
Mutual Refinements of Context-Free Language
Reachability

Shuo Ding[0000−0003−0843−0729] and Qirun Zhang[0000−0001−5367−9377]

Georgia Institute of Technology, Atlanta GA 30332, USA
{sding,qrzhang}@gatech.edu

Abstract. Context-free language reachability is an important program
analysis framework, but the exact analysis problems can be intractable or
undecidable, where CFL-reachability approximates such problems. For
the same problem, there could be many over-approximations based on
different CFLs C1, . . . , Cn. Suppose the reachability result of each Ci

produces a set Pi of reachable vertex pairs. Is it possible to achieve
better precision than the straightforward intersection

⋂n
i=1 Pi?

This paper gives an affirmative answer: although CFLs are not closed un-
der intersections, in CFL-reachability we can “intersect” graphs. Specifi-
cally, we proposemutual refinement to combine different CFL-reachability-
based over-approximations. Our key insight is that the standard CFL-
reachability algorithm can be slightly modified to trace the edges that
contribute to the reachability results of C1, and C2-reachability only
need to consider contributing edges of C1, which can, in turn, trace the
edges that contribute to C2-reachability, etc. We prove that there exists a
unique optimal refinement result (fix-point). Experimental results show
that mutual refinement can achieve better precision than the straight-
forward intersection with reasonable extra cost.

1 Introduction

Context-free language reachability (CFL-reachability) is arguably the best-known
graph reachability framework in program analysis [15,19,22,23,26,30]. Typically,
the framework consists of a frontend and a backend, where the frontend con-
structs a graph from the source code, and the backend runs CFL-reachability on
the graph to obtain properties of the source code [25]. The graphs and grammars
depend on specific analyses, but CFL-reachability has a dynamic programming
style (sub)cubic-time algorithm [2,20,25,35] for arbitrary graphs and grammars.
Faster algorithms exist on special cases [1, 17,36].

2 Shuo Ding and Qirun Zhang

However, due to the inherent hardness of program analysis, CFL-reachability
may not be able to model the exact formulation of the problem [24, 37]. A typ-
ical example is the interleaved-Dyck-reachability formulation [18, 24], which is
widely used to simultaneously model function calls/returns [24, 26], field read-
s/writes [29, 34], locks/unlocks [11], etc. The interleaved-Dyck language is not
context-free [9], and the corresponding graph reachability problem is undecid-
able [24]. In practice, CFL-reachability can over-approximate computationally
hard language reachability problems [24]: the idea is to design a context-free
language C that over-approximates the non-context-free language L (meaning
that C contains more strings than L).

For a computationally hard L-reachability problem, different CFL-reachability-
based approaches over-approximate the solution from different angles. We can
straightforwardly intersect the results to achieve better precision. Synchronized
pushdown systems [27] essentially employ this idea. The linear conjunctive lan-
guage reachability work [37] also shows this straightforward intersection can
improve precision. However, in this case, different CFL-reachability instances
are executed independently. On the other hand, CFLs are not closed under in-
tersection [8,9], so in general, we cannot intersect different CFLs to obtain a new
CFL for CFL-reachability. For example, the interleaved-Dyck language [18, 37],
which is not a CFL, is the intersection of two or more CFLs.

This paper proposes a more synergistic way to “intersect” multiple CFL-
reachability-based over-approximations. Specifically, typical CFL-reachability al-
gorithms are of dynamic programming style, which generate “summary edges”
from existing graph edges. Our key insight is that when those algorithms generate
a summary edge, the existing edges directly contributing to the generation can be
recorded. This augmented algorithm can eventually trace a set of original graph
edges that contribute to the final reachability results. Therefore, when combining
CFL-reachability-based over-approximations based on CFLs C1, C2, . . . , Cn, we
can run C2-reachability on the contributing edges of C1-reachability, as opposed
to all edges in the original graph. This process can happen between different Ci’s
multiple times, which is called mutual refinement.

Is the execution order of different CFL-reachability over-approximations im-
portant for mutual refinement? We prove in Section 4 that given a set of CFL-
reachability over-approximations, there exists a unique fix-point, and any order
of executing different CFL-reachabilities will reach the fix-point. This is similar
to the fix-point theorem [14] and chaotic-iteration algorithms [4,12] in dataflow
analysis. The soundness of the fix-point and the fact that it is at least as precise
as the straightforward intersection are also proved in Section 4. As for the com-
plexity, suppose the CFL is fixed and the number of vertices in the graph is n,
then the time complexities of the standard CFL-reachability algorithm [20,25,35]
and our augmented algorithm are both Õ(n3), and the space complexity is Õ(n2)
for the standard algorithm and is Õ(n3) for our augmented algorithm.

We conduct experiments on two applications: a taint analysis for Java pro-
grams obtained from Android apps [10], and a value-flow analysis for LLVM
IR programs obtained from the SPEC CPU 2017 benchmark [28]. On average,

Mutual Refinements of Context-Free Language Reachability 3

compared with the straightforward intersection, mutual refinement achieves a
50.95% precision improvement (measured by the number of reachable pairs)
with a 2.65× time increase and a 3.23× space increase on the taint analysis
benchmarks, and achieves a 9.37% precision improvement with a 2.55× time
increase and a 2.22× space increase on the value-flow analysis benchmarks.

The fast graph simplification algorithm [18] proposed by Li, Zhang, and Reps
(abbreviated as the LZR algorithm) also simplify graphs, but the LZR algorithm
only works for interleaved-Dyck-reachability while mutual refinement works for
any L-reachability preserving CFL-reachability-based over-approximations, and
the LZR algorithm is a pre-processing algorithm while mutual refinement is a
complete solver. Our taint analysis experiment is interleaved-Dyck reachability,
and thus we also evaluate mutual refinement on those graphs simplified by the
LZR algorithm: LZR preprocessing can, on average, bring a further precision
improvement of 3.27% and reduces the time/space consumption in certain cases.
The value-flow analysis experiment is not interleaved-Dyck reachability, so the
LZR algorithm is not applicable.

In summary, this paper makes the following main contributions.

– We propose mutual refinement for combining different CFL-reachability over-
approximations for hard formal language reachability problems, which can
achieve better precision than the straightforward intersection.

– We prove the existence and uniqueness of the fix-point, the soundness, the
precision guarantee (being at least as precise as the straightforward inter-
section), and time/space complexities for mutual refinement.

– We evaluate mutual refinement on two program analysis applications. Ex-
perimental results show that mutual refinement can achieve better precision
than the straightforward intersection with reasonable extra cost.

This paper is organized as follows. Section 2 gives a motivating example.
Section 3 reviews backgrounds and definitions. Section 4 presents mutual refine-
ment and its properties. Section 5 gives experimental results. Section 6 presents
discussions. Section 7 surveys related work, and Section 8 concludes.

2 Motivating Example

This section motivates mutual refinement using an example of context-sensitive
and field-sensitive taint analysis for C++. The analysis first generates a graph
from the source code being analyzed, then the source-sink relation from the
source code is reduced to the reachability of two vertices in the graph. This is an
extended version of the taint analysis mentioned in the work of Huang et al [10].
The original analysis is based on interleaved-Dyck reachability, but our moti-
vating example is not. We compare mutual refinement with the straightforward
intersection of two different CFL-reachability-based over-approximations.

Example Code. Figure 1 shows a C++ code snippet. The analysis goal is to
decide whether the value of the variable s could flow into the variable t. Because

4 Shuo Ding and Qirun Zhang

1 #include ...
2

3 class Pair {
4 int first , second;
5 Pair(int fi , int se) : first(fi), second(se) {}
6 }
7

8 int getFirst(Pair p1) {
9 return p1.first; // represented by ret1

10 }
11

12 int getSecond(Pair p2) {
13 return p2.second; // represented by ret2
14 }
15

16 int main() {
17 int s = getSecret ();
18 Pair a(0, s);
19 Pair b(0, 0);
20 Pair t(0, 0);
21 if (getInput () == "first") {
22 int x = getFirst(a);
23 t.first = x;
24 } else {
25 send(getSecond(a));
26 int y = getSecond(b);
27 t.second = y;
28 }
29 ...
30 }

Fig. 1: A taint analysis example for C++. The goal is to decide whether the
value s can flow into t. The fact is that the value of s cannot flow into t.

t can only contain the first field of a or the second field of b, the answer is that
the value of s cannot flow into t.

