failed to

handle. Finally, we got 15 benchmarks, and the size information of the APK files and the

2https://github.com/proganalysis/type-inference.

93

https://github.com/proganalysis/type-inference

graphs is shown in Table 5.2a.

Value-Flow Analysis. We also apply our approach to a context-sensitive value-flow analy-

sis for LLVM IR programs obtained from the SPEC CPU 2017 benchmark [89]. The anal-

ysis goal is to determine all pairs of store/load instructions (store v1 to p1, load v2 from p2)

where the value of v1 can flow into v2 via intermediate assignments and loads/stores. In

this case, context-sensitivity is modeled using matched parentheses; memory stores and

loads are modeled using matched brackets (in this case, there is only one type of brackets);

normal copies of values are modeled using edges with a special label n. Furthermore, since

we are interested in store/load pairs, the first edge in the path string must be a memory

store, and the last edge must be a memory load. A valid path string is an interleaving of

three strings derived from the three CFLs P , B, and N shown in Figure 5.8a where the

first symbol must be [and the last symbol must be]. We denote this formal language as

LV . Section 5.6 shows the existing D1 ⊙ Dk-reachability problem, whose decidability is

currently open [92], is reducible to the LV -reachability problem.

In order to use mutual refinement, we choose three CFLs (CP , CB, and CE) over-

approximating the underlying problem, where CP models parentheses matching, CB mod-

els brackets matching, and CE enforces that the first and last edges of the path must be

an open bracket and a closed bracket, respectively. Specifically, they have the three gram-

mars shown in Figure 5.8b. The execution order is CP , CB, CE in each round of mutual

refinement.

The benchmarks are compiled using Clang version 12 [93] to bitcode files. The graphs

are generated by the open-source static value-flow analysis framework SVF [94]. We did

not include small programs (with bitcode file sizes < 1MB) or programs that failed to be

compiled or linked. Finally, we got 10 benchmarks, and the size information of the bitcode

files and the graphs is shown in Table 5.2b.

Research Questions. Our experiments aim to answer the following questions.

• RQ1: Can mutual refinement achieve better precision compared with the straightfor-

94

P → P P | (1 P)1 | . . . | (k P)k | ϵ

B → B B | [B] | ϵ

N → n N | ϵ

LV = ((P ⊙B)⊙N) ∩ {s | s = [∗]}

(a) The value-flow analysis is formulated as an LV -reachability problem.

CP → CP CP | (1 CP)1 | . . . | (k CP)k | I | ϵ
I → [|] | n

CB → CB CB | [CB] | J | ϵ
J → (1|)1 | . . . | (k|)k | n

CE → [K]
K → K K | [|] | (1|)1 | . . . | (k|)k | n

(b) We use the above three CFLs CP , CB , and CE to over-approximate LV .

Figure 5.8: The value-flow analysis formulation and approximation.

ward intersection (baseline) on the two applications?

• RQ2: What is the time/space overhead that mutual refinement incurs compared with

the straightforward intersection (baseline), and how many rounds does mutual refine-

ment take to converge?

• RQ3: Can the LZR graph simplification algorithm improve the precision/perfor-

mance of mutual refinement on the taint analysis application?

Implementation and Experiment Execution. We implemented mutual refinement in C++17.3

All experiments were performed on a machine running Ubuntu 20.04.2 LTS. We set a time-

out of 4 hours and a space limit of 128 GB for each algorithm’s execution on each bench-

mark item. For RQ3, we used the original implementation of the LZR algorithm available

3The implementation is available on GitHub (https://github.com/sdingcn/mutual-refinement) and Zenodo
(https://doi.org/10.5281/zenodo.8191389). Certain low-level data structure optimizations were used.

95

https://github.com/sdingcn/mutual-refinement
https://doi.org/10.5281/zenodo.8191389

Table 5.2: Benchmark statistics.

Benchmark APK Size
(M)

Graph Size
(|V |, |E|)

backflash 0.75 (544, 2048)
batterydoc 0.51 (1674, 4790)
droidkongfu 0.08 (734, 1983)
fakebanker 5.17 (434, 1103)
fakedaum 0.14 (1144, 2603)
faketaobao 0.44 (222, 450)
jollyserv 0.42 (488, 998)
loozfon 0.04 (152, 323)
phospy 0.18 (4402, 15660)
roidsec 0.03 (553, 2026)
scipiex 0.31 (1809, 5820)
simhosy 1.43 (4253, 13768)
skullkey 6.63 (18862, 69599)
uranai 0.07 (568, 1246)
zertsecurity 0.10 (281, 710)

(a) Taint Analysis Graphs.

Benchmark Bitcode Size
(M)

Graph Size
(|V |, |E|)

cactus 5.61 (101325, 114805)
imagick 13.68 (103594, 131707)
leela 2.93 (16134, 19110)
nab 1.41 (12727, 13605)
omnetpp 20.80 (171502, 184601)
parest 16.20 (84355, 93493)
perlbench 11.88 (125345, 160958)
povray 7.38 (61802, 71892)
x264 4.68 (49806, 56376)
xz 1.24 (9918, 10767)

(b) Value-flow Analysis Graphs.

online.4 Since the LZR algorithm is fast enough, we did not set time/space limits on its

executions.

5.5.2 RQ1: Precision Improvement

According to Theorem 16, mutual refinement’s precision is at least as good as the straight-

forward intersection. We define the precision improvement as (PBaseline/PMR) − 1, where

PBaseline and PMR represent the number of reachable pairs computed by the straightfor-

ward intersection (baseline) and mutual refinement, respectively. Table 5.3 shows that,

on average, mutual refinement achieves 50.95% precision improvement on the taint analy-

sis benchmarks and 9.37% precision improvement on the value-flow analysis benchmarks.

Note that the improvement greatly depends on specific applications and benchmarks.

Summary: On the two program analysis applications, mutual refinement can achieve

visibly better precision compared with the straightforward intersection.

4https://github.com/yuanboli233/interdyck graph reduce.

96

https://github.com/yuanboli233/interdyck_graph_reduce

5.5.3 RQ2: Performance Overhead

Mutual refinement traces the sets of contributing edges, which can cost more time and

space. Also, mutual refinement might need several rounds to converge. As shown in Ta-

ble 5.3 and Figure 5.9, on average, on the taint analysis benchmarks, mutual refinement

takes 2.93 rounds to converge and consumes 2.65× time and 3.23× memory compared

with the baseline; on the value-flow analysis benchmarks, mutual refinement takes 3.13

rounds to converge and consumes 2.55× time and 2.22×memory compared with the base-

line. In some cases, mutual refinement’s space consumption can be much higher. For

example, mutual refinement incurs a 80.58× space increase on the phospy benchmark in

Table 5.3a. And there is a trend that larger graphs result in larger differences in mem-

ory consumption, which reflects the space complexity difference (Õ(|V |2) and Õ(|V |3)).

Section 5.6.4 discusses mutual refinement’s memory cost in detail.

However, mutual refinement can also simplify the graph during the execution of each

CFL-reachability, while the straightforward intersection cannot. This could lead mutual re-

finement to consume less resources in certain cases. For example, on the cactus benchmark

in Table 5.3b, mutual refinement consumes less time than the straightforward intersection.

Summary: Mutual refinement typically needs more time and space, but the average

time/space increase on the two program analysis applications is within 5×, and the number

of iterations needed to converge is within five.

5.5.4 RQ3: Combination with the LZR Algorithm

The LZR graph simplification algorithm [78] works for interleaved-Dyck-reachability, and

is thus applicable to our taint analysis benchmarks as a pre-processing step. One impor-

tant detail is that the LZR algorithm does graph edge contractions before calculating the

contributing edges, while mutual refinement doesn’t. This can lead to edges counted as

contributing edges in mutual refinement but not counted as contributing edges in the LZR

algorithm, because contracting edges can make LZR ignore the contracted edges. As a

97

Table 5.3: Precision and performance results. We present the number of rounds that mutual
refinement takes to converge, as well as the comparison of precision/time/space between
the straightforward intersection (baseline) and mutual refinement. “-” means time/space
limits are exceeded.

Benchmark Iterations
Precision (Pairs) Time (Seconds) Space (MB)
Baseline MR Baseline MR Baseline MR

backflash 2 6080 2870 0.42 0.67 16.06 36.70
batterydoc 3 8386 5484 0.93 6.06 31.43 133.76
droidkongfu 3 6471 5442 0.32 4.55 16.93 90.06
fakebanker 3 1407 1172 0.04 0.12 9.17 11.96
fakedaum 3 3507 3243 0.28 1.07 18.16 37.40
faketaobao 3 398 328 0.01 0.02 6.98 7.23
jollyserv 3 562 303 0.10 0.14 10.61 15.62
loozfon 2 441 424 0.01 0.04 6.74 9.62
phospy 3 103961 81925 1309.64 9436.26 1202.29 96882.00
roidsec 2 17301 16425 1.79 5.94 28.85 168.93
scipiex 4 20542 10210 69.96 266.33 209.97 3471.78
simhosy 3 100552 41992 102.10 110.78 363.91 1669.46
skullkey - - - - - - -
uranai 4 353 148 0.11 0.08 10.54 10.56
zertsecurity 3 1969 1110 0.26 0.16 11.24 13.93

(a) Taint Analysis Results.

Benchmark Iterations
Precision (Pairs) Time (Seconds) Space (MB)
Baseline MR Baseline MR Baseline MR

cactus 4 46502 46421 621.36 419.39 2888.79 9373.77
imagick - 22091 - 14088.50 - 12211.74 -
leela 3 392 392 0.81 1.94 78.01 122.45
nab 3 1958 1788 0.30 0.87 51.83 70.76
omnetpp 4 90412 50568 76.70 221.21 1769.57 4396.33
parest 3 4571 4571 2.89 8.70 243.79 364.86
perlbench - - - - - - -
povray 3 7453 7230 18.18 6.43 455.19 260.73
x264 3 61577 60792 47.01 821.81 571.96 10650.62
xz 2 211 211 0.32 2.29 41.10 87.94

(b) Value-flow Analysis Results.

result, the LZR algorithm can potentially remove certain edges that mutual refinement can-

not.

Table 5.4 compares (1) executing mutual refinement on the original graphs and (2) ex-

98

0 5 10 15

0

20

40

60

80

Time Ratio

M
em

or
y

R
at

io

(a) Overhead on taint analysis.

0 5 10 15
0

5

10

15

20

Time Ratio

M
em

or
y

R
at

io

(b) Overhead on value-flow analysis.

Figure 5.9: Mutual refinement’s performance overhead scatter plots (ratios). Time ratios
are mutual refinement’s time consumption numbers divided by the baseline’s time con-
sumption numbers. Memory ratios are similar.

ecuting mutual refinement on the graphs simplified by the LZR algorithm. In the (2) case,

the time/space consumption includes both algorithms (LZR and MR). On average, LZR

can improve the precision of mutual refinement by 3.27%, and this relatively small num-

ber shows that mutual refinement itself can already achieve very high precision. Indeed,

LZR+MR can reduce 81.38% more edges on average compared with LZR alone. LZR

can also boost mutual refinement in terms of time/space consumption, such as the phospy

benchmark in Table 5.4. Notably, the space consumption of LZR+MR is always lower-

bounded by 269 MB, and that is because LZR has a minimal memory consumption of

roughly 269 MB. This might be due to implementation details.

Summary: LZR can improve mutual refinement’s precision to a small extent (3.27% on

average). Since LZR is fast, it can boost mutual refinement’s performance in certain cases.

99

Ta
bl

e
5.

4:
A

co
m

pa
ri

so
n

be
tw

ee
n

th
e

or
ig

in
al

m
ut

ua
lr

efi
ne

m
en

ta
nd

th
e

on
e

co
m

bi
ne

d
w

ith
th

e
L

Z
R

al
go

ri
th

m
,i

nc
lu

di
ng

pr
ec

is
io

n,
tim

e,
sp

ac
e,

an
d

ed
ge

re
du

ct
io

n.
“-

”
m

ea
ns

tim
e/

sp
ac

e
lim

its
fo

rm
ut

ua
lr

efi
ne

m
en

ta
re

ex
ce

ed
ed

.

B
en

ch
m

ar
k

Pr
ec

is
io

n
(P

ai
rs

)
Ti

m
e

(S
ec

on
ds

)
Sp

ac
e

(M
B

)
E

dg
e

R
ed

uc
tio

n
M

R
L

Z
R

+M
R

M
R

L
Z

R
+M

R
M

R
L

Z
R

+M
R

L
Z

R
L

Z
R

+M
R

ba
ck

fla
sh

28
70

28
70

0.
67

0.
60

36
.7

0
26

9.
18

67
7

14
34

ba
tte

ry
do

c
54

84
54

38
6.

06
1.

54
13

3.
76

26
9.

33
18

26
33

27
dr

oi
dk

on
gf

u
54

42
54

22
4.

55
2.

66
90

.0
6

26
9.

40
58

9
10

70
fa

ke
ba

nk
er

11
72

92
8

0.
12

0.
17

11
.9

6
26

9.
17

41
4

74
5

fa
ke

da
um

32
43

32
43

1.
07

0.
87

37
.4

0
26

9.
18

11
03

17
47

fa
ke

ta
ob

ao
32

8
32

5
0.

02
0.

10
7.

23
26

9.
13

19
1

30
9

jo
lly

se
rv

30
3

30
3

0.
14

0.
25

15
.6

2
26

9.
01

36
1

63
4

lo
oz

fo
n

42
4

42
4

0.
04

0.
08

9.
62

26
9.

08
10

5
18

9
ph

os
py

81
92

5
80

20
0

94
36

.2
6

88
49

.9
1

96
88

2.
00

69
53

2.
63

38
38

66
59

ro
id

se
c

16
42

5
16

42
5

5.
94

5.
86

16
8.

93
26

9.
12

60
5

10
77

sc
ip

ie
x

10
21

0
10

17
3

26
6.

33
26

0.
05

34
71

.7
8

34
26

.7
2

12
19

26
83

si
m

ho
sy

41
99

2
35

41
9

11
0.

