
Context-Free Language Reachability via Skewed Tabulation

YUXIANG LEI∗, University of New South Wales, Australia

CAMILLE BOSSUT∗, Georgia Institute of Technology, USA
YULEI SUI, University of New South Wales, Australia

QIRUN ZHANG, Georgia Institute of Technology, USA

Context-free language reachability (CFL-reachability) is a prominent model for formulating program analysis

problems. Almost all CFL-reachability algorithms are based on the Reps-Horwitz-Sagiv (RHS) tabulation. In

essence, the RHS tabulation, based on normalized context-free grammars, is similar to the CYK algorithm for

CFL-parsing. Consider a normalized rule 𝑆 ::= 𝐴 𝐵 and a CFL-reachability problem instance of computing

𝑆-edges in the input graph. The RHS tabulation obtains all summary edges (i.e., 𝑆-, 𝐴-, and 𝐵-edges) based on

the grammar rules. However, many𝐴- and 𝐵-edges are wasted because only a subset of those edges eventually

contributes to generating 𝑆-edges in the input graph.

This paper proposes a new tabulation strategy for speeding up CFL-reachability by eliminating wasted and

unnecessary summary edges. We particularly focus on recursive nonterminals. Our key technical insight is

that the wasted edge generations and insertions caused by recursive nonterminals can be avoided by modifying

the parse trees either statically (by transforming the grammar) or dynamically (using a specialized online

CFL-reachability solver). For example, if a recursive nonterminal 𝐵, generated by a rule 𝐵 ::= 𝐵 𝑋 , appears

on the right-hand side of a rule 𝑆 ::= 𝐴 𝐵, we can make 𝑆 recursive (by introducing a new rule 𝑆 ::= 𝑆 𝑋)

and eliminate the original recursive rule (𝐵 ::= 𝐵 𝑋). Due to the rule 𝑆 ::= 𝑆 𝑋 , the shapes of the parse trees

associated with the left-hand-side nonterminal 𝑆 become more “skewed”. Thus, we name our approach skewed
tabulation for CFL-reachability.

Skewed tabulation can significantly improve the scalability of CFL-reachability by reducing wasted and

unnecessary summary edges. We have implemented skewed tabulation and applied the corresponding CFL-

reachability algorithm to an alias analysis, a value-flow analysis, and a taint analysis. Our extensive evaluation

based on SPEC 2017 benchmarks yields promising results. For the three client analyses, CFL-reachability based

on skewed tabulation can achieve 3.34×, 1.13× and 2.05× speedup over the state-of-the-art RHS-tabulation-

based CFL-reachability solver and consume 60.05%, 20.38% and 63.06% less memory, respectively. Furthermore,

the cost of grammar transformation for skewed tabulation is negligible, typically taking less than one second.

CCS Concepts: • Theory of computation→ Grammars and context-free languages.

Additional Key Words and Phrases: CFL-reachability, tabulation schemes, performance

ACM Reference Format:
Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang. 2024. Context-Free Language Reachability via Skewed

Tabulation. Proc. ACM Program. Lang. 8, PLDI, Article 221 (June 2024), 24 pages. https://doi.org/10.1145/3656451

∗
Equal contribution.

Authors’ addresses: Yuxiang Lei, University of New South Wales, Sydney, Australia, yuxiang.lei@unsw.edu.au; Camille

Bossut, Georgia Institute of Technology, Atlanta, USA, cbossut21@gatech.edu; Yulei Sui, University of New South Wales,

Sydney, Australia, y.sui@unsw.edu.au; Qirun Zhang, Georgia Institute of Technology, Atlanta, USA, qrzhang@gatech.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART221

https://doi.org/10.1145/3656451

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-4484-8172
HTTPS://ORCID.ORG/0009-0002-9659-7990
HTTPS://ORCID.ORG/0000-0002-9510-6574
HTTPS://ORCID.ORG/0000-0001-5367-9377
https://doi.org/10.1145/3656451
https://orcid.org/0000-0002-4484-8172
https://orcid.org/0009-0002-9659-7990
https://orcid.org/0009-0002-9659-7990
https://orcid.org/0000-0002-9510-6574
https://orcid.org/0000-0001-5367-9377
https://doi.org/10.1145/3656451

221:2 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

1 Introduction

Context-free language reachability (CFL-reachability) is a fundamental framework for program

analysis [Reps 1998]. A CFL-reachability problem instance contains an edge-labeled digraph 𝐺 and

a context-free grammar CFG. Two nodes 𝑢 and 𝑣 in 𝐺 are reachable iff there exists a path between

them, and the string spelled out by the path is accepted by the CFG. A variety of program-analysis

problems, such as interprocedural data-flow analysis [Reps et al. 1995], program slicing [Clarke

et al. 1999], shape analysis [Rehof and Fähndrich 2001], taint analysis [Kodumal and Aiken 2004],

type-based flow analysis [Naeem and Lhoták 2008], and pointer analysis [Zheng and Rugina 2008],

have been formulated as CFL-reachability problems.
1

The standard CFL-reachability algorithm [Melski and Reps 2000; Reps 1998] is based on tabulation

due to Reps et al. [1995]. To facilitate the Reps-Horwitz-Sagiv (RHS) tabulation [Reps et al. 1995], a

preliminary step in CFL-reachability is to convert input grammars to a normal form in which the

right-hand side of each rule has at most two symbols [Melski and Reps 2000; Reps 1998]. Then,

for each nonterminal 𝐴 in the grammar, the RHS tabulation computes summary edges (𝐴-edges)
according to each normalized rule 𝐴 ::= 𝐵 𝐶 . Note that the RHS tabulation is a generalization of

the CYK algorithm [Younger 1967], a bottom-up method for CFL-parsing [Chatterjee et al. 2018;

Pavlogiannis 2022; Reps 1998]. When processing a normalized rule of the form 𝐴 ::= 𝐵 𝐶 , the

RHS tabulation needs to compute all 𝐵- and 𝐶-edges to generate 𝐴-edges. If one of the right-hand

side nonterminals 𝐵 or 𝐶 is recursive, those recursive summary edges are computed nonetheless,

although, arguably, only some edges eventually contribute to the generation of 𝐴-edges.

This paper proposes a general technique for speeding up CFL-reachability by improving the

traditional RHS tabulation strategy. Our key idea is to analyze the input grammar and improve

the summary edge generation statically and dynamically. Statically, we rearrange the recursions
incurred in the RHS tabulation from a right-hand side nonterminal to a left-hand side nonterminal

in the same grammar rule. Specifically, consider a rule of the form 𝑆 ::= 𝐴 𝐵. Assume that 𝐵 is

recursive and can be generated by 𝐵 ::= 𝐵 𝑋 . The traditional RHS tabulation needs to compute all

recursive 𝐵-edges in order to generate 𝑆-edges. In the CFL-parsing terminology, the parse tree of 𝑆

is more “balanced” because it needs to combine the 𝐴-subtree and the 𝐵-subtree. Our approach

rewrites the grammar by eliminating the recursive rule 𝐵 ::= 𝐵 𝑋 and produces an equivalent

grammar 𝑆 ::= 𝐴 𝐵 and 𝑆 ::= 𝑆 𝑋 , i.e., for 𝑆 ::= 𝐴 𝐵, we promote the recursive behavior of 𝐵 on the

right-hand side to 𝑆 on the left-hand side. Such promotion makes the parse tree of 𝑆 more skewed.

Dynamically, the tabulation algorithm can skip inserting some edges in the skewed grammar.

For example, consider a nonterminal 𝑌 in a grammar after promoting recursive behaviors. If for

all productions 𝑋 ::= 𝑌 𝑍 , whenever a 𝑌 -edge is generated, the 𝑍 -edges required for generating

𝑋 -edges are already in the graph, then the 𝑌 -edge does not need to be inserted into the graph.

It only needs to be added to the worklist for further processing. We name our approach skewed
tabulation due to the skewed shape of the parse-tree structure that our approach induces.

The principal benefit of skewed tabulation is that it computes and inserts fewer summary edges

than the traditional RHS tabulation. Thus, it reduces both CFL-reachability solving time and

memory consumption. The challenge is to ensure that (1) in static skewing, the skewed grammar

accepts the same language as the original grammar and (2) in dynamic skewing, the reachability
algorithm correctly skips inserting unnecessary summary edges. To address these challenges, in

static skewing, we propose a grammar transformation that utilizes the properties of recursive

productions. We introduce a notation of summary-degree to measure the reduction of unnecessary

recursive behaviors of non-𝑆 nonterminals while preserving grammar equivalence. In dynamic

skewing, we analyze the productions of nonterminals and the solving process to identify propagating

1
This paper focuses on all-pairs CFL-reachability problems.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:3

𝑆 ::= 𝐴 𝐵

𝐵 ::= 𝐵 𝐵 | 𝑏
𝐴 ::= 𝑐 𝑑

(a) Input grammar CFG.

s u
c b

v w x
bd t

b

(b) Input graph 𝐺 .

𝑆 ::= 𝐴 𝐵 | 𝑆 𝐵

𝐵 ::= 𝑏

𝐴 ::= 𝑐 𝑑

(c)CFG′ for skewed tabulation.

Fig. 1. Motivating example of CFL-reachability. The start symbol in both CFG and CFG′ is 𝑆 , and CFL-
reachability computes all 𝑆-edges in 𝐺 .

edges, i.e., edges not need to be inserted into the graph, and propose a new method for reachability

propagation without inserting those propagating summary edges. By combining both static and

dynamic skewing, we guarantee that skewed tabulation can reduce the number of summary edges

in CFL-reachability.

We have implemented our skewed tabulation for CFL-reachability and applied it to three C/C++

practical client analyses, a field-sensitive alias analysis [Zheng and Rugina 2008], a context-sensitive

value-flow analysis [Sui et al. 2014] and a taint analysis [Kodumal and Aiken 2004]. In addition,

we compared skewed tabulation with a state-of-the-art RHS-tabulation-based CFL-reachability

solver POCR [Lei et al. 2022b] and a state-of-the-art Datalog solver Soufflé [Scholz et al. 2016].

The empirical evaluation based on SPEC CPU 2017 benchmarks yields promising results. For the

three client analyses, the skewed tabulation can achieve 3.34×, 1.13× and 2.05× speedup over the

RHS tabulation and consume 60.05%, 20.38% and 63.06% less memory, respectively. Moreover, our

CFL-reachability algorithm based on skewed tabulation is 3.16×, 1.85× and 2.28× faster than the

8-thread Soufflé and consumes 61.45%, 16.47% and 56.56% less memory in the three client analyses.

The running time for grammar transformation is less than one second, which is negligible.

To sum up, this paper makes the following contributions.

• We introduce a novel concept called skewed tabulation for improving the scalability of

CFL-reachability algorithms. Skewed tabulation rearranges recursive grammar rules to more

effectively reuse summary edges and gets rid of unusable summary edges.

• We present a formal analysis to demonstrate that skewed tabulation can reduce the number

of summary edges obtained in the traditional RHS tabulation.

• We apply CFL-reachability via skewed tabulation to three client analyses [Sui et al. 2014;

Zheng and Rugina 2008]. The evaluation based on SPEC 2017 benchmarks and real-world

programs illustrates significant scalability advantages of the skewed tabulation.

The rest of the paper is structured as follows. Section 2 motivates skewed tabulation. Section 3

presents preliminaries. Section 4 discusses our skewed tabulation algorithm for CFL-reachability.

Section 5 describes the evaluation setup and results. Finally, Section 6 surveys related work, and

Section 7 concludes.

2 Motivating Example

This section motivates skewed tabulation for CFL-reachability using a concrete example. Consider

a context-free grammar CFG and an input graph 𝐺 in Figures 1a and 1b, respectively. Nonterminal

𝑆 is the start symbol, and the CFL-reachability problem is to compute the 𝑆-reachability relations

for all node pairs in 𝐺 . The CFL-reachability tabulation is similar to the process of bottom-up

CFL-parsing [Chatterjee et al. 2018; Pavlogiannis 2022; Reps 1998]. Therefore, we employ parse

trees to demonstrate the tabulation results.