Graph Reachability Formulation. We use vertices to represent variables
and use edges to represent values flowing among variables (Figure 2). To achieve
context-sensitivity and field-sensitivity, we use parenthesis-labeled edges for func-
tion calls/returns, and use bracket-labeled edges for field writes/reads.

The taint analysis decides whether the value of s can flow into t (including t’s
fields). The answer is “yes” if and only if there is a path whose edge labels can be
concatenated to a string that represents the interleaving of matched parentheses,
matched brackets, and unmatched open brackets. Formally, given an alphabet
Σ, we define the interleaving operator [18] ⊙ : Σ∗ × Σ∗ → P(Σ∗) as follows,
where s, s1, s2 are strings and c1, c2 are single characters.

ϵ⊙ s = {s}
s⊙ ϵ = {s}
c1s1 ⊙ c2s2 = {c1w | w ∈ (s1 ⊙ c2s2)} ∪ {c2w | w ∈ (c1s1 ⊙ s2)}.

For the taint analysis, we are interested in LT -reachability problem, where LT =⋃
{s1 ⊙ s2 | s1 ∈ P, s2 ∈ B} and CFLs P and B are defined as follows. Note

that we use P or B to denote both the languages and the starting symbols in

Mutual Refinements of Context-Free Language Reachability 5

s t

a

b

p1

p2

ret1

ret2

x

y

[second
(22]first)22

(25

]second(26)26

[first

[second

Fig. 2: The taint analysis graph for Figure 1. Vertices are variables and edges

model values flowing among variables: i
(c−→ j represents that i flows into j via

the function call at line c; i
)c−→ j represents that i flows into j via the function

return at line c; i
[f−→ j represents that i flows into the f field of j; i

]f−→ j
represents that the f field of i flows into j.

the grammars. LT is not context-free (which is proved in Section 6). We also
extend the definition of the interleaving operator ⊙ to languages, and thus we
write LT = P ⊙B.

P → P P | (1 P)1 | . . . | (m P)m | ϵ

B → D B | [1 B | . . . | [n B | ϵ.
D → D D | [1 D]1 | . . . | [n D]n | ϵ.

In Figure 2, there are only two possible paths from s to t. None of these
paths satisfy our requirement, so the value of s cannot flow into t.

CFL-Reachability-Based Over-Approximations. We devise two CFLs CP

and CB to over-approximate LT . CP considers only parentheses and treats
brackets as empty symbols. CB considers only brackets and treats parentheses
as empty symbols. Both algorithms can be implemented using the well-known
CFL-reachability algorithm [20, 25, 35]. In Figure 2, both CP -reachability and
CB-reachability conclude that t is reachable from s. For example, for CP , t is

reachable from s via the path s
[second−−−→ a

(22−−→ p1
]first−−→ ret1

)22−−→ x
[first−−→ t, and for

CB , t is reachable from s via the path s
[second−−−→ a

(25−−→ p2
]second−−−→ ret2

)26−−→ y
[second−−−→ t.

These two conclusions are both false positives.

Straightforward Intersection. One possible method to combine the above
two over-approximations is to directly intersect their results, as synchronized
pushdown system [27] and linear conjunctive language reachability [37] did. In
Figure 2, however, this method still concludes that t is reachable from s, because
the two algorithms both conclude that they are reachable.

Mutual Refinement. To further improve the precision, we first run CB-
reachability, which concludes that t is reachable from s, and the edges contribut-
ing to all reachable pairs can be shown in Figure 3 (parentheses are treated as
empty symbols so edges labeled with parentheses are preserved). Now the graph
has been simplified. Running CP -reachability on the graph in Figure 3 concludes

6 Shuo Ding and Qirun Zhang

s t

a

b

p1

p2

ret1

ret2

x

y

[second
(22)22

(25

]second(26)26

[first

[second

Fig. 3: After running CB-reachability and tracing only the edges contributing to
its results, the graph is simplified. Subsequent execution of CP -reachability can
then conclude that t is not reachable from s.

that t is not reachable from s. Thus CB-reachability “refines” the subsequent
execution of CP -reachability. This example shows that mutual refinement can
achieve better precision compared with the straightforward intersection.

3 Preliminary

We define L-reachability in Section 3.1 and review the standard dynamic pro-
gramming style algorithm for CFL-reachability in Section 3.2. CFL-reachability
is used to over-approximate other L-reachability problems in practice.

3.1 L-Reachability

The L-reachability problem is to find pairs (s, t) of vertices such that there exists
a path from s to t, and the edge labels along that path form a string in L.

Definition 1 (L-Reachability). Given a formal language L with a finite al-
phabet Σ and a finite graph G = (V,E), where each edge e ∈ E is labeled
with a character in Σ, vertex t ∈ V is L-reachable from vertex s ∈ V if and
only if there exists a finite path (with possibly duplicate vertices and edges)

p = s
l1−→ v1

l2−→ . . .
ln−1−−−→ vn−1

ln−→ t in the graph such that the string l1l2 . . . ln is
in the given formal language. R(p) = l1l2 . . . ln is the path string of p. The zero-
length path from a vertex to itself forms the empty string. (s, t) is an L-reachable
pair. The L-reachability problem is to find the set of all L-reachable pairs.

Fix a formal language L. Any graph G = (V,E) whose edges are labeled with
characters in the alphabet of L essentially gives an instance of the L-reachability
problem. We denote this instance as ⟨L, (V,E)⟩. There also exist other variants
of L-reachability, such as the single-pair reachability, which only cares about
the reachability between a specific pair of vertices. In this paper, we focus on
all-pairs reachability unless otherwise noted.

3.2 CFL-Reachability

In L-reachability, when the formal language L is a context-free language, the
problem is a CFL-reachability problem. CFL-reachability exhibits a popular dy-
namic programming style cubic-time algorithm [20, 25, 35], which is shown in

Mutual Refinements of Context-Free Language Reachability 7

Algorithm 1 The CFL-Reachability Algorithm

1: function CFL-Reachability(⟨C, (V,E)⟩)
2: W ← emptyWorkList()
3: W.addAll(E)
4: for X → ϵ ∈ C do
5: for v ∈ V do
6: if X⟨v, v⟩ /∈ E then
7: add X⟨v, v⟩ to E andW

8: while W.nonEmpty() do
9: Y ⟨i, j⟩ ←W.pop()
10: for X → Y ∈ C do
11: if X⟨i, j⟩ /∈ E then
12: add X⟨i, j⟩ to E andW

13: for X → Y Z ∈ C do
14: for Z⟨j, k⟩ ∈ E do
15: if X⟨i, k⟩ /∈ E then
16: add X⟨i, k⟩ to E andW

17: for X → ZY ∈ C do
18: for Z⟨k, i⟩ ∈ E do
19: if X⟨k, j⟩ /∈ E then
20: add X⟨k, j⟩ to E andW

21: return (V,E)

Algorithm 1. Given an instance ⟨C, (V,E)⟩ of (all-pairs) CFL-reachability prob-
lem, we call CFL-Reachability(⟨C, (V,E)⟩) in Algorithm 1 to compute the
results. The CFL C = (Σ,N,P, S) contains the set of terminal symbols Σ, the
set of non-terminal symbols N , the set of productions P , and the start symbol
S. All productions are in the forms X → Y Z, X → Y , and X → ϵ, where X, Y ,
and Z are terminal symbols or non-terminal symbols. Any context-free grammar
can be transformed into this form [9]. Algorithm 1 works as follows.

1. Initially, all edges in the original graph are added to the worklist (line 3).
2. Then the productions with empty right-hand sides are applied where new

edges are added to both the graph and the worklist (lines 4-7).
3. After that, the algorithm removes an edge Y ⟨i, j⟩ (connecting vertices i, j

with label Y) from the worklist, trying all productions with Y on the right-
hand side, adding newly generated edges to both the graph and the worklist,
and repeating this process until the worklist becomes empty (lines 8-20).

4. Finally, the updated graph is returned as the result (line 21).

Algorithm 1 shows the process of generating new edges in the graph according
to productions, which we call production applications. For example, if there is
a production X → Y Z and there are edges Y ⟨i, j⟩ and Z⟨j, k⟩ already in the
graph, we add a new edge X⟨i, k⟩ to the graph via a production application.
Note that when we pop an edge e out from the worklist and process it (lines 8-
20), depending on the previously processed edges, some of e’s adjacent edges

8 Shuo Ding and Qirun Zhang

might not be available in the graph yet, thus the current iteration of lines 8-20
may not add all edges that can be generated from e via production applications.
However, it is well-known that eventually, all possible edges will be added, and
the order of popping out edges from the worklist does not matter.