78
78

.6
6

16
69

.4
6

12
17

.9
3

48
01

88
66

sk
ul

lk
ey

-
-

-
-

-
-

19
40

8
-

ur
an

ai
14

8
14

8
0.

08
0.

21
10

.5
6

26
9.

10
56

6
10

63
ze

rt
se

cu
ri

ty
11

10
11

10
0.

16
0.

22
13

.9
3

26
9.

11
25

3
43

8

100

5.6 Discussion

5.6.1 Generality of Mutual Refinement

Mutual refinement can approximate any language-reachability problem as long as there

exist CFL-reachability-based over-approximations. In particular, it is not restricted to the

interleaved-Dyck reachability or any particular problem. We have shown two examples LT

and LV in our motivating example and experiments, and here we show (1) LT is not a CFL,

and (2) D1 ⊙ Dk-reachability, whose decidability is currently open [92], is reducible to

LV -reachability.

LT is not a CFL. Suppose LT is a CFL. We construct a formal language M , each string m

of which is an arbitrary interleaving of p ∈ P and d ∈ D in Section 5.2, interspersed with

an arbitrary number of special symbols a1, . . . , al. Obviously, the language homomorphism

f(x) =

 [i , x = ai

x , otherwise

maps M to LT . By the assumption LT is context-free, so M is also context-free since

CFL is closed under inverse homomorphisms. Consider the regular language R = {s |

s does not contain a1, . . . , al}. Since the intersection of a context-free language and a reg-

ular language is also context-free, we haveM∩R is context-free, but this is the interleaved-

Dyck language, which is known to be non-context-free [4]. This is a contradiction.

D1⊙Dk-reachability is reducible to LV -reachability. D1⊙Dk is arbitrary interleaving of

two Dyck languagesD1 andDk, whereD1 is a Dyck language with one kind of parenthesis

and Dk is a Dyck language with k kinds of parenthesis. Given any labeled graph consisting

of only labels from D1 and Dk, a pair of vertices (s, t) is D1 ⊙ Dk-reachable if and only

if (s0, t0) is LT -reachable where we just add two vertices s0 and t0, and two edges s0
[−→ s

and t
]−→ t0, where [and] are the open and close brackets in D1.

101

5.6.2 Different Grammars for the Same CFL

A context-free language can be represented by many different context-free grammars. Am-

biguous grammars introduce redundancies, so it can affect mutual refinement’s perfor-

mance because there are more derivations to traverse. However, the choice of grammars

does not affect the precision, because we only track L-contributing edges and different

grammars refer to the same formal language L. This is also reflected in Algorithm 2:

metaInfo[e] is a set eliminating duplicate tracked edges, and con is also a set eliminating

duplicate collected edges.

5.6.3 Order of Mutual Refinement

In mutual refinement, as Theorem 14 shows, any possible orders of executing the CFL-

reachability-based over-approximations C1, C2, · · · , Cm result in the same global mini-

mum. However, different orders might affect the convergence speed. In practice, we can

run the available CFL-reachability-based over-approximations on sampled programs to find

out a “good” order to use, and then execute the “good” order on all programs. There are

other heuristics for order choosing, such as executing the one that can result in the best

precision first.

5.6.4 Cost of Mutual Refinement

As shown in Section 5.5, mutual refinement, in general, needs more time and space than

the straightforward intersection. This is because mutual refinement traces the contributing

edges and might need more than one iteration to converge. However, after running one

CFL-reachability over-approximation, the remaining ones only need to be executed on the

simplified graph. Also, in practice, we do not have to wait for the convergence, but can

run it for a fixed number of rounds (e.g. two rounds). Other possible optimizations include

changing the order of mutual refinement, simplifying the graphs/grammars, etc. Mutual

refinement reflects a trade-off between performance and precision.

102

Memory Overhead of Mutual Refinement. Our experiment shows that in some cases,

mutual refinement can take about 80× memory compared with the straightforward inter-

section. We intuitively explain the reason. Consider the difference between the standard

CFL-reachability algorithm (Algorithm 1) and our tracing version (Algorithm 2): in our

tracing version, when a new edge is generated, the meta-information about edge dependen-

cies is updated no matter whether the new edge is already in the graph or not. If there are

multiple ways to generate the same edge, all of those ways need to be recorded. For exam-

ple, in the following graph, where we perform the matched-parenthesis reachability with

respect to the grammar S → S S | (S) | ϵ, there are three ways to generate the summary

edge s S−→ t, and all edges will be added to the meta information of s S−→ t, despite there is

only one such summary edge in the final graph. So the memory cost of mutual refinement

can be high. Whether this graph pattern occurs in reality depends on the specific analysis

details.

s

v1

v2

v3

t

()
()
()

Exploring whether we can reduce the memory cost is an interesting future direction. There

exists work compressing information used during static analysis [95].

5.6.5 Generalization to the Single-Pair Case

In this chapter, mutual refinement is formalized to retain the edges contributing to reachable

pairs in the CFL-reachability-based over-approximations. Notice that in the single-source-

single-target reachability case, we can retain only the edges contributing to the pair that we

are interested in, and this can potentially remove even more edges from the graph and thus

can also potentially increase the precision as well. We leave this for future work.

103

5.6.6 Generalization to Other Algorithms

The idea of tracing in mutual refinement can be potentially generalized to all algorithms

using similar “dynamic programming style” approaches. Specifically, as long as the algo-

rithm traverses all edges contributing to the ground truth solution, we can use tracing to

extract those edges and use this as a refinement between different such algorithms. It is an

interesting future direction to explore the generalization of mutual refinement to broader

classes of algorithms. In particular, the computable witness functions described in Chap-

ter 3 imply that further precision improvements are always “computably” available.

5.7 Related Work

CFL-reachability is widely-used in program analysis [64, 65, 66, 67, 68, 69]. It has a

(sub)cubic-time dynamic programming style algorithm [71, 70, 72, 73], and faster algo-

rithms exist in special cases [74, 75, 76]. CFL-reachability can model function calls/re-

turns [66, 4], field reads/writes [79, 80], locks/unlocks [81], etc.

In static analysis, many techniques have been proposed to reduce the size of graphs

involved in the analysis [78, 96, 97]. Our mutual refinement process simplifies the graphs,

but our main focus is leveraging the information of each CFL-reachability-based over-

approximation to refine the results. In particular, the LZR fast graph simplification work [78]

also defines similar concepts such as contributing edges, but their algorithm is specific for

the interleaved-Dyck-reachability problem, while our mutual refinement works for any L-

reachability problems preserving CFL-reachability-based over-approximations. Also, LZR

is a pre-processor while mutual refinement is a complete solver.

Interleaved-Dyck-reachability is widely used in program analysis [77, 78, 83], but it is

undecidable [4], so there exist many approximation algorithms. We can use one Dyck lan-

guage to approximate it and employ the standard cubic-time context-free language reach-

ability algorithm [71, 70, 72]. The refinement-based context-sensitive points-to analysis

104

work [79] used the method of modeling one Dyck language precisely while approximating

the other Dyck language using a regular language [79]. The linear conjunctive language

reachability [77] is another formulation of interleaved-Dyck-reachability which is precise,

but the corresponding algorithm is approximate. Synchronized pushdown systems [83]

model the idea of considering two context-free languages at the same time. Mutual refine-

ment is not restricted to interleaved-Dyck-reachability.

In static analysis and verification, similar strategies of running different approaches in

a staged way such that later stages benefit from earlier stages have been studied, such as

the Unity − Relay approach [98] to accumulate the precision of different selective context-

sensitivity approaches, and the staged verification [99] where faster verifiers run first to

reduce the load of later verifiers. Mutual refinement concerns graph-reachability-based

program analysis, and we have theorems showing the existence and uniqueness of fix-

points.

5.8 Chapter Conclusion

This chapter proposed mutual refinement to combine different CFL-reachability over-approximations

for computationally hard graph reachability problems. We proved theorems showing the

existence and uniqueness of the optimal refinement result, the correctness of mutual refine-

ment, and the precision guarantees. To realize mutual refinement, the modifications to the

standard CFL-reachability algorithm are minimal, and the modified version’s time/space

complexities were carefully analyzed. We also conducted experiments showing that mu-

tual refinement achieved better precision than the straightforward intersection of the sets of

reachable vertex pairs, with reasonable extra time and space cost.

105

CHAPTER 6

EXAMPLE: FAST CONSTRAINT SYNTHESIS FOR C++ FUNCTION

TEMPLATES

6.1 Introduction

C++ is a high-performance programming language widely used in system programming [100],

games and GUI [101], compilers [93], artificial intelligence [102], etc. C++ templates are

a powerful language feature that facilitates generic programming and compile-time com-

putations, and this feature has been used extensively in practice. It provides compile-time

polymorphism, complementing the run-time polymorphism of virtual functions used in

many object-oriented languages. For example, almost all containers and algorithms in the

Standard Template Library (STL) utilize templates [103]. Template parameters can be

values, types, and templates themselves. It is worth noting that templates can be used to

simulate arbitrary Turing machines at compile time [19].

During the compilation process, templates are instantiated to generate non-templated

C++ code: the compiler substitutes formal template parameters with concrete template

arguments. If the concrete template arguments do not support certain operations used in

the template bodies, the instantiation fails, and the compiler emits error messages. Because

such failures can occur during deeply nested instantiation processes,1 it is folklore that C++

template errors could be verbose and difficult to understand [105], and this issue has a long

history: for example, for a small 26-byte C++ program, g++-4.6.3 can produce 15, 786

bytes of output, with the longest line of 330 characters [106]. On the other hand, the diag-

nostics often involve unnecessary implementation details and do not provide much insight

into fixing the errors, which confuses C++ developers and dramatically hinders produc-

1The SFINAE mechanism [104] can remove templates from the overload resolution candidate set and thus
avoid some errors, but it is often hard to read and maintain.

106

#include <vector>

template <typename T> void f(T x) { std::vector<T> v(x, x); }
int main() { f(nullptr); }

/* abbreviated error message (with manually added "...")
old.cc:3:52: error: no matching constructor for initialization of...
template <typename T> void f(T x) { std::vector<T> v(x, x); }

ˆ ˜˜˜˜
old.cc:4:14: note: in instantiation of function template special...
int main() { f(nullptr); }

ˆ
.../c++/v1/vector:395:57: note: candidate constructor not viable...
(48 more lines of "candidate constructor not viable" or similar) */

(a) Erroneous template instantiation without constraints. Apple Clang 15.0.0 with -std=c++20
prints 55 lines of error messages.

#include <vector>
#include <concepts>

template <std::integral T> void f(T x) { std::vector<T> v(x, x); }
int main() { f(nullptr); }

/* abbreviated error message (with some manually added "...")
new.cc:5:14: error: no matching function for call to 'f'
int main() { f(nullptr); }

ˆ
...note: candidate template ignored: constraints not satisfied...
template <std::integral T> void f(T x) { std::vector<T> v(x, x); }
(8 more lines) */

(b) Erroneous template instantiation with constraints. Apple Clang 15.0.0 with -std=c++20
prints 13 lines of error messages.

Figure 6.1: Erroneous C++ template instantiations without/with constraints.

tion [107, 108]. Consider a simple C++ example in Figure 6.1a. The std::vector class

does not have a constructor suitable for the arguments (nullptr, nullptr). However,

C++ compilers are unable to catch this error until the actual instantiation of std::vector,

resulting in the production of 55 lines of error messages; yet the error messages contain too

many implementation details such as “candidate constructor not viable” and thus

107

template <typename T>
concept IntClass = requires (T x, T y) {
typename T::integer_type;
{x + y} -> std::same_as<T>;
x.dump();

};

template <typename T> requires IntClass<T> || std::integral<T>
void g(T x) { /* omitted */ }

Figure 6.2: Complicated constraints with type requirements, compound requirements, sim-
ple requirements, and disjunctions of requirement expressions.

hinder readability.

To improve the readability and maintainability of C++ templates, C++20 introduced

a language feature called constraints and concepts [109]. Constraints are predicates that

impose requirements on template parameters, while concepts are named sets of such re-

quirements. They define clearer interfaces for templates and enable C++ compilers to

detect errors early on in the instantiation process (with better error messages). Consider

the example in Figure 6.1b, which extends the example in Figure 6.1a by adding the con-

cept std::integral. The concept std::integral, which is part of the standard library,

requires that the template parameters must be of integral types. By using std::integral,

the error in Figure 6.1b can be caught before the instantiation of f’s body, resulting in only

13 lines of error messages. Furthermore, the message “constraints not satisfied” is

easily understandable. Note that constraints and concepts are very expressive compared to

ordinary type systems. For example, the concept IntClass in Figure 6.2 specifies three re-

quirements on type T: (1) it must contain a type member called integer_type; (2) it must

support the operator + with a result type T, and (3) it must support the dump() member func-

tion call. Additionally, g’s template parameter T must satisfy either the IntClass constraint

or the std::integral constraint. Thus, manually writing and reasoning about constraints

and concepts can be error-prone and time-consuming. It becomes more challenging dur-

ing the development process with frequent code changes. Moreover, many existing C++

projects do not incorporate concepts or constraints, because these language features were

108

only introduced in C++20.

The topic of synthesizing constraints and concepts for C++ templates has not been ex-

tensively explored. This chapter introduces the first approach to automatically synthesize

constraints for C++ function templates based on their template bodies and caller-callee re-

lations. Our approach is built on Clang’s frontend and leverages only a lightweight static

analysis, thus it is very efficient. Moreover, our approach is fully automated and can

be directly applied to real C++ code without requiring manual annotations. The synthe-

sized constraints can both specify clearer interface requirements and significantly improve

template-related error messages.

Constraint synthesis for C++ function templates is challenging. Because function tem-

plates can call other functions or function templates, the synthesis must be inter-procedural

to achieve reasonable precision. However, the caller-callee relation can involve arbitrary

argument passing and type correspondence. Moreover, C++ supports function overload-

ing, so the actual function being called inside a function template may not be resolved until

instantiations. Recursive dependencies, if present, pose yet another challenge. The Turing-

completeness of templates [19] and usages of standard libraries such as <type_traits>

eventually made the constraint synthesis problem undecidable (but also opened the door

to apply our witness functions described in Chapter 3). Our approach tries to approxi-

mate the problem and handles these challenges elegantly and efficiently. We introduce a

novel idea called backmap to relate type correspondence between the caller and the callee

(Section 6.3.3), use disjunctive clauses to model function overloading (Section 6.3.3), and

cut off recursive dependencies by treating them as trivial constraints (Section 6.3.4). Fi-

nally, we design a polynomial-time simplification procedure for the synthesized constraint

formulas (Section 6.3.5).