RHS tabulation. Traditional RHS tabulation [Reps et al. 1995] generates a new edge from two

consecutive edges in the graph based on a normalized grammar, i.e., every production contains at

most two symbols on the right-hand side. Figure 2a gives a parse tree for generating 𝑠
𝑆−→ 𝑡 based

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:4 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

s u
c b

v w x
bd

B B

B

A

S

t
b

B
B

(a) Parse tree for 𝑠
𝑆−→ 𝑡 under RHS

tabulation.

s u
c b

v w x
bd

B B

B

A

S

t
b

B
B BS

S

(b) Forest consisting of the parse
trees for all inserted edges under
RHS tabulation.

s u
c b

v w x
bd

B BA

S

S

t
b

B

S

(c) Parse tree for 𝑠
𝑆−→ 𝑡 under

skewed tabulation.

Fig. 2. Tabulation steps for computing the summary edge 𝑠
𝑆−→ 𝑥 , which form parse trees for recognizing the

path string “𝑐 𝑑 𝑏 𝑏 𝑏” in Figure 1b.

on the grammar in Figure 1a and the graph in Figure 1b. Figure 2b gives all possible parse trees

generated by RHS tabulation for the input graph.

Skewed tabulation and its benefits. Skewed tabulation skews the parse trees for nonterminals

with recursive behaviors. By this means, it reduces unnecessary and unused summary edges in

CFL-reachability. Figure 2c shows the parse tree for generating 𝑠
𝑆−→ 𝑡 (as well as 𝑠

𝑆−→ 𝑤 and 𝑠
𝑆−→ 𝑥)

based on the skewed grammar in Figure 1c. The input grammar in Figure 1a was transformed

such that the recursive behavior of non-𝑆 nonterminals, i.e., 𝐵 ::= 𝐵 𝐵, was promoted to be the

recursive behavior of the start symbol as a new production 𝑆 ::= 𝑆 𝐵. Comparing Figures 2a and 2c,

we see that the parse tree in Figure 2c is more skewed, which means that it only computes the

left sub-tree for 𝑠
𝐴−→ 𝑣 , without the right sub-tree for 𝑣

𝐵−→ 𝑡 in Figure 2a, to obtain 𝑠
𝑆−→ 𝑡 . We

call the tabulation in Figure 2c skewed tabulation. Moreover, comparing Figures 2b and 2c, we see

that skewed tabulation generates much fewer intermediate summary edges to compute the three

𝑆-summaries. Specifically, it reduces unnecessary summary edges 𝑣
𝐵−→ 𝑥 , 𝑤

𝐵−→ 𝑡 and 𝑣
𝐵−→ 𝑡 . To

sum up, skewed tabulation achieves the reduction by “reusing” existing 𝑆-summaries.

Challenges. The essence of skewed tabulation includes a grammar transformation (to produce

the CFG′ in Figure 1c) and a tabulation algorithm (to skew the summary edge propagation).

It is challenging to (1) preserve the grammar equivalence and (2) reduce the summary edges

simultaneously. Our skewed tabulation utilizes static skewing and dynamic skewing to tackle the

two challenges. In particular, static skewing promotes recursions in the input grammar by adding

new equivalent grammar rules utilizing only nonterminals from the original grammar. In this

example, we transfer the recursive behavior of 𝐵 from 𝐵 ::= 𝐵 𝐵 to 𝑆 by adding a new rule 𝑆 ::= 𝑆 𝐵.

This restructure reduces some summary edges. While rewriting the grammar, static skewing

also computes a set of propagating nonterminals that resemble nonterminals in a linear grammar.

Dynamic skewing avoids inserting propagating nonterminals during the reachability propagation.

In summary, static and dynamic skewing reduce summary edges by skewing the grammar and the

tabulation, respectively.

3 Preliminaries

This section introduces the preliminaries of our work, including CFL-reachability in Section 3.1

and the correspondence between CFL-reachability and CFL-parsing in Section 3.2. Section 3.3 gives

our problem formulation.

3.1 CFL-Reachability

A context-free language (CFL) is a set of strings derived via a context-free grammar (CFG). In general,

a context-free grammar CFG = ⟨Σ, 𝑁 ,𝑇 , 𝑃, 𝑆⟩ is comprised of five components where Σ is an

alphabet that contains a set of symbols, 𝑁 ⊂ Σ is a set of nonterminal symbols (i.e., nonterminals),

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:5

𝑇 = Σ\𝑁 is a set of terminal symbols (i.e., terminals), 𝑃 is a set of production rules (i.e., productions),
and 𝑆 ∈ 𝑁 is the start symbol. In a CFG, each production of 𝑃 shows how the nonterminal on the

left-hand side derives the string on the right-hand side. A string 𝑠 ∈ 𝑇 ∗ is accepted by CFG iff 𝑠

can be derived from 𝑆 via one or more productions in 𝑃 . Such a string is also called an 𝑆-string
of CFG. Given a context-free grammar CFG and an edge-labeled digraph 𝐺 = ⟨𝑉 , 𝐸⟩, for a path
𝑝 = 𝑣0

𝑡0−→ 𝑣1
𝑡1−→ 𝑣2

𝑡2−→ · · · 𝑡𝑚−1−−−→ 𝑣𝑚 in 𝐺 , the path string of 𝑝 is the ordered concatenation of

its edge labels, denoted by 𝑅(𝑝) = 𝑡0𝑡1𝑡2 · · · 𝑡𝑚−1. Consider a nonterminal 𝑋 ∈ 𝑁 and two nodes

𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 . We say there is an 𝑋 -edge 𝑢
𝑋−→ 𝑣 iff there is a path 𝑝 from 𝑣𝑖 to 𝑣 𝑗 such that 𝑅(𝑝) can be

derived from 𝑋 . A context-free language reachability (CFL-reachability) problem is to determine in

𝐺 the node pairs connected by a path whose edge labels form an 𝑆-string.

Definition 3.1 (CFL-reachability). Given a context-free grammar CFG = ⟨Σ, 𝑁 ,𝑇 , 𝑃, 𝑆⟩, and an

edge-labeled digraph 𝐺 = ⟨𝑉 , 𝐸⟩, a CFL-reachability problem is to determine all the node pairs

(𝑣𝑖 , 𝑣 𝑗) ∈ 𝑉 ×𝑉 such that there is an 𝑆-edge from 𝑣𝑖 to 𝑣 𝑗 .

CFL-reachability via RHS tabulation. Solving CFL-reachability is a process that iteratively

generates new summary edges from existing ones according to the productions in the CFG, and
outputs the set of valid 𝑆-edges. The objective of the algorithm is to generate these 𝑆-edges. CFL-

reachability can be solved by a dynamic-programming-style algorithm [Melski and Reps 2000; Reps

1998]. The algorithm is based on the Reps-Horwitz-Sagiv tabulation [Reps et al. 1995]. Given a

production 𝑋 ::= 𝑌 𝑍 ∈ 𝑃 , two consecutive edges 𝑢
𝑌−→ 𝑣 and 𝑣

𝑍−→ 𝑤 generate 𝑢
𝑋−→ 𝑤 . Usually,

𝑢
𝑋−→ 𝑤 is inserted into the graph to make explicit the 𝑋 -reachability relation from 𝑢 to𝑤 if it was

not already inserted. Algorithm 1 gives the CFL-reachability algorithm based on RHS tabulation. The

algorithm requires the input CFG to be normalized so that the right-hand side of each production

contains at most two symbols. The standard algorithm maintains a worklist𝑊 holding unsolved

new edges. During reachability solving, the algorithm iteratively pops a worklist item, traverses

the edges adjacent to the worklist item, and adds the newly generated edges to the graph and the

worklist based on the grammar. Lines 6–13 show the processes of generating summary edges and

ultimately 𝑆-edges, with graph/worklist operations. The worklist𝑊 also rejects edges already in

the graph to avoid duplicate work and ensure the termination of the algorithm.

3.2 CFL-reachability and CFL-parsing

As noted by Reps [1998], the RHS tabulation is a generalization of the CYK algorithm [Younger

1967] for CFL-parsing. The technical description of our skewed tabulation is partially based on

parse trees. Thus, we briefly review the connection between CFL-reachability and CFL-parsing.

Parse trees are a useful abstraction to visualize the effects of grammar structure on tabulation

during CFL-reachability. A parse tree is a rooted tree that represents the syntactic structure of a

string according to some context-free grammar. Specifically, given a context-free language CFL
based on a grammar CFG = ⟨Σ, 𝑁 ,𝑇 , 𝑃, 𝑆⟩, a parse tree of CFL is a rooted tree such that

(1) each leaf is a terminal in 𝑇 , each internal node is a nonterminal of 𝑁 and the root is the start

symbol 𝑆 ; and

(2) each internal node and its children form the left-hand side and the right-hand side, respectively,

of a production belonging to 𝑃 .

Given a parse tree constructed based on a context-free grammar CFG, concatenating the leaves
from the leftmost to the rightmost always forms a string belonging to the language accepted by the

CFG. Parse trees are closely related to CFL-reachability and CFL-parsing. Indeed, when traversing

a parse tree from root to leaves, the tree represents the process of deriving a string from the start

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:6 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

Algorithm 1: CFL-reachability via RHS Tabulation.

Input :Edge-labeled directed graph𝐺 = ⟨𝑉 , 𝐸⟩, normalized CFG = ⟨Σ, 𝑁 ,𝑇 , 𝑃, 𝑆 ⟩
Output :The set { (𝑢, 𝑣) | 𝑢 𝑆−→ 𝑣 ∈ 𝐺 }

1 𝑊 ← 𝐸

2 foreach 𝑋 ::= 𝜀 ∈ 𝑃 do
3 foreach 𝑣 ∈ 𝑉 do add 𝑣

𝑋−→ 𝑣 to 𝐸 and to𝑊

4 while𝑊 ≠ ∅ do
5 select and remove an edge 𝑢

𝑌−→ 𝑣 from𝑊

6 foreach 𝑋 ::= 𝑌 ∈ 𝑃 do
7 if 𝑢

𝑋−→ 𝑣 ∉ 𝐸 then add 𝑢
𝑋−→ 𝑣 to 𝐸 and to𝑊

8 foreach 𝑋 ::= 𝑌 𝑍 ∈ 𝑃 do
9 foreach 𝑣

𝑍−→ 𝑤 ∈ 𝐸 do
10 if 𝑢

𝑋−→ 𝑤 ∉ 𝐸 then add 𝑢
𝑋−→ 𝑤 to 𝐸 and to𝑊

11 foreach 𝑋 ::= 𝑍 𝑌 ∈ 𝑃 do
12 foreach 𝑤

𝑍−→ 𝑢 ∈ 𝐸 do
13 if 𝑤

𝑋−→ 𝑣 ∉ 𝐸 then add 𝑤
𝑋−→ 𝑣 to 𝐸 and to𝑊

symbol via a series of productions in CFG; when traversing from leaves to root, the tree represents

the process of checking if a string is accepted by CFG.

Example 3.2. Let us revisit our motivating example to illustrate the relationship between parse

trees and tabulation. Figure 2c shows a parse tree for “𝑐𝑑𝑏𝑏𝑏” based on the grammar in Figure 1c.

When we see the parse tree from a top-down perspective, its a process of deriving the string “𝑐𝑑𝑏𝑏𝑏”

from the start symbol 𝑆 , in a process of “𝑆” to “𝑆𝐵” via 𝑆 ::= 𝑆 𝐵 then to “𝐴𝐵𝐵𝐵” via 𝑆 ::= 𝐴 𝐵

and finally to “𝑐𝑑𝑏𝑏𝑏” via 𝐴 ::= 𝑐 𝑑 and 𝐵 ::= 𝑏. When we see the parse tree from a bottom-up
perspective, it is a process of determining whether the string “𝑐𝑑𝑏𝑏𝑏” can be derived from 𝑆 , which

is exactly the process of tabulation. Thus, tabulation can be seen as the reverse process of string

derivation. The difference is that in the bottom-up tabulation process, no matter whether a string

belongs to the CFL, nonterminals corresponding to its sub-strings will always be generated first.

This manifests in summary edges in the graph, like 𝑠
𝐴−→ 𝑣 , 𝑣

𝐵−→ 𝑥 , and 𝑣
𝐵−→ 𝑡 in Figure 2a.