Theorem 1 (Algorithm 1’s Correctness). When Algorithm 1 terminates,
all edges that can be generated by production applications will be in the graph.

Proof. We prove it by contradiction. Suppose there is an edge en, which could be
generated by a finite number of production applications, and which is not in the
graph produced by Algorithm 1. It is obvious that en cannot be in the original
edge set. So en could be obtained by finitely and positively many production
applications. We can denote this process by a sequence e1, e2, . . . , en, where for
all i ∈ {1, 2, . . . , n}, ei is either in the original graph’s edge set or is obtained by
applying a production on a set of edges {ei1 , ei2 , . . . , eini

} ⊆ {e1, e2, . . . , ei−1}.
Suppose ej is the first edge in e1, e2, . . . , en that is not in the graph produced
by Algorithm 1. There must exist such an ej because according to our assump-
tion, at least en is not in the graph produced by Algorithm 1. Again, ej cannot
be in the original edge set. Suppose ej can be obtained by applying a produc-
tion on a set of edges {ej1 , ej2 , . . . , ejnj

} ⊆ {e1, e2, . . . , ej−1}. Since all edges in

{ej1 , ej2 , . . . , ejnj
} are in the graph produced by Algorithm 1, when the last edge

was popped out, since all productions were tried, Algorithm 1 must add ej to
the graph since all edges in {ej1 , ej2 , . . . , ejnj

} were available in the graph at that

time. This is a contradiction.

We briefly explain our notations for time/space complexity. To make the
analysis rigorous, we should also consider the time/space complexity of han-
dling numbers. For example, if there are n vertices in the graph and we use
0, 1, . . . , n − 1 to represent the vertices, then the number n − 1 itself requires
memory of O(log n), and arithmetic operations on those numbers are not of
constant complexity. To focus on dominating factors, instead of using the big-O
notation, we use the Õ notation [3] to hide logarithm factors: Õ(f(n)) represents
O(f(n)(log n)k) for some constant natural number k.

Complexity Analysis for Algorithm 1. Suppose the grammar of the CFL is fixed,
adding one edge to the graph takes constant time, accessing each graph vertex’s
adjacent vertices takes linear time, and pushing/popping elements to/from the
worklist takes constant time. There could be at most Õ(|V |2) edges popped out
from the worklist at line 9, and for each edge popped out, there could be at most
Õ(|V |) adjacent edges to try in the main while loop. Thus the time complexity
is Õ(|V |3). The space complexity is Õ(|V |2) since there could be at most Õ(|V |2)
edges in the graph and in the worklist.

4 Mutual Refinement

This section formalizes mutual refinement. Specifically, Section 4.1 gives an
overview; Section 4.2 presents the important definition of contributing edges;

Mutual Refinements of Context-Free Language Reachability 9

C-Contributing Edges:

L-Contributing Edges:

Ctri(C, (V,E))

Ctri(L, (V,E))

over-approximates

Fig. 4: Two important concepts in mutual refinement. L is a formal language
whose reachability problem is computationally hard, and C is a context-free
language over-approximating L. The set of C-contributing edges Ctri(C, (V,E))
over-approximates the set of L-contributing edges Ctri(L, (V,E)).

Section 4.3 presents the algorithm used as individual steps in mutual refine-
ments; Section 4.4 presents the complete mutual refinement algorithm.

4.1 Overview

Suppose we have a set of CFL-reachability-based over-approximations using
CFLs C1, C2, . . . , Cm for a computationally hard L-reachability problem. For
an instance ⟨L, (V,E)⟩ of the problem, we first run C1-reachability. Then we
only keep edges that directly or indirectly participated in the construction of S1

(the start symbol of C1’s grammar) edges. Then we run C2-reachability and only
keep edges participated in the construction of S2 edges. This process continues
until we reach the fix-point: no more edges can be removed. The final reachabil-
ity result is obtained by executing C1, C2, . . . , Cm-reachability on the minimum
graph and taking the intersection.

4.2 Contributing Edges

The key step of mutual refinement is to over-approximate the set of “useful”
edges, i.e., the edges contributing to reachable pairs. This is achieved via formal
language over-approximations.

Definition 2 (Formal Language Over-Approximation). Given two formal
languages L1 and L2, L1 over-approximates L2 if and only if L1 ⊇ L2.

Definition 3 (L-Contributing Edges). For a specific formal language L,
given an instance ⟨L, (V,E)⟩ of the L-reachability problem, an edge e ∈ E is
an L-contributing edge for this instance if and only if there exists a pair of ver-
tices u, v ∈ V , such that e is part of a finite path p connecting u and v and
R(p) ∈ L. The set of such L-contributing edges is denoted as Ctri(L, (V,E)).

In certain undecidable L-reachability problems (e.g., the interleaved-Dyck-
reachability), it can be shown that computing the set Ctri(L, (V,E)) is also un-
decidable in general [18]. So we need to approximate this set. Suppose we have
a context-free language C over-approximating L, then it is straightforward to
see that Ctri(L, (V,E)) ⊆ Ctri(C, (V,E)), because every L-path is also a C-path.
Figure 4 summarizes the situation.

10 Shuo Ding and Qirun Zhang

s

v1 v2 v3

v4 v5 v6

t

(
[)

]

(
] [

)

Fig. 5: A Graph illustrating contributing edges.

Example 1 (Contributing Edges). Consider the following example of interleaved-
Dyck-reachability, where each string in the interleaved-Dyck language L is an
interleaving of two strings from the following two CFLs, respectively.

P → P P | (P) | ϵ
B → B B | [B] | ϵ.

We use the following context-free language C, which only considers matched
parentheses and treats brackets as empty symbols, to over-approximate the
interleaved-Dyck language L.

C → C C | (C) | [|] | ϵ.

In the instance of interleaved-Dyck-reachability shown in Figure 5, the set of

L-contributing edges is {s (−→ v1, v1
[−→ v2, v2

)−→ v3, v3
]−→ t}, while the set of

C-contributing edges includes all edges in the original graph.

4.3 Tracing Algorithm

The set of CFL-contributing edges is computable via augmenting the standard
CFL-reachability algorithm to trace the edges, which results in Algorithm 2.
Given an instance ⟨C, (V,E)⟩ of a CFL-reachability problem, we first make the
function call record(⟨C, (V,E)⟩) to run the CFL-reachability algorithm and
record the meta-information “metaInfo”, where “metaInfo[e]” contains all edges
that directly contributed to the construction of e. Notice that record is almost
the same as the standard CFL-reachability algorithm (Algorithm 1), except that
we add the highlighted lines to record the meta-information. Then the original
graph’s C-contributing edges could be obtained by calling collect(metaInfo, E),
which recursively collects the contributing edges.1

The following theorem demonstrates the correctness of Algorithm 2.

Theorem 2 (Tracing Algorithm’s Correctness). For any instance of CFL-
reachability ⟨C, (V,E)⟩, we have

collect(record(⟨C, (V,E)⟩)) = Ctri(C, (V,E)).

1 collect can be implemented using either breadth-first-search or depth-first-search.

Mutual Refinements of Context-Free Language Reachability 11

Algorithm 2 The Tracing Algorithm

1: function record(⟨C, (V,E)⟩)
2: metaInfo← emptyMap()

3: W ← emptyWorkList()
4: W.addAll(E)
5: for X → ϵ ∈ CFG do
6: for v ∈ V do
7: if X⟨v, v⟩ /∈ E then
8: add X⟨v, v⟩ to E andW

9: while W.nonEmpty() do
10: Y ⟨i, j⟩ ←W.pop()
11: for X → Y ∈ CFG do
12: metaInfo[X⟨i, j⟩].add(Y ⟨i, j⟩)
13: if X⟨i, j⟩ /∈ E then
14: add X⟨i, j⟩ to E andW

15: for X → Y Z ∈ CFG do
16: for Z⟨j, k⟩ ∈ E do

17: metaInfo[X⟨i, k⟩].add(Y ⟨i, j⟩, Z⟨j, k⟩)
18: if X⟨i, k⟩ /∈ E then
19: add X⟨i, k⟩ to E andW

20: for X → ZY ∈ CFG do
21: for Z⟨k, i⟩ ∈ E do

22: metaInfo[X⟨k, j⟩].add(Z⟨k, i⟩, Y ⟨i, j⟩)
23: if X⟨k, j⟩ /∈ E then
24: add X⟨k, j⟩ to E andW

