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Given an edge-labeled graph, context-free language reachability (CFL-reachability) computes reachable node
pairs by deriving new edges and adding them to the graph. The redundancy that limits the scalability of
CFL-reachability manifests as redundant derivations, i.e., identical edges can be derived multiple times
due to the many paths between two reachable nodes. We observe that most redundancy arises from the
derivations involving transitive relations of reachable node pairs. Unfortunately, existing techniques for
reducing redundancy in transitive-closure-based problems are either ineffective or inapplicable to identifying
and eliminating redundant derivations during on-the-fly CFL-reachability solving.

This paper proposes a scalable yet precision-preserving approach to all-pairs CFL-reachability analysis
by taming its transitive redundancy. Our key insight is that transitive relations are intrinsically ordered, and
utilizing the order for edge derivation can avoid most redundancy. To address the challenges in determining the
derivation order from the dynamically changed graph during CFL-reachability solving, we introduce a hybrid
graph representation by combining spanning trees and adjacency lists, together with a dynamic construction
algorithm. Based on this representation, we propose a fast and effective partially ordered algorithm Pocr to
boost the performance of CFL-reachability analysis by reducing its transitive redundancy during on-the-fly
solving. Our experiments on context-sensitive value-flow analysis and field-sensitive alias analysis for C/C++
demonstrate the promising performance of Pocr. On average, Pocr eliminates 98.50% and 97.26% redundant
derivations respectively for the value-flow and alias analysis, achieving speedups of 21.48× and 19.57× over
the standard CFL-reachability algorithm. We also compare Pocr with two recent open-source tools, Graspan
(a CFL-reachability solver) and Soufflé (a Datalog engine). The results demonstrate that Pocr is over 3.67×
faster than Graspan and Soufflé on average for both value-flow analysis and alias analysis.
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1 INTRODUCTION

Context-free language (CFL) reachability is a fundamental framework for many static analyses such
as shape analysis [Reps 1995], polymorphic flow analysis [Rehof and Fähndrich 2001], data flow
analysis [Reps et al. 1995], typestate analysis [Naeem and Lhoták 2008], point-to analysis [Zheng
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𝑣1
𝐴−→ 𝑣2

𝐴−→ 𝑣3

𝑣1
𝐴−→ 𝑣3 𝑣3

𝐴−→ 𝑣4

𝑣1
𝐴−→ 𝑣4

𝑣1
𝐴−→ 𝑣2

𝑣2
𝐴−→ 𝑣3

𝐴−→ 𝑣4

𝑣2
𝐴−→ 𝑣4

𝑣1
𝐴−→ 𝑣4

(a) (b)

Fig. 1. Transitive redundancy caused by two ways to derive 𝑣1
𝐴−→ 𝑣4 from 𝑣1

𝐴−→ 𝑣2
𝐴−→ 𝑣3

𝐴−→ 𝑣4.

and Rugina 2008]. It extends standard graph reachability from unlabeled graphs to edge-labeled
graphs, and the process of discovering reachability relations is to derive and add edges to the graphs.
Specifically, CFL-reachability represents the (binary) reachability relation 𝐴 introduced by a path
from node 𝑢 to 𝑣 by deriving an edge connecting nodes 𝑢 and 𝑣 , i.e., (𝑢, 𝑣) ∈ 𝐴 iff 𝑣 is 𝐴-reachable
from 𝑢. If the derived edge is not in the graph, CFL-reachability algorithms add it to the graph,
making the derived reachability relation explicit.

Transitive relations are ubiquitous in many CFL-reachability-based analyses. Among the afore-
mentioned static analyses, control/data/value flows are usually formalized as transitive relations.
Moreover, the widely applicable Dyck-relations [Chatterjee et al. 2018; Zhang et al. 2013] are also
transitive. For example, given a transitive relation𝐴 and three nodes 𝑣1, 𝑣2 and 𝑣3, if (𝑣1, 𝑣2) ∈ 𝐴 and
(𝑣2, 𝑣3) ∈ 𝐴, then (𝑣1, 𝑣3) ∈ 𝐴. For any path comprised of two transitive edges 𝑣1

𝐴−→ 𝑣2 and 𝑣2
𝐴−→ 𝑣3,

CFL-reachability analysis derives a new transitive edge 𝑣1
𝐴−→ 𝑣3, which is then added to the graph,

indicating a reachability relation or path from 𝑣1 to 𝑣3. New paths are incrementally derived based
on the established transitive edges on the dynamic graph until a fixed point is reached.
Transitive Redundancy. CFL-reachability problems are typically solved by a standard worklist

algorithm [Melski and Reps 2000] which iteratively derives new edges from every path consisting
of transitive edges between two nodes. Transitive relations significantly increase the algorithm’s
redundancy during CFL-reachability solving because multiple derivations can result in the same
edge from node 𝑢 to 𝑣 . As a result, only one derivation is needed to make this reachability relation
explicit (by adding one edge to the graph), while all other derivations are redundant. Consider a
path 𝑣1

𝐴−→ 𝑣2
𝐴−→ 𝑣3

𝐴−→ 𝑣4, there are two ways to derive 𝑣1
𝐴−→ 𝑣4, as shown in Figure 1. 𝑣1

𝐴−→ 𝑣4 only
needs to be derived and added to the graph once to make explicit the reachability relation from 𝑣1

to 𝑣4. However, the standard algorithm [Melski and Reps 2000] can derive 𝑣1
𝐴−→ 𝑣4 twice, causing

one redundant derivation. Such redundancy is further amplified in the presence of paths consisting
of more transitive edges derived during on-the-fly CFL-reachability solving. Unfortunately, redun-
dancy can not be eliminated by simply merging nodes connected by a transitive edge because the
merging can cause incorrect/imprecise results, especially in a dynamically changing graph. For
example, given two established edges 𝑣𝑖

𝐴−→ 𝑣 𝑗 , 𝑣𝑖
𝐴−→ 𝑣𝑘 and a newly derived edge 𝑣𝑙

𝐴−→ 𝑣 𝑗 , merging
𝑣𝑖 and 𝑣 𝑗 causes 𝑣𝑙 to reach 𝑣𝑘 , which is incorrect.

One prevalent approach to reduce transitive redundancy is to reduce the size of the input graph
in the preprocessing stage [Fähndrich et al. 1998; Li et al. 2020]. The most popular technique is
cycle elimination [Fähndrich et al. 1998; Hardekopf and Lin 2007; Nuutila and Soisalon-Soininen
1994; Pereira and Berlin 2009; Tarjan 1972], which merges cycles consisting of only transitive edges.
However, there are many more cases under which the redundant derivations are caused by paths
consisting of transitive edges that do not form cycles. These cases cannot be handled by cycle
elimination. Besides, applying the technique during CFL-reachability solving is also impractical
since it needs to repeatedly find and collapse cycles once the graph is changed, thus impacting the
algorithm’s performance.
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Moreover, albeit the offline preprocessing techniques can alleviate redundancy by reducing the
size of the input graph, there are still a large number of redundant derivations that can only be
captured and eliminated during the on-the-fly CFL-reachability solving procedure [Bravenboer
and Smaragdakis 2009; Jordan et al. 2016b; Wang et al. 2017]. Our empirical study (Section 6)
also shows that the standard algorithm still exhibits numerous redundant derivations even after
pre-processing the input graph by offline techniques like cycle elimination. To reduce redundant
derivations during online solving, a recent technique [Wang et al. 2017] partitions the adjacency list
of each node into two parts, marked as “old” and “new”, to avoid computing the established edges
repeatedly. Although it avoids adding duplicate edges, this approach does not utilize the property
of transitive relations to establish an effective derivation order. Therefore, it cannot eliminate
redundant derivations that occupy a substantial amount of analysis time.

Our approach differs from the existing ones by dynamically inferring a derivation order to resolve
edges involving transitive relations. We observe that transitive edges can be derived from a path in
various orders, e.g., from the head to the tail like Figure 1(a), from the tail to the head like Figure 1(b)
or from the middle to both ends when the path is longer. Our insight is that maintaining a consistent
derivation order can effectively eliminate redundant derivations. For example, maintaining an order
that computes edges from the head to the tail avoids the redundant derivation of Figure 1(b), while
maintaining an order from the tail to the head avoids the redundant derivation of Figure 1(a).
The challenge is to find the best possible derivation order when computing transitive closures

in CFL-reachability analysis. Obviously, getting the best derivation order to avoid redundancy
on a simple path (e.g., Figure 1) is trivial. However, a node can reside in multiple paths and/or in
cycles on a dynamically updated graph. Identifying the derivation order in such dynamic graphs is
non-trivial. Intuitively, retrieving the topological order by traversing the graph can help determine
the order and reduce redundancy. However, to maintain the precision and correctness in the
presence of resolving dynamic transitive closure, the analysis requires repeatedly computing the
topological order, which significantly increases the overheads and defeats the purpose of improving
the scalability of CFL-reachability.

To address this challenge, we introduce a hybrid graph representation combining spanning trees
and adjacency lists, together with a fast yet effective dynamic construction algorithm, to on-the-fly
infer the derivation order during CFL-reachability solving. The acyclic property of spanning trees
makes the traversals for determining derivation orders efficient. Based on this representation,
we propose a partially ordered CFL-reachability algorithm Pocr, which quickly solves all-pairs
reachability analysis by reducing the transitive redundancy. Compared to the standard algorithm,
Pocr computes the same solution and is much more efficient.
We have evaluated Pocr using two popular static analyses for C/C++ as our clients: context-

sensitive value-flow analysis [Sui et al. 2014] and field-sensitive alias analysis [Zheng and Rugina
2008]. The empirical results show that: (1) Pocr eliminates almost all redundant derivations.
On average, the reduction rates of value-flow analysis and alias analysis are 98.50% and 97.26%,
respectively, and (2) By eliminating redundant derivations, we can significantly improve the
performance of the two CFL-reachability-based clients. On average, Pocr achieves speedups of
21.48× and 19.57× over the standard algorithm [Melski and Reps 2000], respectively, for value-flow
analysis and alias analysis.We also compare Pocrwith two recent open-source tools Graspan [Wang
et al. 2017] (a CFL-reachability solver) and Soufflé [Jordan et al. 2016b] (a Datalog engine). The
results show that Pocr is over 3.67× faster than Graspan and Soufflé for both value-flow analysis
and alias analysis.

The contributions of this paper are as follows:
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𝐴 ::= 𝐴 𝐴 | 𝑎
𝐹𝑖 ::= 𝐹𝑖 𝐴 | 𝑓𝑖

(a) A context-free grammar.

struct T{int 𝑓1; int 𝑓2;}

struct T 𝑜; ...

int 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5;

𝑣1 = 𝑜.𝑓1;

𝑣5 = 𝑣4 = 𝑣3 = 𝑣2 = 𝑣1;

(b) C code fragment.

(c)𝐺 is the graph abstracted from (a).
𝐺 ′ is transformed from𝐺 via𝐴 ::= 𝑎

and 𝐹𝑖 ::= 𝑓𝑖 .

𝑜
𝐹1−−→ 𝑣5 ⇐



𝑜
𝐹1−−→ 𝑣1

𝐴−→ 𝑣5

𝑜
𝐹1−−→ 𝑣2

𝐴−→ 𝑣5

𝑜
𝐹1−−→ 𝑣3

𝐴−→ 𝑣5

𝑜
𝐹1−−→ 𝑣4

𝐴−→ 𝑣5 /* Pocr */

(d) 𝑜
𝐹1−−→ 𝑣5 can be derived in

four ways by the standard algorithm
whereas our approach reduces the
four ways to one (in this example, it
is the last one).

Fig. 2. Motivating example.

• We offer a new perspective, namely reducing transitive redundancy via ordered derivations,
and introduce a hybrid graph representation to efficiently infer the derivation order during
on-the-fly all-pairs CFL-Reachability analysis.

• We present Pocr, a partially ordered CFL-reachability algorithm, which significantly acceler-
ates CFL-reachability solving where transitive redundancy dominates.

• We apply our technique to a context-sensitive value-flow analysis [Zheng and Rugina 2008]
and a field-sensitive alias analysis for C/C++ [Sui et al. 2014]. The experiment results show that
our technique eliminates almost all redundant derivations in the two clients and significantly
improves the performance.

The remainder of this paper is structured as follows. Section 2 presents a motivating example.
Section 3 introduces the background and formulates the research problem. Section 4 elaborates on
our approach Pocr. Section 5 discusses the effectiveness of Pocr. Sections 6 details the experiments,
followed by related work and the conclusion in Sections 7 and 8.