Grammar structure and summary edges. Based on different grammar structures (Figure 1), the

corresponding tabulation structures (Figure 2) can differ even for the same path string 𝑠 . Given a

grammar 𝐶𝐹𝐺 , we introduce the notion of summary-degree of a string 𝑠 to quantify the difference.

Definition 3.3 (Summary-degree). Consider a path 𝑝 and its path string 𝑠 = 𝑅(𝑝) in a graph 𝐺 .

Given a grammar CFG, we call the summary-count SCCFG (𝑠) of the path string 𝑠 the number of

summary edges inserted into 𝐺 by summarizing the path 𝑝 . This number is 0 if no summary edges

corresponding to 𝑝 are inserted. The summary-degree is the sum of summary-counts for all the

sub-strings of 𝑠 , including 𝑠 itself, denoted as SDCFG (𝑠). Let the set of all sub-strings of 𝑠 be sub(𝑠),
we have SDCFG (𝑠) =

∑
𝑠′∈sub(𝑠) SCCFG (𝑠′).

Example 3.4. We discuss the summary-degree of the string 𝑠 = 𝑐𝑑𝑏𝑏𝑏 for the grammars in

Figures 1a and 1c, which we call CFG1 and CFG2 respectively. Figures 2b and 2c give all nontermals

related to parsing 𝑠 based on CFG1 and CFG2, respectively. This is a visual representation of their

summary-degree, which we can compute: 𝑆𝐷CFG1
(𝑠) = 10 and 𝑆𝐷CFG2

(𝑠) = 7, respectively. Thus,

𝑆𝐷CFG2
(𝑠) < 𝑆𝐷CFG1

(𝑠), indicating that in CFL-reachability the number of summary edges needed

to compute 𝑠 using CFG2 is less than the number using CFG1.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:7

Summary-degree and skewing.We call the parsing structure of a grammarwith a lower summary-

degree for a string more skewed because of the shape of the parse trees it produces, as shown in

the parse trees in Figure 2c compared to Figure 2a. In terms of the CFL-reachability algorithm,

measuring the summary-degree SDCFG (𝑠) is a way to measure how much work is done computing

and/or inserting the corresponding summary edges. Note that the summary-degree also applies to

all sub-strings of 𝑠 .

Summary-degree and linear CFL-reachability. Linear grammar rules that contain at least

one terminal on the right-hand side have an advantage: the input graph contains all its terminal

edges from the beginning of the algorithm. If a summary edge labeled by 𝑋 is generated in CFL-

reachability, we can immediately check if any linear grammar rules containing 𝑋 can ever be

applied because all terminal edges must be in the input graph at the beginning of the algorithm.

Thus, when using a linear grammar, we do not need to insert any summary edges, which reduces

the summary-degree dynamically. The seminal work of Yannakakis [1990] gives a specialized

CFL-reachability algorithm for linear grammars that runs in𝑂 (𝑚𝑛) time. In linear CFL-reachability,

the summary-degree is 0 for all strings, since no summary edges are inserted. We call this case

fully skewed as it is the smallest possible summary-degree for all strings.

3.3 Problem Formulation

Section 3.2 defines the summary-degree SDCFG (𝑠) as the number of summary edges that are inserted

in a CFL-reachability algorithm. We call a grammar with a lower summary-degree over all strings

more skewed than one with a higher summary-degree. Indeed, summary-degree can be reduced

both statically (by changing the structure of the grammar 𝐶𝐹𝐺) and dynamically (by specializing

the CFL-reachability algorithm itself to the grammar structure).

Ideally, we want to transform the input grammar so that all strings have an summary-degree of

0, which implies we can obtain an equivalent linear grammar and utilize the corresponding linear

CFL-reachability algorithm that inserts no summary edges. However, not all context-free grammars

have a linear form, and even checking if such a form exists is undecidable [Greibach 1966]. As a

result, our approach skewed tabulation skews the grammar structure as much as possible through

static transformation and dynamic reachability propagation. As the summary-degree is a visual

measurement of skewedness, we state our problem formulation as follows.

Given a grammarCFG and a graph𝐺 , skewed tabulation reduces the summary-degree SDCFG (𝑠)
of some path strings 𝑠 = 𝑅(𝑝) in 𝐺 .

Section 4 presents the two steps of skewing: static skewing and dynamic skewing. Static skewing

involves analyzing and transforming the input grammar, and dynamic skewing uses the statically

skewed grammar to further exploit skewed parse trees at runtime.

4 CFL-Reachability via Skewed Tabulation

This section introduces skewed tabulation, which is comprised of a static and a dynamic part. Our

key insight is that the parse trees of a given grammar can be skewed statically by equivalently

rearranging their sub-trees through grammar transformation. Using the transformed grammar,

dynamic skewing can be applied by adjusting the CFL-reachability algorithm Sections 4.2 and 4.3

introduce our static and dynamic skewing, respectively.

4.1 Basic Idea

As shown in Section 3.2, skewed tabulation reduces the summary-degree (Definition 3.3) of all

strings under the input grammar. This section discusses two steps in skewed tabulation: (1) static

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:8 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

BA
S

B

B

B

X

X

X

X

S

S

S

S

X

X

X

XA

(a) Parse tree transformation for
a left-cyclic nonterminal 𝐵 with
grammar rules 𝐵 ::= 𝐵 𝑋 , 𝑆 ::= 𝐴 𝐵.

BA
S

B

X X

B

X X

S

S

S

S

X

X

X

XA

(b) Parse tree transformation for
a doubly-cyclic nonterminal 𝐵
with grammar rules 𝐵 ::= 𝐵 𝐵,
𝐵 ::= 𝑋 , and 𝑆 ::= 𝐴 𝐵.

X XA X X

B B B

B B

B

S

S
S S

S

S

S

X

X

X

XA

(c) Parse forests for 𝐴𝑋𝑋𝑋𝑋 for the
original and transformed grammars.

Fig. 3. Visual representation of the grammar transformations using cyclic nonterminals.

skewing, a grammar transformation in the preprocessing stage, and (2) dynamic skewing, a skewed
CFL-reachability algorithm.

Static skewing. The motivating example shows that we can restructure the input grammar in

Figure 1a to Figure 1c to reduce the summary-degree of a string, as shown by the summary edge

reduction in Figure 2c compared to Figure 2a. Static skewing aims to reduce the summary-degree

for all strings belonging to the language by restructuring the input grammar. We promote recursive

behavior from non-𝑆 nonterminals up the parse tree, closer to the root node 𝑆 . This transformation

reuses previously valid sub-trees in other parse trees, reducing the number of distinct sub-trees

needed, and therefore reducing the number of summary edges generated in CFL-reachability.

Dynamic skewing. When solving CFL-reachability based on a skewed grammar, there are often

summary edges that do not need to be inserted into the graph to obtain the correct set of S-edges .

We call such edges propagating edges. Specifically, a propagating edge 𝑝 is always generated after

all the relevant adjacent edges, used with 𝑝 to generate new summary edges, are already in the

graph. Thus, dynamic skewing treats propagating edges differently by only adding them to the

worklist, not the graph. This reduces the summary-degrees of path strings dynamically.

4.2 Static-Skewing: Transforming Context-Free Grammar

Static skewing transforms the input context-free grammar, such that the transformed grammar has

a lower summary-degree over all strings 𝑠 under RHS tabulation.

Naively rewriting a grammar to reduce the summary-degree on a case-by-case basis does not

necessarily lead to better performance for CFL-reachability overall; restructuring the grammar

to improve summary-degree for one string may have negative repercussions on the summary-

degree of other strings. To reduce the summary-degree of a grammar over all strings, our grammar

transformation reuses sub-trees of parse trees derived from the original grammar to replace sub-

trees of different parse trees also derived from the original grammar. The challenge is rewriting the

grammar to do this while preserving equivalence with the original grammar CFG.
The static skewing transformation contains two phases: grammar transformation and grammar

annotation. The grammar transformation alone produces parse trees with a lower summary-degree

than the original, and grammar annotation collects information for the dynamic skewing approach

presented in Section 4.3. A context-free grammar CFG in CNF has productions of the form𝐴 ::= 𝐵 𝐶

that fall into three categories: (1) non-recursive, where 𝐴, 𝐵, and 𝐶 are distinct, (2) left- or right-

recursive, where 𝐴 = 𝐵 or 𝐶 , meaning 𝐴 ::= 𝐴 𝐶 or 𝐴 ::= 𝐵 𝐴 respectively, and (3) doubly recursive

a.k.a. transitive, where 𝐴 = 𝐵 = 𝐶 . To reduce the summary-degree of the input CFG for all strings,

we identify nonterminals that recursively generate or append a specific set of nonterminals where

they are used. We call these cyclic nonterminals. For example, given a nonterminal 𝑁 that satisfies

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:9

Algorithm 2: Skewed_Form(CFG).
Input :Context-free grammar CFG, set of target nonterminals𝑇
Output :Skewed grammar 𝑆𝐹 (𝐶𝐹𝐺) = {CFG′, 𝑃𝑁 }, where 𝑃𝑁 is the set of propagating nonterminals

1 CFG′ ← CFG
2 foreach 𝑆 ′ ∈ 𝑇 do
3 if ∃𝑆 ′ ::= 𝐴 𝐵 ∈ 𝑃 then
4 if isCyclic(𝐵, CFG) and 𝐵 ∉ 𝑇 and all rules for 𝑆 ′ are of the form 𝑆 ′ ::= 𝑋 𝐵 then
5 CFG′ ← 𝑆 ′ ::= 𝑆 ′ 𝐵
6 if 𝐵 ::= 𝜖 ∈ 𝑃 then
7 remove 𝑆 ′ ::= 𝑋 𝐵 from CFG′
8 CFG′ ← 𝑆 ′ ::= 𝑋

9 if isCyclic(𝐴, CFG) and 𝐴 ∉ 𝑇 and all rules for 𝑆 ′ are of the form 𝑆 ′ ::= 𝐴 𝑋 then
10 CFG′ ← 𝑆 ′ ::= 𝐴 𝑆 ′

11 if 𝐴 ::= 𝜖 ∈ 𝑃 then
12 remove 𝑆 ′ ::= 𝐴 𝑋 from CFG′
13 CFG′ ← 𝑆 ′ ::= 𝑋

14 foreach 𝑆 ′ ::= 𝐴 𝑆 ′ ∈ 𝑃 , 𝑆 ′ ∈ 𝑇 do
15 if isCyclic(𝐴, CFG′) and 𝐴 ∉ 𝑇 and 𝐴 only used in singly-recursive rules then
16 if 𝐴 ::= 𝐴 𝐴 ∈ 𝑃 then
17 remove 𝐴 ::= 𝐴 𝐴 from CFG′

18 if 𝐴 ::= 𝜖 ∈ 𝑃 then
19 remove 𝐴 ::= 𝜖 from CFG′

20 if 𝐴 ::= 𝑎 ∈ 𝑃 , 𝑎 ∈ Σ then
21 remove 𝐴 ::= 𝑎 from CFG′
22 CFG′ ← 𝑋 ::= 𝑎 𝑋 for all 𝑋 :: 𝐴 𝑋 ∈ 𝑃
23 CFG′ ← 𝑋 ::= 𝑋 𝑎 for all 𝑋 :: 𝑋 𝐴 ∈ 𝑃
24 if 𝐴 ::= 𝑋 𝐴 ∈ 𝑃 or 𝐴 ::= 𝐴 𝑋 ∈ 𝑃 then
25 remove 𝐴 ::= 𝑋 𝐴 or 𝐴 ::= 𝐴 𝑋 from CFG′
26 CFG′ ← 𝑆 ′ ::= 𝑋 𝑆 ′

27 foreach 𝑆 ′ ::= 𝑆 ′ 𝐵 ∈ 𝑃 , 𝑆 ′ ∈ 𝑇 do
28 // This procedure is similar to the above but handles left-recursion. It can be found in

the supplemental material.
29 HandleLeftRecursion(𝐵, 𝑆 ′ , CFG′)
30 𝑃𝑁 ← ∅
31 foreach 𝐴 ∈ 𝑁 do
32 if ∀𝑋 ::= 𝑌 𝐴 ∈ 𝑃 and ∀𝑋 ::= 𝐴 𝑌 ∈ 𝑃 we have 𝑌 ∈ Σ and 𝑋 ≠ 𝐴 then
33 𝑃𝑁 ← 𝐴

34 return (CFG′, 𝑃𝑁)

this property, we can replace uses of 𝐴 ::= 𝑋 𝑁 with two rules 𝐴 ::= 𝑋 𝑡 and 𝐴 ::= 𝐴 𝑡 for all 𝑡s as

long as this does not change the language of nonterminal 𝐴.