25: return ((V,E),metaInfo)

26:
27: function collect(((V,E),metaInfo))
28: visited← ∅
29: con← ∅
30: function collectDFS(e)
31: if e /∈ visited then
32: visited.add(e)
33: if e’s label is a terminal symbol then
34: con.add(e)

35: for e′ ∈ metaInfo[e] do
36: collectDFS(e′)

37: for e ∈ E do
38: if e’s label is the start symbol then
39: collectDFS(e)

40: return con

Proof. Suppose e ∈ collect(record(⟨C, (V,E)⟩)). According to Algorithm 2,
we have e ∈ E, and there exists a finite sequence of edges e1 = e, e2, . . . , en (we

12 Shuo Ding and Qirun Zhang

can move e to the beginning), where each edge is either from the original edge
set or obtained from applying one production in C to some preceding edges, e
directly or indirectly contributes to en, and en’s label is C’s start symbol. So
e ∈ Ctri(C, (V,E)). Conversely, suppose e ∈ Ctri(C, (V,E)), then e ∈ E and
there exists a finite sequence of edges e1 = e, e2, . . . , en, where each edge is
either from the original edge set or obtained by applying one production in C to
some preceding edges, e directly or indirectly contributes to en, and en’s label
is C’s start symbol. According to Theorem 1, every edge in this sequence must
be added to the edge set by Algorithm 1 (and thus also by Algorithm 2). Now
let us consider en. It is not in the original edge set because its symbol is a non-
terminal symbol. Thus en can only be obtained by applying one production on
some previous edges {ei1 , ei2 , . . . , eini

} (which are called the dependency edges
of en). Since all dependency edges of en were added by the algorithm, one edge
must be the last one added, and when that one was added, all of en’s dependency
edges were added to the meta-information of en (i.e., metaInfo(en)). Thus the
collectDFS procedure can visit all dependency edges of en. Such dependency
edges can be reasoned similarly in a depth-first-search manner, and because e1
directly or indirectly contributes to en, eventually collectDFS visits the edge
e1 = e. So e ∈ collect(record(⟨C, (V,E)⟩)).

Complexity Analysis for Algorithm 2. For record, suppose the grammar of the
CFL is fixed, the graph supports constant time edge addition and linear time
adjacent vertices traversal, the worklist supports constant time pushing/pop-
ping, and the operations on metaInfo and the edge set corresponding to each
key have logarithmic time complexity and linear space complexity with respect
to the number of elements. There could be at most Õ(|V |2) edges popped out
from the worklist at line 10, and for each edge popped out, there could be at
most Õ(|V |) adjacent edges to try in the main while loop. The size of metaInfo
is bounded by Õ(|V |2) and the size of the edge set corresponding to each key is
bounded by Õ(|V |), so each addition operation to metaInfo has a complexity of
Õ(log(|V |2)+log |V |) = Õ(log |V |), which can be hidden by our Õ notation. Thus
the time complexity of record is Õ(|V |3). The space complexity of record is
Õ(|V |3) since metaInfo dominates the space complexity and there could be at
most Õ(|V |3) edge additions to metaInfo. For collect, suppose visited and con
also supports logarithm time operations. Consider a new graph where vertices
are edges in E, and if e2 ∈ metaInfo[e1] then we have a “super edge” from e1 to
e2. It is easy to see that in this new graph, there are at most Õ(|V |2) vertices,
and the in-degree and out-degree of each vertex are both bounded by Õ(|V |).
Then collect essentially did a depth-first search on this new graph, whose time
complexity is determined by the maximum number of “super edges” in this new
graph: Õ(|V |2×|V |× c · log |V |) = Õ(|V |3). The logarithm factor is due to oper-
ations on visited, metaInfo, and con, but is hidden by our notation Õ. The space
complexity is bounded by the sizes of the graph (Õ(|V |2)), visited (Õ(|V |2)),
con (Õ(|V |2)), metaInfo (Õ(|V |3)), and the maximum depth of recursive calls
(Õ(|V |2)). Therefore, the space complexity of collect is Õ(|V |3).

Mutual Refinements of Context-Free Language Reachability 13

Table 1: Time/space complexities of Algorithm 1 and Algorithm 2. The CFL
size is assumed to be a constant, and the input graph is G = (V,E).

Algorithm Time Complexity Space Complexity

Algorithm 1 (The Standard Algorithm) Õ(|V |3) Õ(|V |2)
Algorithm 2 (Our Tracing Algorithm) Õ(|V |3) Õ(|V |3)

Table 1 compares the time/space complexities of the standard CFL-reachability
algorithm (Algorithm 1) and our tracing version (Algorithm 2). In practice, how-
ever, the running time and space also depend on the constant and logarithm
factors, the computer architecture, etc.

4.4 Mutual Refinement Algorithm

This section precisely defines the mutual refinement algorithm for a computa-
tionally hard L-reachability problem with multiple CFL approximations.

Definition 4 (Refinement Sequence). Given an instance ⟨L, (V,E)⟩ of L-
reachability problem and m different CFLs C1, . . . , Cm (m ≥ 2), each of which
over-approximates L, a refinement sequence is a finite sequence of sets of edges
E1, . . . , En, such that E1 = E and for all i ≥ 2, Ei is either Ctri(Cj , (V,Ek))
where j ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , i − 1}, or Ej ∩ Ek where j, k ∈
{1, 2, . . . , i− 1}.

There exists a global minimum edge set (with respect to the set inclusion
relation) that can be computed via a fix-point algorithm. This is due to the
following monotonicity property of contributing edges.

Lemma 1 (Monotonicity of Contributing Edges). Given a formal lan-
guage L, the following formula holds for all problem instances.

E1 ⊆ E2 =⇒ Ctri(L, (V,E1)) ⊆ Ctri(L, (V,E2))

Proof. This is because any L-path in E1 is also an L-path in E2.

Theorem 3 (Minimum Edge Set). Given an instance ⟨L, (V,E)⟩ of the L-
reachability problem and m different CFLs C1, C2, . . . , Cm (m ≥ 2), each of
which over-approximates L, there exists an edge set Emin, which could be obtained
by a specific refinement sequence, and which is a subset of all edge sets in all
refinement sequences.

Proof. Consider the process of applying m algorithms successively in an arbi-
trary order to refine the edge sets: apply Ci1-reachability on E to get E1, apply
Ci2-reachability on E1 to get E2, . . . , apply Cim-reachability on Em−1 to get
Em, where Ci1 , Ci2 , . . . , Cim is an arbitrary permutation of C1, C2, . . . , Cm. For
simplicity, we still denote this order as C1, C2, . . . , Cm. This is called one round.

14 Shuo Ding and Qirun Zhang

Algorithm 3 The Mutual Refinement (MR) Algorithm

1: function MR((V,E), {C1, . . . , Cm})
2: G← (V,E)
3: while true do
4: s← G.E.size()
5: for Ci ∈ {C1, . . . , Cm} do
6: G.E ← collect(record(⟨Ci, G⟩))
7: if G.E.size() == s then
8: return G

By doing such rounds multiple times until a state where applying another round
does not change the edge set, we get the set Emin.

First, we prove its termination: after each round, the size of E either decreases
or remains the same, but the size of E cannot decrease indefinitely.

Second, we show that Emin is indeed the globally minimal set with respect
to the subset relation: given any refinement sequence E1, . . . , En, since it is
non-increasing with respect to the set inclusion relation, we just need to prove
Emin ⊆ En. We prove this by induction on the lengths of refinement sequences.
First, there is only one possible refinement sequence of length 1, which is E itself,
and it is obvious that Emin ⊆ E. Now suppose that for all refinement sequences
of length at most n, Emin is a subset of the last edge set in the sequence. Consider
an arbitrary refinement sequence of length n + 1: E1, . . . , En+1. Here En+1 is
either the intersection of two previous edge sets or obtained by applying Cj-
reachability (j ∈ {1, . . . ,m}) to one of the previous edge sets. In the first case,
by the induction hypothesis, the two previous edge sets all contain Emin, so En+1

also contains Emin. In the second case, suppose Cj-reachability is applied to Ei

(1 ≤ i ≤ n). By the induction hypothesis, we have Emin ⊆ Ei, and because the
set of contributing edges is monotonic in the sense described in Lemma 1, we
further have Emin = Ctri(Cj , (V,Emin)) ⊆ Ctri(Cj , (V,Ei)) = En+1, where the
first equality holds according to the definition of Emin.