2 MOTIVATING EXAMPLE

This section gives an example to illustrate the transitive redundancy of CFL-reachability, motivate
our approach and show the benefits and the challenges.

The context-free grammar (CFG) in Figure 2(a) is widely applied in field-sensitive analysis [Zheng
and Rugina 2008]. In the grammar, 𝐴 denotes a value flow, 𝐹𝑖 denotes the propagation of the value
of the 𝑖-th field, 𝑎 denotes an assignment, and 𝑓𝑖 denotes the address of the 𝑖-the field. The two
production rules mean that an 𝐴-edge can be generated from an 𝑎-edge or two connected 𝐴-edges
in an edge labeled graph; and an 𝐹𝑖 -edge can be generated from an 𝑓𝑖 -edge or a path comprised of
an 𝐹𝑖 -edge and an 𝐴-edge. Obviously, 𝐴 is a transitive relation, and 𝐹𝑖 is partially transitive because
it can be transited via 𝐴 relations. In Figure 2(c), graph 𝐺 is abstracted from the code fragment of
Figure 2(b) and 𝐺 ′ is transformed from 𝐺 by applying 𝐴 ::= 𝑎 and 𝐹𝑖 ::= 𝑓𝑖 .

Transitive redundancy in CFL-reachability. The standard CFL-reachability algorithm [Melski and
Reps 2000] derives new edges from paths consisting of at most two transitive edges. Redundant
derivations due to transitive relations can be triggered in various ways. Our motivating example
illustrates one case. According to the production rules 𝐴 ::= 𝐴 𝐴 and 𝐹𝑖 ::= 𝐹𝑖 𝐴 in Figure 2(a), there
will be 𝑣𝑘

𝐴−→ 𝑣5 for all 𝑘 ∈ {1, . . . , 4} and 𝑜 𝐹1−→ 𝑣 𝑗 for all 𝑗 ∈ {1, . . . , 5} in the graph after solving

reachability. Here we study how 𝑜
𝐹1−→ 𝑣5 is derived. Due to the rule 𝐹𝑖 ::= 𝐹𝑖 𝐴, 𝑜

𝐹1−→ 𝑣5 can be
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derived from 𝑜
𝐹1−→ 𝑣 𝑗 and 𝑣𝑘

𝐴−→ 𝑣5 whenever 𝑗 = 𝑘 . There are four paths (consisting of two edges)

in total that can generate 𝑜
𝐹1−→ 𝑣5, as shown in Figure 2(d). The traditional algorithm computes

edges in an arbitrary order. To ensure a correct reachability solution, it derives edges from each of
the four paths at least once. Thus, there are at least three redundant derivations of 𝑜

𝐹1−→ 𝑣5.

Our approach and its benefits. Our approach determines the computation order of the 𝐹1-edges
based on the order of the nodes on the path 𝑣1

𝐴−→ 𝑣2
𝐴−→ 𝑣3

𝐴−→ 𝑣4
𝐴−→ 𝑣5 in 𝐺 ′ of Figure 2(c).

Specifically, we only derive 𝐹1-edges 𝑜
𝐹1−→ 𝑣 𝑗+1 from 𝑜

𝐹1−→ 𝑣 𝑗
𝐴−→ 𝑣 𝑗+1, where 𝑗 ∈ {1, . . . , 4}, and

always derive 𝑜
𝐹1−→ 𝑣 𝑗+1 immediately after adding 𝑜

𝐹1−→ 𝑣 𝑗 to the graph. This is a “head-to-tail”

derivation order, and it only derives 𝑜
𝐹1−→ 𝑣5 by the last line in Figure 2(d), avoiding the first three

ways causing redundant derivations. Similarly, the redundant derivations of 𝑜
𝐹1−→ 𝑣2, 𝑜

𝐹1−→ 𝑣3 and
𝑜

𝐹1−→ 𝑣4 are eliminated by our approach. Moreover, if 𝑜
𝐹1−→ 𝑣1 is added to the graph again based

on they other ways described in Figure2(d), our approach can avoid the repeated derivation of
𝑜

𝐹1−→ 𝑣𝑘 where 𝑘 ∈ {2, . . . , 5} because we know that such edges have already been added to the
graph along with the first time adding 𝑜

𝐹1−→ 𝑣1. Compared to existing techniques, cycle elimination
has no effect in this example because there is no cycle in the graph. The existing edge duplication
reduction technique (Section 4.2 in [Wang et al. 2017]) which does not exploit ordered derivations
still introduces redundancy that 𝑜

𝐹1−→ 𝑣5 can be derived from 𝑜
𝐹1−→ 𝑣1

𝐴−→ 𝑣5 and 𝑜
𝐹1−→ 𝑣2

𝐴−→ 𝑣5. Our
experiment also confirms that the technique still suffers from a lot of redundant derivations during
CFL-reachability solving.

Challenges. In this small example, we can easily obtain the computation order along the path
𝑣1

𝐴−→ 𝑣2
𝐴−→ 𝑣3

𝐴−→ 𝑣4
𝐴−→ 𝑣5. However, the graphs of real-world CFL-reachability problems are

large and complex, where multiple paths and/or cycles may share vertices. Moreover, adding edges
when solving CFL-reachability may also change the transitive closure of the graph. Hence, the best
derivation order is also changed dynamically. These require an effective representation to maintain
and infer the computation order efficiently, and the representation can be updated accordingly with
the dynamic graph during CFL-reachability solving.

3 PRELIMINARIES

This section introduces the preliminaries and formulates the research problem of this paper.

3.1 CFL-Reachability

A CFL-reachability instance Reach⟨CFG,𝐺⟩ is comprised of a context-free grammar CFG =

⟨Σ, 𝑁 , 𝑃, 𝑆⟩ and an edge-labeled graph 𝐺 = ⟨𝑉 , 𝐸⟩. In CFG, Σ = 𝑁 ∪ 𝑇 is an alphabet contain-
ing two kinds of symbols: 𝑁 a set of non-terminals and 𝑇 a set of terminals; 𝑃 is a set of production
rules, and each rule describes an inference from terminals/non-terminals on the right side to
the non-terminal on the left side; and 𝑆 ∈ 𝑁 is called the start symbol. In graph 𝐺 , each edge
𝑣𝑖

𝑋−→ 𝑣 𝑗 ∈ 𝐸 from node 𝑣𝑖 to 𝑣 𝑗 is labeled by a symbol𝑋 ∈ Σ. Initially,𝐺 contains only edges labeled
by terminals.

In CFL-reachability, a path 𝑣0
𝑌1−→ 𝑣1

𝑌2−→ . . .
𝑌𝑛−−→ 𝑣𝑛 implies an 𝑋 -relation from 𝑣0 to 𝑣𝑛 , if there is

a non-terminal 𝑋 ∈ 𝑁 that can be inferred from the string 𝑌1𝑌2 · · ·𝑌𝑛 ∈ Σ𝑛 formed by the sequence
of edge labels of the path via one or more production rules. For any two nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , if there is
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Algorithm 1: Standard CFL-reachability algorithm.
1 Function Reach(𝐶𝐹𝐺,𝐺)
2 init(); /* Lines 11–15 */

3 while𝑊 ≠ ∅ do

4 select and remove an edge 𝑣𝑖
𝑌−→ 𝑣 𝑗 from𝑊 ;

5 for each production 𝑋 ::= 𝑌 ∈ 𝑃 do

6 if 𝑣𝑖
𝑋−→ 𝑣 𝑗 ∉ 𝐸 then add 𝑣𝑖

𝑋−→ 𝑣 𝑗 to 𝐸 and to𝑊 ;

7 for each production 𝑋 ::= 𝑌 𝑍 ∈ 𝑃 do

8 CheckSucc(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 ); /* Lines 19–21 */

9 for each production 𝑋 ::= 𝑍 𝑌 ∈ 𝑃 do

10 CheckPred(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 ); /* Lines 16–18 */

11 Procedure init()
12 add all edges of 𝐸 to𝑊 ;
13 for each production 𝑋 ::= 𝜀 ∈ 𝑃 do

14 for each node 𝑣𝑖 ∈ 𝑉 do

15 if 𝑣𝑖
𝑋−→ 𝑣𝑖 ∉ 𝐸 then add 𝑣𝑖

𝑋−→ 𝑣𝑖 to 𝐸 and to𝑊 ;

16 Procedure CheckPred(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 );

17 for each edge 𝑣𝑘
𝑍−→ 𝑣𝑖 ∈ 𝐺 do

18 if 𝑣𝑘
𝑋−→ 𝑣 𝑗 ∉ 𝐸 then add 𝑣𝑘

𝑋−→ 𝑣 𝑗 to 𝐸 and to𝑊 ;

19 Procedure CheckSucc(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 )

20 for each edge 𝑣 𝑗
𝑍−→ 𝑣𝑘 ∈ 𝐺 do

21 if 𝑣𝑖
𝑋−→ 𝑣𝑘 ∉ 𝐸 then add 𝑣𝑖

𝑋−→ 𝑣𝑘 to 𝐸 and to𝑊 ;

a path from 𝑣𝑖 to 𝑣 𝑗 implying an 𝑋 -relation, 𝑣 𝑗 is said to be 𝑋 -reachable from 𝑣𝑖 . Generally speaking,
CFL-reachability discovers reachability relations between given sources and sinks in the graph.

Solving CFL-reachability involves deriving new edges from existing paths and adding the edges
to the graph to make explicit the reachability relations:

• Edge Derivation: An 𝑋 -edge 𝑣𝑖
𝑋−→ 𝑣 𝑗 can be derived from a path 𝑣𝑖

𝑌1−→ · · · 𝑌𝑘−−→ 𝑣 𝑗 ∈ 𝐺 if there
is a production rule 𝑋 ::= 𝑌1 · · ·𝑌𝑘 ∈ 𝑃 .

• Edge Addition: A newly derived𝑋 -edge 𝑣𝑖
𝑋−→ 𝑣 𝑗 should be added to the graph to make explicit

the 𝑋 -relation from 𝑣𝑖 to 𝑣 𝑗 if it is not already in the graph.
There is a standard dynamic-programming algorithm [Melski and Reps 2000] for solving all-pairs

CFL-reachability. It is detailed in Algorithm 1 for the convenience of our further discussions. The
algorithm computes new edges from paths consisting of at most two edges. Correspondingly, it
requires the input CFG to be normalized so that the right-hand side of each production has at most
two symbols. It maintains a worklist𝑊 holding new edges. Once an edge is added to the graph,
it is also added to the worklist (Lines 6, 15, 18, 21). Lines 5–6 derive edges from paths containing
only one edge. The two procedures CheckPred and CheckSucc derive edges from paths consisting
of two edges. The process of solving CFL-reachability is to iteratively process the edges in the
worklist until a fixed point is reached: no new edge can be added to the graph, i.e., all reachability
relations are explicit.
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pred(𝐴, 𝑣𝑖−1) ⊆ pred(𝐴, 𝑣𝑖 ) succ(𝐴, 𝑣𝑖 ) ⊆ succ(𝐴, 𝑣𝑖−1)

(a) Processing 𝑣𝑖−1
𝑋−→ 𝑣𝑘 and 𝑣𝑖

𝑋−→ 𝑣𝑘 based on 𝑋 ::=
𝐴 𝑋 leads to |pred(𝐴, 𝑣𝑖−1) | repeated computations.

(b) Processing 𝑣𝑘
𝑋−→ 𝑣𝑖−1 and 𝑣𝑘

𝑋−→ 𝑣𝑖 based on 𝑋 ::=
𝑋 𝐴 leads to |succ(𝐴, 𝑣𝑖 ) | repeated computations.

Fig. 3. Redundant checks in partial transitive derivations, where 𝐴 is a transitive relation.

3.2 Redundant Derivations and Transitive Redundancy

Adjacency-list graph representation. A standard form of graph representation is to store edges in
the adjacency lists of nodes. Specifically, with respect to a label 𝑋 and a node 𝑣𝑖 , the 𝑋 -predecessors
and the 𝑋 -successors of 𝑣𝑖 are stored in two sets pred(𝑋, 𝑣𝑖 ) ⊆ 𝑉 and succ(𝑋, 𝑣𝑖 ) ⊆ 𝑉 such that{

pred(𝑋, 𝑣𝑖 ) = {𝑣 ′𝑖 | 𝑣 ′𝑖
𝑋−→ 𝑣𝑖 ∈ 𝐸}

succ(𝑋, 𝑣𝑖 ) = {𝑣 ′𝑖 | 𝑣𝑖
𝑋−→ 𝑣 ′𝑖 ∈ 𝐸}.