Definition 4.1 (Cyclic Nonterminal). A cyclic nonterminal is a nonterminal that falls into exclu-

sively one of the following categories:

• Left-cyclic: The nonterminal only has associated left-recursive rules.

• Right-cyclic: The nonterminal only has associated right-recursive rules.

• Doubly-cyclic: The nonterminal has one associated transitive rule, and all other associated

rules are non-recursive.

Example 4.2. In Figure 3, we identify a cyclic nonterminal 𝐵 in two different grammars. In both

grammars, 𝐵 recursively derives strings of 𝑋 nonterminals of infinite length. In Figure 3a, 𝐵 is a

left-cyclic nonterminal. In Figure 3b, 𝐵 is a doubly-cyclic nonterminal.

To compare the summary-degree for more than one string at a time under two grammars, we can

compare the summary-degree of sentential forms. Recall that a string in sentential form contains

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:10 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

terminals and nonterminals from a grammar [Aho et al. 2006]. Given two grammars𝐺1 and𝐺2 and

a string 𝑠 in sentential form, we assume inequality 𝑆𝐷𝐺1
(𝑠) ≤ 𝑆𝐷𝐺2

(𝑠) correctly holds for all the

strings 𝑠 represents. We formally explain how to compare summary-degree for sentential form in

Lemma 4.8 with a proof in Section 4.4.

Example 4.3. In Figure 3a, 𝐵 is a left-cyclic nonterminal, and in Figure 3b 𝐵 is a doubly-cyclic

nonterminal. We can promote the recursion of 𝐵 up the parse tree to the nonterminal 𝑆 as shown

in Figures 3a and 3b. To compute the summary-degree, we treat 𝐴 and 𝑋 as terminal symbols

in the sentential form string 𝐴𝑋𝑋𝑋𝑋 . For both Figures 3a and 3b we have 𝑆𝐷CFG (𝐴𝑋𝑋𝑋𝑋) = 9,

and 𝑆𝐷CFG′ (𝐴𝑋𝑋𝑋𝑋) = 5; the parse forests with all nonterminals are shown in Figure 3c. Since

the transformation didn’t affect the nonterminal 𝑋 , the summary-degree of all strings 𝐴𝑋𝑋𝑋𝑋

represents also decreased according to Lemma 4.8.

High-level transformation. Our objective is to reduce the summary-degree for some strings

𝑠 without negatively affecting the summary-degree of other strings. At the parse-tree level, we

identify cyclic-nonterminals, which reveal reusable sub-trees, and replace sub-trees derived from the

original grammar with these. We derive new grammar rules to accomplish this sub-tree replacement

using only nonterminals from the original grammar. We remove rules that become incorrect or

redundant. Intuitively, this reduces the summary-degree of the transformed grammar for the

affected parse trees because we have eliminated summary edges without affecting the reachability

result (𝑆-edges). We call the transformed grammar skewed because of the shape of the resulting

parse trees.

Transformation steps. Algorithm 2 gives the static skewing transformation, which is a top-down

procedure. It starts with the start symbol 𝑆 and then operates on the remaining nonterminals. We

call the nonterminals whose language cannot change target nonterminals, starting with 𝑆 . We visit

the right-hand sides for the symbol 𝑆 of the form 𝑆 ::= 𝐴 𝐵.

(1) Transform any cyclic behavior of 𝐴 or 𝐵 on the right-hand side into equivalent left- or

right-recursive behavior for 𝑆 , of the form 𝑆 ::= 𝑆 𝐵 or 𝑆 ::= 𝐴 𝑆 , if the chosen nonterminal 𝐴

or 𝐵 is used in the same position for all right-hand sides of 𝑆 . If an epsilon rule exists for 𝐴 or

𝐵, rules of the form 𝑆 ::= 𝐴 𝑋 or 𝑆 ::= 𝑋 𝐵 are replaced with 𝑆 ::= 𝑋 (lines 2-13).

(2) Locate a nonterminals𝐴 such that 𝑆 ::= 𝐴 𝑆 ,𝐴 is cyclic, and𝐴 is only used in singly-recursive

rules (lines 14-15).

(3) Given a doubly-cyclic nonterminal 𝐴, remove 𝐴 ::= 𝐴 𝐴 (lines 16-17).

(4) Remove epsilon and unary rules for this nonterminal, since these are redundant and replace-

able. Replace unary rule with additional linear rules where 𝐴 is used (lines 18-23).

(5) For any recursive rules associated with 𝐴, propagate the recursion up to the 𝑆 symbol

considered (lines 24-26).

(6) Repeat steps (2)-(5) to handle the left-recursive case where 𝐴 is such that 𝑆 ::= 𝑆 𝐴 (lines

27-29).

(7) Iteratively apply this transformation to the remaining nonterminals, where 𝑆 and the next

nonterminal are labeled as target nonterminals.

Complexity of static skewing. We prove the correctness of this transformation and annotation

and provide formal guarantees of its benefits in Section 4.4. For the transformation complexity,

given𝑀 rules and 𝑁 nonterminals, the complexity is 𝑂 (𝑀2 × 𝑁). The transformation is applied

𝑁 times, where each nonterminal is chosen as a target once (and 𝑆 is always a target), and the

for-each loops on lines 2, 14, 27, and 31 are bounded by the number of rules𝑀 . Within these for

each loop, checking the isCyclic property along with other if conditions are also bounded by𝑀 . In

practice, the transformation takes less than a second.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:11

Annotation steps. We annotate nonterminals that are only used in linear-like rules in the skewed

output grammar called propagating nonterminals. These are used in propagating edge recognition

in the online CFL-reachability solving process, described in Section 4.3.

Definition 4.4 (Propagating Nonterminal). A nonterminal 𝑌 ≠ 𝑆 is called a propagating nontermi-

nal if all productions containing 𝑌 on the right-hand side are in the form of 𝑋 ::= 𝑌 , 𝑋 ::= 𝑌 𝑧 or

𝑋 ::= 𝑧 𝑌 where 𝑧 is a terminal.

4.3 Dynamic Skewing: Skewed Tabulation algorithm

Dynamic skewing focuses on identifying and handling edges that do not need to be inserted into the

graph. We call such edges propagating edges. A typical example is the edges labeled by a propagating

nonterminal (Definition 4.4). Consider a propagating nonterminal 𝑋 and a newly generated 𝑋 -edge

that is pushed into the worklist. According to Definition 4.4, all productions containing 𝑋 on the

right-hand side are in the form of 𝑌 ::= 𝑋 , 𝑌 ::= 𝑋 𝑧 or 𝑌 ::= 𝑧 𝑋 , where 𝑧 is a terminal. Namely,

the 𝑧-edges are always in the initial graph. Thus, no matter whether the 𝑋 -edges are in the graph

or not, the 𝑌 -edges can be generated when the 𝑋 -edge is popped from the worklist and processed.

Therefore, the 𝑋 -edges do not need to be inserted into the graph. In fact, besides the edges labeled

by propagating nonterminals, which can be determined statically by the grammar transformation,

propagating edges are also identified dynamically in the solving process. The following lists two

types of propagating edges:

• Static: an edge 𝑢
𝑋−→ 𝑣 such that 𝑋 is a propagating nonterminal. This type of propagating

edge can be found in static skewing.

• Dynamic: an edge 𝑢
𝑋−→ 𝑣 that is generated by 𝑋 ::= 𝑋 𝑋 and all the binary productions

containing 𝑋 on the right-hand side are recursive, i.e., in the form of 𝐴 ::= 𝑋 𝐴 or 𝐴 ::= 𝐴 𝑋 .

This is because with the 𝑋 -edges that were not generated by 𝑋 ::= 𝑋 𝑋 inserted into the

graph, those recursive productions can generate all the 𝑋 - and 𝐴-edges without inserting

𝑢
𝑋−→ 𝑣 into the graph. This type of propagating edge can only be determined in the dynamic

solving process.

The dynamic skewing approach leverages the result of static skewing. The skewedCFL-reachability

algorithm takes the skewed context-free grammar (Section 4.2) as input and deals with propagating

edges differently from the standard RHS-tabulation CFL-reachability algorithm. Algorithm 3 gives

the skewed-tabulation CFL-reachability algorithm, where the treatment of propagating edges is

displayed in lines 12–18. Our dynamic skewing reduces summary-degree by not inserting prop-

agating edges. Specifically, once a generated edge is identified as a propagating edge, it is never
inserted into the graph. To ensure termination, Algorithm 3 maintains an edge set PE to record

propagating edges. Once a propagating edge is generated, it is inserted into PE and the worklist𝑊

if it is not already in PE. Otherwise, the propagating edge will be discarded.

The main structure of Algorithm 3 (lines 1–11) is similar to the RHS-tabulation-based standard

CFL-reachability algorithm. The difference is dealing with propagating edges (line 12–18). Specifi-

cally, when generating an edge, e.g., 𝑣𝑖
𝑋−→ 𝑣 𝑗 , it first identifies whether the edge is a propagating

edge, using the two criteria proposed above. If the edge meets any of the two criteria, the algorithm

adds it to the worklist but not into the graph, as seen in lines 13–16. Otherwise, the algorithm

inserts it into the graph and the worklist.

Example 4.5. Let us consider a path 𝑝 = 𝑥
𝑏−→ 𝑦

𝑏−→ 𝑢
𝑏−→ 𝑣 under a grammar containing

𝐵 ::= 𝐵 𝐵 | 𝑏, where 𝐵 is not a cyclic nonterminal. In this case, 𝐵 ::= 𝐵 𝐵 cannot be removed by static

skewing (Algorithm 2). When processing 𝑝 , 𝑥
𝐵−→ 𝑦, 𝑦

𝐵−→ 𝑢, and 𝑢
𝐵−→ 𝑣 are always generated and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:12 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

Algorithm 3: CFL-Skewed: CFL-Reachability via Skewed Tabulation.

Input :Edge-labeled directed graph𝐺 = ⟨𝑉 , 𝐸⟩, normalized CFG = ⟨Σ, 𝑁 ,𝑇 , 𝑃, 𝑆 ⟩
Output :The set { (𝑣𝑖 , 𝑣𝑗) | 𝑣𝑖

𝑆−→ 𝑣𝑗 ∈ 𝐸 ∪ PE}
1 (CFG′ = ⟨Σ, 𝑁 ′,𝑇 , 𝑃 ′, 𝑆 ⟩, PN) ← Skewed_Form(CFG) // Algorithm 2
2 PE← ∅ ;𝑊 ← 𝐸

3 foreach 𝑋 ::= 𝜀 ∈ 𝑃 ′ do
4 foreach 𝑣 ∈ 𝑉 do add 𝑣

𝑋−→ 𝑣 to 𝐸 and to𝑊

5 while𝑊 ≠ ∅ do
6 select and remove an edge 𝑣𝑖

𝑌−→ 𝑣𝑗 from𝑊

7 foreach 𝑋 ::= 𝑌 ∈ 𝑃 ′ do Update(𝑣𝑖
𝑋−→ 𝑣𝑗) // line 12

8 foreach 𝑋 ::= 𝑌 𝑍 ∈ 𝑃 ′ do
9 foreach 𝑣𝑗

𝑍−→ 𝑣𝑘 ∈ 𝐸 do Update(𝑣𝑖
𝑋−→ 𝑣𝑘) // line 12

10 foreach 𝑋 ::= 𝑍 𝑌 ∈ 𝑃 ′ do
11 foreach 𝑣𝑘

𝑍−→ 𝑣𝑖 ∈ 𝐸 do Update(𝑣𝑘
𝑋−→ 𝑣𝑗) // line 12

12 Procedure Update(𝑣𝑖
𝑋−→ 𝑣𝑗)

13 if 𝑋 ∈ PN then
14 if 𝑣𝑖

𝑋−→ 𝑣𝑗 ∉ PE then add 𝑣𝑖
𝑋−→ 𝑣𝑗 to PE and to𝑊 // 𝑣𝑖

𝑋−→ 𝑣𝑗 is a static propagating edge

15 else if 𝑣𝑖
𝑋−→ 𝑣𝑗 is generated by 𝑋 ::= 𝑋 𝑋 and (∀𝐴 ::= 𝑋 𝐵 ∈ 𝑃 ′ , ∀𝐴 ::= 𝐵 𝑋 ∈ 𝑃 ′ : 𝐴 = 𝐵) then

16 if 𝑣𝑖
𝑋−→ 𝑣𝑗 ∉ PE then add 𝑣𝑖

𝑋−→ 𝑣𝑗 to PE and to𝑊 // 𝑣𝑖
𝑋−→ 𝑣𝑗 is a dynamic propagating edge

17 else if 𝑣𝑖
𝑋−→ 𝑣𝑗 ∉ 𝐸 then

18 add 𝑣𝑖
𝑋−→ 𝑣𝑗 to 𝐸 and to𝑊 // 𝑣𝑖

𝑋−→ 𝑣𝑗 is not a propagating edge

inserted into the graph. The difference between RHS tabulation and dynamic skewing is that RHS

tabulation always inserts 𝑥
𝐵−→ 𝑢 (also 𝑦

𝐵−→ 𝑣 and 𝑥
𝐵−→ 𝑣) into the graph, whereas dynamic skewing

does not insert them. Thus, 𝑥
𝐵−→ 𝑣 will only be generated once by dynamic skewing because it

does not insert 𝑥
𝐵−→ 𝑢 into the graph. In this case, dynamic skewing reduces the summary-degree

of the path string 𝑅(𝑝) by 3, which not only reduces memory consumption but also reduces the

computations needed to generate summary edges.