Algorithm 3 (mutual refinement) gives the complete procedure for finding
the minimum edge set described in Theorem 3. It keeps iterating over the given
set of algorithms (line 5) until the edge set’s size does not change (line 7). Due to
Theorem 3, this algorithm is guaranteed to terminate and produce the optimal
result among all possible refinement sequences.

Theorem 4 (Mutual Refinement Soundness). If every CFL in {C1, . . . , Cm}
over-approximates L, then Algorithm 3 does not miss any L-contributing edges.

Proof. This is immediate from Theorem 2 and Theorem 3.

The final reachability result can be obtained by executing C1, C2, . . . , Cm-
reachability on the minimum graph produced by Algorithm 3, and reporting the
pairs that all those CFL-reachability executions report as reachable. In fact, the
last iteration of the while loop in Algorithm 3 already does this.

Mutual Refinements of Context-Free Language Reachability 15

Theorem 5 (Precision Guarantee). Suppose we have an instance ⟨L, (V,E)⟩
of L-reachability problem and m different CFLs C1, . . . , Cm, each of which over-
approximates L. Let Emin be the set of edges obtained by executing Algorithm 3
on (V,E) and C1, . . . , Cm. Suppose P1, . . . , Pm are the sets of reachable pairs
obtained by executing C1, . . . , Cm reachabilities on (V,E), and Q1, . . . , Qm are
the sets of reachable pairs obtained by executing C1, . . . , Cm reachabilities on
(V,Emin). Then

⋂m
i=1 Qi ⊆

⋂m
i=1 Pi.

Proof. Since Emin ⊆ E, it is immediate that ∀i ∈ {1, . . . ,m}, Qi ⊆ Pi, because
any Ci-path connecting two vertices in (V,Emin) is also present in (V,E).

The time and space complexities of Algorithm 3 depend on the number of
iterations, which highly depends on the graph structure and the CFLs. O(|E|)
is a very loose upper bound of the number of iterations because in each iteration
before the last one, we remove at least one edge. Our evaluation (Section 5)
shows that for specific program analysis problems and graphs with edge sizes up
to 184k, the number of iterations can still be within five.

Example 2 (Mutual Refinement Example). If we apply mutual refinement to the
motivating example discussed in Section 2, where in each round we apply CB-
reachability and CP -reachability in sequence, then after two rounds, the graph
stabilizes. Figure 6 shows this process.

5 Experiments

We evaluate mutual refinement on two applications: a taint analysis for Java
programs obtained from Android apps [10], and a value-flow analysis for LLVM
IR programs obtained from the SPEC CPU 2017 benchmark [28].

When processing experimental data, we use arithmetic means (1n
∑n

i=1 xi)

for the average of absolute numbers, and use geometric means (n
√∏n

i=1 xi) for
the average of ratios [7]. Also, for the measurement of precision (the number
of reachable pairs), we exclude trivial pairs (u, u) and only consider pairs (u, v)
where u ̸= v.

5.1 Experimental Setup

Taint Analysis. We apply our approach to a context-sensitive field-sensitive
taint analysis for Java programs obtained from Android apps [10]. The analysis
goal is to determine all pairs of variables (s, t) where sensitive information from
variable s can flow into variable t. Parentheses model context-sensitivity and
brackets model field-sensitivity. A valid path string is an arbitrary interleaving
of two strings derived from the two CFLs P and B shown in Figure 7a. This is
the interleaved-Dyck reachability problem, which is undecidable [24].

Unlike the example in Section 2, which considers sources/sinks within one
function (matched parentheses) and counts flowing into fields as leaks (un-
matched brackets), in our experiments, we only count leaks from variables to

16 Shuo Ding and Qirun Zhang

s t

a

b

p1

p2

ret1

ret2

x

y

[second
(22)22

(25

]second(26)26

[first

[second

(a) After running CB-reachability in the first round

s t

a

b

p1

p2

ret1

ret2

x

y

[second

]second(26)26

[first

[second

(b) After running CP -reachability in the first round

s t

a

b

p1

p2

ret1

ret2

x

y

[second

(26)26

[first

[second

(c) After running CB-reachability in the second round

s t

a

b

p1

p2

ret1

ret2

x

y

[second [first

[second

(d) After running CP -reachability in the second round

Fig. 6: Mutual refinement’s iteration process on the motivating example dis-
cussed in Section 2. It takes two rounds to converge. If we only consider (s, t)-
reachability, then the iteration can stop after the second iteration.

variables, thus disallowing unmatched brackets. One reason is that this is the
formulation in the original work [10], and the other reason is that we also evalu-
ate the LZR algorithm [18] on these benchmarks, which only supports matched
brackets. In general, the grammar can be adjusted according to needs.

To use mutual refinement, we choose two CFLs (CP , CB) over-approximating
the interleaved-Dyck language L, where CP models parentheses matching and
CB models brackets matching. Their grammars are shown in Figure 7b. The
execution order is CP , CB in each round of mutual refinement.

The benchmarks are selected from the original paper [10]. Specifically, we
chose the Contagio malware apps and used the implementation of the client

Mutual Refinements of Context-Free Language Reachability 17

P → P P | (1 P)1 | . . . | (k P)k | ϵ

B → B B | [1 B]1 | . . . | [l B]l | ϵ

L = P ⊙B

(a) The taint analysis is formulated
as the well-known interleaved-Dyck-
reachability problem.

CP → CP CP | (1 CP)1 | . . . | (k CP)k | I | ϵ
I → [1|]1 | . . . | [l|]l

CB → CB CB | [1 CB]1 | . . . | [l CB]l | J | ϵ
J → (1|)1 | . . . | (k|)k | ϵ

(b) We use the above two CFLs
CP and CB to over-approximate the
interleaved-Dyck language.

Fig. 7: The taint analysis formulation and approximation.

analysis to obtain the graphs.2 We excluded benchmarks that our tool or the
original reference’s tool failed to handle. Finally, we got 15 benchmarks, and the
size information of the APK files and the graphs is shown in Table 2a.

Value-Flow Analysis. We also apply our approach to a context-sensitive value-
flow analysis for LLVM IR programs obtained from the SPEC CPU 2017 bench-
mark [28]. The analysis goal is to determine all pairs of store/load instructions
(store v1 to p1, load v2 from p2) where the value of v1 can flow into v2 via interme-
diate assignments and loads/stores. In this case, context-sensitivity is modeled
using matched parentheses; memory stores and loads are modeled using matched
brackets (in this case, there is only one type of brackets); normal copies of val-
ues are modeled using edges with a special label n. Furthermore, since we are
interested in store/load pairs, the first edge in the path string must be a mem-
ory store, and the last edge must be a memory load. A valid path string is an
interleaving of three strings derived from the three CFLs P , B, and N shown
in Figure 8a where the first symbol must be [and the last symbol must be].
We denote this formal language as LV . Section 6 shows the existing D1 ⊙Dk-
reachability problem, whose decidability is currently open [13], is reducible to
the LV -reachability problem.

In order to use mutual refinement, we choose three CFLs (CP , CB , and
CE) over-approximating the underlying problem, where CP models parentheses
matching, CB models brackets matching, and CE enforces that the first and last
edges of the path must be an open bracket and a closed bracket, respectively.
Specifically, they have the three grammars shown in Figure 8b. The execution
order is CP , CB , CE in each round of mutual refinement.

The benchmarks are compiled using Clang version 12 [16] to bitcode files. The
graphs are generated by the open-source static value-flow analysis framework
SVF [31]. We did not include small programs (with bitcode file sizes < 1MB) or
programs that failed to be compiled or linked. Finally, we got 10 benchmarks,
and the size information of the bitcode files and the graphs is shown in Table 2b.

2 https://github.com/proganalysis/type-inference.

https://github.com/proganalysis/type-inference

18 Shuo Ding and Qirun Zhang

P → P P | (1 P)1 | . . . | (k P)k | ϵ

B → B B | [B] | ϵ

N → n N | ϵ

LV = ((P ⊙B)⊙N) ∩ {s | s = [∗]}

(a) The value-flow analysis is formu-
lated as an LV -reachability problem.

CP → CP CP | (1 CP)1 | . . . | (k CP)k | I | ϵ
I → [|] | n

CB → CB CB | [CB] | J | ϵ
J → (1|)1 | . . . | (k|)k | n

CE → [K]
K → K K | [|] | (1|)1 | . . . | (k|)k | n

(b) We use the above three CFLs CP ,
CB , and CE to over-approximate LV .

Fig. 8: The value-flow analysis formulation and approximation.