The adjacency lists are growing when solving CFL-reachability, e.g., adding an edge 𝑣𝑖
𝑋−→ 𝑣 𝑗 to

𝐸 means to add 𝑣𝑖 to pred(𝑋, 𝑣 𝑗 ) and 𝑣 𝑗 to succ(𝑋, 𝑣𝑖 ).

Redundant derivation. In Algorithm 1, redundant derivations mainly occur in CheckPred and
CheckSucc, where edge derivations are implied in the traversal of predecessors/successors of nodes.
For example, CheckPred(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 ) naturally derives |pred(𝑍, 𝑣𝑖 ) | 𝑋 -edges and each derived edge
is checked to determine whether it is already in the graph before addition. Thus, the shared
predecessors or successors of nodes is a major contributing factor in redundant derivations.

Example 3.1. While processing an edge 𝑣𝑖
𝑌−→ 𝑣 𝑗 , for any production rule 𝑋 ::= 𝑍 𝑌 ∈ 𝑃 ,

CheckPred(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 ) traverses pred(𝑍, 𝑣𝑖 ) to determine whether the derived 𝑣𝑘
𝑋−→ 𝑣 𝑗 is

in the graph for all 𝑣𝑘 ∈ pred(𝑍, 𝑣𝑖 ). Similarly, while processing another edge 𝑣 ′𝑖
𝑌−→ 𝑣 𝑗 ,

CheckPred(𝑋,𝑍, 𝑣 ′𝑖 , 𝑣 𝑗 ) traverses pred(𝑍, 𝑣 ′𝑖 ) to determine whether the derived 𝑣 ′
𝑘

𝑋−→ 𝑣 𝑗 is in
the graph for all 𝑣 ′

𝑘
∈ pred(𝑍, 𝑣 ′𝑖 ). The nodes in pred(𝑍, 𝑣𝑖 ) ∩ pred(𝑍, 𝑣 ′𝑖 ) are repeatedly visited

by CheckPred(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 ) and CheckPred(𝑋,𝑍, 𝑣 ′𝑖 , 𝑣 𝑗 ). Namely, there are at least |pred(𝑍, 𝑣𝑖 ) ∩
pred(𝑍, 𝑣 ′𝑖 ) | repeated edge derivations.

Transitive redundancy. In CFL-reachability, the transitivity of a relation 𝐴 can either manifest
in a doubly recursive rule (Definition 3.1) 𝐴 ::= 𝐴 𝐴 or be implied in other production rules such
as 𝐴 ::= 𝐴∗, 𝐴 ::= 𝐴+, etc. Any edge 𝑣𝑖

𝐴−→ 𝑣 𝑗 ∈ 𝐺 denoting a transitive relation implies a series of
reachability relations 𝑣𝑘

𝐴−→ 𝑣 ′
𝑘
for all (𝑣𝑘 , 𝑣 ′𝑘 ) ∈ pred(𝐴, 𝑣𝑖 ) × succ(𝐴, 𝑣 𝑗 ).

Besides transitive relations, CFL-reachability also handles partial transitive relations whose edges
are derived via singly recursive rules (Definition 3.2). For example, the production rule 𝐹𝑖 ::= 𝐹𝑖 𝐴

in our motivating example is left-recursive. Different from transitive relations, partial transitive
relations do not benefit from cycle elimination since cycles consisting of partial transitive edges
cannot be merged.
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Definition 3.1 (Doubly Recursive Rules). A doubly recursive rule, also called a left-right-recursive
rule, is in form of 𝐴 ::= 𝐴 𝐴.

Definition 3.2 (Singly Recursive Rules). The left-recursive rules, in the form of 𝑋 ::= 𝑋 𝐴, and the
right-recursive rules, in the form of 𝑋 ::= 𝐴 𝑋 , are collectively called singly recursive rules.

In CFL-reachability, both transitive and partial transitive relations suffer from transitive redun-
dancy. The property of transitive relations implies that for any path 𝑣0

𝐴−→ 𝑣1
𝐴−→ · · · 𝐴−→ 𝑣𝑛 where𝐴 is

transitive, there are pred(𝐴, 𝑣𝑖−1) ⊆ pred(𝐴, 𝑣𝑖 ) and succ(𝐴, 𝑣𝑖 ) ⊆ succ(𝐴, 𝑣𝑖−1) for all 𝑖 ∈ {1, . . . , 𝑛}.
Therefore, for any 𝑋 ::= 𝐴 𝑋 ∈ 𝑃 , processing 𝑣𝑖

𝑋−→ 𝑣𝑘 and 𝑣 𝑗
𝑋−→ 𝑣𝑘 where 𝑖, 𝑗 ∈ {0, . . . , 𝑛} and 𝑖 < 𝑗

leads to |pred(𝐴, 𝑣𝑖 ) | repeated derivation. Similarly, for any 𝑋 ::= 𝑋 𝐴 ∈ 𝑃 , processing 𝑣𝑘
𝑋−→ 𝑣𝑖 and

𝑣𝑘
𝑋−→ 𝑣 𝑗 where 𝑖, 𝑗 ∈ {0, . . . , 𝑛} and 𝑖 < 𝑗 leads to |succ(𝐴, 𝑣 𝑗 ) | repeated derivation, as illustrated in

Figure 3. Such property greatly increase redundancy when the path to be derived is long.

3.3 Problem Formulation

Given the ubiquity of transitive relations in static analyses, this paper aims to improve the scalability
of CFL-reachability by reducing the redundant derivations caused by transitive relations.
Our technique benefits the CFL-reachability problems containing transitive relations, which

manifest in doubly recursive rules, and partial transitive relations, which manifest in left- or right-
recursive rules. Similar to the standard CFL-reachability algorithm, our technique also works on
normalized context-free grammars. Specifically, it requires the transitive relations to be explicit in
the form of doubly recursive rules, i.e., 𝐴 ::= 𝐴 𝐴.

We formulate the research problem as follows:

Given a CFL-reachability instance containing transitive relations, eliminate the redundant
derivations caused by singly recursive or doubly recursive rules.

4 POCR: PARTIALLY ORDERED CFL-REACHABILITY FOR ELIMINATING

TRANSITIVE REDUNDANCY

Our motivating example in Section 2 shows that ordering computations based on the property of
transitive relations can effectively reduce redundant derivations. The challenge lies in constructing
a proper representation of the transitive relations on top of the dynamically changed graph and
correctly updating the representation when solving CFL-reachability. This section details our
solution. Section 4.1 introduces a hybrid graph representation to reduce redundant derivations.
Section 4.2 provides a dynamic construction algorithm to efficiently update the spanning-tree
model in our hybrid graph representation. Section 4.3 proposes the overall solution: a partially
ordered CFL-reachability algorithm Pocr for all-pairs CFL-reachability analysis.

4.1 Hybrid Graph Representation for Reducing Redundant Derivations

For any node 𝑣𝑖 ∈ 𝑉 , we can always construct a spanning tree rooted at 𝑣𝑖 to represent its
predecessors/successors associated with a transitive relation 𝐴 [Italiano 1986]. Before introducing
our spanning-tree model, we first study the following property: In CFL-reachability, a transitive
𝐴-edge can be created not only by using a doubly recursive rule 𝐴 ::= 𝐴 𝐴 but also by other rules
such as 𝐴 ::= 𝑎 or 𝐴 ::= 𝐵 𝐶 , etc. We classify the 𝐴-edges created via different production rules into
two categories: primary edges (Definition 4.1) and secondary edges (Definition 4.2).

Definition 4.1 (Primary Edges). For a transitive relation 𝐴, a primary 𝐴-edge is created via a
production rule that is not in the form of 𝐴 ::= 𝐴 𝐴.
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(a) A graph. (b) (c)

(d) (e) (f)

Fig. 4. Predecessor trees and successor trees. The root of each spanning tree is circled.

Definition 4.2 (Secondary Edges). For a transitive relation 𝐴, a secondary 𝐴-edge is created via
the production rule 𝐴 ::= 𝐴 𝐴.

It is important to note that while traversing the graph along the transitive𝐴-edges, whether there
are secondary 𝐴-edges does not affect the nodes that can be visited. Conversely, the existence of
primary𝐴-edgesmay result in additional nodeswhich can be visited. Figure 2(c) of ourmotivating ex-
ample illustrates this property: adding the𝐴-edges created via𝐴 ::= 𝑎 increases the number of nodes
that can be visited by traversing along the𝐴-edges, whereas adding the𝐴-edges created via𝐴 ::= 𝐴𝐴

does not. Thus, while constructing spanning trees, we do not consider the secondary edges.

4.1.1 Predecessor Trees and Successor Trees. We use the primary edges to construct spanning trees
to determine the computation order. Corresponding to the adjacency lists (Section 3.2), for each
transitive relation 𝐴, we assign to each node 𝑣𝑖 a predecessor tree ptree(𝐴, 𝑣𝑖 ) and a successor tree
stree(𝐴, 𝑣𝑖 ). Both ptree(𝐴, 𝑣𝑖 ) and stree(𝐴, 𝑣𝑖 ) are rooted at 𝑣𝑖 with the following properties:

ptree(𝐴, 𝑣𝑖 ): (1) for any node 𝑣 𝑗 ≠ 𝑣𝑖 , 𝑣 𝑗 ∈ ptree(𝐴, 𝑣𝑖 ) iff 𝑣 𝑗 ∈ pred(𝐴, 𝑣𝑖 );
(2) for any two nodes 𝑣𝑘 , 𝑣𝑙 such that 𝑣𝑙 is a child of 𝑣𝑘 in ptree(𝐴, 𝑣𝑖 ),

there is a primary 𝐴-edge 𝑣𝑙
𝐴−→ 𝑣𝑘 ∈ 𝐸.

stree(𝐴, 𝑣𝑖 ): (1) for any node 𝑣 𝑗 ≠ 𝑣𝑖 , 𝑣 𝑗 ∈ stree(𝐴, 𝑣𝑖 ) iff 𝑣 𝑗 ∈ succ(𝐴, 𝑣𝑖 );
(2) for any two nodes 𝑣𝑘 , 𝑣𝑙 such that 𝑣𝑙 is a child of 𝑣𝑘 in stree(𝐴, 𝑣𝑖 ),

there is a primary 𝐴-edge 𝑣𝑘
𝐴−→ 𝑣𝑙 ∈ 𝐸.

The above properties provide an efficient tree traversal to determine the computation order of
partial transitive relations. The benefit of the above properties is two-fold. On one hand, the first
property of ptree(𝐴, 𝑣𝑖 ) and stree(𝐴, 𝑣𝑖 ) ensures that the traversal can touch all the 𝐴-predecessors
and𝐴-successors of 𝑣𝑖 , which ensures complete edge additions. On the other hand, the tree structure
provides an efficient traversal to determine computation order. Specifically, traversing the 𝐴-
predecessors/𝐴-successors of a node can be done in 𝑂 ( |pred(𝐴, 𝑣𝑖 ) |)/𝑂 ( |succ(𝐴, 𝑣𝑖 ) |) time, as the
number of edges in a tree is always equal to the number of nodes minus one.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 180. Publication date: October 2022.



180:10 Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang

Algorithm 2: Singly recursive edge derivations.
1 Function CheckPtree(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑡 )
2 for each 𝑣𝑧 child of 𝑣𝑥 in ptree(𝐴, 𝑣𝑡 ) do
3 if 𝑣𝑧

𝑋−→ 𝑣𝑦 ∉ 𝐸 then

4 add 𝑣𝑧
𝑋−→ 𝑣𝑦 to 𝐸 and to𝑊 ;

5 CheckPtree(𝑋,𝐴, 𝑣𝑧 , 𝑣𝑦, 𝑣𝑡 );

6 Function CheckStree(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑡 )
7 for each 𝑣𝑧 child of 𝑣𝑦 in stree(𝐴, 𝑣𝑡 ) do
8 if 𝑣𝑥

𝑋−→ 𝑣𝑧 ∉ 𝐸 then

9 add 𝑣𝑥
𝑋−→ 𝑣𝑧 to 𝐸 and to𝑊 ;

10 CheckStree(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑧 , 𝑣𝑡 );

Example 4.1 (Predecessor Trees and Successor Trees). Figure 4(a) is a graph where 𝐴 is transitive
and (b)–(f) display the predecessor trees and successor trees of nodes 𝑣0, . . . , 𝑣4. The root of each
tree is marked by a circle, and the edges in the predecessor trees are marked by dashed edges. Note
that the two secondary edges 𝑣4

𝐴−→ 𝑣0 and 𝑣0
𝐴−→ 𝑣2 are not included in any of the spanning trees.