As we can see in lines 12–18, our skewed solver guarantees that the summary-degrees of all the

path strings in the dynamic solving process are always smaller than (or at least equal to when there

are no propagating edges) the RHS-tabulation-based standard solver. Because the Algorithm 3 only

differs from the standard algorithm by skipping the insertion step for certain edges and does not

change the dynamic programming scheme, the time complexity of Algorithm 3 is the same as that

of the standard algorithm, i.e., 𝑂 (𝑛3). Section 4.4 discusses the correctness of Algorithm 3.

4.4 Formal Analysis of Skewed Tabulation

We first discuss the correctness of static skewing and dynamic skewing.

Lemma 4.6 (Correctness of static skewing). Given an input grammar CFG and the transformed
grammar CFG′, the language of CFG and CFG′ are the same.

Proof. We introduce no new nonterminals in our grammar transformation. All new grammar

rules use the properties of cyclic nonterminals (Definition 4.1) to introduce left- or right-recursion

when this nonterminal is used on the right-hand side of a grammar rule. In particular, if 𝐶 is cyclic,

a use of 𝐶 in a rule 𝐴 ::= 𝐵 𝐶 can create a new rule 𝐴 ::= 𝐴 𝐶 , which is correctly provided that all

rules for 𝐴 have a 𝐶 nonterminal in that position. As this is redundant with the cyclic property of

the rule 𝐶 , adding this rule does not change the language of CFG.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:13

In terms of removing grammar rules, after adding rules as explained above, we remove the

grammar rules that make 𝐶 cyclic provided that all right-hand side uses of 𝐶 have been turned into

recursion. Since the cyclic nature of 𝐶 was captured in the rules of the form 𝐴 ::= 𝐴 𝐶 , it is correct

to remove the rule 𝐶 ::= 𝐶 𝐶 . If 𝐶 is recursive like 𝐶 ::= 𝐶 𝑋 , we add a rules 𝐴 ::= 𝐴 𝑋 to replace

this rule and remove it. Again, we reiterate that this only occurs if all right-hand side uses of 𝐶 are

in recursive rules (for rules that do not have 𝐶 on the left-hand side).

The remaining transformations replace𝐶 uses with equivalent terminals or epsilon when possible,

which are trivially correct. Throughout this transformation, the nonterminal 𝐶 cannot be a target

nonterminal. 𝑆 is always a target nonterminal. The only nonterminal language that changes

throughout this iteration of the transformation is the language of 𝐶 . Therefore, since 𝑆 ≠ 𝐶 the

language of 𝑆 has not changed, so the language of CFG and CFG′ are the same. □

Lemma 4.7 (Correctness of Dynamic Skewing). Given a skewed context-free grammar CFG′,
Algorithm 3 (without further skewing CFG′ in line 1) and the standard algorithm (Algorithm 1) produce
the same result from the same graph.

Proof. We use a proof by contradiction. We want to show that the set of 𝑆 edges in the output

graph is the same using either algorithm. Thus, without loss of generality, we will prove the

following property: the set of edges that are not labeled by propagating nonterminals are the same

in the output graphs of Algorithm 1 and Algorithm 3. The only difference between Algorithm 1

and Algorithm 3 is that the first does not insert propagating nonterminals into the graph; these

are only inserted into the worklist. Recall that a propagating nonterminal is a nonterminal that is

only used on the right-hand side of linear rules (Definition 4.4). Consider a grammar rule 𝐴 := 𝑃𝑄 ,

where 𝑃 is a propagating nonterminal, and let there be two graph edges: 𝑣𝑘
𝑃−→ 𝑣𝑙 , 𝑣𝑙

𝑄
−→ 𝑣𝑚 . Assume

by contradiction that 𝑣𝑘
𝐴−→ 𝑣𝑚 is not generated. This means that when 𝑣𝑘

𝑃−→ 𝑣𝑙 arrived in the

worklist, 𝑣𝑙
𝑄
−→ 𝑣𝑚 was not present in the graph. However, propagating nonterminals are only used

in linear rules, meaning 𝑄 is actually a terminal symbol, and terminal edges are always present

in the graph, so we have a contradiction. Therefore 𝑣𝑘
𝐴−→ 𝑣𝑚 is generated. Similarly, given a

grammar rule 𝐴 := 𝑄𝑃 and edges 𝑣𝑘
𝑄
−→ 𝑣𝑙 , 𝑣𝑙

𝑃−→ 𝑣𝑚 , the edge 𝐴 must be generated since 𝑄 has

to be a terminal symbol. This covers all cases in which a summary edge may be generated based

on a propagating nonterminal. Applying this recursively, all nonterminal edges that depend on a

propagating nonterminal will eventually be generated since the rest of the algorithm is unchanged.

Therefore, all edges that are not labeled by propagating nonterminals are the same in the output

graphs of both Algorithms. As a result, the set of 𝑆-edges output by Algorithm 1 is the same as the

set of 𝑆-edges output by Algorithm 3. □

Next, we discuss the summary edge reduction achieved by static skewing. Specifically, we want

to show that the summary-degree of all strings 𝑠 is the same or reduced under the transformed

grammar CFG′ compared to the original grammar CFG. First, we show this is true for strings in

sentential form, which can contain nonterminals.

Lemma 4.8 (Comparing summary-degree of sentential forms). Given a string 𝑠 in sentential
form containing nonterminal 𝑋 and two grammars 𝐺1, 𝐺2, the inequality 𝑆𝐷𝐺2

(𝑠) ≤ 𝑆𝐷𝐺1
(𝑠) holds

if (1) the strings 𝑋 derives in 𝐺2 are a subset of the strings 𝑋 derives in 𝐺1 and (2) the inequality
𝑆𝐷𝐺2

(𝑠′) ≤ 𝑆𝐷𝐺1
(𝑠′) holds for all 𝑠′ in this subset of 𝑋 -derived strings.

Proof. Consider the inequality 𝑆𝐷𝐺2
(𝑠) ≤ 𝑆𝐷𝐺1

(𝑠), where 𝑠 is in sentential form, and the

definition of summary-degree (Definition 3.3). The summary-degree of a string 𝑠 is reduced if

the summary-degree for sub-strings 𝑠′ are reduced since the summary-degree is defined as the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:14 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

sum of summary-count of the sub-strings of 𝑠 . The summary-degree of the strings represented by

the abstracted nonterminals 𝑋 denoted 𝑠′ are always reduced in 𝐺2: for the strings derived from

𝑋 in 𝐺1 that are invalid in 𝐺2 the summary-degree is now 0, and for the strings derived from 𝑋

in both grammars, 𝑆𝐷𝐺2
(𝑠′) ≤ 𝑆𝐷𝐺1

(𝑠′). Thus, all the abstracted sub-strings 𝑠′ have a reduced
summary-degree. Therefore, all strings represented by this sentential form in using the original

grammar have a reduced summary-degree using the new grammar. □

We use Lemma 4.8 to compare the summary-degree of all strings 𝑠 under the grammar CFG′.

Theorem 4.9 (Summary-degree Reduction of static Skewing). Given the summary-degree
of any string 𝑠 , under the transformed grammar CFG′ and the original grammar CFG, we have
𝑆𝐷CFG′ (𝑠) ≤ 𝑆𝐷CFG (𝑠).

Proof. Nonterminals in CFG′) fall into two categories: (1) they parse a subset of the strings they
parsed in the original grammar, or (2) they parse the same strings as in the original grammar. This

means the summary-degree of some sentential forms has decreased as the summary-count of some

strings from the original grammar has become 0. Since the summary-degree of a sentential form can

only decrease, applying Lemma 4.8 recursively implies that for any string 𝑠 , the summary-degree of

CFG′ will either be the same or reduced compared to the original grammar. Therefore, we reduced

the summary-degree of CFG′ over all strings. □

Finally, we discuss the formal guarantees of skewed tabulation. Lemma 4.6 states that the static

skewing preserves the language of the input grammar CFG, and Theorem 4.9 states that the trans-

formed grammar only reduces the summary-degree, and therefore the number of summary edges,

in CFL-reachability. Lemma 4.7 states that the dynamically skewed tabulation CFL-reachability

algorithm preserves the same result as the RHS tabulation. Trivially, dynamic skewing can only

reduce the number of summary edges inserted because its only difference with Algorithm 1 is

skipping the insertion of some special edges. Thus, our overall approach preserves the output of

RHS tabulation while reducing the number of summary edges inserted.

Theorem 4.10. Given a grammar CFG and an edge-labeled graph 𝐺 , Algorithms 1 and 3 produce
the same reachability results.

5 Experiments

CFL-reachability has been extensively discussed in the literature. Instead of building a CFL-

reachability solver from scratch, we implemented our CFL-Skewed algorithm (CFL-Skewed) on a

state-of-the-art general CFL-reachability solver POCR [Lei et al. 2022b]. The reachability propa-

gation in POCR follows the traditional RHS tabulation. Therefore, we refer POCR as the baseline

RHS-tabulation implementation (CFL-RHS). In this setting, both CFL-Skewed and CFL-RHS can ben-

efit from POCR’s ability to handle transitive rules. As a result, we can demonstrate the performance

difference caused by different tabulation strategies. In the literature, Datalog has been a prominent

framework for formulating program-analysis problems [Bravenboer and Smaragdakis 2009; Lu

et al. 2013; Scholz et al. 2016; Whaley et al. 2005]. In particular, CFL-reachability can be encoded

as a Datalog problem instance [Reps 1998]. Therefore, we adopt a state-of-the-art Datalog solver

Soufflé [Scholz et al. 2016]. We perform extensive evaluations on three C/C++ client analyses: an

alias analysis [Zheng and Rugina 2008], a value-flow analysis [Sui et al. 2014], and a polymorphic

taint analysis [Kodumal and Aiken 2004]. Our experiments focus on three research questions.

RQ1: How much can CFL-Skewed reduce inserted summary edges?

RQ2: Towhat extent can CFL-Skewed accelerate CFL-reachability by reducing summary edges?

RQ3: Can CFL-Skewed outperform state-of-the-art solvers in memory overhead?

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:15

Table 1. Benchmark information, where PEG is used for alias analysis, and SVFG is used for value-flow
analysis and taint analysis. #LOC(k) denotes the number of lines of codes, measured in thousands. #SumEdge
by CFL-RHS denotes the number of summary edges in the final graph computed by CFL-RHS.