At first glance, constraints synthesis for C++ templates bears resemblance to type in-

ference [110, 111, 112]. However, there are several key differences. First, instead of

inferring an existing type or typeclass, our approach infers a constraint that corresponds

109

to a set of types, including potential new types that may be defined in the future. Sec-

ond, the constraints we consider are not limited to those defined by the standard library.

In fact, the constraints can incorporate arbitrary conjunctive/disjunctive combinations of

member function requirements, member type requirements, and so on. For example, it is

valid to define a constraint requiring the member function specialFunctionA(), even if

no class in the existing C++ code contains such a member function. Third, as shown in

Section 6.2, the precise requirement of a type can be non-computable due to the potential

for a non-terminating C++ compilation if the compiler does not set limits on template in-

stantiations. Therefore, template-related automated reasoning can be viewed as a form of

“meta-analysis” of the compilation process.

We have implemented our approach based on the Clang C++ frontend, targeting func-

tion templates, supporting constraints in various forms, including unary operators, binary

operators, higher-order functions, class member accesses, and simple type traits. We eval-

uated our tool on real-world library code from the Standard Template Library (STL) header

<algorithm> and the Boost library2 header <boost/math/special_functions.hpp>. The

evaluation results demonstrate that our tool is efficient and effective. Firstly, our analysis

is extremely fast, taking less than 1.5 seconds to process over 110k lines of code (LOC).

We are able to synthesize non-trivial constraints for 38.4% of function templates from

algorithm and for 35.9% of function templates from special_functions. Secondly, our

analysis is reasonably precise. We select the 14 representative function templates from

algorithm, as listed in the introductory C++ textbook [113]. We compare the synthesized

constraints with the standard requirements specified in the document. The majority of

the synthesized constraints either match or under-approximate the standard requirements.

Finally, the synthesized constraints significantly reduce the length of compiler error mes-

sages for incorrect instantiations of function templates, with average reductions of 56.6%

for algorithm and 63.8% for and special_functions.
2https://www.boost.org.

110

https://www.boost.org

This chapter makes the following contributions.

• We study the problem of synthesizing template constraints for improving C++ code

readability and maintainability.

• We present the first automated constraint synthesis for C++ templates.

• We conduct an extensive evaluation based on two widely used C++ libraries. The

empirical results demonstrate that our approach is fast, precise, and can significantly

reduce template-based compiler errors.

• We designed and implemented a way to automatically measure the effectiveness of

compilation error message reductions.

The rest of the paper is structured as follows. Section 6.2 describes the C++ background

and the problem that we target, including its general undecidability. Section 6.3 describes

our approach in detail. Section 6.4 gives the experimental results. Section 6.5 contains two

case studies for error messages. Section 6.6 discusses more about the spirit of our work

and technical details. Section 6.7 surveys related work, and Section 6.8 concludes.

6.2 Preliminary

This section reviews the background and introduces the constraint synthesis problem.

6.2.1 C++ function templates, constraints, and concepts

We use an example to illustrate C++ templates and constraints/concepts. The most common

syntax of C++ function template definition consists of a template parameter list followed

by the function body, as shown in Figure 6.3a. In this example, the template parameters T,

U, and V are unconstrained. Specifically, the keyword typename only indicates that these

template parameters should be “types.” However, it is straightforward to see that not all

types can be used:

111

template <typename T>
void f(T x) {

for (int i = 0; i < 3; i++)
x.dump();

}

template <typename U, typename V>
void g(U x) {

x.print(100);
for (int i = 0; i < 10; i++)

x.print(i);
V y;
f(y);

}

(a) An example of unconstrained C++ func-
tion templates.

template <typename T>
concept Dumpable =

requires (T x) { x.dump(); }

template <Dumpable T>
void f(T x) {

for (int i = 0; i < 3; i++)
x.dump();

}

template <typename U, typename V>
requires Dumpable<V> &&
(requires (U x, int y) {x.print(y);})
void g(U x) {

x.print(100);
for (int i = 0; i < 10; i++)

x.print(i);
V y;
f(y);

}

(b) The syntax of constraints and concepts in
C++20.

Figure 6.3: The syntax of C++ templates, constraints, and concepts.

• a variable of type T must support the member function call dump();

• a variable of type U must support the member function call print(int);

• type V must satisfy the same constraint as T does.

To express these constraints, we can either define a standalone concept (Dumpable) and

replace typename with it, or use the requires clause to specify the constraints in-place, as

shown in Figure 6.3b. Here the concept Dumpable is a named predicate checking whether

a variable of the given type supports the dump() member function call, and requires is

used both to associate constraints (either pre-defined concepts or directly written constraint

expressions) to function templates and to start “requires expressions” that can be used as

parts of larger constraints.

112

6.2.2 Problem statement and undecidability

From Figure 6.3, we can see that the process of writing constraints involves inter-procedural

reasoning. For example, in Figure 6.3b, the requirement Dumpable originates from f and

is propagated into g, because g calls f. Real-world C++ code consists of much more com-

plicated function templates and call graphs (with possibly overloaded callees), and during

the development process, frequent code changes make the situation harder. Thus, manually

completing the above process is non-trivial and time-consuming. This chapter proposes

automated C++ template constraint synthesis to help the development process. We focus

on type parameters of templates because that is the most frequently used feature in generic

programming like STL.

Ideally, our goal is to achieve a 100% precise set of requirements for each type pa-

rameter of templates. However, because C++ template is a Turing-complete language, we

can demonstrate that precise constraint synthesis is undecidable by slightly modifying the

construction proposed by Veldhuizen [19]. Specifically, given an arbitrary closed Turing

machine M , we define a struct S containing a member type halted_state, so that in a

specific instantiation of S, the halted_state is

• int if and only if M halts in the accept state,

• double if and only if M halts in the reject state,

• undefined if M does not halt at all.

It is well known that there does not exist a total program distinguishing the first two cases

even if we allow the program to output arbitrary results for the third case [114]. We can

further specify constraints on any type template parameter

static_assert(std::is_same<S<...>::halted_state, T>::value);

so in general precise constraint synthesis for type template parameters is also non-computable,

and practical synthesizers must sacrifice precision in order to guarantee termination. Our

113

work synthesizes under-approximations of the precise requirements. An under-approximation

of requirements means specifying fewer requirements, which corresponds to allowing more

types. To sum up, we give our problem definition as follows.

Given a C++ translation unit, for each function template in the translation unit, for

each type template parameter of the function template, compute a constraint C under-

approximating the real requirement R on this parameter. C is specified using the

C++20 constraints and concepts syntax, and R is the requirements on the parame-

ter implicit in the template body. Suppose the set of types allowed by C and R are

S(C) and S(R), respectively. An under-approximating constraint allows more types,

so we can express our goal as S(C) ⊇ S(R).

Our under-approximation algorithm proposed in Section 6.3 guarantees termination.

On the other hand, we have shown above that there exists a many-one reduction from

the halting problem to the decision problem version of constraint synthesis. According to

Chapter 3, there exists a computable witness function converting our algorithm to a C++

program on which it is imprecise. Thus, although the algorithm proposed in Section 6.3

does not directly involve any refinement process, the algorithm itself can be the input to

the witness function, permitting more precise algorithms to be developed based on the

counterexamples.

6.3 Approach

This section formalizes our approach in detail. To aid our discussion, Section 6.3.1 intro-

duces a simplified calculus for modelling C++ function templates; Section 6.3.2 introduces

constraint formulas which are finally inserted into the source code to restrict type template

parameters. Our main approach consists of the following three steps, which is summarized

in Figure 6.4.

1. Section 6.3.3 describes the process of scanning template bodies and constructing the

114

C++ translation unit

Constraint collection
(Section 6.3.3)

Formula map construction
(Section 6.3.4)

Formula simplification
(Section 6.3.5)

Synthesized constraints

Figure 6.4: An overview of our approach. First, constraint collection (Section 6.3.3) tra-
verses each function template to collect constraints into the inter-procedural constraint
map. Second, formula map construction (Section 6.3.4) takes the inter-procedural con-
straint map and produces the formula graph, which is a compact representation of all con-
straints and their dependencies in the entire translation unit. Finally, formula simplification
(Section 6.3.5) uses a lightweight algorithm to simplify the constraints into versions that
are suitable to be inserted into the source code.

inter-procedural constraint map for each translation unit.

2. Section 6.3.4 transforms the inter-procedural constraint map to the formula graph,

during which recursive dependencies are resolved.

3. Section 6.3.5 describes the simplification process after directly reading the constraint

formulas from the formula graph.

Section 6.3.6 discusses the soundness aspect of our approach.

6.3.1 A simplified calculus

C++ is notorious for its complex syntax and semantics, as evidenced by the 1853-page

C++20 standard [115]. To address this, we present a simplified calculus (Figure 6.5) that

models the core semantics of C++ function templates. This is similar to the spirit of [116],

but we also choose to adhere more to the realistic syntax of C++ since our approach applies

to real C++ code. This simplified calculus enables us to formally discuss our approach in

Section 6.3.2-Section 6.3.5 and discuss soundness properties in Section 6.3.6.

• Because our analysis is flow-insensitive, we omit control flows and only consider the

usage sites “use” of the type template parameter t or variables v of the type template

115

t ∈ Type ∪ TypeParameter
v ∈ Variable
n ∈ FunctionOrFieldName
e ∈ Expression

opp ∈ PrefixOperator
ops ∈ SuffixOperator
opi ∈ InfixOperator

trait ∈ TypeTrait
use := opp v | v ops | v opi e | e opi v | v(e∗) | v.n | v.n(e∗) | trait(t) | n(. . . v . . .)
fun := t n((t v)∗) {use∗}

temp := < T ∗ > fun
spec := <> fun

translationUnit := (fun | temp | spec)+

Figure 6.5: A simplified calculus for modelling C++ function templates.

parameter t. The usage sites include direct trait assertions on the type template pa-

rameter (trait(t)), and usages of variables of the type template parameter, such as

being used as operands (oppv), functions (v(e∗)), member accesses (v.n), and argu-

ments (n(. . . v . . .), where v should satisfy n’s corresponding type requirements).

• A function body “fun” could be non-template functions where the types t involved

are all concrete types or template functions where the types t could be type template

parameters.

• A function template “temp” consists of a list of type template parameters and a func-

tion body. A function template can have specializations “spec” where all type tem-

plate parameters are substituted by concrete types.

• All of “fun”, “temp”, and “spec” participate in overloading resolution of function

calls.

• A “translationUnit” is a basic compilation unit for this calculus. Our analysis is

performed on individual translation units.

116

6.3.2 Constraint formalization

C++20 supports many kinds of constraints, such as type constraints (e.g. requiring the exis-

tence of a type member), expression constraints (requiring an expression such as a.f(1, true)

to successfully compile), type traits (e.g. std::is_same). These are considered as atomic

constraints. Our work also supports conjunctions and disjunctions of smaller constraints

according to C++20. Formally, we define constraint formulas as follows.

Definition 17 (Constraint formula). Constraint formulas express constraints on types. Atomic

formulas pose restrictions on the type template parameter T , and compound formulas are

either atomic formulas or conjunctions/disjunctions of smaller formulas. The atomic for-

mulas are similar to the use part of our simplified calculus in Figure 6.5, except that we

only preserve the type information (e.g., the exact expression e in v opi e is omitted; only its

type is preserved). Note that a specific atomic formula convertible to is introduced, which

helps to handle overloaded callee candidates.

atomic := opp T | T ops | T opi t | t opi T | T (t∗) | T.n | T.n(t∗) | trait(T) | convertible to(T, t)

formula := atomic | (∧ formula∗) | (∨ formula∗)

Example 7. In real C++ code, the constraint formula (T x) { ++x; } && ((T x) {

x.f(); } || (T x) { x.g(); }) consists of three atomic constraints (T x) { ++x; },

(T x) { x.f(); }, and (T x) { x.g(); }. The overall requirement is that the type T

must support the prefix-increment operator ++, and must support member function calls of

either f() or g().

We do not reason about implications between different atomic constraints except for

equality comparisons. Certain atomic constraints are normalized to reduce redundancies:

for example, (T x, T y) { x + y; } and (T x, T y) { y + x; } are treated as the

same atomic constraint by rewriting y+x to x+y (i.e. the x is always on the left hand side).

Our main reasoning effort is devoted to conjunctions and disjunctions, e.g. removing du-

117

plicate conjuncts. Also, we consider constraint formulas for each template type parameter

T , but the formula itself can involve other type parameters, such as std::same_as<T, U>,

which is an atomic constraint formula requiring T to be the same as another template type

parameter U .

6.3.3 Inter-procedural constraint map construction

The first step is to traverse the abstract syntax tree (AST) of the C++ translation unit

and construct the inter-procedural constraint map3 representing both intra-procedural con-

straints inside individual function templates and the relations between different function

templates. The traversal can be either depth-first search or breadth-first search, and we

primarily collect all usage sites of variables of types in the template parameter list. For-

mally, for each C++ translation unit U , we use UF to denote the set of function templates

in U . For each function template fi ∈ UF , we use TTParm(fi) to denote the set of type

template parameters of fi. Given a translation unit U , we define the inter-procedural con-

straint map MU , which maps each type template parameter in
⋃
fi∈UF TTParm(fi) to a

set of constraints that it should satisfy.

Definition 18 (Inter-procedural constraint map). Given a specific type template parameter

T ∈ TTParm(fi), we classify the constraints in MU(T) into two categories.

• Intra-procedural constraints: This category includes constraints on T that are not

dependent on other functions or function templates, such as unary/binary operators,

member accesses, etc., inside the body of fi. They are atomic constraints as defined

in Definition 17.

• Inter-procedural constraints: An inter-procedural constraint is generated for each

named call-site g(. . .) inside fi where a variable of type T is used as the k-th argu-

ment. Because of overloading, g can refer to many functions or function templates

3The same idea can be extended to class templates, which could be defined as inter-class constraint map.