4.1.2 Hybrid Graph Representation. We embed the spanning-tree model into the standard
adjacency-list graph representation, constructing a hybrid graph representation. In our hybrid
graph representation, for a transitive relation 𝐴 and a node 𝑣𝑖 , each element 𝑣 𝑗 ∈ pred(𝐴, 𝑣𝑖 ) is
maintained as a pointer pointing to the node 𝑣 𝑗 ∈ ptree(𝐴, 𝑣𝑖 ), and each element 𝑣𝑘 ∈ succ(𝐴, 𝑣𝑖 ) is
maintained as a pointer pointing to the node 𝑣𝑘 ∈ stree(𝐴, 𝑣𝑘 ). Our hybrid graph representation
keeps good time efficiency for both lookups and traversals. Specifically, we perform lookups of
nodes in adjacency lists1, and traversals of predecessors and successors of nodes in predecessor
trees and successor trees, respectively.

4.1.3 Efficient Singly Recursive Edge Creations. Algorithm 2 performs efficient derivations based on
singly recursive rules. Like CheckPred and CheckSucc in Algorithm 1, CheckPtree/CheckStree
create edges based on 𝑋 ::= 𝐴 𝑌 ∈ 𝑃/𝑋 ::= 𝑌 𝐴 ∈ 𝑃 for all transitive relations 𝐴. The difference
is that CheckPtree traverses a predecessor tree ptree(𝐴, 𝑣𝑡 ) (whose root 𝑣𝑡 is input as parameter),
instead of traversing the adjacency list pred(𝐴, 𝑣𝑥 ). Similarly, CheckStree traverses stree(𝐴, 𝑣𝑡 )
instead of traversing succ(𝐴, 𝑣𝑡 ).
While processing an edge 𝑣𝑥

𝑋−→ 𝑣𝑦 , for each 𝑋 ::= 𝐴 𝑋 where 𝐴 is transitive,
CheckPtree(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑥 ) is called (with 𝑣𝑡 specified as 𝑣𝑥 ) to traverse ptree(𝐴, 𝑣𝑥 ) from the

root to the leaves to create and add the 𝑋 -edges 𝑣𝑧
𝑋−→ 𝑣𝑦 to the graph, where 𝑣𝑧 ∈ pred(𝐴, 𝑣𝑥 ).

Similarly, for each 𝑋 ::= 𝑋 𝐴, CheckStree(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑦) is called to traverse stree(𝐴, 𝑣𝑦) to create
and add the 𝑋 -edges 𝑣𝑥

𝑋−→ 𝑣 ′𝑧 to the graph, where 𝑣 ′𝑧 ∈ succ(𝐴, 𝑣𝑦).

1Implementing the adjacency lists by hash tables can reduce the time complexity of lookups to𝑂 (1) .
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Correctness Property of Algorithm 2. In Algorithm 1, while processing 𝑣𝑖
𝑋−→ 𝑣 𝑗 ,

for all transitive 𝐴, replacing CheckPred(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 )/CheckSucc(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 ) by
CheckPtree(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖 ) resp. CheckStree(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ) yields identical results with
respect to the standard CFL-reachability solution (Algorithm 1).

Algorithm 2 holds the above property from two aspects. Here we only discuss CheckPtree as
CheckStree is similar. On one hand, with respect to CheckPtree(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑥 ) which processes

𝑣𝑥
𝑋−→ 𝑣𝑦 , if the traversal on ptree(𝐴, 𝑣𝑥 ) is never truncated by Line 3, this means that all the nodes

𝑣𝑧 ∈ ptree(𝐴, 𝑣𝑥 ) are visited and the edges 𝑣𝑧
𝑋−→ 𝑣𝑦 are added to the graph and to the worklist.

This is equivalent to what CheckPred(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦) does. On the other hand, if the traversal on

ptree(𝐴, 𝑣𝑥 ) is truncated by Line 3, this means that the edge 𝑣𝑧
𝑋−→ 𝑣𝑦 has already been added to

the graph. The edge must also have been previously added to the worklist and has been processed
(or will be processed) by other calls of CheckPtree, which add all 𝑣 ′𝑧

𝑋−→ 𝑣𝑦 to the graph and to
the worklist, where 𝑣𝑧 is an element of the subtree rooted at 𝑣𝑧 ∈ ptree(𝐴, 𝑣𝑥 ). Therefore, the final
result of CheckPtree(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑥 ) is also equivalent to what CheckPred(𝑋,𝐴, 𝑣𝑥 , 𝑣𝑦) do (also
see our supplementary material for detailed proof).
Algorithm 2 stops the redundant derivations at the first stage via the termination criteria at

Line 3 and Line 8. Specifically, with respect to CheckPtree, once visiting a node 𝑣𝑧 ∈ ptree(𝐴, 𝑣𝑡 )
such that the associated edge 𝑣𝑧

𝑋−→ 𝑣𝑦 is already in the graph, the algorithm stops traversing the

subtree rooted at 𝑣𝑧 . This avoids the redundant derivations of 𝑣 ′𝑧
𝑋−→ 𝑣𝑦 , where 𝑣 ′𝑧 is an element of

the subtree. Such traversals stop similarly in stree(𝐴, 𝑣𝑡 ).

Example 4.2 (Singly Recursive Edge Creations). In Figure 4(a), given 𝑋 ::= 𝐴 𝑋 ∈ 𝑃 , while process-
ing 𝑣0

𝑋−→ 𝑣5, CheckPtree(𝑋,𝐴, 𝑣0, 𝑣5, 𝑣0) traverses ptree(𝐴, 𝑣0) (Figure 4(b)) and adds 𝑣3
𝑋−→ 𝑣5 and

𝑣4
𝑋−→ 𝑣5 to the graph. While processing 𝑣2

𝑋−→ 𝑣5, CheckPtree(𝑋,𝐴, 𝑣2, 𝑣5, 𝑣2) traverses ptree(𝐴, 𝑣2)
(Figure 4(d)). While visiting 𝑣1, it adds 𝑣1

𝑋−→ 𝑣5 to the graph. Then it goes to 𝑣0 child of 𝑣1 in
ptree(𝐴, 𝑣2) and stops the traversal. This is because 𝑣0

𝑋−→ 𝑣5 is already in the graph (Line 3,
Algorithm 2). Thus, the redundant derivations of two edges 𝑣3

𝑋−→ 𝑣5 and 𝑣4
𝑋−→ 𝑣5 is avoided.

4.2 Dynamic Construction of Spanning Trees

Algorithm 2 utilizes the two properties of the spanning-tree model (listed in Section 4.1.1) to reduce
the redundant derivations caused by singly recursive rules. The key step in our CFL-reachability
algorithm is to update the spanning trees representing the transitive relations among nodes and
maintain the two properties.

Adding an edge 𝑣𝑖
𝐴−→ 𝑣 𝑗 , where 𝐴 is transitive, to the graph changes succ(𝐴, 𝑣𝑘 ) and pred(𝐴, 𝑣 ′

𝑘
)

for all 𝑘 ∈ pred(𝐴, 𝑣𝑖 ) ∪ {𝑣𝑖 } and 𝑘 ′ ∈ succ(𝐴, 𝑣 𝑗 ) ∪ {𝑣 𝑗 } via succ(𝐴, 𝑣𝑘 ) = succ(𝐴, 𝑣𝑘 ) ∪ succ(𝐴, 𝑣 𝑗 )
and pred(𝐴, 𝑣 ′

𝑘
) = pred(𝐴, 𝑣 ′

𝑘
) ∪ pred(𝐴, 𝑣𝑖 ). Note that pred(𝐴, 𝑣𝑖 ) and succ(𝐴, 𝑣 𝑗 ) take constant time

during the edge addition. Thus, the updates of the spanning trees are similar to handling singly
recursive rules.
We propose Algorithm 3, a dynamic construction algorithm, to update the predecessor and

successor trees when solving CFL-reachability. Algorithm 3 consists of a main procedure NewTrEdge
and three subprocedures TravPtree, TravStree and Update. Given an edge 𝑣𝑝𝑡

𝐴−→ 𝑣𝑠𝑡 where 𝐴 is
transitive, TravPtree and TravStree perform a nested traversal with TravPtree that traverses
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ptree(𝐴, 𝑣𝑝𝑡 ) nested in TravStree that traverses stree(𝐴, 𝑣𝑠𝑡 ). During the nested traversal, Update
updates the spanning trees and the adjacency lists of the visited nodes simultaneously, ensuring
that for all (𝑣𝑘 , 𝑣 ′𝑘 ) ∈ ptree(𝐴, 𝑣𝑝𝑡 ) × stree(𝐴, 𝑣𝑠𝑡 ) :

(1) 𝑣𝑘 ∈ ptree(𝐴, 𝑣 ′
𝑘
) and 𝑣 ′

𝑘
∈ stree(𝐴, 𝑣𝑘 );

(2) 𝑣𝑘 ∈ pred(𝐴, 𝑣 ′
𝑘
) and 𝑣 ′

𝑘
∈ succ(𝐴, 𝑣𝑘 ).

We first illustrate Algorithm 3 using the following example:

Example 4.3 (Dynamic Construction of Spanning Trees). Adding a primary edge 𝑣2
𝐴−→ 𝑣3 to

Figure 4(a) means that for all (𝑣𝑘 , 𝑣 ′𝑘 ) ∈ pred(𝐴, 𝑣2) × succ(𝐴, 𝑣3), there will be 𝑣𝑘 ∈ ptree(𝐴, 𝑣 ′
𝑘
) and

𝑣 ′
𝑘
∈ stree(𝐴, 𝑣𝑘 ). NewTrEdge(𝐴, 𝑣2, 𝑣3) realizes this by traversing ptree(𝐴, 𝑣2) and stree(𝐴, 𝑣3), and

updating the spanning trees (and adjacency lists simultaneously) as shown in Figure 5(a)–(d).
Initially, the traversals of ptree(𝐴, 𝑣2) and stree(𝐴, 𝑣3) start at their roots 𝑣2 and 𝑣3 respectively,

as marked in red in Figure 5(a). In this step, 𝑣2 is added to ptree(𝐴, 𝑣3) as a child of 𝑣3, and 𝑣3 is
added to stree(𝐴, 𝑣2) as a child of 𝑣2, as marked in blue in Figure 5(a). After this, the inner traversal
of ptree(𝐴, 𝑣2) visits 𝑣1, a child of 𝑣2, and the outer traversal of stree(𝐴, 𝑣3) stays at 𝑣3. This step
adds 𝑣1 to ptree(𝐴, 𝑣3) as a child of 𝑣2 and adds 𝑣3 to stree(𝐴, 𝑣1) as child of 𝑣2, as shown in Figure
5(b). This can be viewed as copying the edge 𝑣2 to 𝑣1 from ptree(𝐴, 𝑣2) to ptree(𝐴, 𝑣3). Then the
depth-first traversal of ptree(𝐴, 𝑣2) continues, as shown in Figure 5(c), updating the spanning trees
rooted at the visited nodes until the traversal finishes.
After finishing the inner traversal of ptree(𝐴, 𝑣2), the outer traversal of stree(𝐴, 𝑣3) visits 𝑣0, a

child of 𝑣3, and starts another inner traversal of ptree(𝐴, 𝑣2), as Figure 5(d). The nested traversal
terminates when for all (𝑣𝑘 , 𝑣 ′𝑘 ) ∈ ptree(𝐴, 𝑣2) × stree(𝐴, 𝑣3), 𝑣𝑘 ∈ ptree(𝐴, 𝑣 ′

𝑘
) and 𝑣 ′

𝑘
∈ stree(𝐴, 𝑣𝑘 ).

The nested traversals and edge updates of Algorithm 3 work as follows:
Nested depth-first traversal. TravPtree and TravStree accept seven parameters:

𝐴 - the label of the transitive edges;
𝑣𝑝𝑡 - the root of ptree(𝐴, 𝑣𝑝𝑡 ), i.e., the predecessor tree to be traversed;
𝑣𝑠𝑡 - the root of stree(𝐴, 𝑣𝑠𝑡 ), i.e., the successor tree to be traversed;
𝑣𝑝𝑦 - the node currently visited in ptree(𝐴, 𝑣𝑝𝑡 );
𝑣𝑝𝑥 - the parent of 𝑣𝑝𝑦 in ptree(𝐴, 𝑣𝑝𝑡 );
𝑣𝑠𝑦 - the node currently visited in stree(𝐴, 𝑣𝑠𝑡 );
𝑣𝑠𝑥 - the parent of 𝑣𝑠𝑦 in stree(𝐴, 𝑣𝑠𝑡 ).