Bench. #LOC(k)

PEG SVFG #SumEdge by CFL-RHS

#Node #Edge #Node #Edge Alias Value-Flow Taint

1.cactus 257 45,696 104,816 235,102 337,313 86,091,010 2,327,596 47,508,895

2.deepsjeng 10 7,588 16,564 9,813 19,962 4,459,735 1,113,521 48,254,292

3.imagick 259 43,801 116,706 344,796 539,533 835,383,009 74,655,258 -

4.lbm 1 783 1,616 995 1,391 29,643 11,410 47,003

5.leela 21 9,103 22,884 48,138 70,610 8,702,553 2,280,728 212,128,751

6.mcf 3 2,320 5,090 2,685 3,965 550,673 29,345 1,050,586

7.nab 24 4,337 9,950 32,037 41,617 458,650 3,854,605 26,013,979

8.omnetpp 134 75,418 172,436 468,794 1,613,922 279,194,458 39,426,888 -

9.parest 427 26,701 66,984 365,846 739,060 82,710,266 210,190,800 -

10.perlbench 362 40,078 115,890 613,180 1,507,152 - 1,026,629,696 -

11.povray 170 18,510 46,332 351,415 769,078 54,670,321 274,590,820 -

12.x264 96 19,835 48,678 140,517 256,521 13,202,928 35,521,661 -

13.xz 33 3,472 8,102 31,267 41,616 434,838 710,239 44,237,649

Summary. By reducing wasted summary edges, CFL-Skewed outperforms a state-of-the-art CFL-

reachability solver CFL-RHS and a state-of-the-art Datalog solver Soufflé in all of the three clients.

For alias analysis, CFL-Skewed is 3.34× and 3.16× faster than CFL-RHS and Soufflé, respectively. For
value-flow analysis, CFL-Skewed is 1.13× and 1.85× faster than CFL-RHS and Soufflé, respectively.
For taint analysis, CFL-Skewed is 2.05× and 2.28× faster than CFL-RHS and Soufflé, respectively.
Moreover, for alias analysis, CFL-Skewed consumes 60.05% and 61.45% less memory than CFL-RHS
and Soufflé, respectively. For value-flow analysis, CFL-Skewed consumes 20.38% and 16.47% less

memory than CFL-RHS and Soufflé, respectively. For taint analysis, CFL-Skewed consumes 63.06%

and 56.56% less memory than CFL-RHS and Soufflé, respectively.

5.1 Experimental Setup

All experiments were conducted on a platform with an eight-core 2.60 GHz Intel Xeon CPU and a

128GB RAM memory, running Ubuntu 20.04.

Benchmarks and graph collection. We evaluate the client analyses on the SPEC CPU 2017

suite. Three programs (i.e., xalancbmk, gcc and blender) failed to be linked by wllvm and thus

are not included in our evaluation. Our measurements take the average of three runtimes for

each experiment. We found that the runtimes varied little in practice, so this number of runs

was sufficient to present an accurate and fair comparison. Table 1 presents the statistics of the

benchmarking graphs used in our evaluation. In particular, alias analysis is conducted on program

expression graphs (PEGs) [Zheng and Rugina 2008], and value-flow analysis and taint analysis are

conducted on sparse value-flow graphs (SVFGs) [Sui et al. 2014]. To obtain the graphs, we compile

each program into a bitcode file using Clang-14.0.0, linked via wllvm2 for whole-program analysis.

Then, we extract the corresponding graphs using an open-source tool SVF [Sui and Xue 2016].

Existing graph simplification techniques, including cycle elimination [Tarjan 1972], offline variable

substitution [Rountev and Chandra 2000], and non-contributing parenthesis-edge elimination [Li

et al. 2020] are used to preprocess the input graphs.

Implementation. We implemented our grammar transformer (Algorithm 2) in Python 3. Our

grammar transformation takes less than one second to process the three grammars used in our

evaluation. Therefore, its running time is negligible. We implemented CFL-Skewed (Algorithm

2
https://github.com/travitch/whole-program-llvm.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

https://github.com/travitch/whole-program-llvm

221:16 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

𝑀 ::= 𝐷𝑉 𝑑

𝐷𝑉 ::= 𝑑 𝑉

𝑉 ::= 𝐴𝑉 | 𝑉 𝐴 | FV𝑖 𝑓𝑖 | 𝑀 | 𝜀
FV𝑖 ::= 𝑓𝑖 𝑉

𝐴 ::= 𝐴 𝐴 | 𝑎 𝑀 | 𝑎 | 𝜀
𝐴 ::= 𝐴 𝐴 | 𝑀 𝑎 | 𝑎 | 𝜀

(a) Normalized CFG for alias analysis.

𝑀 ::= 𝐷𝑉 𝑑

𝐷𝑉 ::= 𝑑 𝑉

𝑉 ::= 𝐴𝑉 | 𝑎 𝑉 | 𝑉 𝐴 | 𝑉 𝑎 | FV𝑖 𝑓𝑖 | 𝑀 | 𝜀
FV𝑖 ::= 𝑓𝑖 𝑉

𝐴 ::= 𝑎 𝑀

𝐴 ::=𝑀 𝑎

PN = {DV, FV𝑖 , 𝑀 }
(b) Skewed CFG for alias analysis.

Fig. 4. CFGs for alias analysis, where 𝑉 is the start symbol.

𝐴 ::= 𝐴 𝐵 | 𝐴 𝑎 | 𝑎 | 𝜀
𝐵 ::= CA𝑖 ret𝑖
CA𝑖 ::= call𝑖 𝐴

(a) Normalized CFG for value-flow analysis.

𝐴 ::= 𝐴 𝐵 | 𝐴 𝑎 | 𝑎 | 𝜀
𝐵 ::= CA𝑖 ret𝑖
CA𝑖 ::= call𝑖 𝐴
PN = {CA𝑖 }

(b) Skewed CFG for value-flow analysis.

Fig. 5. CFGs for value-flow analysis, where 𝐴 is the start symbol.

𝑆 ::= 𝑃 𝑁

𝑃 ::= 𝐴 𝑃 | ret𝑖 𝑃 | 𝜀
𝑁 ::= 𝐴 𝑁 | call𝑖 𝑁 | 𝜀
𝐴 ::= 𝐴 𝐴 | CA𝑖 ret𝑖 | 𝑎 | 𝜀
CA𝑖 ::= call𝑖 𝐴

(a) Normalized CFG for taint analysis.

𝑆 ::= 𝑃 | 𝑆 call𝑖 | 𝑆 𝐴

𝑃 ::= 𝐴 𝑃 | ret𝑖 𝑃 | 𝜀
𝐴 ::= 𝐴 𝐴 | CA𝑖 ret𝑖 | 𝑎 | 𝜀
CA𝑖 ::= call𝑖 𝐴
PN = {CA𝑖 }

(b) Skewed CFG for taint analysis.

Fig. 6. CFGs for taint analysis, where 𝑆 is the start symbol.

3) in C++ based on LLVM-14.0.0. Our implementation uses LLVM SparseBitVector to construct

the adjacency-list-based data structures for storing summary edges. Our dynamic skewing is

implemented on top of the artifact of the paper [Lei et al. 2022a], an improved version of CFL-

reachability that helps reduce redundant work caused by transitive rules. For CFL-RHS, we use the
code released in the artifact of the paper [Lei et al. 2022a] and run the experiments with the “cfl
-pocr” option.3 For Soufflé, we use the stable release 2.3. Soufflé synthesizes optimized Datalog

solvers in C++ based on provided input relations (converted from the input grammars). Because

Soufflé supports generating C++ programs with OpenMP annotations for parallel execution, our

evaluation uses an 8-thread version. We compare with Soufflé in this way to demonstrate that our

single-threaded CFL-Skewed is roughly comparable with an 8-threaded parallel program that does

the same computation. For these experiments, we set a time limit of 48 hours and a memory limit

of 128 GB for each run.

5.2 Evaluated Grammars

Alias analysis grammar. We adopt the field-sensitive version of the context-free grammar given

by Zheng and Rugina [2008]. Figure 4a presents the context-free grammar in a normalized form,

which is also used in existing works [Lei et al. 2022b;Wang et al. 2017; Zhang et al. 2014]. Figure 4b is

the skewed version of the original grammar. In Figure 4a, there are three terminals 𝑎, 𝑑 , 𝑓𝑖 , denoting

assignment, pointer dereference, and the address of the 𝑖-th field, respectively. The start symbol

of the grammar is 𝑉 , denoting value aliasing. The grammar works on bidirected graphs, i.e., for

each edge 𝑢
𝑋−→ 𝑣 in the graph where 𝑋 is a symbol of the grammar, there always exists an inverse

edge 𝑣
𝑋−→ 𝑢 in the graph. Comparing 4b with Figure 4a, we see that for the non-start symbols 𝐴

3
https://github.com/kisslune/POCR#usage.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

https://github.com/kisslune/POCR#usage

Context-Free Language Reachability via Skewed Tabulation 221:17

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

cactus deepsjeng imagick lbm leela mcf nab omnetpp parest perlbench povray x264 xz

Re
du

ct
io
n/
%

Benchmark

Alias Value-Flow Taint

Fig. 7. Reduction rates of non-𝑆 summary edges by CFL-Skewed. The white bars denote alias analysis, the
gray bars denote value-flow analysis and the black bars denote taint analysis.

and 𝐴, our static skewing (Algorithm 2) eliminated the recursive parts of their productions. The

removed recursions are promoted to the start symbol 𝑉 , as the two new productions 𝑉 ::= 𝑎 𝑉 and

𝑉 ::= 𝑉 𝑎. Our static skewing annotated three propagating nonterminals: DV, FV𝑖 and𝑀 .

Value-flow analysis grammar. The context-sensitive value-flow analysis is used as a pre-analysis

for memory leak detection formulated by Sui et al. [2014]. Figure 5a presents the context-free

grammar in a normalized form. Figure 5b is the skewed version of the original grammar. In Figure 5a,

there are three terminals 𝑎, call𝑖 and ret𝑖 , denoting assignment, and calls and returns with a callsite

index 𝑖 , respectively. The start symbol is 𝐴, denoting value flow. Comparing Figure 5b with Figure

5a, we see that the static skewing did not change any production because there are no cyclic non-

terminals (Definition 4.1) in the grammar. Our static skewing annotated a propagating nonterminal

CA𝑖 . Thus, the speedup is achieved by dynamic skewing, i.e., the treatment of propagating edges.

Taint analysis grammar.We adopt the context-free grammar given in Section 5.1 of [Kodumal

and Aiken 2004] for taint analysis. Figures 6a and 6b give the normalized grammar and the

skewed grammar, respectively. In Figure 6a, there are three terminals 𝑎, call𝑖 and ret𝑖 , denoting
assignment, and calls and returns with a callsite index 𝑖 , respectively. The start symbol is 𝑆 , denoting

interprocedural value-flow with unbalanced calls and returns. Comparing Figure 6b with Figure

6a, we see that the cyclic nonterminal 𝑁 is removed in the skewed grammar, with all its recursive

behavior promoted to the start symbol 𝑆 , resulting in the two new productions 𝑆 ::= 𝑆 call𝑖 and
𝑆 ::= 𝑆 𝐴. One propagating nonterminal CA𝑖 is annotated.

5.3 RQ1: Reduction of Summary Edges

Figure 7 shows the reduction rates of non-S summary edges. In particular, non-S summary edges are

the edges whose labels are not the start symbol of the CFG. Since a non-S edge does not represent

any CFL-reachability solution, fewer non-S edges inserted during CFL-reachability solving is

always better. According to the literature [Lei et al. 2022b], CFL-RHS does not reduce any inserted

summary edges, so we use the data of CFL-RHS as the inserted summary edges of the standard RHS

tabulation, as seen in the columns “#SumEdge by CFL-RHS” in Table 1. Specifically, the reduction

rate of non-S edges of each program is calculated by (#Edge
RHS
− #Edge

Skewed
)/(#Edge

RHS
− #S),

where #Edge
RHS

and #Edge
Skewed

denotes the number of summary edges inserted in RHS tabulation

and CFL-Skewed, respectively; and #S denotes the number of 𝑆 edges, which is consistent in both

RHS and CFL-Skewed.
By observing Figure 7, we see that our CFL-Skewed drastically reduced the number of non-S

edges. On average, for the programs successfully solved by both CFL-RHS and CFL-Skewed, our

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:18 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

CFL-Skewed reduced 96.54%, 78.11% and 46.50% non-𝑆 edges, respectively, for alias analysis, value-

flow analysis and taint analysis. CFL-Skewed reduces non-𝑆 edges from two angles: (1) eliminating

some recursive behaviors of non-𝑆 nonterminals, and (2) avoiding inserting propagating edges into

the graph. By observing the grammars in Figures 4 and 6, alias and taint analyses can benefit from

both angles. However, Figure 7 shows that the reduction rates of non-𝑆 edges of alias analysis are

much larger than those of taint analysis. The reason behind this is that all non-𝑆 nonterminals of the

alias grammar benefit from either of the two angles. As seen in Figure 4b, the recursive behaviors

of 𝐴 and 𝐴 are totally removed, and DV, FV𝑖 and 𝑀 are annotated as propagating nonterminals.