118

opp v v : T
(1)

opp T

v ops (2)
T ops

v opi e v : T e : t
(3)

T opi t

e opi v e : t v : T
(4)

t opi T

v(e∗) v : T e∗ : t∗
(5)

T (t∗)

v.n v : T
(6)

T.n

v.n(e∗) v : T e∗ : t∗
(7)

T.n(t∗)

trait(T)
(8)

trait(T)

n(. . . v . . .) v : T (< . . . U . . . > n(. . . U . . .) {. . .})∗ ((<>)? n(. . . t . . .) {. . .})∗
(9)

[(U,m)∗, t∗]

Figure 6.6: Rules for inter-procedural constraint map construction.

sharing the same name: {g0, g1, . . .}. The inter-procedural constraint for this call-

site is thus a list of elements in the following forms.

– (U,m) corresponds to another function template gj , such that the k-th param-

eter of gj is of type U ∈ TTParm(gj). m is a corresponding backmap which

will be explained later. Overall, this means T should satisfy whatever U satis-

fies.

– t corresponds to a function or function template specialization4 gk, such that

the k-th parameter of gk is of concrete type t; or a function template gk but

the k-th parameter of gk is of concrete type t. Overall, this means T should be

convertible to t.

The formal constraint collection process is shown in Figure 6.6, where the underscore

“ ” means “don’t care” tokens (i.e., source code tokens that are ignored). Rules (1)-(8)

correspond to the intra-procedural uses as defined in Figure 6.5, which generates intra-

procedural constraints; rule (9) is the inter-procedural use (n(. . . v . . .)) as defined in Fig-

ure 6.5, which generates inter-procedural constraints. The constraints collected in this stage

are not yet in the form of constraint formulas in Definition 17. In the formula map construc-

tion stage in Section 6.3.4, (unsimplified) constraint formulas as defined in Definition 17

4C++ only allows full specialization for function templates, meaning that every template parameter should
be concrete in the specialization.

119

are generated, where conjunctions are constructed to model multiple requirements in the

same function template, and disjunctions are constructed to model function overloading.

To correctly propagate constraints inter-procedurally, we need backmaps. We explain

the intuition through an example. Consider the following C++ code.

template <typename T> void f(T x) { x++; }

template <typename U> void g(U x) { f(x); }

We need to propagate the constraint on the template parameter T of f , which is (T x) { x++; },

to the template parameter U of g. However, we cannot directly copy that constraint, be-

cause at g, there is no type template parameter named T . To resolve this issue, we design

backmaps, which store what arguments (in this case, U) are substituted for the callee’s type

template parameter (in this case, T). In a more general case where we have a chain of

function calls (f1 calls f2, f2 calls f3, etc.) of length l, the correct type can be resolved by

iteratively stepping through the l backmaps.

Definition 19 (Backmap). For each named call-site g(. . .) inside a function template f ,

for each function template gi in the overloading candidate set {g0, g1, . . .}, the backmap

mi is defined as a (possibly non-total) map mapping each type template parameter U ∈

TTParm(gi) to either a concrete type t or a type depending on template parameters in

TTParm(f).

In our implementation, we construct backmaps in a best-effort fashion. This involves

analyzing the named call-site and identifying the arguments that should be used to replace

the type template parameters of the callee. If the correct type cannot be resolved, then we

simply discard the constraint, which still preserves the under-approximation property.

Example 8 (Inter-procedural constraint map and backmap). For the following code,

void f(int x) {}

template <typename T> void f(T x) { x++; ++x; x+=1; }

template <typename U> void g(U x) { f(x); x.print(); }

120

the corresponding inter-procedural constraint map is

 T → { (T x){x++;}, (T x){++x;}, (T x,int y){x+=y;} }

U → { [int, (T,m)], (U x){x.print();} }


where [int, (T,m)] is an inter-procedural constraint as described in Definition 18, and the

corresponding backmap m for the function template f (not the separate overloading of f

with concrete type int) is

{T → U}.

Note that in our implementation, the keys of constraint maps are pointers to template

type parameters in the AST (const clang::TemplateTypeParmDecl*), so there is no am-

biguity even if different function templates use the same name (such as T) for their template

parameters.

6.3.4 Formula map construction

The inter-procedural constraint map M contains all we need for constraint synthesis, but

recursive dependencies could exist. For example, the constraints of a function template’s

type parameter T can depend on another function template’s type parameter U , which

can, recursively, depend on T again. Our second step is thus obtaining the formula map,

which maps type template parameters to constraints formulas, and which does not contain

recursive dependencies. Algorithm 4 gives the formula map construction algorithm, which

employs a depth-first search on the inter-procedural constraint map.

Algorithm 4 maintains two data structures. The status map at Line 3 represents whether

the constraint formula of a type template parameter has not been touched by the algorithm

(NOTVISITED), is in the process of being constructed (ONSTACK), or has already been

constructed (VISITED). The result map at Line 5 represents the formula map being com-

puted, wherein the implementation, we actually store the pointers to constraint formulas,

121

Algorithm 4 The formula map construction algorithm
1: function CONSTRUCTFORMULAMAP(M /* inter-procedural constraint map */)
2: // type template parameter→ construction status
3: status← emptyMap(default = NOTVISITED)
4: // type template parameter→ formula
5: result← emptyMap()
6: function DFS(T /* type template parameter */)
7: if status[T] = NOTVISITED then
8: status[T]← ONSTACK
9: conjunction← emptyConjunction()

10: for constraint ∈M [T] do
11: if constraint.intra() then // intra-procedural constraint
12: conjunction.add(constraint)
13: else if constraint.inter() then // inter-procedural constraint
14: disjunction← emptyDisjunction()
15: for (U,m) ∈ constraint do
16: temp← DFS(U)
17: if temp = NULL then
18: disjunction.add(true)
19: else
20: disjunction.add((m, temp))

21: for t ∈ constraint do
22: disjunction.add(convertible to(T, t))

23: conjunction.add(disjunction)

24: result[T]← conjunction
25: status[T]← VISITED
26: return conjunction
27: else if status[T] = ONSTACK then
28: return NULL
29: else if status[T] = VISITED then
30: return result[T]

31: for T ∈M.keys() do
32: if status(T) = NOTVISITED then
33: DFS(T)
34: return result

so that the same constraint formula for a type template parameter of a callee can be shared

by different callers. The function DFS at Line 6 recursively construct the constraint for-

mula for each type template parameter (Line 31), and any recursive dependency in the

inter-procedural constraint map is truncated at Line 27 and is eventually treated as true

122

template <typename T> void f(T x) { x++; }
template <typename U> void g1(U x) { f(x); // call-site 1 }
template <typename V> void g2(V x) { f(x); // call-site 2 }

(a) Three C++ function templates where g1 and g2 share the callee f.

TU

V

Conjunction
(T x){x++;}

Disjunction
(m1,)◦

Conjunction

Disjunction
(m2,)◦

Conjunction

(b) The corresponding formula map where T , U , V are type template parameters pointing to their
constraints.

Figure 6.7: A piece of C++ code and its corresponding formula map.

(Line 18). Inside DFS, the only case where we involve backmaps is for inter-procedural

constraints of the form (U,m), where we also store the backmap to the constraint formula

being constructed at Line 20 so that we can recover type names for inter-procedural con-

straints.

The order of visiting keys (Line 31) can affect the final results. Consider this chained

dependency of type template parameters T ← U ← V ← T , meaning that T depends onU ,

U depends on V , and V depends on T again. If T is visited first, then when we recursively

get to V , V ’s dependency of T will be truncated to true; if V is visited first, then V ’s

dependency of T will at least include the intra-procedural constraints of T . This is a loss

of precision when handling recursions, and we choose to keep the algorithm lightweight

without introducing time-consuming processes such as fixed point computations.

Example 9 (Formula map). For the C++ code shown in Figure 6.7a, the corresponding

formula map is shown in Figure 6.7b, where m1 and m2 are backmaps for call-site 1 and

123

call-site 2, respectively. The constraint of T is also shared inside U and V ’s constraints,

because g1 and g2 both call f. Note that there are redundant nested conjunctions and

disjunctions in this case, which can be handled by our formula simplification algorithm in

Section 6.3.5.

6.3.5 Formula simplification

From the formula map, we can recursively read and print the constraint formula (as defined

in Definition 17) for each type template parameter, with the help of backmaps. However,

because of chained function calls in function templates, the constraint formulas could con-

tain redundancies such as (∧(∨(∧(∨(atomicConstraint))))). A typical case is that when

there is only one callee for a call-site inside the template body, Algorithm 4 still insert a

disjunction layer in the formula. To make the final constraint formula smaller, we apply a

simple polynomial-time simplification process (Algorithm 5) before actually inserting the

constraint formula into C++ code.

The basic idea of Algorithm 5 is to simplify conjunctions (Line 1) and disjunctions

(Line 27) in a bottom-up fashion using recursion. Redundant layers of the formula are re-

cursively eliminated (Line 7). The main simplification rules include de-duplicating terms

and discarding trivial terms (Line 12). The main procedure (Line 29) starts the simplifica-

tion based on the input formula’s format (atomic, conjunction, disjunction).

There exist sophisticated Boolean formula minimization algorithms, such as the Quine-

McCluskey algorithm [117, 118, 119], but the problem itself is NP-hard [120]. Since our

goal is to keep our approach lightweight, we choose to use our Algorithm 5. Suppose the

input formula f ’s length is l and nesting depth is d, and suppose the hash function takes

linear time with respect to the input length. Then Algorithm 5’s time complexity is O(ld),

and is thus polynomial time with respect to the formula size.

6.3.6 Soundness versus soundiness

124

Algorithm 5 The formula simplification algorithm
1: function SIMPLIFYCONJUNCTION(f /* constraint formula */)
2: newConjunction← emptyConjunction()
3: deduplicate← emptyHashSet()
4: for conjunct ∈ f do
5: candidates← emptyList()
6: conjunct← SIMPLIFYFORMULA(conjunct) // recursive simplification
7: if conjunct.isConjunction() then // inspect one layer of conjunction
8: for child ∈ conjunct do
9: candidates.add(child)

10: else
11: candidates.add(conjunct)

12: for candidate ∈ candidates do
13: if candidate.isTrue() then // omit trivial conjuncts
14: continue
15: else if candidate.isFalse() then // f is trivially false
16: return false
17: else
18: if not deduplicate.contains(candidate.hash()) then
19: newConjunction.add(candidate)
20: deduplicate.add(candidate.hash())

21: if newConjunction.length() = 0 then // f is trivially true
22: return true
23: else if newConjunction.length() = 1 then // omit one trivial conjunction layer
24: return newCojunction.first()
25: else
26: return newCojunction

27: function SIMPLIFYDISJUNCTION(f /* constraint formula */)
28: // similar to SIMPLIFYCONJUNCTION, omitted
29: function SIMPLIFYFORMULA(f /* constraint formula */)
30: if f.isAtomic() then
31: return f
32: else if f.isConjunction() then
33: return SIMPLIFYCONJUNCTION(f)
34: else// disjunction
35: return SIMPLIFYDISJUNCTION(f)

Our goal is to let the computed constraint formula C under-approximate (allow more

types than) the real requirement R. Suppose the set of types (including new types that can

be added to the code in the future) allowed by C and R are denoted as S(C) and S(R),

respectively; as we discussed in Section 6.2, we need S(C) ⊇ S(R). We call this property

125

#include <utility>

struct S { void f() && {} };

template <typename T>
void g(T x) { std::move(x).f(); }

int main() { g(S{}); }

(a) Original code: successful compilation on
Apple clang 15.0.0.

#include <utility>

struct S { void f() && {} };

template <typename T>
requires requires (T o) { o.f(); }
void g(T x) { std::move(x).f(); }

int main() { g(S{}); }

(b) Modified code: failed compilation on Ap-
ple clang 15.0.0.

Figure 6.8: An unsound corner case where our tool inserted over-constrained constraints.
The member function f of S should be invoked on r-values, while our tool ignores refer-
ences and uses an l-value to invoke f in the constraint. Note that requires requires is
not a typo: the first requires specifies the constraint for the template while the second
requires starts a constraint expression.

soundness. In our simplified calculus (Figure 6.5), soundness is ensured by our algorithms.

Theorem 17. For programs written in the simplified calculus shown in Figure 6.5, for every

type template parameter T , if a type argument t is passed in for T and does not result in

compile-time errors, then the constraint formula generated for T according to the three

steps (Section 6.3.3, Section 6.3.4, Section 6.3.5) evaluates to true on t.

Proof. Since the type argument t does not result in compile-time errors, all uses of type t in

the code are valid. Every intra-procedural constraint as defined in Definition 18 is satisfied,

so the conjunction of these constraints is also satisfied. Every inter-procedural constraint,

as defined in Definition 18, according to overloading resolution, should result in at least one

valid candidate, so the disjunction of the constraint formulas from the overloading candi-

dates is satisfied. The choice of truncating recursive dependencies to true in Section 6.3.4

only relaxes the constraint, so satisfaction is preserved. The formula simplification algo-

rithm as described in Section 6.3.5 preserves the truth value of the constraint formulas, so

the simplified formula is also satisfied by t.

However, almost all realistic static analysis tools are unsound in certain aspects [121].

The reasons include scalability, precision, and engineering details of realistic program-

126

ming languages. A static analysis tool is soundy when most common language features are

soundly-approximated while some special language features, well-known to experts in the

area, are unsoundly-approximated [121]. This is known as the soundiness. We claim our

implementation is soundy for C++. First, we apply the following general strategy in our

implementation: whenever we encounter unsupported C++ language features, we treat the

constraint generated by the unsupported part as true, so our tool gracefully bypasses them

and approximates toward S(C) ⊇ S(R). Second, for cv(const/volatile)-qualifiers and lval-

ue/rvalue references, with deliberately designed corner cases such as Figure 6.8, our tool

can generate slightly over-constrained constraints and therefore results in S(C) ⊂ S(R).