Given a new primary edge 𝑣𝑝𝑡
𝐴−→ 𝑣𝑠𝑡 , the traversal of ptree(𝐴, 𝑣𝑝𝑡 ) in TravPtree starts at its

root 𝑣𝑝𝑡 which does not have an actual parent. So the pseudo parent of 𝑣𝑝𝑡 is set as 𝑣𝑠𝑡 . Similarly,
the traversal of stree(𝐴, 𝑣𝑠𝑡 ) in TravStree starts at 𝑣𝑠𝑡 and the pseudo parent of 𝑣𝑠𝑡 is set as 𝑣𝑝𝑡 , as
shown in Line 2.

The traversal of ptree(𝐴, 𝑣𝑝𝑡 ) is nested in the traversal of stree(𝐴, 𝑣𝑠𝑡 ), as shown in Line 4. During
the traversal of ptree(𝐴, 𝑣𝑝𝑡 ), nodes 𝑣𝑠𝑥 and 𝑣𝑠𝑦 relevant to the outer traversal remain constant. For

each 𝑣𝑝𝑧 child of 𝑣𝑝𝑦 in ptree(𝐴, 𝑣𝑝𝑡 ), the traversal steps from 𝑣𝑝𝑦 to 𝑣𝑝𝑧 only if 𝑣𝑝𝑧
𝐴−→ 𝑣𝑠𝑦 is not in

the graph, as shown in Lines 10–12. After finishing the inner traversal of ptree(𝐴, 𝑣𝑝𝑡 ), the outer
traversal of stree(𝐴, 𝑣𝑠𝑡 ) steps to 𝑣𝑠𝑧 a child of 𝑣𝑠𝑦 in stree(𝐴, 𝑣𝑠𝑡 ) only if 𝑣𝑝𝑦

𝐴−→ 𝑣𝑠𝑧 is not in the
graph (Lines 5–7), and starts another inner traversal of ptree(𝐴, 𝑣𝑝𝑡 ) as shown in Line 4.

The nested depth-first traversal of Algorithm 3 is terminated when any one of the following two
constraints is satisfied:

• all the nodes pairs (𝑣𝑘 , 𝑣 ′𝑘 ) ∈ ptree(𝐴, 𝑣𝑝𝑡 ) × stree(𝐴, 𝑣𝑠𝑡 ) are visited;
• all the attempts of visiting new tree nodes are stopped by Line 6 or Line 11.
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traverse update

⇒

Step (1): NewTrEdge(𝐴, 𝑣2, 𝑣3), i.e., Algorithm 3, starts with
TravPtree(𝑣2, 𝑣3, 𝑣2, 𝑣3, 𝑣2, 𝑣3), i.e., Line 4, in TravStree(𝑣2, 𝑣3, 𝑣2, 𝑣3, 𝑣2, 𝑣3),
i.e., Line 2. 𝑣2 and 𝑣3 are added to ptree(𝐴, 𝑣3) and stree(𝐴, 𝑣2) respectively.

traverse update

⇒

Step (2): TravPtree(𝑣2, 𝒗2, 𝒗1, 𝑣3, 𝑣2, 𝑣3). 𝑣1 and 𝑣3 are added to ptree(𝐴, 𝑣3)
and stree(𝐴, 𝑣1) respectively. In particular, 𝑣1 is added as a child of 𝑣2 in
ptree(𝐴, 𝑣3), which is the same as in ptree(𝐴, 𝑣2).

traverse update

⇒ · · ·

Step (3): TravPtree(𝑣2, 𝒗1, 𝒗0, 𝑣3, 𝑣2, 𝑣3). 𝑣0 and 𝑣3 are added to ptree(𝐴, 𝑣3)
and stree(𝐴, 𝑣0) respectively. Similar to Step (2), 𝑣0 is added as a child of 𝑣1 in
ptree(𝐴, 𝑣3), which is the same as in ptree(𝐴, 𝑣2).

traverse update

⇒ · · ·

Step (6): TravPtree(𝑣2, 𝑣3, 𝑣2, 𝑣3, 𝒗3, 𝒗0). After finishing the inner traversal of
ptree(𝐴, 𝑣2), the outer traversal of stree(𝐴, 𝑣3) visits 𝑣0. Similarly, 𝑣0 is added
as a child of 𝑣3 in stree(𝐴, 𝑣2), which is the same as in stree(𝐴, 𝑣3).

Fig. 5. Processing a new edge 𝑣2
𝐴−→ 𝑣3 added to Figure 4(a) by NewTrEdge(𝐴, 𝑣2, 𝑣3), which traverses

ptree(𝐴, 𝑣2) and stree(𝐴, 𝑣3), and updates the ptrees and strees of the visited nodes. In each step, the nodes

being visited are marked in red, and the nodes newly added to the spanning trees are marked in blue.
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Algorithm 3: Dynamic construction of the spanning-tree model.
1 Function NewTrEdge(𝐴, 𝑣𝑝𝑡 , 𝑣𝑠𝑡 )
2 TravStree(𝐴, 𝑣𝑝𝑡 , 𝑣𝑠𝑡 , 𝑣𝑝𝑡 , 𝑣𝑠𝑡 , 𝑣𝑝𝑡 , 𝑣𝑠𝑡 );

3 Procedure TravStree(𝐴, 𝑣𝑝𝑡 , 𝑣𝑝𝑥 , 𝑣𝑝𝑦, 𝑣𝑠𝑡 , 𝑣𝑠𝑥 , 𝑣𝑠𝑦 )
4 TravPtree(𝐴, 𝑣𝑝𝑡 , 𝑣𝑝𝑥 , 𝑣𝑝𝑦, 𝑣𝑠𝑡 , 𝑣𝑠𝑥 , 𝑣𝑠𝑦);
5 for each 𝑣𝑠𝑧 child of 𝑣𝑠𝑦 in stree(𝐴, 𝑣𝑠𝑡 ) do
6 if 𝑣𝑝𝑦

𝐴−→ 𝑣𝑠𝑧 ∉ 𝐸 then

7 TravStree(𝐴, 𝑣𝑝𝑡 , 𝑣𝑝𝑥 , 𝑣𝑝𝑦, 𝑣𝑠𝑡 , 𝑣𝑠𝑦, 𝑣𝑠𝑧 );

8 Procedure TravPtree(𝐴, 𝑣𝑝𝑡 , 𝑣𝑝𝑥 , 𝑣𝑝𝑦, 𝑣𝑠𝑡 , 𝑣𝑠𝑥 , 𝑣𝑠𝑦 )
9 Update(𝐴, 𝑣𝑝𝑥 , 𝑣𝑝𝑦, 𝑣𝑠𝑥 , 𝑣𝑠𝑦);

10 for each 𝑣𝑝𝑧 child of 𝑣𝑝𝑦 in ptree(𝐴, 𝑣𝑝𝑡 ) do
11 if 𝑣𝑝𝑧

𝐴−→ 𝑣𝑠𝑦 ∉ 𝐸 then

12 TravPtree(𝐴, 𝑣𝑝𝑡 , 𝑣𝑝𝑦, 𝑣𝑝𝑧 , 𝑣𝑠𝑡 , 𝑣𝑠𝑥 , 𝑣𝑠𝑦 );

13 Procedure Update(𝐴, 𝑣𝑝𝑥 , 𝑣𝑝𝑦, 𝑣𝑠𝑥 , 𝑣𝑠𝑦)
14 add 𝑣𝑝𝑦

𝐴−→ 𝑣𝑠𝑦 as a secondary edge to 𝐸 and to𝑊 ;
15 if 𝑣𝑝𝑦 ≠ 𝑣𝑠𝑦 and 𝑣𝑝𝑦 ∉ ptree(𝐴, 𝑣𝑠𝑦) then
16 add a new node 𝑣𝑝𝑦 pointed to by 𝑣𝑝𝑦 ∈ pred(𝐴, 𝑣𝑠𝑦) to ptree(𝐴, 𝑣𝑠𝑦) as a child of 𝑣𝑝𝑥 ;
17 add a new node 𝑣𝑠𝑦 pointed to by 𝑣𝑠𝑦 ∈ succ(𝐴, 𝑣𝑝𝑦) to stree(𝐴, 𝑣𝑝𝑦) as a child of 𝑣𝑠𝑥 ;

Updating spanning trees and adjacency lists. When creating a new edge 𝑣𝑝𝑦
𝐴−→ 𝑣𝑠𝑦 not in the

graph, Algorithm 3 calls Update(𝐴, 𝑣𝑝𝑥 , 𝑣𝑝𝑦, 𝑣𝑠𝑥 , 𝑣𝑠𝑦) at Line 9 to update the spanning trees and the

adjacency lists simultaneously. Update first adds 𝑣𝑝𝑦
𝐴−→ 𝑣𝑠𝑦 to the graph at Line 14. In particular,

the edge 𝑣𝑝𝑦
𝐴−→ 𝑣𝑠𝑦 is marked as a “secondary” edge so that it will not be processed by the future

calls of NewTrEdge. The updates of ptree(𝐴, 𝑣𝑠𝑦) and stree(𝐴, 𝑣𝑝𝑦) by Lines 15–17 can be viewed as
follows: (1) copying the edge from 𝑣𝑝𝑥 to 𝑣𝑝𝑦 in ptree(𝐴, 𝑣𝑝𝑡 ) and attaching the copy to the node 𝑣𝑝𝑥
in ptree(𝐴, 𝑣𝑠𝑦), and (2) copying the edge from 𝑣𝑠𝑥 to 𝑣𝑠𝑦 in stree(𝐴, 𝑣𝑠𝑡 ) and attaching the copy to
the node 𝑣𝑠𝑥 in stree(𝐴, 𝑣𝑝𝑦). To avoid redundant tree edges, the above two steps are performed only
if 𝑣𝑝𝑦 ≠ 𝑣𝑠𝑦 and 𝑣𝑝𝑦 ∉ ptree(𝐴, 𝑣𝑠𝑦). The simultaneous updates of spanning trees and adjacency
lists of Update maintains the two properties of the spanning-tree model (Section 4.1.1).
Executing Algorithm 3 can be viewed as updating stree(𝐴, 𝑣𝑘 ) and ptree(𝐴, 𝑣 ′

𝑘
) for all

(𝑣𝑘 , 𝑣 ′𝑘 ) ∈ pred(𝐴, 𝑣𝑝𝑡 ) × succ(𝐴, 𝑣𝑠𝑡 ) using the following two steps: (1) pruning a copy of
stree(𝐴, 𝑣𝑠𝑡 )/ptree(𝐴, 𝑣𝑝𝑡 ) by eliminating the nodes already in stree(𝐴, 𝑣𝑘 )/ptree(𝐴, 𝑣 ′𝑘 ); and (2) at-
taching the pruned copy to the node 𝑣𝑝𝑡 /𝑣𝑠𝑡 in stree(𝐴, 𝑣𝑘 )/ptree(𝐴, 𝑣 ′𝑘 ). It is almost obvious that
using Algorithm 3 to process the primary 𝐴-edges maintains the transitive closure of the relation
𝐴. Similar to Algorithm 2, we have the following property for Algorithm 3:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 180. Publication date: October 2022.



Taming Transitive Redundancy for Context-Free Language Reachability 180:15

Correctness Property of Algorithm 3. In Algorithm 1, replacing CheckPred(𝐴,𝐴, 𝑣𝑖 , 𝑣 𝑗 )
and CheckSucc(𝐴,𝐴, 𝑣𝑖 , 𝑣 𝑗 ) by NewTrEdge(𝐴, 𝑣𝑖 , 𝑣 𝑗 ) for all primary edges 𝑣𝑖

𝐴−→ 𝑣 𝑗 and omit-
ting CheckPred(𝐴,𝐴, 𝑣𝑖 , 𝑣 𝑗 ) and CheckSucc(𝐴,𝐴, 𝑣𝑖 , 𝑣 𝑗 ) for all secondary edges 𝑣𝑖

𝐴−→ 𝑣 𝑗 yields
identical results with respect to the standard CFL-reachability solution (Algorithm 1).

Notably, CheckPred(𝐴, 𝑣𝑖 , 𝑣 𝑗 ) and CheckSucc(𝐴, 𝑣𝑖 , 𝑣 𝑗 ) can be omitted while processing a sec-
ondary edge 𝑣𝑖

𝐴−→ 𝑣 𝑗 because all the secondary edges are processed in the calls of NewTrEdge for
processing primary edges.
Algorithm 3 avoids redundancy by the termination criteria at Line 6 and Line 11. In Line 6,

𝑣𝑝𝑦
𝐴−→ 𝑣𝑠𝑧 ∈ 𝐸 avoids the repeated traversal of 𝑣 ′𝑠𝑧 descendants of 𝑣𝑠𝑧 in stree(𝐴, 𝑣𝑠𝑡 ). Similarly, in

Line 11, 𝑣𝑝𝑧
𝐴−→ 𝑣𝑠𝑦 ∈ 𝐸 avoids the repeated traversal of 𝑣 ′𝑝𝑧 descendants of 𝑣𝑝𝑧 in ptree(𝐴, 𝑣𝑝𝑡 ).