Therefore, CFL-Skewed is able to reduce almost all non-𝑆 summary edges. In the other case, for taint

analysis, the recursive behaviors of both 𝐴 and 𝑃 are not eliminated, resulting in a large number of

non-𝑆 edges inserted into the graph. The result of value-flow analysis also provides an interesting

observation. As seen in Figure 5, the only difference of skewed grammar is annotating CA𝑖 as

a propagating nonterminal. However, Figure 7 shows that even without changing the grammar,

CFL-Skewed still reduced the majority of non-𝑆 edges for value-flow analysis. This means that the

propagating CA𝑖 -edges takes a much larger proportion in non-𝑆 edges than 𝐵-edges.

5.4 RQ2: Runtime Speedups

Tables 2 presents the running time results, where we CFL-RHS, CFL-Skewed and Soufflé-8 to

denote the results of CFL-RHS CFL-Skewed and 8-thread Soufflé, respectively. On average, for

alias analysis, CFL-Skewed is 3.34× faster than CFL-RHS, and is 3.16× Soufflé-8. For value-flow
analysis, CFL-Skewed is 1.13× faster than CFL-RHS, and is 1.85× faster than Soufflé-8. For taint
analysis, CFL-Skewed is 2.05× faster than CFL-RHS, and is 2.28× faster than Soufflé-8.
We see that the speedups of CFL-Skewed in alias and taint analyses are much more significant

than in value-flow analysis. The difference between value-flow analysis and the other two clients is

that there is no removal of recursive behaviors of non-𝑆 nonterminals, and there are no dynamic

propagating edges (Section 4.3) discovered. The experimental result indicates that reducing non-𝑆

recursive behaviors plays a more important role in accelerating CFL-reachability analysis. This is

also supported by the results of the taint analysis. Considering Figure 7 and Table 2 together, we

see that, although CFL-Skewed reduced a much smaller proportion of non-𝑆 edges in taint analysis

than in value-flow analysis, the speedup of taint analysis is much more significant. A reasonable

interpretation is that the reduced non-𝑆 recursive behaviors in taint analysis contribute to most of

the wasted computations. This observation aligns with an existing work [Lei et al. 2022b], which

claims that recursive behavior in CFL-reachability leads to tremendous redundancy.

5.5 RQ3: Reduction of Memory Consumption

Table 3 presents thememory consumption results. Wemeasuredmemory consumption by recording

the values VmRSS and VmSize at runtime reported by the process status file on our Ubuntu system

(“/proc/self/status”). On average, for alias analysis, CFL-Skewed reduced 60.05% and 61.45% mem-

ory consumption for CFL-RHS and Soufflé-8, respectively. For value-flow analysis, CFL-Skewed
reduced 20.38% and 16.47% memory consumption for CFL-RHS and Soufflé-8, respectively. For
taint analysis, CFL-Skewed reduced 63.06% and 56.56% memory consumption for CFL-RHS and

Soufflé-8, respectively.
Memory consumption reflects the number of summary edges inserted into the graph, i.e., stored

in memory. Comparing value-flow analysis with the other two clients, the reduced memory usage

of value-flow analysis is much smaller than the other two clients. This implies that, based on the

simpler grammar (Figure 5), the solving process of value-flow analysis involves much fewer non-𝑆

edges than other clients. Comparing taint analysis with alias analysis, although taint analysis

reduced a much smaller proportion of non-𝑆 edges (Figure 7), it has memory reduction rates close

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:19

Table 2. Running time (in seconds) results on SPEC2017 benchmarks. The “-” mark indicates out-of-time.

Program

Alias Analysis Value-Flow Analysis Taint Analysis

CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8

cactus 2,548.03 1,448.98 2,646.44 4.45 4.32 5.63 597.88 432.44 725.28

deepsjeng 10.05 5.90 6.19 1.48 1.26 2.26 1,518.75 651.87 1,499.59

imagick 30,514.60 8,312.89 23,125.35 245.84 229.15 373.22 - - -

lbm 0.03 0.02 0.29 0.01 0.01 0.02 0.06 0.04 0.05

leela 44.34 22.28 45.90 2.68 2.59 4.98 12,027.60 4,742.04 5,535.93

mcf 1.06 0.56 1.34 0.02 0.02 0.05 1.97 1.64 2.95

nab 1.24 0.48 0.77 3.41 3.41 6.52 262.92 74.84 483.47

omnetpp 146,438.00 21,188.20 33,860.40 186.22 135.82 293.98 - - -

parest 11,109.90 1,832.99 1,673.97 1,213.31 1,131.42 1,830.77 - - -

perlbench - - - 6,514.56 5,956.88 7,787.65 - - -

povray 3,020.72 896.48 1,560.56 1,713.86 1,196.65 2,112.30 - - -

x264 127.54 22.42 34.73 67.79 62.68 91.24 - - -

xz 0.95 0.39 0.89 0.80 0.67 1.39 918.09 480.74 582.79

Table 3. Memory consumption (in MB) results on SPEC2017 benchmarks.

Program

Alias Analysis Value-Flow Analysis Taint Analysis

CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8

cactus 2,085.70 1,070.47 2,691.38 266.44 244.06 291.86 2,340.73 1,081.74 1,108.75

deepsjeng 196.43 161.20 177.81 27.98 21.41 28.71 1,281.70 523.71 1,159.80

imagick 17,756.77 7,038.54 27,059.50 1,392.29 1,014.08 1,625.00 - - -

lbm 4.50 2.49 22.22 1.66 1.66 1.57 8.41 2.95 22.07

leela 262.09 86.07 295.05 78.65 63.24 77.74 3,775.13 1,307.32 4,998.11

mcf 26.07 13.77 22.21 3.46 2.95 2.54 36.64 18.46 45.54

nab 31.14 12.95 39.24 48.88 43.74 87.44 2,293.73 259.59 628.96

omnetpp 14,370.71 1,992.62 8,355.10 1,835.80 979.77 1,228.12 - - -

parest 3,705.35 736.63 2,581.16 2,928.81 2,522.41 3,083.87 - - -

perlbench - - - 9,240.88 7,442.98 8,120.21 - - -

povray 2,289.31 508.88 1,720.26 4,132.14 2,980.36 3,808.22 - - -

x264 609.20 226.78 443.95 534.73 340.84 467.02 - - -

xz 27.05 8.28 21.94 38.23 31.83 29.56 1,112.15 445.50 1,113.14

to alias analysis where almost all non-𝑆 edges are reduced. This implies that non-𝑆 edges take a

much larger proportion in taint analysis than in alias analysis. This is also reflected in the running

time (Table 2), where the speedups of taint analysis are larger than others.

5.6 Discussions

Limitations. The grammar transformation does not work in the case where we cannot identify

any cyclic nonterminals in the input grammar with the desired usage patterns. This is the case for

the value-flow grammar shown in Figure 5. The grammar annotation alone can be fairly effective.

However, as in the case of value-flow, all insertions of the nonterminal CA𝑖 can be optimized out.

In practice, there exist grammars that cannot be handled by both static and dynamic skewing.

For those grammars, our grammar transformation can neither change the grammars nor produce

the annotation set PN . In this case, the CFL-Skewed algorithm in Algorithm 3 is equivalent to the

traditional CFL-reachability algorithm based on RHS tabulation. For more restrictive grammar, our

approach may also be limited based on how skewed the input grammar is. For example, the well-

knownDyck grammar
4
can only be skewed dynamically since there are no cyclic nonterminals other

4
The Dyck language of 𝑘 kinds of parentheses is defined by the grammar: 𝑆 ::= 𝑆 𝑆 | (𝑆) | . . . | (𝑘 𝑆)𝑘 | 𝜀 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:20 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

than the start nonterminal 𝑆 . In Algorithm 2, the static skewing algorithm, the start nonterminal 𝑆 is

part of the set of target nonterminals 𝑇 which explicitly will not be modified by the transformation

since the set of strings expressed by the start nonterminal cannot be changed in order to preserve

the correctness of the output of CFL-Skewed. Similarly, a linear grammar can only be skewed

dynamically since all its rules are linear by definition, and our grammar transformation only

replaces and modifies nonlinear rules.

CFL-Skewed versus Soufflé. Soufflé is a Datalog solver, which is more general than CFL-

reachability. Though Soufflé’s partial evaluation can distinguish linear rules from non-linear

ones based on extensional databases (EDBs) and intensional databases (IDBs), it does not have any

knowledge about equivalent grammar forms. Our work introduces propagating nonterminals, a

concept situated between EDB and IDB in Soufflé’s terminology. Specifically, in static skewing,

CFL-Skewed always tries to promote the recursive behavior of non-𝑆 nonterminals to 𝑆 the start

symbol to reduce the unnecessary rules and nonterminals and annotate propagating nonterminals—

a notion that Soufflé does not have. In dynamic skewing, CFL-Skewed harnesses the propagating

nonterminals to further reduce unnecessary summary edges. According to our experience, the

performance of 8-thread Soufflé is significantly better than single-thread Souffléwhen analyzing
the benchmarks in our experiments. We chose 8 threads because the running time of Soufflé-8 is
roughly similar to that of CFL-Skewed. The experimental result that our (single-thread) CFL-Skewed
outperforms 8-thread Soufflé demonstrates that skewed tabulation outperforms the classic RHS

tabulation, and it also implies that our CFL-Skewed can also significantly outperform single-thread

Soufflé in solving the three clients.

Recursive productions and grammar rewriting. The work of POCR [Lei et al. 2022b] also studies
recursive productions. It is interesting to note that the POCR only works when there is at least

one “transitive” (i.e., doubly recursive) production in the input context-free grammar. Another

work [Shi et al. 2023] proposes PEARL, an approach that further targets these transitive productions

by using batch-propagation of reachability information. In most cases, these require users to

manually rewrite the grammar to expose such transitive productions. Moreover, they rely on

the traditional RHS tabulation [Reps et al. 1995] and make memory trade-offs to achieve speedup.

On the contrary, the grammar transformation (Algorithm 2) in our work can automatic rewrite
the input grammar. Our approach directly improves the tabulation process and does not increase

memory consumption. Moreover, our technique eliminates recursive productions by moving the

recursion to the start symbol, as many as possible. However, it may not eliminate all transitive

productions. In this case, skewed tabulation can be integrated into POCR and PEARL, which can

process those transitive productions more effectively. In fact, our implementation is built on top of

POCR, which demonstrates that the benefits of our approach can be observed in conjunction with

the benefits of works that implement specialized optimizations for transitive rules.

6 Related Work

CFL-reachability is central to program analysis as many program properties can be specified as

context-free grammars. The traditional CFL-reachability algorithm exhibits a cubic time com-

plexity [Reps 1998]. Chaudhuri [2008] proposes a subcubic CFL-reachability algorithm, which

improves the cubic complexity by a logarithmic factor. Chatterjee et al. [2018] establish a cubic

conditional lower bound for CFL-reachability. Asymptotically fast algorithms exist only for special

cases. For bidirected Dyck-reachability, Chatterjee et al. [2018] give an algorithm that runs in

time 𝑂 (𝑚 + 𝑛 · 𝛼 (𝑛)) where 𝛼 (𝑛) is the inverse Ackermann function. When restricted to graphs

with bounded treewidth, Chatterjee et al. [2019] gave faster algorithms for solving demand-driven

queries in the presence of graph changes. When restricted to directed acyclic graphs, Yannakakis

[1990] noted that CFL-reachability could be solved in 𝑂 (𝑛𝜔) time. McAllester [2002] established

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

Context-Free Language Reachability via Skewed Tabulation 221:21

a framework for determining the time complexity of static analysis. Kodumal and Aiken [2004]

describe a specialized set constraint reduction for Dyck-reachability. Pavlogiannis [2022] surveys

the recent algorithmic developments for improving CFL- and Dyck-reachability. Skewed tabulation

does not improve the asymptotic complexity of CFL-reachability. Instead, our results demonstrate

that a better grammar form can make CFL-reachability more scalable in practice.