In Figure 6.8, the reason is that we ignore references when handling constraints. To sum

up, our tool is sound except for the two features (1) cv-qualifiers and (2) lvalue/rvalue

references. Those two features have complicated interactions with template argument de-

ductions [122, 123], and we leave the completely sound handling of them as future work.

6.4 Experiments

We implemented our approach based on the RecursiveASTVisitor facility from Clang

frontend (forked from the main branch of Clang in October 2023). Our implementation

language is C++, consisting of roughly 2.8 kLOC. We support unary operators, binary

operators, higher-order functions, class member accesses, and simple type traits as atomic

constraints. We will open-source our implementation and provide the link in the final

version of this chapter.

We conducted experiments on two libraries: <algorithm> from the Standard Template

Library (STL) and <boost/math/special_functions.hpp> from the Boost library. We

chose these two libraries because they mainly consist of function templates instead of class

templates, and our tool currently only targets function templates, although the idea can also

be extended to class templates. Our evaluation focuses on three dimensions.

• Performance (Section 6.4.1). For both libraries, we report the numbers of function

127

Table 6.1: Overall performance. The execution time includes not only the three steps
described in Section 6.3, but also the actions of generating the rewritten code, reporting
statistical results, etc.

algorithm special_functions

Total LOC after preprocessing 32,206 111,862
Execution time (seconds) 0.250 1.302
Number of templates 821 2,531
Number of templates with nontrivial results 315 908

templates for which our tool can infer nontrivial constraints (constraints that are not

simply the literal true). We also measure execution time.

• Precision (Section 6.4.2). For the algorithm library, we compare the inferred con-

straints with the documented constraints.

• Error reduction (Section 6.4.3). For both of the algorithm library and the special_functions

library, we measure the Clang compilation error message reductions after adding our

constraints.

It is important to mention that our tool is lightweight and can be used on ordinary

hardware. To demonstrate this, all of our experiments were conducted on a MacBook Air

(2020) with Apple M1 chip and 8GB memory, and everything was executed in a single

thread. The pre-processing of standard library headers and the compilation error measure-

ments were all based on the main compiler on the MacBook, which is Apple Clang version

15.0.0.

6.4.1 Overall performance

Table 6.1 presents the execution speed and the number of function templates with non-

trivial synthesized constraints. Our analysis is highly efficient, taking only 0.250 seconds

to process more than 30k lines of code from algorithm and only 1.302 seconds to process

over 110k lines of code from special_functions. Note that these times include not only

the three steps described in Section 6.3, but also the reporting of statistical results, and

128

template <typename _Integral>
__attribute__((__visibility__("hidden")))
__attribute__((__exclude_from_explicit_instantiation__))
__attribute__((__abi_tag__("v160006"))) constexpr
typename enable_if
<

is_integral<_Integral>::value,
_Integral

>::type
__half_positive(_Integral __value)
{

return static_cast<_Integral>(
static_cast<__make_unsigned_t<_Integral> >(__value) / 2

);
}

Figure 6.9: An example function template that our tool didn’t synthesize constraints.

the code rewriting for adding synthesized constraints. This demonstrates the exceptional

performance of our tool. Furthermore, our tool can synthesize non-trivial constraints for

approximately 30%-40% of function templates. The remaining function templates either

lack requirements in our supported categories of atomic constraints, or incorporate C++

features that are not yet supported by our tool, such as complicated type sugars or aliases.

An example from the algorithm library that our tool didn’t synthesize constraints is shown

in Figure 6.9, where the usage of the variable __value is wrapped in type conversions

before being divided by the operator /, and our tool currently only supports limited forms

of such wrappers. It is worth mentioning that our conservative strategy (Section 6.3.6)

ensures under-approximation by treating an inter-procedural constraint as true when there

exists a callee candidate containing unsupported features. This can result in some function

templates having trivial constraints.

Summary. Our analysis is highly efficient and can synthesize non-trivial constraints for

30%-40% of function templates. In particular, the high efficiency makes it possible to use

our tool in interactive settings where the developer is editing the code.

129

Table 6.2: Precision on STL algorithm library. The library requirement is obtained from
the standard document, while the synthesized requirement is generated by our tool.

Template Documented requirement Synthesized requirement
for_each (InputIterator, UnaryFunction) (Iterator, UnaryFunction)
find (InputIterator, Any) (Iterator, Any)
find_if (InputIterator, Predicate) (Iterator, Predicate)
count (InputIterator, Any) (Iterator, Any)
count_if (InputIterator, Predicate) (Iterator, Predicate)
replace (ForwardIterator, Any) (Iterator, Any)
replace_if (ForwardIterator, Predicate, Any) (Iterator, Predicate, Any)
copy (InputIterator, OutputIterator) (Any, Any)
copy_if (InputIterator, OutputIterator, Predicate) (Iterator, Iterator, Predicate)
move (InputIterator, OutputIterator) (Any, Any)
unique_copy (InputIterator, OutputIterator) (Iterator, Iterator)
sort (ValueSwappable ∧ RandomAccessIterator) (RandomAccessIterator)
equal_range (ForwardIterator, Any) (Iterator, Any)
merge (InputIterator, InputIterator, OutputIterator) (Iterator, Iterator, Iterator)

6.4.2 Precision on algorithm

To further understand the quality of the synthesized non-trivial constraints for algorithm,

we conduct a semi-automated comparison of our generated requirements with the ones doc-

umented in the C++ standard. We choose the 14 function templates from the introductory

C++ textbook [113] as our targets.

The measurement process is as follows. First, we collect a set of representative named

requirements [124] that are used in the C++ standard to specify the expectations of template

parameters in the standard library. We create a constraint formula evaluator, which incor-

porates certain named requirements as hard-coded components. The evaluator then runs

on the synthesized constraint formula and reports the most general named requirement N

that evaluates to true on the formula. This implies that N is at least as constrained as the

formula itself.5 Next, we manually compare the generated named requirements with the

ones described in the documentation.
5This method can, in general, be used for matching constraints with pre-defined concepts, as discussed in

detail in Section 6.6.1.

130

Table 6.2 shows the library requirements obtained from the document and the synthe-

sized requirements obtained from the above process. We can observe that the synthesized

requirements always under-approximate the library requirements, and they are often sim-

ilar or identical to the documented requirements. For the first type template parameter

of for_each, the library requirement is InputIterator, while the generated constraint

formula is

(requires (T x0) { *x0; } && requires (T x0) { ++x0; })

which is inferred to be just Iterator by our formula evaluator. The distinction between

these types of iterators can be complex [125], involving details that our tool does not han-

dle. However, the conclusion of Iterator already provides more information than the

unconstrained case, and in clearer cases, our tool can also synthesize more precise iterators

such as the RandomAccessIterator for sort, where the code of sort provides enough in-

formation for our tool to differentiate it from normal iterators. For copy and move (not to be

confused with the move for move semantics), our tool synthesized trivial constraints. This

is because in the version of STL targeted by our experiment, they were implemented using

a helper struct _ClassicAlgPolicy, which our tool currently does not handle struct

or class.

Summary. Our tool can synthesize meaningful constraints under-approximating the stan-

dard library document for algorithm, and in many cases the generated constraints are the

same as the library requirements. This demonstrates that our tool can synthesize constraints

improving the template interface’s clarity.

6.4.3 Error message reduction on algorithm and special_functions

We also examine the reduction in error messages when incorrect arguments are used for

both algorithm and special_functions. Specifically, for each function template f, we

use a Python script to introduce a new empty struct S {}; along with a variable s of

131

0-49 50-99 100-149 150-199 250+

100

101

102

103

Error message length

Fu
nc

tio
n

te
m

pl
at

e
co

un
t

Original
Constrained

Figure 6.10: Error message length (number of lines) distribution on algorithm. The y-axis
is of logarithm scale, so most lengths reside in [0, 50). The average lengths are 30.022 for
the original code and 13.019 for the constrained code.

0-49 50-99 100-149 150-199 200-249 300+

101

102

103

Error message length

Fu
nc

tio
n

te
m

pl
at

e
co

un
t

Original
Constrained

Figure 6.11: Error message length (number of lines) distribution on special_functions.
The y-axis is of logarithm scale, so most lengths reside in [0, 50). The average lengths are
43.769 for the original code and 15.826 for the constrained code.

type struct S into the code. We then make a function call f(s, s, ...). Given that the

new type S is unlikely to satisfy the requirements of f, template-related error messages are

expected. We compare the lengths (numbers of lines) of error messages before and after

132

the addition of the constraints. Figure 6.10 and Figure 6.11 give the distribution of these

lengths. Note that the Boost library special_functions includes some STL headers as

well, and for measurements of the error message reductions in this case, we excluded STL

function templates and only considered Boost function templates.

From these two figures, it is clear that the synthesized concepts can successfully inter-

cept the errors at the early stages and greatly reduce the length of error messages. Con-

strained templates consistently produce error messages that are less than 100 lines for both

libraries. This provides strong evidence that the new errors are more comprehensible and

manageable.

Summary. The constraints synthesized by our tool for algorithm and special_functions

can effectively reduce the lengths of error messages. Additionally, even for shorter error

messages, the constrained version could be more comprehensible, as discussed in Sec-

tion 6.5.2.

6.5 Case studies

To better understand the error message improvements, we conduct three case studies. In

Section 6.4, our tool synthesized constraints for <algorithm> from the Standard Tem-

plate Library (STL) and <boost/math/special_functions.hpp> from the Boost library.

We select two incorrect C++ programs using STL and one incorrect C++ program using

Boost, and study the error message improvements after adding the synthesized constraints

to STL/Boost. The incorrect programs using STL are two real-world examples obtained

from the StackOverflow Q&A website, and the incorrect program using Boost is one ob-

tained from our synthetic incorrect programs in Section 6.4.3. All errors were produced by

Apple Clang version 15.0.0.

6.5.1 Case 1: Real-world error example of std::binary_search from StackOverflow

133

In file included from test1.cc:1:
In file included from /Library/Developer/CommandLineTools/SDKs/...
In file included from /Library/Developer/CommandLineTools/SDKs/...
...failed due to requirement '__is_callable<(lambda at test1.cc...

static_assert(__is_callable<_Compare, decltype(*__first), const...
ˆ ˜˜˜...

/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk...
__first = std::lower_bound<_ForwardIterator, _Tp, __comp_ref...

ˆ
test1.cc:16:34: note: in instantiation of function template spec...

bool isElementPresent = std::binary_search(
ˆ

In file included from test1.cc:1:
In file included from /Library/Developer/CommandLineTools/SDKs/...
In file included from /Library/Developer/CommandLineTools/SDKs/...
...lower_bound.h:40:9: error: attempt to use a deleted function

if (std::__invoke(__comp, std::__invoke(__proj, *__m), __...
ˆ

...specialization 'std::__lower_bound_impl<std::_ClassicAlgPolicy...
return std::__lower_bound_impl<_ClassicAlgPolicy>(__first, __...

ˆ
/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk...
(20 lines omitted)
3 errors generated.

(a) Error messages of the template std::binary_search before adding constraints.

...:16:29: error: no matching function for call to 'binary_search'
bool isElementPresent = std::binary_search(

ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
...candidate template ignored: constraints not satisfied [with...
binary_search(_ForwardIterator __first, _ForwardIterator __last,...
ˆ
/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk...
...requires (_Compare f, _Tp x0, _ForwardIterator x1) { f(x0, *x1); }

ˆ
/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk...
binary_search(_ForwardIterator __first, _ForwardIterator __last,...
ˆ
1 error generated.

(b) Error messages of the template std::binary_search after adding constraints.

Figure 6.12: Error messages comparison on std::binary_search.

This case study is based on a real-world question from StackOverflow [126]. The ques-

tion is about a compilation error on C++ code with an incorrect use of std::binary_search

134

on a vector of a custom class: the provided lambda expression only accepts objects of the

custom class while the target of the binary search is an int. Our tool synthesized con-

straints for std::binary_search so the error message for that code can be improved. The

effective part of the added constraint is as follows.

requires (_Compare f, _Tp x0, _ForwardIterator x1) { f(x0, *x1); }

The error messages before/after adding the constraint is shown in Figure 6.12. Note

that in the error messages before adding the constraint, there are 20 omitted lines, which

matches Section 6.4.3’s conclusion that adding constraints can effectively reduce the error

message length. Also, in the error messages before adding the constraint, there are unneces-

sary implementation details such as std::__lower_bound_impl<_ClassicAlgPolicy>,

while in the error messages after adding the constraint a clear explanation of the compila-

tion error “constraints not satisfied.”

6.5.2 Case 2: Real-world error example of std::sort from StackOverflow

This case study is based on a real-world question from StackOverflow [127]. The ques-

tion is about a compilation error on C++ code with the incorrect use of std::sort on an

array of a custom class. std::sort requires a pair of pointers, while the incorrect code

uses a pair of custom objects. Our tool synthesized constraints for std::sort so the error

message for that code can be improved. The effective part of the added constraint is as

follows.

requires

(

requires (_RandomAccessIterator x0) { *x0; } &&

135

(135 lines omitted)
...: note: in instantiation of...

std::sort(graph->edge[0], graph->edge[(graph->E)-1], myComp<int>);
ˆ

...: error: no type named...
typedef typename iterator_traits<_RandomAccessIterator>::...

˜˜˜ˆ˜˜...
...: note: in instantiation of...

std::__sort<_WrappedComp>(std::__unwrap_iter(__first), ...
ˆ

...: error: invalid operands...
difference_type __depth_limit = 2 * __log2i(__last - __first);

˜˜˜˜˜˜ ˆ ˜˜˜˜˜˜˜
...: note: candidate template ignored:...
operator-(const reverse_iterator<_Iter1>& __x, const...
ˆ
12 warnings and 8 errors generated.

(a) Error messages of the template std::sort before adding constraints.

(33 lines omitted)
...: warning: user-defined literal suffixes not starting with '_'...

__attribute__((__visibility__("hidden")))...
...ˆ
...: error: no matching function for call to 'sort'

std::sort(graph->edge[0], graph->edge[(graph->E)-1], myComp<int>);
ˆ˜˜˜˜˜˜˜˜

...: note: candidate template ignored: constraints not satisfied...
void sort(_RandomAccessIterator __first, _RandomAccessIterator...