4.3 Pocr: A Fast Partially Ordered CFL-Reachability Algorithm for All-Pairs Analyses

With Algorithms 2 and 3 running on top of the hybrid graph representation discussed in Section
4.1, we propose Pocr, a fast partially ordered CFL-reachability algorithm for all-pairs analysis, as
given in Algorithm 4.

Pocr consists of two parts: initialization (Lines 2–5) and solving reachability (Lines 6–20). Initial-
ization first follows the initialization scheme of the standard algorithm (Lines 11–15, Algorithm 1)
to initialize the graph and the worklist. Then, it initializes the predecessor tree and successor tree
for each node 𝑣𝑖 ∈ 𝑉 (Lines 3–5). Solving reachability also follows the strategy of the standard
algorithm, i.e., iteratively solving the edges in the worklist and adding new edges to the graph and
to the worklist until no new edges can be added to the graph.

Pocr differs from the standard algorithm in handling edge derivations based on singly or doubly
recursive rules. It uses NewTrEdge to deal with edge derivations based on doubly recursive rules
(Line 9) and replaces CheckPred/CheckSucc by TravPtree/TravStree to create edges based on
singly recursive rules when the derivation needs to traverse the predecessors or successors of nodes
associated with transitive relations (Lines 15 and 19). In particular, all transitive edges created
during CFL-reachability solving are marked “primary” by default except for those created in
NewTrEdge (Line 14, Algorithm 3), and NewTrEdge only accepts primary edges. The secondary
edges created in NewTrEdge are further used to create new edges based on non-doubly recursive
rules in the subsequent procedures (Lines 10–20, Algorithm 4).

In summary, when processing an edge 𝑣𝑖
𝑌−→ 𝑣 𝑗 , Pocr only differs from the standard algorithm in

the following two aspects:
(1) replacing CheckPred(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 )/CheckSucc(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 ) with CheckPtree(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖 )/

CheckStree(𝑋,𝐴, 𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ) when 𝐴 is transitive and 𝑋 = 𝑌 ;
(2) replacing CheckPred(𝑌,𝑌, 𝑣𝑖 , 𝑣 𝑗 )/CheckSucc(𝑌,𝑌, 𝑣𝑖 , 𝑣 𝑗 ) with NewTrEdge(𝑌, 𝑣𝑖 , 𝑣 𝑗 ) if 𝑣𝑖

𝑌−→ 𝑣 𝑗 is pri-
mary and omitting CheckPred(𝑌,𝑌, 𝑣𝑖 , 𝑣 𝑗 ) /CheckSucc(𝑌,𝑌, 𝑣𝑖 , 𝑣 𝑗 ) if 𝑣𝑖

𝑌−→ 𝑣 𝑗 is secondary.
According to the properties of Algorithms 2 and 3, these replacements do not change the CFL-

reachability solution. Namely, for a CFL-reachability problem, Pocr produces an identical solution
to the standard algorithm.

5 DISCUSSION: EFFECTIVENESS OF POCR

As demonstrated in Section 4, Pocr uses ordered derivations based on the spanning trees to reduce
redundant derivations for singly and doubly recursive rules. It is called “partially ordered” because
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Algorithm 4: Pocr: partially ordered CFL-reachability algorithm.
1 Function ODCR(CFG,𝐺)
2 init(); /* Lines 11–15, Algorithm 1 */

3 for each transitive relation 𝐴 do

4 for each node 𝑣𝑖 ∈ 𝑉 do

5 set both ptree(𝐴, 𝑣𝑖 ) and stree(𝐴, 𝑣𝑖 ) a tree containing a single node 𝑣𝑖 as the root.

6 while𝑊 ≠ ∅ do

7 select and remove an element 𝑣𝑖
𝑌−→ 𝑣 𝑗 from𝑊 ;

8 if 𝑣𝑖
𝑌−→ 𝑣 𝑗 is a primary edge then

9 NewTrEdge(𝑌, 𝑣𝑖 , 𝑣 𝑗 ); /* Algorithm 3 */

10 else

11 for each production 𝑋 ::= 𝑌 ∈ 𝑃 do

12 if 𝑣𝑖
𝑋−→ 𝑣 𝑗 ∉ 𝐸 then add 𝑣𝑖

𝑋−→ 𝑣 𝑗 to 𝐸 and to𝑊 ;

13 for each 𝑋 ::= 𝑌 𝑍 ∈ 𝑃 and ¬(𝑋 = 𝑌 = 𝑍 ) do
14 if 𝑍 is transitive and 𝑋 = 𝑌 then

15 CheckStree(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ); /* Algorithm 2 */

16 else CheckSucc(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 ); /* Lines 19–21, Algorithm 1 */

17 for each 𝑋 ::= 𝑍 𝑌 ∈ 𝑃 and ¬(𝑋 = 𝑌 = 𝑍 ) do
18 if 𝑍 is transitive and 𝑋 = 𝑌 then

19 CheckPtree(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖 ); /* Algorithm 2 */

20 else CheckPred(𝑋,𝑍, 𝑣𝑖 , 𝑣 𝑗 ); /* Lines 16–18, Algorithm 1 */

it does not order the edge derivations through the production rules where the right-hand side has
no transitive relation. Hence, the redundant derivations caused by such production rules are not
eliminated by Pocr. In particular, given 𝑋 ::= 𝑌 𝑍 ∈ 𝑃 , two paths 𝑣1

𝑌−→ 𝑣2
𝑍−→ 𝑣3 and 𝑣1

𝑌−→ 𝑣4
𝑍−→ 𝑣3

cause one redundant derivation of 𝑣1
𝑋−→ 𝑣3, which is not transitive redundancy and is not handled

by Pocr. The degree/effectiveness of Pocr’s redundancy elimination is also related to the CFG of a
particular CFL-reachability problem. We further discuss two aspects of this issue as below.

5.1 Grammars Benefiting from Pocr

A comparison of Algorithm 4 and Algorithm 1 shows that for a CFL-reachability problem where
there is no transitive relation, the part of Pocr which solves reachability is identical to that of
Algorithm 1, because Lines 8–9, 14–15 and 18–19 of Algorithm 4 will never be executed. Therefore,
Pocr does not benefit the problems where there are no transitive relations in the CFG.

However, in some CFL-reachability problems, the transitive relations are implicit. We can rewrite
the input grammars in CFL-reachability to utilize Pocr. For example, the following grammar

𝐴 ::= 𝑎 𝐵 | 𝜀
𝐵 ::= 𝑏 𝐴

can be rewritten as 𝐴 ::= 𝐴 𝐴 | 𝑎 𝑏 | 𝜀 to be used by Pocr. Conversely, for a CFL-reachability
problem that has no transitive relation, i.e., its CFG cannot be rewritten to obtain any doubly
recursive rule, we assume that it does not have transitive redundancy.

Moreover, some grammars containing doubly recursive rules can be rewritten using only left- or
right-recursive rules. For example, the CFG in Figure 2(a) can be rewritten into
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𝐹𝑖 ::= 𝐹𝑖 𝑎 | 𝑓𝑖 .
Given this modified grammar, there will be no 𝐴-edge in the graph, and we will not have the
redundant derivations caused by the four cases in Figure 2(d). However, transitive relations are
prevalent in many popular real-world CFL-reachability problems, and the input graphs are typically
large. Existing techniques [Melski and Reps 2000; Wang et al. 2017] still suffer from a large number
of redundant derivations while solving with such modified grammars because they do not exploit
an effective computation order. This is also confirmed in our experiment (Section 6.4).

5.2 Grammar-Driven Redundancy Reduction via Optimized Pocr

Here we provide an optimization of Pocr to further improve its efficiency given any grammar with
the following three properties:

(1) the grammar has one or more transitive relations;
(2) for any production rule 𝑋 ::= 𝑌 𝐴 ∈ 𝑃 and 𝑋 ::= 𝐴 𝑌 ∈ 𝑃 where 𝐴 is transitive, 𝑋 = 𝑌 ;
(3) there is no 𝑋 ::= 𝐴 ∈ 𝑃 where 𝐴 is transitive and 𝑋 ≠ 𝐴.

For such type of grammars, while processing a primary edge 𝑣𝑖
𝐴−→ 𝑣 𝑗 (Line 9, Algorithm 4), we

do not add the secondary edges created in NewTrEdge to the worklist as in Line 14 of Algorithm 3
(we still add such edges to the graph). Instead, we only add 𝑣𝑖

𝐴−→ 𝑣 𝑗 itself as a secondary edge to
the worklist. The insight is to use CheckPtree and CheckStree to deal with derivations based on
as many singly recursive rules as possible.
We briefly demonstrate the feasibility of the optimized Pocr in handling grammars with the

aforementioned three properties. For singly recursive rules, we only discuss 𝑋 ::= 𝑋 𝐴 because
𝑋 ::= 𝐴𝑋 is similar. In a CFL-reachability instance where𝑋 ::= 𝑋 𝐴 ∈ 𝑃 and𝐴 is transitive, adding a
primary𝐴-edge 𝑣𝑖

𝐴−→ 𝑣 𝑗 to the graph results in 𝑣𝑙
𝑋−→ 𝑣𝑘 ∈ 𝐸 for all (𝑣𝑙 , 𝑣𝑘 ) ∈ pred(𝑋, 𝑣𝑖 )×stree(𝐴, 𝑣 𝑗 ).

In the original Pocr, NewTrEdge(𝐴, 𝑣𝑖 , 𝑣 𝑗 ) is first called to create and add all the new secondary edges
𝑣 ′
𝑘

𝐴−→ 𝑣𝑘 to the graph, where (𝑣 ′
𝑘
, 𝑣𝑘 ) ∈ ptree(𝐴, 𝑣𝑖 ) × stree(𝐴, 𝑣 𝑗 ). Then CheckPred(𝑋,𝑋, 𝑣 ′

𝑘
, 𝑣𝑘 ) is

called to process each 𝑣 ′
𝑘

𝐴−→ 𝑣𝑘 in the worklist (Line 20, Algorithm 4) so that for all 𝑣𝑙 ∈ pred(𝑋, 𝑣 ′
𝑘
),

𝑣𝑙
𝑋−→ 𝑣𝑘 ∈ 𝐸. Because 𝑋 ::= 𝑋 𝐴, for all 𝑣𝑙 ∈ pred(𝑋, 𝑣 ′

𝑘
), 𝑣𝑙 ∈ pred(𝑋, 𝑣𝑖 ). Hence, all 𝑣𝑙

𝑋−→ 𝑣𝑘 such
that (𝑣𝑙 , 𝑣𝑘 ) ∈ pred(𝑋, 𝑣𝑖 ) × stree(𝐴, 𝑣 𝑗 ) are added to the graph.
The optimized Pocr handles this in a different way. First, NewTrEdge(𝑌, 𝑣𝑖 , 𝑣 𝑗 ) only adds

𝑣𝑖
𝐴−→ 𝑣 𝑗 as a secondary edge to the graph and to the worklist. Then for each 𝑋 ::= 𝑋 𝐴 ∈

𝑃 , CheckPred(𝑋,𝑋, 𝑣𝑖 , 𝑣 𝑗 ) processes 𝑣𝑖
𝐴−→ 𝑣 𝑗 , adding all the new 𝑣𝑙

𝑋−→ 𝑣 𝑗 such that 𝑣𝑙 ∈
pred(𝑋, 𝑣𝑖 ) to the graph and to the worklist. Processing all the 𝑣𝑙

𝑋−→ 𝑣 𝑗 in the worklist via
CheckStree(𝑋,𝐴, 𝑣𝑙 , 𝑣 𝑗 , 𝑣 𝑗 ) results in 𝑣𝑙

𝑋−→ 𝑣𝑘 ∈ 𝐸 for all (𝑣𝑙 , 𝑣𝑘 ) ∈ pred(𝑋, 𝑣𝑖 ) × stree(𝐴, 𝑣 𝑗 ).
The original Pocr and the optimized Pocr obtain the same results when dealing with 𝑋 ::= 𝑋 𝐴.