In the seminal work, Yannakakis [1990] discusses an 𝑂 (𝑚𝑛)-time algorithm for linear context-

free language reachability problems. However, most existing work in program analysis follows

the standard grammar normalization for CFL-reachability[Chaudhuri 2008; Melski and Reps 2000;

Milanova 2020; Rehof and Fähndrich 2001; Reps 1998; Wang et al. 2017; Zheng and Rugina 2008;

Zuo et al. 2021]. Hollingum and Scholz [2015] propose a general method for CFL-reachability based

on a partial evaluation of a single input grammar, which does not require the normal form. Lange

and Leiß [2009] discuss a different normal form for teaching the CYK parsing algorithm. Beyond

CFL-reachability, Tang et al. [2015] require a similar normal form for tree-adjoining-language

reachability. Zhang and Su [2017] propose linear-conjunctive language reachability where the input

grammar is in the linear form. In general, linear context-free language is not expressive enough

to be used in practical program analyses. Milanova [2020] observes that some linear constraints

can simplify the underlying CFL-reachability formulation. Context-free path querying [Hellings

2014] in Database is similar to CFL-reachability, which also requires that the input grammar is in

Chomsky normal form. A recent work [Lei et al. 2022b] improves the performance by modifying the

online solver, which sacrifices memory consumption for higher speed. Another recent work [Shi

et al. 2023] further improves performance by modifying the online solver using batch propagation

of reachability information and transitivity-aware subgraphs. Both of these works [Lei et al. 2022b;

Shi et al. 2023] present runtime optimizations that target and, therefore, require transitive rules in

the input grammar. Our skewed tabulation can be seen as a more powerful grammar transformation

combined with a specially designed solver, which works both offline and online and improves

the performance of CFL-reachability for both time and memory consumption. Existing parser

generators (e.g., LL and LALR generators) only work for deterministic context-free languages.

By contrast, our static skewing technique for general context-free grammars. It is an interesting

future direction to further investigate the connections between parser generators and the grammar

transformation for skewed tabulation.

Datalog is a well-known framework for formulating program-analysis problems [Bravenboer

and Smaragdakis 2009; Lu et al. 2013; Scholz et al. 2016; Whaley et al. 2005]. CFL-reachability

problem instances can be directly encoded as a Datalog specification, like for the state-of-the-art

Datalog solver Soufflé [Scholz et al. 2016]. Problem instances can leverage advanced Datalog

evaluation strategies such as semi-naïve evaluation [Ullman 1989], tabulation [Warren 1992], and

magic sets [Bancilhon et al. 1986; Beeri and Ramakrishnan 1987]. Our work focuses on improving

the tabulation [Melski and Reps 2000; Naeem et al. 2010; Reps 1998] for CFL-reachability, which

does not rely on specialized evaluation strategies.

7 Conclusion

This paper has presented skewed tabulation for CFL-reachability. We skew the parse trees statically

and dynamically by transforming the input grammar and adjusting the CFL-reachability algorithm.

The key idea is to use grammar structure to make the CFL-reachability algorithm reuse summary

edges. We prove that our approach can only reduce the number of summaries compared to the

traditional CFL-reachability via RHS tabulation. Our experimental results show that this approach

achieves significant speedups, reduces memory overhead, and reduces the number of non 𝑆-edges

by a significant margin in practice.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

221:22 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

Acknowledgments

The authors thank the anonymous reviewers for their feedback on earlier drafts of this paper. The

work described in this paper was supported, in part, by Australian Research Grants DP210101348

and FT220100391; and by a generous Aspire Gift Grant from Google; and by the United States

National Science Foundation (NSF) under grants No. 2114627 and No. 2237440; and by the Defense

Advanced Research Projects Agency (DARPA) under grant N66001-21-C-4024. Any opinions, find-

ings, conclusions, or recommendations expressed in this publication are those of the authors and

do not necessarily reflect the views of the above sponsoring entities.

Data-Availability Statement

Materials for our evaluation are publicly available [Lei et al. 2024] and can be used to reproduce

the data of our experiment.

References
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd

Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. 1986. Magic Sets and Other Strange Ways to

Implement Logic Programs. In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems (PODS). 1–15.

Catriel Beeri and Raghu Ramakrishnan. 1987. On the Power of Magic. In Proceedings of the Sixth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems(PODS). 269–284.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2009). 243–262.

Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2018. Optimal Dyck reachability for data-dependence

and alias analysis. Proc. ACM Program. Lang. 2, POPL (2018), 30:1–30:30.

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Prateesh Goyal, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2019.

Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth. ACM Trans. Program. Lang.
Syst. 41, 4 (2019), 23:1–23:46.

Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. ACM,

159–169.

Edmund M Clarke, Masahiro Fujita, Sreeranga P Rajan, T Reps, Subash Shankar, and Tim Teitelbaum. 1999. Program slicing

of hardware description languages. In Advanced Research Working Conference on Correct Hardware Design and Verification
Methods. Springer, 298–313.

Sheila A. Greibach. 1966. The Unsolvability of the Recognition of Linear Context-Free Languages. J. ACM 13, 4 (1966).

https://doi.org/10.1145/321356.321365

Jelle Hellings. 2014. Conjunctive Context-Free Path Queries. In Proc. 17th International Conference on Database Theory
(ICDT), Greece, March 24-28, 2014. 119–130.

Nicholas Hollingum and Bernhard Scholz. 2015. Towards a Scalable Framework for Context-Free Language Reachability. In

Compiler Construction - 24th International Conference (CC 2015). 193–211.
John Kodumal and Alexander Aiken. 2004. The set constraint/CFL reachability connection in practice. In PLDI. 207–218.
Martin Lange and Hans Leiß. 2009. To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm.

Informatica Didact. 8 (2009).
Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang. 2024. Artifact of “Context-Free Language Reachability via Skewed

Tabulation”. Zenodo. https://doi.org/10.5281/zenodo.10892936

Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. 2022a. Artifact of “Taming Transitive Redundancy for Context-Free
Language Reachability”. Zenodo. https://doi.org/10.5281/zenodo.7066401

Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. 2022b. Taming transitive redundancy for context-free language

reachability. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1556–1582. https://doi.org/10.1145/

3563343

Yuanbo Li, Qirun Zhang, and Thomas Reps. 2020. Fast graph simplification for interleaved Dyck-reachability. In PLDI ’20:
41st ACM SIGPLAN International Conference on Programming Language Design and Implementation. https://doi.org/10.

1145/3385412.3386021

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

https://doi.org/10.1145/321356.321365
https://doi.org/10.5281/zenodo.10892936
https://doi.org/10.5281/zenodo.7066401
https://doi.org/10.1145/3563343
https://doi.org/10.1145/3563343
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021

Context-Free Language Reachability via Skewed Tabulation 221:23

Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. 2013. An Incremental Points-to Analysis with CFL-Reachability. In Compiler
Construction - 22nd International Conference, CC 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7791).
Springer, 61–81.

David A. McAllester. 2002. On the complexity analysis of static analyses. J. ACM 49, 4 (2002), 512–537.

David Melski and Thomas W. Reps. 2000. Interconvertibility of a class of set constraints and context-free-language

reachability. Theor. Comput. Sci. 248, 1-2 (2000), 29–98.
Ana L. Milanova. 2020. FlowCFL: generalized type-based reachability analysis: graph reduction and equivalence of CFL-based

and type-based reachability. Proc. ACM Program. Lang. 4, OOPSLA (2020), 178:1–178:29.

Nomair A Naeem and Ondrej Lhoták. 2008. Typestate-like analysis of multiple interacting objects. ACM Sigplan Notices 43,
10 (2008), 347–366. https://doi.org/10.1145/1449764.1449792

Nomair A. Naeem, Ondrej Lhoták, and Jonathan Rodriguez. 2010. Practical Extensions to the IFDS Algorithm. In Compiler
Construction, 19th International Conference, CC 2010. 124–144.

Andreas Pavlogiannis. 2022. CFL/Dyck Reachability: An Algorithmic Perspective. ACM SIGLOG News 9, 4 (2022), 5–25.
Jakob Rehof and Manuel Fähndrich. 2001. Type-base flow analysis: from polymorphic subtyping to CFL-reachability. In

Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
54–66.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 49–61. https:

//doi.org/10.1145/199448.199462

Thomas W. Reps. 1998. Program analysis via graph reachability. Inf. Softw. Technol. 40, 11-12 (1998), 701–726.
Atanas Rountev and Satish Chandra. 2000. Off-line variable substitution for scaling points-to analysis. In Proceedings of the

2000 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 47–56.
Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. 2016. On fast large-scale program analysis in Datalog.

In Proceedings of the 25th International Conference on Compiler Construction (CC). 196–206.
C. Shi, H. Li, Y. Sui, J. Lu, L. Li, and J. Xue. 2023. Two Birds with One Stone: Multi-Derivation for Fast Context-Free Language

Reachability Analysis. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE
Computer Society, Los Alamitos, CA, USA, 624–636. https://doi.org/10.1109/ASE56229.2023.00118

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th
International Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016. ACM, 265–266.

Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically with full-sparse value-flow analysis. IEEE
Transactions on Software Engineering 40, 2 (2014), 107–122. https://doi.org/10.1109/TSE.2014.2302311

Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. 2015. Summary-Based Context-Sensitive

Data-Dependence Analysis in Presence of Callbacks. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015,. 83–95.

Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 2 (1972), 146–160.
Jeffrey D. Ullman. 1989. Bottom-Up Beats Top-Down for Datalog. In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania, USA. ACM Press, 140–149.

Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. 2017. Graspan: A Single-machine Disk-based

Graph System for Interprocedural Static Analyses of Large-scale Systems Code. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). 389–404.

David Scott Warren. 1992. Memoing for Logic Programs. Commun. ACM 35, 3 (1992), 93–111.

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using Datalog with Binary Decision Diagrams for

Program Analysis. In Programming Languages and Systems, Third Asian Symposium (APLAS). 97–118.
Mihalis Yannakakis. 1990. Graph-Theoretic Methods in Database Theory. In Proceedings of the Ninth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, April 2-4, 1990, Nashville, Tennessee, USA. 230–242.
Daniel H. Younger. 1967. Recognition and Parsing of Context-Free Languages in Time 𝑛3. Inf. Control. 10, 2 (1967), 189–208.
Qirun Zhang and Zhendong Su. 2017. Context-sensitive data-dependence analysis via linear conjunctive language reach-

ability. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017).
344–358.

Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong Su. 2014. Efficient subcubic alias analysis for C. In

Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA 2014). 829–845.

Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. ACM,

197–208.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1109/ASE56229.2023.00118
https://doi.org/10.1109/TSE.2014.2302311

221:24 Yuxiang Lei, Camille Bossut, Yulei Sui, and Qirun Zhang

Zhiqiang Zuo, Kai Wang, Aftab Hussain, Ardalan Amiri Sani, Yiyu Zhang, Shenming Lu, Wensheng Dou, Linzhang Wang,

Xuandong Li, Chenxi Wang, et al. 2021. Systemizing Interprocedural Static Analysis of Large-scale Systems Code with

Graspan. ACM Transactions on Computer Systems (TOCS) 38, 1-2 (2021), 1–39.

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 CFL-Reachability
	3.2 CFL-reachability and CFL-parsing
	3.3 Problem Formulation

	4 CFL-Reachability via Skewed Tabulation
	4.1 Basic Idea
	4.2 Static-Skewing: Transforming Context-Free Grammar
	4.3 Dynamic Skewing: Skewed Tabulation algorithm
	4.4 Formal Analysis of Skewed Tabulation

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluated Grammars
	5.3 RQ1: Reduction of Summary Edges
	5.4 RQ2: Runtime Speedups
	5.5 RQ3: Reduction of Memory Consumption
	5.6 Discussions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