Benchmark
APK Size

(M)
Graph Size
(|V |, |E|)

backflash 0.75 (544, 2048)
batterydoc 0.51 (1674, 4790)
droidkongfu 0.08 (734, 1983)
fakebanker 5.17 (434, 1103)
fakedaum 0.14 (1144, 2603)
faketaobao 0.44 (222, 450)
jollyserv 0.42 (488, 998)
loozfon 0.04 (152, 323)
phospy 0.18 (4402, 15660)
roidsec 0.03 (553, 2026)
scipiex 0.31 (1809, 5820)
simhosy 1.43 (4253, 13768)
skullkey 6.63 (18862, 69599)
uranai 0.07 (568, 1246)
zertsecurity 0.10 (281, 710)

(a) Taint Analysis Graphs.

Benchmark
Bitcode Size

(M)
Graph Size
(|V |, |E|)

cactus 5.61 (101325, 114805)
imagick 13.68 (103594, 131707)
leela 2.93 (16134, 19110)
nab 1.41 (12727, 13605)
omnetpp 20.80 (171502, 184601)
parest 16.20 (84355, 93493)
perlbench 11.88 (125345, 160958)
povray 7.38 (61802, 71892)
x264 4.68 (49806, 56376)
xz 1.24 (9918, 10767)

(b) Value-flow Analysis Graphs.

Table 2: Benchmark statistics.

Research Questions. Our experiments aim to answer the following questions.

– RQ1: Can mutual refinement achieve better precision compared with the
straightforward intersection (baseline) on the two applications?

– RQ2: What is the time/space overhead that mutual refinement incurs com-
pared with the straightforward intersection (baseline), and how many rounds
does mutual refinement take to converge?

– RQ3: Can the LZR graph simplification algorithm improve the precision/per-
formance of mutual refinement on the taint analysis application?

Mutual Refinements of Context-Free Language Reachability 19

Implementation and Experiment Execution. We implemented mutual re-
finement in C++17.3 All experiments were performed on a machine running
Ubuntu 20.04.2 LTS. We set a timeout of 4 hours and a space limit of 128 GB
for each algorithm’s execution on each benchmark item. For RQ3, we used the
original implementation of the LZR algorithm available online.4 Since the LZR
algorithm is fast enough, we did not set time/space limits on its executions.

5.2 RQ1: Precision Improvement

According to Theorem 5, mutual refinement’s precision is at least as good
as the straightforward intersection. We define the precision improvement as
(PBaseline/PMR) − 1, where PBaseline and PMR represent the number of reachable
pairs computed by the straightforward intersection (baseline) and mutual refine-
ment, respectively. Table 3 shows that, on average, mutual refinement achieves
50.95% precision improvement on the taint analysis benchmarks and 9.37% pre-
cision improvement on the value-flow analysis benchmarks. Note that the im-
provement greatly depends on specific applications and benchmarks.

Summary: On the two program analysis applications, mutual refinement can
achieve visibly better precision compared with the straightforward intersection.

5.3 RQ2: Performance Overhead

Mutual refinement traces the sets of contributing edges, which can cost more
time and space. Also, mutual refinement might need several rounds to converge.
As shown in Table 3 and Figure 9, on average, on the taint analysis benchmarks,
mutual refinement takes 2.93 rounds to converge and consumes 2.65× time and
3.23× memory compared with the baseline; on the value-flow analysis bench-
marks, mutual refinement takes 3.13 rounds to converge and consumes 2.55×
time and 2.22× memory compared with the baseline. In some cases, mutual
refinement’s space consumption can be much higher. For example, mutual re-
finement incurs a 80.58× space increase on the phospy benchmark in Table 3a.
And there is a trend that larger graphs result in larger differences in memory con-
sumption, which reflects the space complexity difference (Õ(|V |2) and Õ(|V |3)).
Section 6.4 discusses mutual refinement’s memory cost in detail.

However, mutual refinement can also simplify the graph during the execution
of each CFL-reachability, while the straightforward intersection cannot. This
could lead mutual refinement to consume less resources in certain cases. For
example, on the cactus benchmark in Table 3b, mutual refinement consumes less
time than the straightforward intersection.

Summary: Mutual refinement typically needs more time and space, but the
average time/space increase on the two program analysis applications is within
5×, and the number of iterations needed to converge is within five.

3 The implementation is available on GitHub (https://github.com/sdingcn/
mutual-refinement) and Zenodo (https://doi.org/10.5281/zenodo.8191389).
Certain low-level data structure optimizations were used.

4 https://github.com/yuanboli233/interdyck_graph_reduce.

https://github.com/sdingcn/mutual-refinement
https://github.com/sdingcn/mutual-refinement
https://doi.org/10.5281/zenodo.8191389
https://github.com/yuanboli233/interdyck_graph_reduce

20 Shuo Ding and Qirun Zhang

Benchmark Iterations
Precision (Pairs) Time (Seconds) Space (MB)
Baseline MR Baseline MR Baseline MR

backflash 2 6080 2870 0.42 0.67 16.06 36.70
batterydoc 3 8386 5484 0.93 6.06 31.43 133.76
droidkongfu 3 6471 5442 0.32 4.55 16.93 90.06
fakebanker 3 1407 1172 0.04 0.12 9.17 11.96
fakedaum 3 3507 3243 0.28 1.07 18.16 37.40
faketaobao 3 398 328 0.01 0.02 6.98 7.23
jollyserv 3 562 303 0.10 0.14 10.61 15.62
loozfon 2 441 424 0.01 0.04 6.74 9.62
phospy 3 103961 81925 1309.64 9436.26 1202.29 96882.00
roidsec 2 17301 16425 1.79 5.94 28.85 168.93
scipiex 4 20542 10210 69.96 266.33 209.97 3471.78
simhosy 3 100552 41992 102.10 110.78 363.91 1669.46
skullkey - - - - - - -
uranai 4 353 148 0.11 0.08 10.54 10.56
zertsecurity 3 1969 1110 0.26 0.16 11.24 13.93

(a) Taint Analysis Results.

Benchmark Iterations
Precision (Pairs) Time (Seconds) Space (MB)
Baseline MR Baseline MR Baseline MR

cactus 4 46502 46421 621.36 419.39 2888.79 9373.77
imagick - 22091 - 14088.50 - 12211.74 -
leela 3 392 392 0.81 1.94 78.01 122.45
nab 3 1958 1788 0.30 0.87 51.83 70.76
omnetpp 4 90412 50568 76.70 221.21 1769.57 4396.33
parest 3 4571 4571 2.89 8.70 243.79 364.86
perlbench - - - - - - -
povray 3 7453 7230 18.18 6.43 455.19 260.73
x264 3 61577 60792 47.01 821.81 571.96 10650.62
xz 2 211 211 0.32 2.29 41.10 87.94

(b) Value-flow Analysis Results.

Table 3: Precision and performance results. We present the number of rounds
that mutual refinement takes to converge, as well as the comparison of preci-
sion/time/space between the straightforward intersection (baseline) and mutual
refinement. “-” means time/space limits are exceeded.

5.4 RQ3: Combination with the LZR Algorithm

The LZR graph simplification algorithm [18] works for interleaved-Dyck-reachability,
and is thus applicable to our taint analysis benchmarks as a pre-processing step.
One important detail is that the LZR algorithm does graph edge contractions
before calculating the contributing edges, while mutual refinement doesn’t. This
can lead to edges counted as contributing edges in mutual refinement but not

Mutual Refinements of Context-Free Language Reachability 21

0 5 10 15

0

20

40

60

80

Time Ratio

M
em

o
ry

R
a
ti
o

(a) Overhead on taint analysis.

0 5 10 15

0

5

10

15

20

Time Ratio

M
em

o
ry

R
a
ti
o

(b) Overhead on value-flow analysis.

Fig. 9: Mutual refinement’s performance overhead scatter plots (ratios). Time
ratios are mutual refinement’s time consumption numbers divided by the base-
line’s time consumption numbers. Memory ratios are similar.

counted as contributing edges in the LZR algorithm, because contracting edges
can make LZR ignore the contracted edges. As a result, the LZR algorithm can
potentially remove certain edges that mutual refinement cannot.