ˆ
...: note: because '*x0' would be invalid...
requires (_RandomAccessIterator x0) { *x0; } &&

ˆ
...: note: candidate function template not viable:...
void sort(_RandomAccessIterator __first, _RandomAccessIterator...

ˆ
12 warnings and 1 error generated.

(b) Error messages of the template std::sort after adding constraints.

Figure 6.13: Error messages comparison on std::sort.

requires (_RandomAccessIterator x0) { ++x0; } &&

requires (_RandomAccessIterator x0) { --x0; }

)

136

The error messages before/after adding the constraint are shown in Figure 6.13. Before

adding the constraints, there are 151 lines of warnings and errors generated (where the

warnings are related to C++ preprocessing in our experimental steps and are irrelevant to

the main errors), where there are 8 errors in total. After adding the constraints, the number

of lines of warnings and errors is reduced to 49, and the number of errors is reduced to 1.

Again, the new error message provides a clear explanation of the reason: “constraints

not satisfied.”

6.5.3 Case 3: Synthetic error example of boost::math::sign from our experiments

This case study is based on one of the synthetic erroneous code described in Sec-

tion 6.4.3. The code makes use of boost::math::sign, but the argument types are incor-

rect, resulting in compilation errors. Our tool synthesized constraints for boost::math::sign.

The effective part of the added constraint is as follows.

requires (T x0, int x1) { x0 == x1; }

The error messages before/after adding the constraint are shown in Figure 6.14. Al-

though, in this case, the lengths of error messages before/after adding the constraint are

similar, it is arguably true that the messages after adding the constraint are clearer and easier

to understand. Specifically, before adding the constraint, the implementation details of the

function template are exposed (return (z == 0) ? 0 : (boost::math::signbit)(z)

? -1 : 1;). After adding the constraint, it becomes evident that the template is ignored

due to “constraints not satisfied” and “because 'x0 == x1' would be invalid.”

137

<stdin>:76087:14: error: invalid operands to binary expression
('const S' and 'int')

return (z == 0) ? 0 : (boost::math::signbit)(z) ? -1 : 1;
˜ ˆ ˜

<stdin>:111864:14: note: in instantiation of function template
specialization 'boost::math::sign<S>' requested here
boost::math::sign(s);

ˆ
1 error generated.

(a) Error messages of the template boost::math::sign before adding constraints.

<stdin>:126854:1: error: no matching function for call to 'sign'
boost::math::sign(s);
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
<stdin>:80713:12: note: candidate template ignored:
constraints not satisfied [with T = S]
inline int sign (const T& z)

ˆ
<stdin>:80712:30: note: because 'x0 == x1' would be invalid:
invalid operands to binary expression ('S' and 'int')
requires (T x0, int x1) { x0 == x1; }

ˆ
1 error generated.

(b) Error messages of the template boost::math::sign after adding constraints.

Figure 6.14: Error messages comparison on boost::math::sign.

6.6 Discussions

6.6.1 Matching with pre-defined concepts

Our approach synthesizes a constraint formula for each type template parameter. However,

there are also pre-defined concepts such as std::integral or domain-specific ones created

by programmers. Our approach can be easily extended to match the synthesized constraint

formula with these pre-defined concepts as explained in Section 6.4.2, using evaluators on

the constraint formulas. Specifically, we view the pre-defined concept as a predicate P ,

and suppose the synthesized constraint formula is of the form ((A ∨ B) ∧ C). We first

check whether P implies atomic components A, B, C, and then combine them using ∨ or

138

∧. This idea for comparing predicates is also general and can potentially have other usage

scenarios.

6.6.2 Generalization

Our approach targets C++ templates, but the general idea is applicable to various pro-

gramming languages in different usage scenarios. For example, disjunctions can model

the requirements of various kinds of polymorphisms, such as overloading, dynamic dis-

patch, etc. The backmap Definition 19 idea can, in general, retain different information

as needed at call-sites. Our goal of “synthesizing constraints for C++ templates” can also

be abstracted to “synthesizing requirements for functions,” so it shares similarities with

API/specification inference techniques [128]. The paper focuses on C++ as a concrete and

tangible illustration of the overarching idea.

6.6.3 Higher-level semantics of programming languages

Our work also advocates attention to high-level semantics of programming languages. In

particular, C++ templates themselves are not translated into middle-level IR or assembly

code by the compiler: only template instantiations are preserved. Indeed, the main problem

we target (compilation error) is no longer accessible in middle-level IR, such as LLVM-

IR [129]. To deal with such high-level semantics, it is necessary to confront complicated

high-level program representations. In our case, we directly analyze the C++ AST.

6.6.4 Usage scenarios

We expect our tool to be used mainly in two scenarios. First, our tool can be applied to

existing templated C++ code, which can improve the interface and serve as a precaution

for future error messages. Second, because of the high analysis speed (Section 6.4.1), our

tool can be integrated into IDEs (similar to refactoring tools) and thus provide interactive

feedback even when the developers are changing the code. In both usage scenarios, the de-

139

veloper can choose to either accept or reject the synthesized constraints to ensure absolute

soundness.

6.7 Related work

This work attacks a relatively unexplored problem: C++ template constraint synthesis. Our

work improves the readability and maintainability of C++ code by leveraging the features

of C++20. Our novel technical insight includes using lightweight static analysis to handle

complicated programming languages like C++ in real-world scenarios while still ensuring

high rigor and soundiness (Section 6.3.6). This section focuses on surveying related topics.

Our work shares similarities with type inference for dynamically-typed languages like

JavaScript [110] and Python [111, 112]. However, as highlighted in the introduction, our

work does not infer types but infers constraints corresponding to sets of types, synthesizes

complicated constraints applicable to newly defined types, and can be regarded as meta-

analysis of the compilation process for the statically-typed language C++. There are also

previous efforts targeting Java wildcard inference [130, 131]. C++ constraints and concepts

can be regarded as a flexible way to specify use-site constraints, which includes use-site

covariance/contravariance as special cases.

Existing static analysis work for C++ typically focuses on traditional and general topics

such as symbolic execution [132, 133] and model checking [134, 135, 136, 137], which

rarely targets high-level C++ semantic problems. In contrast, our work handles recent

language features (constraints and concepts) introduced in C++20. While there are existing

studies on the formal semantic analysis of C++ templates [138] and comparisons with other

languages like Haskell [139], our work presents a practical application for C++ templates.

There also exists work handling high-level semantics such as Java reflection [140] and

containers [141], while our work focuses on C++ generic programming. There also exists

work improving type error messages by using the type checker as an oracle to search for

similar programs that do type-check [142]. Our work adds “specifications” to the original

140

programs, which itself is beneficial for a clearer interface even if no error occurs.

Our work also shares similarities with API/specification [128] inference techniques,

but we focus on precise type requirements, while existing API/specification inference tech-

niques [143, 144, 145, 146, 147] utilize data-mining, probabilistic methods, or various

heuristics and are thus not inferring precise specifications.

The idea of backmap (Section 6.3) can be regarded as a form of compile-time context-

sensitivity, similar to the usual run-time context-sensitivity [148, 149, 150, 151, 152]. In

our case, the same function template can be called inside different function templates, each

of which passes potentially different “type-contexts” into the callees, which are all resolved

in compile time.

The field of program synthesis [153, 154, 155, 156] has achieved great progress in

recent years. Our work does not synthesize programs but constraints for template param-

eters in existing code. Thus, our work targets a different problem and is more scalable

(Section 6.4.1) than typical program synthesis techniques.

6.8 Chapter Conclusion

We proposed a framework for automatically synthesizing constraints for C++ function tem-

plates. The synthesized requirements are expressed using C++20 constraints and concepts,

which can significantly improve interface clarity and template-related compilation error

messages. Our tool runs fast and thus has the potential to be used in IDE for interactive

error reporting. Experimental results showed that our tool can synthesize valid constraints

for real-world C++ code from the Standard Template Library and the Boost library.

141

CHAPTER 7

CONCLUSION

Witness functions are implicit functions inside computability/complexity theoretic impos-

sibility proofs. The properties of witness functions have implications on (1) decidable

approximations of undecidable problems (which is the essential idea behind automatic pro-

gram analysis and verification techniques) and (2) complexity class separation proofs (in-

cluding open problems in complexity theory). We proved theoretical results regarding the

properties of witness functions in the two cases, which provided new angles to understand

program analysis theory and complexity theory. We also discussed two practical program

analysis techniques, and showed the way to interpret the witnessability results under these

realistic settings.

7.1 Future Directions

We list some future directions for the four pieces of work discussed in previous chapters.

7.1.1 Witness Functions for Undecidable Problems

From the angle of program analysis and verification, witnessable problems are the class

of problems admitting computable precision improvements on decidable approximations.

Future studies can try to determine if-and-only-if conditions for an undecidable problem

to be witnessable, which could provide a more complete characterization of witnessability.

Similar if-and-only-if conditions exist for productive sets in computability theory [15],

which admits partial computable productive functions (similar to witness functions) for

computably enumerable subsets.

On the practical side, as mentioned in Section 3.3, it is computable to decide whether

the computed witness is a false positive or false negative. Thus the witnessability results

142

can potentially help to tackle the test oracle problem [157, 158] in software testing: if the

witness can be regarded as a test case for program analyzers/verifiers, then the ground truth

of whether it is in the undecidable set of program semantics is computable.

7.1.2 Witness Functions for Complexity Classes

The concepts “artificial problems” (problems appearing in the constructions of time / space

hierarchy theorems) and “natural problems” (problems naturally occurring in realistic set-

tings) are not formally defined. Future work can consider clearly defined characteristics of

these two classes of problems. Combining with our results, this may shed light on the way

to achieve separations for natural problems or the way to prove independence results.

Also, analyzing existing unconditional lower bounds as case studies could enable a

deeper understanding of our results. Perhaps the most well-known unconditional lower

bounds are from time / space hierarchy theorems [17, 18]. Other examples include the

quadratic lower bound of palindrome recognition on single-tape Turing machines, which

can be obtained by the crossing sequence argument.

7.1.3 Mutual Refinement

Future studies could try to incorporate non-CFL reachability into the mutual refinement

framework, which can potentially bring more precision improvements. In general, the idea

of mutual refinement works for algorithms traversing all contributing edges, where the

traversed edges can be recorded as the starting point for the next iteration of refinement,

under possibly different algorithms.

Also, according to witnessability, we can write programs implementing the computable

witness function to compute counterexamples for specific mutual refinement algorithms.

Although the counterexamples are typically large and involved, by using techniques such

as test case reductions [159] we can possibly get smaller counterexamples and derive hints

on further improvements of mutual refinement.

143

7.1.4 C++ Template Constraint Analysis

Templates are used to achieve generic programming in C++, and template constraints pose

additional restrictions on the type parameters of generics. The idea behind our technique is

a general intuition for generic programming, which is not limited to C++. Thus a natural

future direction is to consider constrained generics in other languages, such as wildcards in

Java.

Similar to the mutual refinement case, we can implement computable witness functions

to compute counterexamples, and use test case reductions or similar techniques to get useful

hints on further precision improvements.

144

REFERENCES

[1] N. Cutland, Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, 1980, ISBN: 9780521294652.

[2] M. Sipser, “Introduction to the theory of computation,” 2012.

[3] W. Landi, “Undecidability of static analysis,” LOPLAS, vol. 1, no. 4, pp. 323–337,
1992.

[4] T. W. Reps, “Undecidability of context-sensitive data-dependence analysis,” ACM
Trans. Program. Lang. Syst., vol. 22, no. 1, pp. 162–186, 2000.

[5] P. A. Abdulla and B. Jonsson, “Undecidable verification problems for programs
with unreliable channels,” Inf. Comput., vol. 130, no. 1, pp. 71–90, 1996.

[6] C. Dima and F. L. Tiplea, “Model-checking ATL under imperfect information and
perfect recall semantics is undecidable,” CoRR, vol. abs/1102.4225, 2011.

[7] A. M. Turing et al., “On computable numbers, with an application to the entschei-
dungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[8] A. Church, “An unsolvable problem of elementary number theory,” American Jour-
nal of Mathematics, vol. 58, no. 2, pp. 345–363, 1936.

[9] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977, ACM, 1977, pp. 238–252.

[10] G. A. Kildall, “A unified approach to global program optimization,” in Conference
Record of the ACM Symposium on Principles of Programming Languages, Boston,
Massachusetts, USA, October 1973, P. C. Fischer and J. D. Ullman, Eds., ACM
Press, 1973, pp. 194–206.

[11] J. Z. S. Hu and O. Lhoták, “Undecidability of d¡: and its decidable fragments,”
Proc. ACM Program. Lang., vol. 4, no. POPL, 9:1–9:30, 2020.

[12] T. P. Baker, J. Gill, and R. Solovay, “Relativizations of the P =? NP question,”
SIAM J. Comput., vol. 4, no. 4, pp. 431–442, 1975.

[13] D. Joseph and P. Young, “Some remarks on witness functions for nonpolynomial
and noncomplete sets in np,” Theoretical Computer Science, vol. 39, pp. 225–237,
1985.

145

[14] D. Kozen, “Indexings of subrecursive classes,” Theor. Comput. Sci., vol. 11, pp. 277–
301, 1980.

[15] R. I. Soare, Turing computability: Theory and applications. Springer, 2016, vol. 300.

[16] R. Soare, Recursively Enumerable Sets and Degrees: A Study of Computable Func-
tions and Computably Generated Sets (Perspectives in Mathematical Logic). Springer
Berlin Heidelberg, 1999, ISBN: 9783540152996.

[17] J. Hartmanis and R. E. Stearns, “On the computational complexity of algorithms,”
Transactions of the American Mathematical Society, vol. 117, pp. 285–306, 1965.

[18] M. Sipser, Introduction to the Theory of Computation (Introduction to the Theory
of Computation). Cengage Learning, 2012, ISBN: 9781133187813.

[19] T. L. Veldhuizen, “C++ templates are turing complete,” Indiana University, Tech.
Rep., 2003.

[20] T. Jech, Set Theory: The Third Millennium Edition, revised and expanded (Springer
Monographs in Mathematics). Springer Berlin Heidelberg, 2013, ISBN: 9783642078996.