Similarly, they also obtain the same results when dealing with 𝑋 ::= 𝐴 𝑋 . Furthermore, the three
properties listed at the beginning of the subsection mean that there is no need to process 𝑋 ::= 𝐴,
𝑋 ::= 𝑌 𝐴 and 𝑋 ::= 𝐴 𝑌 where 𝑋 ≠ 𝑌 for all transitive 𝐴. Therefore, the optimized Pocr is
applicable to CFL-reachability whose grammar has the three properties.
Unlike the original Pocr, CheckPred and CheckSucc in the optimized Pocr are only called to

process the input primary edges of NewTrEdge. Most of the derivations based on singly recursive
rules are done by CheckPtree and CheckStree, instead of CheckPred and CheckSucc. Note that
CheckPtree and CheckStree reduce redundant derivations whereas CheckPred and CheckSucc
do not. So the optimized Pocr further improves the efficiency of solving CFL-reachability. It is also
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interesting to note that there is a large variety of real-world static analyses that can be formulated
into CFL-reachability problems whose grammars have the aforementioned three properties, e.g.,
dataflow/valueflow analysis [Reps et al. 1995], typestate analysis [Wang et al. 2020b], alias analysis
[Zheng and Rugina 2008], etc. Thus, this grammar-driven optimization is worth incorporating.

6 EXPERIMENTS

In this section, we evaluate the performance of Pocr by applying it to two popular static analyses
for C/C++: context-sensitive value-flow analysis [Sui et al. 2014] and field-sensitive alias analysis
[Zheng and Rugina 2008], where transitive redundancy dominates. In our experiment, we use cycle
elimination [Nuutila and Soisalon-Soininen 1994] and variable substitution [Rountev and Chandra
2000] for offline processing of the graphs abstracts from the benchmark programs. The baseline
of our experiment is the standard CFL-reachability algorithm [Melski and Reps 2000] accepting
the preprocessed input graphs. We also compare our approach with two recent open-source CFL-
reachability/Datalog tools, Graspan [Wang et al. 2017] and Soufflé [Jordan et al. 2016b]. We perform
all-pairs CFL-reachability analysis in Pocr and all the baselines for both clients.

Our experiments aim to answer the following research questions:

RQ 1. How many redundant derivations can Pocr reduce in real-world CFL-reachability problems
based on the two popular clients?

RQ 2. How is the performance of CFL-reachability improved by eliminating transitive redundancy
via Pocr?

RQ 3. How about the performance of Pocrwhen comparing it with the grammar rewriting method
which removes doubly recursive rules from the grammar?

We summarize our experimental results as follows: (1) Pocr is highly effective in taming transitive
redundancy with 98.50% and 97.26% of redundant derivations being eliminated for context-sensitive
value-flow analysis and field-sensitive alias analysis, respectively. (2) By eliminating redundant
derivations, Pocr significantly accelerates the standard algorithm by 21.48× and 19.57× respectively
for the value-flow and alias analyses. (3) Though grammar rewriting can reduce some redundancy
by removing doubly recursive rules, Pocr is still much more effective in reducing redundant
derivations than grammar rewriting.

6.1 Experimental Setup

We have conducted our experiment on a platform consisting of an eight-core 2.60GHz Intel Xeon
CPU with 128 GB memory, running Ubuntu 18.04.

Value-flow analysis. Our context-sensitive value-flow analysis is conducted on the sparse value-
flow graphs (SVFG) [Sui et al. 2014]. We use the context-free grammar (CFG) in Figure 6 for the
value-flow analysis, where “call𝑖” and “ret𝑖” denote, respectively, a call and a return with a callsite
index 𝑖 , “𝑎” denotes an assignment instruction, and “𝐴” denotes a value flow. Note that the grammar
in Figure 6 only considers context-sensitivity. However, each field object is represented as a single
node in the field-sensitive SVFG, so the analysis is also field-sensitive.

Alias analysis. The CFG for C/C++ field-sensitive alias analysis is listed in Figure 7, which is from
[Zheng and Rugina 2008]. In the grammar, 𝑎 denotes an assignment, 𝑑 denotes a pointer dereference,
𝑓𝑖 denotes the address of the 𝑖-th field, 𝐴 denotes a value flow,𝑀 denotes memory aliasing, and 𝑉
denotes value aliasing. The alias analysis is performed on the program expression graph (PEG),

which is bi-directed, i.e., for each edge 𝑣𝑖
𝑋−→ 𝑣 𝑗 ∈ 𝐸, there is a reverse edge 𝑣 𝑗

𝑋−→ 𝑣𝑖 ∈ 𝐸.
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𝐴 ::= 𝐴 𝐴 | call𝑖 𝐴 ret𝑖 | 𝑎 | 𝜀

(a) Context-free grammar.

𝐴 ::= 𝐴 𝐴 | 𝐶𝐴𝑖 ret𝑖 | 𝑎 | 𝜀
𝐶𝐴𝑖 ::= call𝑖 𝐴

(b) Normalized grammar.

Fig. 6. CFG for context-sensitive

value-flow analysis.

𝑀 ::= 𝑑 𝑉 𝑑

𝑉 ::= 𝐴 𝑉 𝐴 | 𝑓𝑖 𝑉 𝑓𝑖 | 𝑀 | 𝜀
𝐴 ::= 𝐴 𝐴 | 𝑎 𝑀? | 𝜀
𝐴 ::= 𝐴 𝐴 | 𝑀? 𝑎 | 𝜀

𝑀 ::= 𝐷𝑉 𝑑

𝐷𝑉 ::= 𝑑 𝑉

𝑉 ::= 𝐴 𝑉 | 𝑉 𝐴 | FV𝑖 𝑓𝑖 | 𝑀 | 𝜀
FV𝑖 ::= 𝑓𝑖 𝑉

𝐴 ::= 𝐴 𝐴 | 𝑎 𝑀 | 𝑎 | 𝜀
𝐴 ::= 𝐴 𝐴 | 𝑀 𝑎 | 𝑎 | 𝜀

(a) Context-free grammar. (b) Normalized grammar.

Fig. 7. CFG for field-sensitive alias analysis.

Setup and Benchmarks. The SVFG and PEG of each program are constructed from the bitcode
files compiled by Clang-12.0.0 and linked via wllvm2 for whole-program all-pairs CFL-reachability
analysis. The SVFG and PEG are preprocessed by cycle elimination [Tarjan 1972] which merges
cycles comprised of 𝑎-edges and variable substitution [Rountev and Chandra 2000] which contracts
particular 𝑎-edges. The preprocessing is to make sure the input graph is compacted after applying
the existing offline approach to make sure the input does not favor our online approach undesirably.
We used 10 SPEC 2017 C/C++ programs for our evaluation. We did not include three small programs
(lbm, mcf and deepsjeng whose sizes are less than 1 MB). The other three C/C++ programs in
SPEC 2017, i.e., xalancbmk, gcc and blender, failed to be linked by wllvm. Table 1 lists the size
and graph statistics of each program.

Implementation. We have implemented our Pocr on top of the LLVM compiler, and the sub-
project SVF [Sui and Xue 2016]. To study the relationship between the improvement of performance
and the reduction of redundant derivations, we also implement the standard algorithm [Melski
and Reps 2000] and the edge-reduction technique described in the paper of Graspan (Section 4.2 in
[Wang et al. 2017]) on top of SVF. Tables 2 and 3 list the main results of our experiments, where
“Base” and “GSA” denote, respectively, the standard algorithm and the edge-reduction algorithm
of Graspan. “Pocr” denotes our approach with optimization (Section 5.2) enabled. The columns
“Graspan” and “Soufflé” list the results of the open-source tools Graspan [Wang et al. 2020a] and
Soufflé [Jordan et al. 2016a], running with their default configurations.3 The cases which failed to
obtain results due to the time constraint (24 hours) are annotated with “−”.

6.2 RQ 1: Reduction of Redundant Derivations

The numbers of edges added to the graph and the numbers of edges created during CFL-reachabilty
solving of each benchmark are listed in Column 1 and Columns 2–4 of Tables 2 and 3. The number
of redundant derivations is obtained via (#Deriv - #Add). The proportion of redundant derivations
is computed via (#Deriv - #Add) / #Deriv.
In general, with regard to the standard CFL-reachability algorithm (listed in Column 2 of Ta-

bles 2 and 3), redundant derivations are prevalent in both value-flow analysis and alias analysis.
The average proportions for redundant derivations out of all derivations are 98.03% and 97.89%,
respectively, in value-flow analysis and alias analysis when using the standard algorithm.
A comparison of Columns 3-4 with Column 2 in Tables 2 and 3 shows that both GSA (the

edge-reduction technique of Graspan) and our Pocr reduce redundant derivations but Pocr is more
effective. The reduction rates of the redundant derivations are listed in Columns 5 and 6 of the
2https://github.com/travitch/whole-program-llvm.
3We refer to [Wang et al. 2017] and https://souffle-lang.github.io/build#cmake-configuration-options for the default
configurations of Graspan and Soufflé, respectively.
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Table 1. Benchmark info. #Node and #Edge denote the number of nodes and edges in the initial graphs.

Bench. Size/MB

SVFG PEG

Description

#Node #Edge #Node #Edge

xz 1.24 51666 65235 12425 26468 General data compression
nab 1.41 59253 76105 16261 34676 Molecular dynamics
leela 2.93 68250 92865 22186 49748 Monte Carlo tree search (Go)
x264 4.68 213943 347142 60956 136352 Video compression
cactus 5.88 563208 1026726 93557 212478 Physics: relativity
povray 7.38 555807 1059724 76405 174258 Ray tracing
imagick 13.68 601687 870107 119314 301846 Image manipulation
parest 16.20 325592 433217 117500 251436 Biomedical imaging
perlbench 18.69 1031348 2203010 156664 388564 Perl interpreter
omnetpp 21.81 703952 1897474 241916 509166 Discrete Event simulation

Table 2. Result of context-sensitive value-flow analysis. #Add/k and #Deriv/k denotes the number of edges

added to the graph and created when solving CFL-reachability, measured in thousands. Reduction/% denotes

the reduction rate of redundant derivations of GSA and Pocr. Time/s denotes the runtime of each approach,

measured in seconds. The baselines of both Reduction/% and speedup are the columns “Base”.

Bench. #Add/k

#Deriv/k Reduction/% Time/s

Base GSA Pocr GSA Pocr Base Graspan Soufflé Pocr

xz 732 145140 9544 807 93.90 99.95 11.86 2.43 4.31 0.88
nab 1341 2031555 81757 3582 96.04 99.89 662.73 69.92 71.78 39.60
leela 1518 513825 29330 1846 94.57 99.94 30.22 6.62 12.58 2.04
x264 60441 7537094 657053 72668 92.02 99.84 4915.96 656.69 1495.35 299.29
cactus 105114 2465484 705243 229347 74.57 94.74 42121.28 6285.94 6714.28 1754.60
povray 182537 3783718 1943433 281611 51.10 97.25 77651.60 9149.52 12796.00 3893.08
imagick 55561 1493419 683175 123044 56.35 95.31 31210.60 3645.31 5634.66 1043.20
parest 29749 1090633 491326 33441 56.49 99.65 14419.60 3746.12 2265.00 433.20
perlbench 834251 - 18662423 1042244 - - - 63737.24 - 13962.88
omnetpp 262480 49378518 5648505 302842 89.03 99.92 58454.40 9630.63 5496.90 2367.20
Average 78.23 98.50 Speedup 21.48×

two tables, showing that, on average, Pocr reduces 98.50% and 97.26% of redundant derivations
respectively for value-flow analysis and alias analysis, which is much more than GSA. We also
observe that the redundant derivations of Pocr are only 4.67% and 9.68% that of GSA respectively
for value-flow analysis and alias analysis. Namely, the redundant derivations of Pocr are much
fewer than GSA. Interestingly, the set of redundant derivations captured by Pocr is not always a
superset of those captured by Graspan because Graspan can also cover some non-transitive relations.
However, we can infer from the experiment results that the redundancy caused by non-transitive
relations has only a marginal impact on performance. Our approach, which exploits a proper
derivation order based on the property of transitive relations, is much more effective in reducing
redundant derivations than Graspan. Besides, we did not include the numbers of derivations of
Souffé in the tables because it does not provide an option to collect those numbers directly.
We show the computational redundancy of the three approaches in Figure 8, which is based

on the numbers in Columns 1–4 of Tables 2 and 3. Specifically, the redundancy of each approach
is represented by (#Deriv / #Add). The data shows how many derivations are needed to actually
add an edge to the graph on average. From Figure 8(a) and Figure 8(b), we can see that there is a
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Table 3. Result of field-sensitive alias analysis. The meanings of column headings are the same as Table 2.