Table 4 compares (1) executing mutual refinement on the original graphs and
(2) executing mutual refinement on the graphs simplified by the LZR algorithm.
In the (2) case, the time/space consumption includes both algorithms (LZR and
MR). On average, LZR can improve the precision of mutual refinement by 3.27%,
and this relatively small number shows that mutual refinement itself can already
achieve very high precision. Indeed, LZR+MR can reduce 81.38% more edges
on average compared with LZR alone. LZR can also boost mutual refinement
in terms of time/space consumption, such as the phospy benchmark in Table 4.
Notably, the space consumption of LZR+MR is always lower-bounded by 269
MB, and that is because LZR has a minimal memory consumption of roughly
269 MB. This might be due to implementation details.

Summary: LZR can improve mutual refinement’s precision, but only to a
small extent (3.27% on average). Since LZR is fast, it can boost mutual refine-
ment’s performance in certain cases.

6 Discussion

6.1 Generality of Mutual Refinement

Mutual refinement can approximate any language-reachability problem as long
as there exist CFL-reachability-based over-approximations. In particular, it is
not restricted to the interleaved-Dyck reachability or any particular problem.
We have shown two examples LT and LV in our motivating example and exper-
iments, and here we show (1) LT is not a CFL, and (2) D1 ⊙ Dk-reachability,
whose decidability is currently open [13], is reducible to LV -reachability.

22 Shuo Ding and Qirun Zhang

Benchmark
Precision (Pairs) Time (Seconds) Space (MB) Edge Reduction
MR LZR+MR MR LZR+MR MR LZR+MR LZR LZR+MR

backflash 2870 2870 0.67 0.60 36.70 269.18 677 1434
batterydoc 5484 5438 6.06 1.54 133.76 269.33 1826 3327
droidkongfu 5442 5422 4.55 2.66 90.06 269.40 589 1070
fakebanker 1172 928 0.12 0.17 11.96 269.17 414 745
fakedaum 3243 3243 1.07 0.87 37.40 269.18 1103 1747
faketaobao 328 325 0.02 0.10 7.23 269.13 191 309
jollyserv 303 303 0.14 0.25 15.62 269.01 361 634
loozfon 424 424 0.04 0.08 9.62 269.08 105 189
phospy 81925 80200 9436.26 8849.91 96882.00 69532.63 3838 6659
roidsec 16425 16425 5.94 5.86 168.93 269.12 605 1077
scipiex 10210 10173 266.33 260.05 3471.78 3426.72 1219 2683
simhosy 41992 35419 110.78 78.66 1669.46 1217.93 4801 8866
skullkey - - - - - - 19408 -
uranai 148 148 0.08 0.21 10.56 269.10 566 1063
zertsecurity 1110 1110 0.16 0.22 13.93 269.11 253 438

Table 4: A comparison between the original mutual refinement and the one
combined with the LZR algorithm, including precision, time, space, and edge
reduction. “-” means time/space limits for mutual refinement are exceeded.

LT is not a CFL. Suppose LT is a CFL. We construct a formal language
M , each string m of which is an arbitrary interleaving of p ∈ P and d ∈ D in
Section 2, interspersed with an arbitrary number of special symbols a1, . . . , al.
Obviously, the language homomorphism

f(x) =

{
[i , x = ai
x , otherwise

maps M to LT . By the assumption LT is context-free, so M is also context-
free since CFL is closed under inverse homomorphisms. Consider the regular
language R = {s | s does not contain a1, . . . , al}. Since the intersection of a
context-free language and a regular language is also context-free, we have M ∩R
is context-free, but this is the interleaved-Dyck language, which is known to be
non-context-free [24]. This is a contradiction.

D1⊙Dk-reachability is reducible to LV -reachability. D1⊙Dk is arbitrary
interleaving of two Dyck languagesD1 andDk, whereD1 is a Dyck language with
one kind of parenthesis and Dk is a Dyck language with k kinds of parenthesis.
Given any labeled graph consisting of only labels from D1 and Dk, a pair of
vertices (s, t) is D1 ⊙Dk-reachable if and only if (s0, t0) is LT -reachable where

we just add two vertices s0 and t0, and two edges s0
[−→ s and t

]−→ t0, where [
and] are the open and close brackets in D1.

Mutual Refinements of Context-Free Language Reachability 23

6.2 Different Grammars for the Same CFL

A context-free language can be represented by many different context-free gram-
mars. Ambiguous grammars introduce redundancies, so it can affect mutual re-
finement’s performance because there are more derivations to traverse. However,
the choice of grammars does not affect the precision, because we only track L-
contributing edges and different grammars refer to the same formal language L.
This is also reflected in Algorithm 2: metaInfo[e] is a set eliminating duplicate
tracked edges, and con is also a set eliminating duplicate collected edges.

6.3 Order of Mutual Refinement

In mutual refinement, as Theorem 3 shows, any possible orders of executing the
CFL-reachability-based over-approximations C1, C2, · · · , Cm result in the same
global minimum. However, different orders might affect the convergence speed. In
practice, we can run the available CFL-reachability-based over-approximations
on sampled programs to find out a “good” order to use, and then execute the
“good” order on all programs. There are other heuristics for order choosing, such
as executing the one that can result in the best precision first.

6.4 Cost of Mutual Refinement

As shown in Section 5, mutual refinement, in general, needs more time and space
than the straightforward intersection. This is because mutual refinement traces
the contributing edges and might need more than one iteration to converge.
However, after running one CFL-reachability over-approximation, the remaining
ones only need to be executed on the simplified graph. Also, in practice, we do
not have to wait for the convergence, but can run it for a fixed number of rounds
(e.g. two rounds). Other possible optimizations include changing the order of
mutual refinement, simplifying the graphs/grammars, etc. Mutual refinement
reflects a trade-off between performance and precision.

Memory Overhead of Mutual Refinement. Our experiment shows that in some
cases, mutual refinement can take about 80×memory compared with the straight-
forward intersection. We intuitively explain the reason. Consider the difference
between the standard CFL-reachability algorithm (Algorithm 1) and our tracing
version (Algorithm 2): in our tracing version, when a new edge is generated, the
meta-information about edge dependencies is updated no matter whether the
new edge is already in the graph or not. If there are multiple ways to gener-
ate the same edge, all of those ways need to be recorded. For example, in the
following graph, where we perform the matched-parenthesis reachability with
respect to the grammar S → S S | (S) | ϵ, there are three ways to generate

the summary edge s
S−→ t, and all edges will be added to the meta information

of s
S−→ t, despite there is only one such summary edge in the final graph. So

the memory cost of mutual refinement can be high. Whether this graph pattern
occurs in reality depends on the specific analysis details.

24 Shuo Ding and Qirun Zhang

s

v1

v2

v3

t

()

()

()

Exploring whether we can reduce the memory cost is an interesting future direc-
tion. There exists work compressing information used during static analysis [33].

6.5 Generalization to the Single-Pair Case

In this paper, mutual refinement is formalized to retain the edges contributing
to reachable pairs in the CFL-reachability-based over-approximations. Notice
that in the single-source-single-target reachability case, we can retain only the
edges contributing to the pair that we are interested in, and this can potentially
remove even more edges from the graph and thus can also potentially increase
the precision as well. We leave this for future work.

6.6 Generalization to Other Algorithms

The idea of tracing in mutual refinement can be potentially generalized to all
algorithms using similar “dynamic programming style” approaches. Specifically,
as long as the algorithm traverses all edges contributing to the ground truth
solution, we can use tracing to extract those edges and use this as a refinement
between different such algorithms. It is an interesting future direction to explore
the generalization of mutual refinement to broader classes of algorithms.

7 Related Work

CFL-reachability is widely-used in program analysis [15,19,22,23,26,30]. It has
a (sub)cubic-time dynamic programming style algorithm [2,20,25,35], and faster
algorithms exist in special cases [1,17,36]. CFL-reachability can model function
calls/returns [24,26], field reads/writes [29,34], locks/unlocks [11], etc.

In static analysis, many techniques have been proposed to reduce the size
of graphs involved in the analysis [5, 18, 21]. Our mutual refinement process
simplifies the graphs, but our main focus is leveraging the information of each
CFL-reachability-based over-approximation to refine the results. In particular,
the LZR fast graph simplification work [18] also defines similar concepts such
as contributing edges, but their algorithm is specific for the interleaved-Dyck-
reachability problem, while our mutual refinement works for any L-reachability
problems preserving CFL-reachability-based over-approximations. Also, LZR is
a pre-processor while mutual refinement is a complete solver.