[21] A. Asperti, “The intensional content of rice’s theorem,” in Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, ACM, 2008,
pp. 113–119.

[22] K. Gödel, “Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme i,” in 1, vol. 38, Springer, 1931, pp. 173–198.

[23] S. Liang, W. Sun, and M. Might, “Fast flow analysis with godel hashes,” in 14th
IEEE International Working Conference on Source Code Analysis and Manipula-
tion, SCAM 2014, Victoria, BC, Canada, September 28-29, 2014, IEEE Computer
Society, 2014, pp. 225–234.

[24] G. Hardy, An introduction to the theory of numbers. Oxford Science Publication,
1979.

[25] H. Rogers, “Gödel numberings of partial recursive functions,” The journal of sym-
bolic logic, vol. 23, no. 3, pp. 331–341, 1958.

[26] J. B. Wells, “Typability and type checking in system F are equivalent and undecid-
able,” Ann. Pure Appl. Log., vol. 98, no. 1-3, pp. 111–156, 1999.

[27] B. C. Pierce, “Bounded quantification is undecidable,” in Conference Record of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

146

ming Languages, Albuquerque, New Mexico, USA, January 19-22, 1992, ACM
Press, 1992, pp. 305–315.

[28] M. Brown and J. Palsberg, “Breaking through the normalization barrier: A self-
interpreter for f-omega,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, ACM, 2016, pp. 5–17.

[29] HaskellWiki, Ghc/ghci, https : / /wiki .haskell .org/GHC/GHCi, Accessed in May
2024.

[30] S. Ding and Q. Zhang, “The normalization barrier revisited,” in Proceedings of the
Workshop Dedicated to Jens Palsberg on the Occasion of His 60th Birthday, 2024,
pp. 1–4.

[31] J. D. Day, V. Ganesh, P. He, F. Manea, and D. Nowotka, “The satisfiability of
word equations: Decidable and undecidable theories,” in Reachability Problems
- 12th International Conference, RP 2018, Marseille, France, September 24-26,
2018, Proceedings, ser. Lecture Notes in Computer Science, vol. 11123, Springer,
2018, pp. 15–29.

[32] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli, “Decidabil-
ity and undecidability results for nelson-oppen and rewrite-based decision pro-
cedures,” in Automated Reasoning, Third International Joint Conference, IJCAR
2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, ser. Lecture Notes in
Computer Science, vol. 4130, Springer, 2006, pp. 513–527.

[33] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided
abstraction refinement,” in Computer Aided Verification, 12th International Con-
ference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, ser. Lecture
Notes in Computer Science, vol. 1855, Springer, 2000, pp. 154–169.

[34] E. L. Post, “A variant of a recursively unsolvable problem,” Bulletin of the Ameri-
can Mathematical Society, vol. 52, no. 4, pp. 264–268, 1946.

[35] N. Jones, C. Gomard, and P. Sestoft, Partial Evaluation and Automatic Program
Generation (Prentice-Hall international series in computer science). Prentice Hall,
1993, ISBN: 9780130202499.

[36] V. Ganesh, M. Minnes, A. Solar-Lezama, and M. C. Rinard, “Word equations with
length constraints: What’s decidable?” In Hardware and Software: Verification and
Testing - 8th International Haifa Verification Conference, HVC 2012, Haifa, Israel,
November 6-8, 2012. Revised Selected Papers, ser. Lecture Notes in Computer Sci-
ence, vol. 7857, Springer, 2012, pp. 209–226.

147

https://wiki.haskell.org/GHC/GHCi

[37] J. Myhill, “Creative sets,” Journal of Symbolic Logic, vol. 22, no. 1, 1957.

[38] E. L. Post, “Recursively enumerable sets of positive integers and their decision
problems,” Bulletin of the American Mathematical Society, vol. 50, no. 5, pp. 284–
316, 1944.

[39] M. Flatt and PLT, “Reference: Racket,” PLT Design Inc., Tech. Rep. PLT-TR-2010-
1, 2010, https://racket-lang.org/tr1/.

[40] R. Bruni, R. Giacobazzi, R. Gori, I. Garcia-Contreras, and D. Pavlovic, “Abstract
extensionality: On the properties of incomplete abstract interpretations,” Proc. ACM
Program. Lang., vol. 4, no. POPL, 28:1–28:28, 2020.

[41] J. R. Shoenfield, “On degrees of unsolvability,” Annals of mathematics, pp. 644–
653, 1959.

[42] J. Moyen and J. G. Simonsen, “More intensional versions of rice’s theorem,” in
Computing with Foresight and Industry - 15th Conference on Computability in Eu-
rope, CiE 2019, Durham, UK, July 15-19, 2019, Proceedings, ser. Lecture Notes in
Computer Science, vol. 11558, Springer, 2019, pp. 217–229.

[43] P. Baldan, F. Ranzato, and L. Zhang, “A rice’s theorem for abstract semantics,”
in 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), ser. LIPIcs,
vol. 198, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 117:1–117:19.

[44] R. Giacobazzi, F. Logozzo, and F. Ranzato, “Analyzing program analyses,” in Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
ACM, 2015, pp. 261–273.

[45] P. Cousot and R. Cousot, “Formal language, grammar and set-constraint-based
program analysis by abstract interpretation,” in Proceedings of the seventh inter-
national conference on Functional programming languages and computer archi-
tecture, FPCA 1995, La Jolla, California, USA, June 25-28, 1995, ACM, 1995,
pp. 170–181.

[46] A. Aiken, “Introduction to set constraint-based program analysis,” Sci. Comput.
Program., vol. 35, no. 2, pp. 79–111, 1999.

[47] T. W. Reps, “Program analysis via graph reachability,” Inf. Softw. Technol., vol. 40,
no. 11-12, pp. 701–726, 1998.

[48] V. Vazirani, Approximation Algorithms. Springer Berlin Heidelberg, 2013, ISBN:
9783662045657.

148

https://racket-lang.org/tr1/

[49] S. Arora, “The approximability of np-hard problems,” in Proceedings of the Thir-
tieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA,
May 23-26, 1998, ACM, 1998, pp. 337–348.

[50] M. Blum, “A machine-independent theory of the complexity of recursive func-
tions,” J. ACM, vol. 14, no. 2, pp. 322–336, 1967.

[51] A. Asperti, “The intensional content of rice’s theorem,” in Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, ACM, 2008,
pp. 113–119.

[52] H. Rogers, “Gödel numberings of partial recursive functions,” The journal of sym-
bolic logic, vol. 23, no. 3, pp. 331–341, 1958.

[53] C. Papadimitriou, Computational Complexity (Theoretical computer science). Addison-
Wesley, 1994, ISBN: 9780201530827.

[54] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, fourth
edition. MIT Press, 2022, ISBN: 9780262367509.

[55] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, ACM, 1971, pp. 151–158.

[56] L. A. Levin, “Universal sequential search problems,” Problemy peredachi infor-
matsii, vol. 9, no. 3, pp. 115–116, 1973.

[57] S. A. Cook, “Short propositional formulas represent nondeterministic computa-
tions,” Inf. Process. Lett., vol. 26, no. 5, pp. 269–270, 1988.

[58] S. Aaronson, “P =? NP,” in Open Problems in Mathematics, Springer, 2016, pp. 1–
122.

[59] A. Kolokolova, “Complexity barriers as independence,” The Incomputable: Jour-
neys Beyond the Turing Barrier, pp. 143–168, 2017.

[60] S. Aaronson and A. Wigderson, “Algebrization: A new barrier in complexity the-
ory,” ACM Trans. Comput. Theory, vol. 1, no. 1, 2:1–2:54, 2009.

[61] L. Fortnow, “Diagonalization,” Bull. EATCS, vol. 71, pp. 102–113, 2000.

[62] A. Nash, R. Impagliazzo, and J. Remmel, “Universal languages and the power of
diagonalization,” in 18th IEEE Annual Conference on Computational Complexity,
2003. Proceedings., IEEE, 2003, pp. 337–346.

149

[63] S. Ding and Q. Zhang, “Witnessability of undecidable problems,” Proc. ACM Pro-
gram. Lang., vol. 7, no. POPL, pp. 982–1002, 2023.

[64] P. Pratikakis, J. S. Foster, and M. Hicks, “Existential label flow inference via CFL
reachability,” in Static Analysis, 13th International Symposium, SAS 2006, Seoul,
Korea, August 29-31, 2006, Proceedings, ser. Lecture Notes in Computer Science,
vol. 4134, Springer, 2006, pp. 88–106.

[65] J. Rehof and M. Fähndrich, “Type-base flow analysis: From polymorphic sub-
typing to cfl-reachability,” in Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London,
UK, January 17-19, 2001, ACM, 2001, pp. 54–66.

[66] T. W. Reps, S. Horwitz, and S. Sagiv, “Precise interprocedural dataflow analysis
via graph reachability,” in Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23-25, 1995, ACM Press, 1995, pp. 49–61.

[67] Y. Lu, L. Shang, X. Xie, and J. Xue, “An incremental points-to analysis with
cfl-reachability,” in Compiler Construction - 22nd International Conference, CC
2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, ser. Lecture
Notes in Computer Science, vol. 7791, Springer, 2013, pp. 61–81.

[68] Y. Su, D. Ye, and J. Xue, “Parallel pointer analysis with cfl-reachability,” in 43rd
International Conference on Parallel Processing, ICPP 2014, Minneapolis, MN,
USA, September 9-12, 2014, IEEE Computer Society, 2014, pp. 451–460.

[69] J. Kodumal and A. Aiken, “The set constraint/cfl reachability connection in prac-
tice,” in Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation 2004, Washington, DC, USA, June 9-11,
2004, ACM, 2004, pp. 207–218.

[70] T. W. Reps, “Program analysis via graph reachability,” Inf. Softw. Technol., vol. 40,
no. 11-12, pp. 701–726, 1998.

[71] M. Yannakakis, “Graph-theoretic methods in database theory,” in Proceedings of
the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS 1990, ACM Press, 1990, pp. 230–242.

[72] D. Melski and T. W. Reps, “Interconvertibility of a class of set constraints and
context-free-language reachability,” Theor. Comput. Sci., vol. 248, no. 1-2, pp. 29–
98, 2000.

150

[73] S. Chaudhuri, “Subcubic algorithms for recursive state machines,” in Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,
ACM, 2008, pp. 159–169.

[74] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su, “Fast algorithms for dyck-cfl-reachability
with applications to alias analysis,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, ACM, 2013, pp. 435–446.

[75] K. Chatterjee, B. Choudhary, and A. Pavlogiannis, “Optimal dyck reachability for
data-dependence and alias analysis,” Proc. ACM Program. Lang., vol. 2, no. POPL,
30:1–30:30, 2018.

[76] Y. Lei, Y. Sui, S. Ding, and Q. Zhang, “Taming transitive redundancy for context-
free language reachability,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA2,
pp. 1556–1582, 2022.

[77] Q. Zhang and Z. Su, “Context-sensitive data-dependence analysis via linear con-
junctive language reachability,” in Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, ACM, 2017, pp. 344–
358.

[78] Y. Li, Q. Zhang, and T. W. Reps, “Fast graph simplification for interleaved dyck-
reachability,” in Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, ACM, 2020,
pp. 780–793.

[79] M. Sridharan and R. Bodı́k, “Refinement-based context-sensitive points-to analy-
sis for java,” in Proceedings of the ACM SIGPLAN 2006 Conference on Program-
ming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-
14, 2006, ACM, 2006, pp. 387–400.

[80] D. Yan, G. Xu, and A. Rountev, “Demand-driven context-sensitive alias analysis
for java,” in Proceedings of the 20th International Symposium on Software Testing
and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, ACM, 2011,
pp. 155–165.

[81] V. Kahlon, “Boundedness vs. unboundedness of lock chains: Characterizing decid-
ability of pairwise cfl-reachability for threads communicating via locks,” in Pro-
ceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS
2009, 11-14 August 2009, Los Angeles, CA, USA, IEEE Computer Society, 2009,
pp. 27–36.

151

[82] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata theory,
languages, and computation,” Acm Sigact News, vol. 32, no. 1, pp. 60–65, 2001.

[83] J. Späth, K. Ali, and E. Bodden, “Context-, flow-, and field-sensitive data-flow anal-
ysis using synchronized pushdown systems,” Proc. ACM Program. Lang., vol. 3,
no. POPL, 48:1–48:29, 2019.

[84] M. A. Harrison, Introduction to formal language theory. Addison-Wesley Longman
Publishing Co., Inc., 1978.

[85] S. C. Kleene, “Introduction to metamathematics,” 1952.

[86] G. A. Kildall, “A unified approach to global program optimization,” in Conference
Record of the ACM Symposium on Principles of Programming Languages, Boston,
Massachusetts, USA, October 1973, ACM Press, 1973, pp. 194–206.

[87] P. Cousot, “Asychronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice.,” 1977.

[88] W. Huang, Y. Dong, A. Milanova, and J. Dolby, “Scalable and precise taint analy-
sis for android,” in Proceedings of the 2015 International Symposium on Software
Testing and Analysis, ISSTA 2015, ACM, 2015, pp. 106–117.

[89] SPEC, Spec cpu 2017, https://www.spec.org/cpu2017/, Accessed: Nov 6, 2022,
2017.

[90] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms. MIT press, 2022.

[91] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: The correct way to
summarize benchmark results,” Commun. ACM, vol. 29, no. 3, pp. 218–221, 1986.

[92] A. H. Kjelstrøm and A. Pavlogiannis, “The decidability and complexity of inter-
leaved bidirected dyck reachability,” Proc. ACM Program. Lang., vol. 6, no. POPL,
pp. 1–26, 2022.

[93] C. Lattner and V. S. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in 2nd IEEE / ACM International Symposium on Code
Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA,
IEEE Computer Society, 2004, pp. 75–88.

[94] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in llvm,” in
Proceedings of the 25th international conference on compiler construction, ACM,
2016, pp. 265–266.

152

https://www.spec.org/cpu2017/

[95] X. Xiao, Q. Zhang, J. Zhou, and C. Zhang, “Persistent pointer information,” in
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, ACM, 2014,
pp. 463–474.