Bench. #Add/k

#Deriv/k Reduction/% Time/s

Base GSA Pocr GSA Pocr Base Graspan Soufflé Pocr

xz 427 230356 4332 507 98.30 99.97 2.50 1.71 2.04 0.24
nab 472 278736 13017 635 95.49 99.94 3.40 1.47 3.00 0.38
leela 8797 1904077 524949 12875 72.77 99.78 340.52 38.26 41.72 13.96
x264 13167 2413368 341681 17290 86.31 99.83 537.85 140.11 112.12 25.65
cactus 81832 1360390 727621 184821 49.49 91.94 11156.20 1479.63 1039.05 591.39
povray 53698 3214220 313985 112872 91.76 98.13 17601.30 1393.13 1238.86 631.86
imagick 422916 - 2007956 462378 - - - 5733.14 4076.94 1309.51
parest 83800 1472666 485888 205702 71.05 91.22 15337.50 943.52 1713.89 604.04
perlbench 1226586 - 24686471 3797919 - - - 29548.05 15536.13 5400.19
omnetpp 485066 - 4721535 866541 - - - 14660.59 11235.29 1842.43
Average 80.74 97.26 Speedup 19.57×
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(a) Value-flow analysis. (b) Alias analysis.

Fig. 8. The computational redundancy of the three approaches in solving the two clients. The value is

computed by (#Deriv / #Add). The vertical axis is logarithmic. The peak, valley and average values of each

approach are marked in the charts.

substantial amount of redundancy in the standard algorithm in both value-flow analysis and alias
analysis. The redundancy in the value-flow analysis is more significant as most of its reachability
relations are transitive (i.e., the 𝐴-relations in the grammar of Figure 6).
A comparison between Pocr and GSA in Figure 8 demonstrates that: (1) Pocr is much more

effective than GSA in reducing computational redundancy. The average values of the redundancy
are only 1.57 and 1.81, respectively, in value-flow analysis and alias analysis, which is much smaller
than that of GSA. (2) Even in the worst cases, Pocr keeps the computational redundancy in very
low values, with the largest ones being only 1.54 and 3.10, respectively, in value-flow analysis and
alias analysis. A comparison of Figure 8(a) and Figure 8(b) shows that the performance of Pocr is
slightly better for the value-flow analysis than the alias analysis. This is because there are more
non-transitive relations in alias analysis than those in value-flow analysis.

Another interesting observation is the significance of the grammar-based optimization in Pocr.
We also run the original Pocr on the two clients and compare the results with the optimized ones in
Tables 2 and 3. We find that compared with the original Pocr, the optimized Pocr further reduces
78.72% and 83.56% redundant derivations, respectively, for the two clients on average. Therefore,
when handling real-world problems, establishing a proper optimization (e.g. Section 5.2) to exploit
the benefit of spanning trees as much as possible is important to boost the performance of Pocr.
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(a) Value-flow analysis. (b) Alias analysis.

Fig. 9. Extra memory overhead of Pocr over the standard algorithm. Only the benchmarks successfully

solved by the standard algorithm are considered.

6.3 RQ 2: Speedups Over Baselines

Columns 7–10 of Tables 2 and 3 list the runtime of the four approaches for the two clients. We first
focus on columns 7 and 10. A comparison between Base and Pocr shows that Pocr significantly
accelerates the analyses for both value-flow analysis and alias analysis by eliminating transitive
redundancy. The largest speedups of Pocr over the standard algorithm occur in parest and povray,
which accords with relatively large reduction rates of computational redundancy in Figure 8. The
largest speedups do not occur in the programs with the largest reduction rates of derivations
because the preprocessing time (e.g., constructing graphs and performing graph simplification) is
also included in the total runtime of Pocr. Such preprocessing time can take a large percent of
runtime when handing small programs where the largest reduction rates of derivations occur.
By reducing a large portion of redundant derivations, Pocr successfully solves the value-flow

analysis for perlbench and the alias analyses for imagick, perlbench and omnetpp, where the
standard algorithm fails to solve within the time limit (24 hours). Therefore, taming redundant
derivations plays an important role in scaling CFL-reachability analysis.
It is also interesting to note that the time consumed by an analysis depends not only on the

program size but also on the features of the graph abstracted from the program. We found that
perlbench, though not the largest graph, has a complex graph structure, including extremely
long value-flow chains and dynamically/incrementally formed large transitive cycles. For example,
in the PEG of perlbench after CFL solving, 83% of the total nodes are in cycles consisting of
"A"-edges, with the largest cycle containing over 43k nodes and the longest simple path (without
any cycles) containing 3k nodes, which are larger than those of other programs. This feature makes
other CFL-reachability solvers incur much more transitive redundancy while solving, which makes
perlbench arguably the most challenging program to solve.

To compare the analysis time, we further perform the experiments by running the open-source
Graspan and Soufflé tools using their default configurations. Their results are listed in Columns 8
and 9 of Table 2 and Table 3. A comparison of Columns 8–10 of Tables 2 and 3 shows that Graspan
and Soufflé can effectively accelerate the two clients. Moreover, Pocr is much more efficient. On
average, Pocr is 3.67× and 4.10× faster than Graspan and Soufflé for value-flow analysis, and is
3.73× and 4.19× faster than Graspan and Soufflé for alias analysis, respectively.
As Pocr uses spanning trees to store transitive edges, we study the extra memory overhead

of Pocr over the standard algorithm as shown in Figure 9. A comparison between Figure 9(a)
and Figure 9(b) shows that the extra memory overheads of Pocr in value-flow analysis are much
larger than those in alias analysis. This reflects the characteristics of the two clients: in value-flow
analysis, most reachability relations are transitive relations (the 𝐴-relations in Figure 6). In alias
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𝐴 ::= 𝐴 𝑎 | 𝐴 𝐵 | 𝑎 | 𝜀
𝐵 ::= 𝐶𝐴𝑖 𝑟𝑒𝑡𝑖

𝐶𝐴𝑖 ::= 𝑐𝑎𝑙𝑙𝑖 𝐴

𝑀 ::= 𝐷𝑉 𝑑

𝐷𝑉 ::= 𝑑 𝑉

𝑉 ::= 𝐴 𝑉 | 𝑉 𝐴 | FV𝑖 𝑓𝑖 | 𝑀 | 𝜀
FV𝑖 ::= 𝑓𝑖 𝑉

𝐴 ::= 𝑎 𝑀 | 𝑎 | 𝜀
𝐴 ::= 𝑀 𝑎 | 𝑎 | 𝜀

(a) Modified grammar for context-
sensitive value-flow analysis.

(b) Modified grammar for field-sensitive
alias analysis.

Fig. 10. CFG modified from Figure 7 by removing the doubly recursive rules.

analysis, there is a smaller proportion of transitive relations (the 𝐴-relations in Figure 7), whereas
the alias relations (the 𝑉 -relations in Figure 7) are more prevalent.

6.4 RQ 3: Pocr vs. Grammar Rewriting

As addressed in Section 5.1, some grammars can be rewritten to eliminate transitive relations
while maintaining correct solutions. The grammars in Figure 6 and Figure 7 of our example can be
rewritten into Figure 10(a) and Figure 10(b) with the doubly-recursive rules𝐴 ::= 𝐴 𝐴 and𝐴 ::= 𝐴 𝐴

removed. The modified grammar still has the ability to compute the required relations (i.e., 𝐴 for
value-flow analysis and 𝑉 for alias analysis).

We study the performance impact of such grammar rewriting and compare it with Pocr. The
experimental results of the modified grammars are shown in Figures 11 and 12, in which the
reduction rate and speedup of each approach are computed based on the result obtained from the
original grammar. Pocr is not taken into consideration as it does not benefit the modified grammar.
With respect to value-flow analysis (Figure 11), the values of the reduction rate of the added

edges are negative. This is because the modified grammar in Figure 10(a) introduces an extra non-
terminal 𝐵, leading to extra edges added to the graphs. However, the reduction rate of derivations
of the standard algorithm is large because of the removed doubly-recursive rules. In contrast, the
reduction rate of derivations of GSA is low because it has already reduced redundant derivations
for the original grammar. Accordingly, the standard algorithm is accelerated much more than the
other two techniques by grammar rewriting as shown in Figure 11(b). Regarding alias analysis
(Figure 12), the total numbers of added edges are reduced because the modified grammar in Figure
10(b) removes doubly recursive rules and does not introduce any extra non-terminal. However,
the reduction rates of derivations of both the standard algorithm and GSA are low. This confirms
with the aforementioned characteristic that 𝐴- and 𝐴-edges only take a small proportion in alias
analysis. A comparison of Figure 11(b) and Figure 12(b) shows that the accelerations brought by
modifying the grammar are much smaller for all three techniques in alias analysis.

Additionally, it can be computed from Figure 11(b) and 12(b) that all three accelerated techniques
through the modified grammars are still slower than Pocr. We analyze the reason as follows. Al-
though the modified grammars appear to have the “head-to-tail” derivations illustrated in Section 2,
both the standard worklist algorithm and GSA do not strictly follow this derivation order. Hence,
Pocr is faster than the three techniques in the presence of grammar rewriting.

7 RELATEDWORK

This work is relevant to improving the performance of CFL-reachability. Reducing the cubic
time complexity of general CFL-reachability is difficult. To the best of our knowledge, the fastest
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Fig. 11. Results of context-sensitive value-flow analysis using the modified grammar in Figure 10(a).
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Fig. 12. Results of field-sensitive alias analysis using the modified grammar in Figure 10(b).

algorithm [Chaudhuri 2008] treats CFL-reachability as an equivalent representation called recursive-
state-machine reachability (RSM-reachability) and exhibits a slightly subcubic 𝑂 (𝑛3/log2𝑛) time
complexity for bounded-stack RSMs, where 𝑛 denotes the number of nodes of the input graph.
So far, significant progress has only been made in handling special cases. One of the extensively
studied relation in CFL-reachability is the Dyck relation [Chatterjee et al. 2018; Yuan and Eugster
2009; Zhang et al. 2013]. A recent work has reduced the complexity to nearly linear with respect to
the input graph size [Chatterjee et al. 2018]. However, these techniques are only applicable to Dyck
reachability on bidirected graphs. Recently, a specialized parallel data structure was proposed for
scalable equivalence relations and provides a quadratic worst-case speedup [Nappa et al. 2019].
However, the transitive relations handled in this paper are not equivalence relations, thus their
technique is not directly applicable.

Due to the difficulty in reducing time complexity, many existing approaches improve the perfor-
mance of CFL-reachability from more practical perspectives. One prevalent perspective is graph
simplification, including cycle elimination [Hardekopf and Lin 2007; Kodumal and Aiken 2004; Lei
and Sui 2019; Pereira and Berlin 2009; Su et al. 2014; Xu et al. 2009], variable substitution [Rountev
and Chandra 2000], InterDyck edge reduction [Li et al. 2020] and other techniques [Aho et al.
1972; Hsu 1975; Moyles and Thompson 1969]. It is interesting to point out that the InterDyck
algorithm [Li et al. 2020] can improve the precision of the undecidable interleaved-Dyck problems
[Reps 2000] by removing the non-Dyck-contributing edges, whereas Pocr focuses on handling
standard CFL-reachability, which is decidable and can be solved precisely in polynomial time.
Notably, all the aforementioned offline graph simplification techniques are orthogonal to our online
CFL-reachability solver Pocr. Hence they are well-compatible to further improve scalability.
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Recently, researchers have also studied the simplification of CFL-reachability from the perspective
of its alternative forms, such as recursive state machines (RSMs) [Alur et al. 2005; Chaudhuri 2008]
and pushdown automata (PDA) [Gauwin et al. 2019; Heizmann et al. 2017]. Different from graph
simplification, these works tried to scale CFL-reachability by simplifying the automata (i.e., the
context-free grammar) rather than the input graphs.

Reducing edge redundancy on-the-fly has also been incorporated into many existing techniques.
Fähndrich et al. [1998] and Su et al. [2000] arbitrarily ordered the computations based on node
indices in order to reduce repeated computations. A recent technique Graspan [Wang et al. 2017]
use auxiliary structures to classify “new” and “old” edges to avoid the need to recompute the
established edges. Our approach, different from the above techniques, exploits an effective edge
derivation order based on the property of transitive relations so that almost all edge redundancy
caused by singly or doubly recursive rules is avoided.

8 CONCLUSION

This paper has proposed Pocr, a fast yet precision-preserving approach to CFL-reachability analysis
by taming its transitive redundancy. The empirical results show that Pocr significantly accelerates
the solving of CFL-reachability problems where transitive redundancy dominates. Pocr is over
3.67× faster over recent open-source tools Graspan and Soufflé for both clients. Pocr obtains
speedups of 21.48× and 19.57× over the standard algorithm by eliminating 98.50% and 97.26%
redundant derivations for value-flow analysis and alias analysis, respectively.
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