Interleaved-Dyck-reachability is widely used in program analysis [18, 27, 37],
but it is undecidable [24], so there exist many approximation algorithms. We can

Mutual Refinements of Context-Free Language Reachability 25

use one Dyck language to approximate it and employ the standard cubic-time
context-free language reachability algorithm [20, 25, 35]. The refinement-based
context-sensitive points-to analysis work [29] used the method of modeling one
Dyck language precisely while approximating the other Dyck language using
a regular language [29]. The linear conjunctive language reachability [37] is an-
other formulation of interleaved-Dyck-reachability which is precise, but the corre-
sponding algorithm is approximate. Synchronized pushdown systems [27] model
the idea of considering two context-free languages at the same time. Mutual
refinement is not restricted to interleaved-Dyck-reachability.

In static analysis and verification, similar strategies of running different ap-
proaches in a staged way such that later stages benefit from earlier stages have
been studied, such as the Unity − Relay approach [32] to accumulate the pre-
cision of different selective context-sensitivity approaches, and the staged veri-
fication [6] where faster verifiers run first to reduce the load of later verifiers.
Mutual refinement concerns graph-reachability-based program analysis, and we
have theorems showing the existence and uniqueness of fix-points.

8 Conclusion

This paper proposed mutual refinement to combine different CFL-reachability
over-approximations for computationally hard graph reachability problems. We
proved theorems showing the existence and uniqueness of the optimal refinement
result, the correctness of mutual refinement, and the precision guarantees. To
realize mutual refinement, the modifications to the standard CFL-reachability
algorithm are minimal, and the modified version’s time/space complexities were
carefully analyzed. We also conducted experiments showing that mutual refine-
ment achieved better precision than the straightforward intersection of the sets
of reachable vertex pairs, with reasonable extra time and space cost.

Acknowledgements. We thank the anonymous reviewers for their feedback
on earlier drafts of this paper. This work was supported, in part, by the United
States National Science Foundation (NSF) under grants No. 1917924, No. 2114627,
and No. 2237440; and by the Defense Advanced Research Projects Agency
(DARPA) under grant N66001-21-C-4024. Any opinions, findings, conclusions,
or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the above sponsoring entities.

References

1. Chatterjee, K., Choudhary, B., Pavlogiannis, A.: Optimal dyck reachability for
data-dependence and alias analysis. Proc. ACM Program. Lang. 2(POPL), 30:1–
30:30 (2018)

2. Chaudhuri, S.: Subcubic algorithms for recursive state machines. In: Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. pp.
159–169. ACM (2008)

26 Shuo Ding and Qirun Zhang

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2022)

4. Cousot, P.: Asychronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice. (1977)

5. Fähndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in
inclusion constraint graphs. In: Proceedings of the ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementation (PLDI), Montreal,
Canada, June 17-19, 1998. pp. 85–96. ACM (1998)

6. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17(2),
9:1–9:34 (2008)

7. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: The correct way to
summarize benchmark results. Commun. ACM 29(3), 218–221 (1986)

8. Harrison, M.A.: Introduction to formal language theory. Addison-Wesley Longman
Publishing Co., Inc. (1978)

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation. Acm Sigact News 32(1), 60–65 (2001)

10. Huang, W., Dong, Y., Milanova, A., Dolby, J.: Scalable and precise taint analysis
for android. In: Proceedings of the 2015 International Symposium on Software
Testing and Analysis, ISSTA 2015. pp. 106–117. ACM (2015)

11. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing de-
cidability of pairwise cfl-reachability for threads communicating via locks. In: Pro-
ceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS
2009, 11-14 August 2009, Los Angeles, CA, USA. pp. 27–36. IEEE Computer So-
ciety (2009)

12. Kildall, G.A.: A unified approach to global program optimization. In: Conference
Record of the ACM Symposium on Principles of Programming Languages, Boston,
Massachusetts, USA, October 1973. pp. 194–206. ACM Press (1973)

13. Kjelstrøm, A.H., Pavlogiannis, A.: The decidability and complexity of interleaved
bidirected dyck reachability. Proc. ACM Program. Lang. 6(POPL), 1–26 (2022)

14. Kleene, S.C.: Introduction to metamathematics (1952)
15. Kodumal, J., Aiken, A.: The set constraint/cfl reachability connection in practice.

In: Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation 2004, Washington, DC, USA, June 9-11, 2004. pp.
207–218. ACM (2004)

16. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE / ACM International Symposium on
Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA. pp. 75–88. IEEE Computer Society (2004)

17. Lei, Y., Sui, Y., Ding, S., Zhang, Q.: Taming transitive redundancy for context-
free language reachability. Proc. ACM Program. Lang. 6(OOPSLA2), 1556–1582
(2022)

18. Li, Y., Zhang, Q., Reps, T.W.: Fast graph simplification for interleaved dyck-
reachability. In: Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020. pp. 780–793.
ACM (2020)

19. Lu, Y., Shang, L., Xie, X., Xue, J.: An incremental points-to analysis with cfl-
reachability. In: Compiler Construction - 22nd International Conference, CC 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. Lecture Notes
in Computer Science, vol. 7791, pp. 61–81. Springer (2013)

Mutual Refinements of Context-Free Language Reachability 27

20. Melski, D., Reps, T.W.: Interconvertibility of a class of set constraints and context-
free-language reachability. Theor. Comput. Sci. 248(1-2), 29–98 (2000)

21. Milanova, A.: Flowcfl: generalized type-based reachability analysis: graph reduction
and equivalence of cfl-based and type-based reachability. Proc. ACM Program.
Lang. 4(OOPSLA), 178:1–178:29 (2020)

22. Pratikakis, P., Foster, J.S., Hicks, M.: Existential label flow inference via CFL
reachability. In: Static Analysis, 13th International Symposium, SAS 2006, Seoul,
Korea, August 29-31, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4134, pp. 88–106. Springer (2006)

23. Rehof, J., Fähndrich, M.: Type-base flow analysis: from polymorphic subtyping to
cfl-reachability. In: Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, London, UK, Jan-
uary 17-19, 2001. pp. 54–66. ACM (2001)

24. Reps, T.: Undecidability of context-sensitive data-dependence analysis. ACM
Transactions on Programming Languages and Systems (TOPLAS) 22(1), 162–186
(2000)

25. Reps, T.W.: Program analysis via graph reachability. Inf. Softw. Technol. 40(11-
12), 701–726 (1998)

26. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23-25, 1995. pp. 49–61. ACM Press (1995)

27. Späth, J., Ali, K., Bodden, E.: Context-, flow-, and field-sensitive data-flow analy-
sis using synchronized pushdown systems. Proc. ACM Program. Lang. 3(POPL),
48:1–48:29 (2019)

28. SPEC: Spec cpu 2017. https://www.spec.org/cpu2017/ (2017), accessed: Nov 6,
2022

29. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis
for java. In: Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006.
pp. 387–400. ACM (2006)

30. Su, Y., Ye, D., Xue, J.: Parallel pointer analysis with cfl-reachability. In: 43rd
International Conference on Parallel Processing, ICPP 2014, Minneapolis, MN,
USA, September 9-12, 2014. pp. 451–460. IEEE Computer Society (2014)

31. Sui, Y., Xue, J.: Svf: interprocedural static value-flow analysis in llvm. In: Proceed-
ings of the 25th international conference on compiler construction. pp. 265–266.
ACM (2016)

32. Tan, T., Li, Y., Ma, X., Xu, C., Smaragdakis, Y.: Making pointer analysis more
precise by unleashing the power of selective context sensitivity. Proc. ACM Pro-
gram. Lang. 5(OOPSLA), 1–27 (2021)

33. Xiao, X., Zhang, Q., Zhou, J., Zhang, C.: Persistent pointer information. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. pp. 463–474. ACM
(2014)

34. Yan, D., Xu, G., Rountev, A.: Demand-driven context-sensitive alias analysis for
java. In: Proceedings of the 20th International Symposium on Software Testing
and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011. pp. 155–165.
ACM (2011)

35. Yannakakis, M.: Graph-theoretic methods in database theory. In: Proceedings
of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS 1990. pp. 230–242. ACM Press (1990)

https://www.spec.org/cpu2017/

28 Shuo Ding and Qirun Zhang

36. Zhang, Q., Lyu, M.R., Yuan, H., Su, Z.: Fast algorithms for dyck-cfl-reachability
with applications to alias analysis. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013. pp. 435–446. ACM (2013)

37. Zhang, Q., Su, Z.: Context-sensitive data-dependence analysis via linear conjunc-
tive language reachability. In: Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017. pp. 344–358. ACM (2017)

	Mutual Refinements of Context-Free Language Reachability