[96] A. Milanova, “Flowcfl: Generalized type-based reachability analysis: Graph reduc-
tion and equivalence of cfl-based and type-based reachability,” Proc. ACM Pro-
gram. Lang., vol. 4, no. OOPSLA, 178:1–178:29, 2020.

[97] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken, “Partial online cycle elimination
in inclusion constraint graphs,” in Proceedings of the ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementation (PLDI), Montreal,
Canada, June 17-19, 1998, ACM, 1998, pp. 85–96.

[98] T. Tan, Y. Li, X. Ma, C. Xu, and Y. Smaragdakis, “Making pointer analysis more
precise by unleashing the power of selective context sensitivity,” Proc. ACM Pro-
gram. Lang., vol. 5, no. OOPSLA, pp. 1–27, 2021.

[99] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay, “Effective typestate
verification in the presence of aliasing,” ACM Trans. Softw. Eng. Methodol., vol. 17,
no. 2, 9:1–9:34, 2008.

[100] W. Anggoro and J. Torjo, Boost. Asio C++ Network Programming. Packt Publish-
ing Ltd, 2015.

[101] L. Z. Eng, Qt5 C++ GUI programming cookbook. Packt Publishing Ltd, 2016.

[102] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with tensorflow: A review,”
Journal of Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248, 2020.

[103] N. M. Josuttis, “The c++ standard library: A tutorial and reference,” 2012.

[104] Cppreference, Sfinae, https: / /en.cppreference.com/w/cpp/language/sfinae, Ac-
cessed in April 2024.

[105] Tumblr, The grand cpp error explosion competition, https://tgceec.tumblr.com/,
Accessed in April 2024.

[106] StackExchange, Generate the longest error message in cpp, https : / / codegolf .
stackexchange.com/a/10470, Accessed in April 2024.

[107] StackOverflow, Deciphering cpp template error messages, https://stackoverflow.
com/questions/47980/deciphering-c-template-error-messages, Accessed in April
2024.

153

https://en.cppreference.com/w/cpp/language/sfinae
https://tgceec.tumblr.com/
https://codegolf.stackexchange.com/a/10470
https://codegolf.stackexchange.com/a/10470
https://stackoverflow.com/questions/47980/deciphering-c-template-error-messages
https://stackoverflow.com/questions/47980/deciphering-c-template-error-messages

[108] StackOverflow, How to improve compiler error messages when using cpp std::visit?
https://stackoverflow.com/questions/72507596/how-to-improve-compiler-error-
messages-when-using-c-stdvisit, Accessed in April 2024.

[109] G. D. Reis and B. Stroustrup, “Specifying C++ concepts,” in Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006, ACM,
2006, pp. 295–308.

[110] C. Anderson, P. Giannini, and S. Drossopoulou, “Towards type inference for javascript,”
in ECOOP 2005 - Object-Oriented Programming, 19th European Conference, Glas-
gow, UK, July 25-29, 2005, Proceedings, ser. Lecture Notes in Computer Science,
vol. 3586, Springer, 2005, pp. 428–452.

[111] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic type inference
with natural language support,” in Proceedings of the 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, November 13-18, 2016, ACM, 2016, pp. 607–618.

[112] Y. Peng et al., “Static inference meets deep learning: A hybrid type inference ap-
proach for python,” in 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, ACM, 2022,
pp. 2019–2030.

[113] B. Stroustrup, A Tour of C++. Addison-Wesley Professional, 2022.

[114] W. Gasarch, “A survey of recursive combinatorics,” in Studies in Logic and the
Foundations of Mathematics, vol. 139, Elsevier, 1998, pp. 1041–1176.

[115] ISO, The standard definition of cpp, https:/ /www.iso.org/standard/79358.html,
Accessed in October 2024.

[116] R. Garcia and A. Lumsdaine, “Toward foundations for type-reflective metapro-
gramming,” in Generative Programming and Component Engineering, 8th Inter-
national Conference, GPCE 2009, Denver, Colorado, USA, October 4-5, 2009,
Proceedings, ACM, 2009, pp. 25–34.

[117] W. V. Quine, “The problem of simplifying truth functions,” The American mathe-
matical monthly, vol. 59, no. 8, pp. 521–531, 1952.

[118] W. V. Quine, “A way to simplify truth functions,” The American mathematical
monthly, vol. 62, no. 9, pp. 627–631, 1955.

[119] E. J. McCluskey, “Minimization of boolean functions,” The Bell System Technical
Journal, vol. 35, no. 6, pp. 1417–1444, 1956.

154

https://stackoverflow.com/questions/72507596/how-to-improve-compiler-error-messages-when-using-c-stdvisit
https://stackoverflow.com/questions/72507596/how-to-improve-compiler-error-messages-when-using-c-stdvisit
https://www.iso.org/standard/79358.html

[120] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli, “Complexity of two-level
logic minimization,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 7, pp. 1230–1246, 2006.

[121] B. Livshits et al., “In defense of soundiness: A manifesto,” Commun. ACM, vol. 58,
no. 2, pp. 44–46, 2015.

[122] Cppreference, Template argument deduction, https://en.cppreference.com/w/cpp/
language/template argument deduction, Accessed in April 2024.

[123] Cppreference, Class template argument deduction, https://en.cppreference.com/w/
cpp/language/class template argument deduction, Accessed in April 2024.

[124] Cppreference, Named requirements, https://en.cppreference.com/w/cpp/named
req, Accessed in April 2024.

[125] Cppreference, Cpp named requirements: Legacyinputiterator, https://en.cppreference.
com/w/cpp/named req/InputIterator, Accessed in April 2024.

[126] StackOverflow, Compilation error for a binary search on the attributes, https : / /
stackoverflow.com/questions/42604796/compilation-error- for-a-binary-search-
on-the-attributes, Accessed in April 2024.

[127] StackOverflow, Using stdsort in cpp with iterators and templates, https://stackoverflow.
com/questions/59096297/using- stdsort- in-c-with- iterators- and- templates, Ac-
cessed in October 2024.

[128] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford, “Auto-
mated API property inference techniques,” IEEE Trans. Software Eng., vol. 39,
no. 5, pp. 613–637, 2013.

[129] LLVM, Llvm language reference manual, https : / / llvm.org/docs/LangRef .html,
Accessed in April 2024.

[130] J. Altidor, S. S. Huang, and Y. Smaragdakis, “Taming the wildcards: Combining
definition- and use-site variance,” in Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, ACM, 2011, pp. 602–613.

[131] J. Altidor and Y. Smaragdakis, “Refactoring java generics by inferring wildcards,
in practice,” in Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA 2014, part
of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, ACM, 2014, pp. 271–
290.

155

https://en.cppreference.com/w/cpp/language/template_argument_deduction
https://en.cppreference.com/w/cpp/language/template_argument_deduction
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/named_req
https://en.cppreference.com/w/cpp/named_req
https://en.cppreference.com/w/cpp/named_req/InputIterator
https://en.cppreference.com/w/cpp/named_req/InputIterator
https://stackoverflow.com/questions/42604796/compilation-error-for-a-binary-search-on-the-attributes
https://stackoverflow.com/questions/42604796/compilation-error-for-a-binary-search-on-the-attributes
https://stackoverflow.com/questions/42604796/compilation-error-for-a-binary-search-on-the-attributes
https://stackoverflow.com/questions/59096297/using-stdsort-in-c-with-iterators-and-templates
https://stackoverflow.com/questions/59096297/using-stdsort-in-c-with-iterators-and-templates
https://llvm.org/docs/LangRef.html

[132] G. Li, I. Ghosh, and S. P. Rajan, “KLOVER: A symbolic execution and automatic
test generation tool for C++ programs,” in Computer Aided Verification - 23rd In-
ternational Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-
ings, ser. Lecture Notes in Computer Science, vol. 6806, Springer, 2011, pp. 609–
615.

[133] G. Li, I. Ghosh, and S. P. Rajan, “Kil: An abstract intermediate language for sym-
bolic execution and test generation of c++ programs,” Citeseer, 2012, p. 15.

[134] J. Barnat et al., “Divine 3.0 - an explicit-state model checker for multithreaded C &
C++ programs,” in Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, ser. Lecture
Notes in Computer Science, vol. 8044, Springer, 2013, pp. 863–868.

[135] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Effective state-
less model checking for C/C++ concurrency,” Proc. ACM Program. Lang., vol. 2,
no. POPL, 17:1–17:32, 2018.

[136] F. R. Monteiro, M. R. Gadelha, and L. C. Cordeiro, “Model checking C++ pro-
grams,” Softw. Test. Verification Reliab., vol. 32, no. 1, 2022.

[137] B. Norris and B. Demsky, “A practical approach for model checking C/C++11
code,” ACM Trans. Program. Lang. Syst., vol. 38, no. 3, 10:1–10:51, 2016.

[138] J. G. Siek and W. Taha, “A semantic analysis of C++ templates,” in ECOOP 2006 -
Object-Oriented Programming, 20th European Conference, Nantes, France, July 3-
7, 2006, Proceedings, ser. Lecture Notes in Computer Science, vol. 4067, Springer,
2006, pp. 304–327.

[139] J. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. P. Priesnitz, “A comparison
of c++ concepts and haskell type classes,” in Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, WGP 2008, Victoria, BC, Canada, September
20, 2008, ACM, 2008, pp. 37–48.

[140] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing java reflection,” ACM
Trans. Softw. Eng. Methodol., vol. 28, no. 2, 7:1–7:50, 2019.

[141] C. Wang, P. Yao, W. Tang, Q. Shi, and C. Zhang, “Complexity-guided container
replacement synthesis,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA1, pp. 1–
31, 2022.

[142] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers, “Searching for type-error
messages,” in Proceedings of the ACM SIGPLAN 2007 Conference on Program-
ming Language Design and Implementation, San Diego, California, USA, June 10-
13, 2007, ACM, 2007, pp. 425–434.

156

[143] Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning libraries via
automated relational API inference,” in Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022, ACM, 2022, pp. 44–56.

[144] S. Xu, Z. Dong, and N. Meng, “Meditor: Inference and application of API migra-
tion edits,” in Proceedings of the 27th International Conference on Program Com-
prehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019, IEEE / ACM,
2019, pp. 335–346.

[145] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static specification inference
using predicate mining,” in Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, San Diego, California, USA,
June 10-13, 2007, ACM, 2007, pp. 123–134.

[146] V. B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin: Specifica-
tion inference for explicit information flow problems,” in Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2009, Dublin, Ireland, June 15-21, 2009, ACM, 2009, pp. 75–86.

[147] V. Chibotaru, B. Bichsel, V. Raychev, and M. T. Vechev, “Scalable taint specifica-
tion inference with big code,” in Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2019, Phoenix,
AZ, USA, June 22-26, 2019, ACM, 2019, pp. 760–774.

[148] T. W. Reps, “Undecidability of context-sensitive data-independence analysis,” ACM
Trans. Program. Lang. Syst., vol. 22, no. 1, pp. 162–186, 2000.

[149] Q. Zhang and Z. Su, “Context-sensitive data-dependence analysis via linear con-
junctive language reachability,” in Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France, Jan-
uary 18-20, 2017, ACM, 2017, pp. 344–358.

[150] T. Tan, Y. Li, X. Ma, C. Xu, and Y. Smaragdakis, “Making pointer analysis more
precise by unleashing the power of selective context sensitivity,” Proc. ACM Pro-
gram. Lang., vol. 5, no. OOPSLA, pp. 1–27, 2021.

[151] M. Jeon and H. Oh, “Return of CFA: call-site sensitivity can be superior to object
sensitivity even for object-oriented programs,” Proc. ACM Program. Lang., vol. 6,
no. POPL, pp. 1–29, 2022.

[152] S. Ding and Q. Zhang, “Mutual refinements of context-free language reachabil-
ity,” in Static Analysis - 30th International Symposium, SAS 2023, Cascais, Portu-

157

gal, October 22-24, 2023, Proceedings, ser. Lecture Notes in Computer Science,
vol. 14284, Springer, 2023, pp. 231–258.

[153] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps, “Component-based syn-
thesis for complex apis,” in Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, ACM, 2017, pp. 599–612.

[154] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Found. Trends Pro-
gram. Lang., vol. 4, no. 1-2, pp. 1–119, 2017.

[155] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification to pro-
gram synthesis,” in Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010, ACM, 2010, pp. 313–326.

[156] L. D’Antoni, Q. Hu, J. Kim, and T. W. Reps, “Programmable program synthesis,”
in Computer Aided Verification - 33rd International Conference, CAV 2021, Vir-
tual Event, July 20-23, 2021, Proceedings, Part I, ser. Lecture Notes in Computer
Science, vol. 12759, Springer, 2021, pp. 84–109.

[157] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem
in software testing: A survey,” IEEE Trans. Software Eng., vol. 41, no. 5, pp. 507–
525, 2015.

[158] E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri, “TOGA: A neural method
for test oracle generation,” in 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, ACM,
2022, pp. 2130–2141.

[159] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case reduc-
tion for C compiler bugs,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2012), 2012, pp. 335–
346.

158

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Thesis Statement
	Thesis Contributions
	Thesis Organization

	2 | Preliminary
	Logic Background
	Programming Language Background

	3 | Witnessability of Undecidable Problems
	Introduction
	Preliminary
	Witnessable Problems
	Non-Witnessable Problems
	Cardinalities of the Two Classes of Problems
	Case Studies
	Discussions
	Related Work
	Chapter Conclusion

	4 | On Witness Functions for Complexity Lower Bounds
	Introduction
	Preliminary
	Complexity Classes and Their Representations
	Witness Functions and Universal Reductions
	From Witness Functions to Universal Reductions
	The Generalized Hierarchy Theorem
	Relations to the Relativization Barrier
	Related Work
	Chapter Conclusion

	5 | Example: Mutual Refinements of Context-Free Language Reachability
	Introduction
	Motivating Example
	Preliminary
	Mutual Refinement
	Experiments
	Discussion
	Related Work
	Chapter Conclusion

	6 | Example: Fast Constraint Synthesis for C++ Function Templates
	Introduction
	Preliminary
	Approach
	Experiments
	Case studies
	Discussions
	Related work
	Chapter Conclusion

	7 | Conclusion
	Future Directions

	References

