
Static Inference Meets Deep Learning: A Hybrid Type Inference
Approach for Python

Yun Peng
The Chinese University of Hong Kong

Hong Kong, China
ypeng@cse.cuhk.edu.hk

Cuiyun Gao∗
Harbin Institute of Technology

Shenzhen, China
gaocuiyun@hit.edu.cn

Zongjie Li
Harbin Institute of Technology

Shenzhen, China
lizongjie@stu.hit.edu.cn

Bowei Gao
Harbin Institute of Technology

Shenzhen, China
1160300103@hit.edu.cn

David Lo
Singapore Management University

Singapore
davidlo@smu.edu.sg

Qirun Zhang
Georgia Institute of Technology

United States
qrzhang@gatech.edu

Michael Lyu
The Chinese University of Hong Kong

Hong Kong, China
lyu@cse.cuhk.edu.hk

ABSTRACT

Type inference for dynamic programming languages such as Python
is an important yet challenging task. Static type inference tech-
niques can precisely infer variables with enough static constraints
but are unable to handle variables with dynamic features. Deep
learning (DL) based approaches are feature-agnostic, but they can-
not guarantee the correctness of the predicted types. Their per-
formance significantly depends on the quality of the training data
(i.e., DL models perform poorly on some common types that rarely
appear in the training dataset). It is interesting to note that the
static and DL-based approaches offer complementary benefits. Un-
fortunately, to our knowledge, precise type inference based on both
static inference and neural predictions has not been exploited and
remains an open challenge. In particular, it is hard to integrate DL
models into the framework of rule-based static approaches.

This paper fills the gap and proposes a hybrid type inference
approach named HiTyper based on both static inference and deep
learning. Specifically, our key insight is to record type dependen-
cies among variables in each function and encode the dependency
information in type dependency graphs (TDGs). Based on TDGs, we
can easily integrate type inference rules in the nodes to conduct
static inference and type rejection rules to inspect the correctness
of neural predictions. HiTyper iteratively conducts static inference
and DL-based prediction until the TDG is fully inferred. Experi-
ments on two benchmark datasets show that HiTyper outperforms
state-of-the-art DL models by exactly matching 10% more human
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510038

annotations. HiTyper also achieves an increase of more than 30%
on inferring rare types. Considering only the static part of HiTyper,
it infers 2× ∼ 3×more types than existing static type inference tools.
Moreover, HiTyper successfully corrected seven wrong human an-
notations in six GitHub projects, and two of them have already
been approved by the repository owners.

1 INTRODUCTION

Dynamically typed programming languages such as Python are be-
coming increasingly prevalent in recent years. According to GitHub
Octoverse 2019 and 2020 [15], Python outranks Java and C/C++ and
becomes one of the most popular programming languages. The dy-
namic features provide more flexible coding styles and enable fast
prototyping. However, without concretely defined variable types,
dynamically typed programming languages face challenges in en-
suring security and compilation performance. According to a recent
survey by Jetbrains [23], static typing or at least some strict type
hints becomes the top 1 desired feature among Python developers.
To address such problems, some research adopts design principles
of statically typed programming languages [16, 25, 47]. For example,
reusing compiler backend of the statically typed languages [26] and
predicting types for most variables [2, 4, 11, 17, 18, 21, 39]. More-
over, Python officially supports type annotations in the Python
Enhancement Proposals (PEP) [28, 29, 56, 61].

Type prediction is a popular task performed by existing work.
Traditional static type inference approaches [4, 11, 17, 21, 48] and
type inference tools such as Pytype [45], Pysonar2 [42], and Pyre
Infer [40] can correctly infer types for the variables with enough
static constraints, e.g., for a = 1 we can know the type of a is
int, but are unable to handle the variables with few static con-
straints, e.g. most function arguments or dynamic evaluations such
as eval() [51].

With the recent development of deep learning (DL) methods, we
can leverage more type hints such as identifiers and existing type
annotations to predict types. Many DL-based methods [2, 18, 31, 35,
39, 59] have been proposed, and they show significant improvement

https://doi.org/10.1145/3510003.3510038

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

compared with static techniques [27]. While DL-based methods are
effective, they face the following two major limitations:

(i) No guarantee of the type correctness. Pradel et al. [39] find that
the predictions given by DLmodels are inherently imprecise as they
return a list of type candidates for each variable, among which only
one type is correct under a certain context. Besides, the predictions
made by DL models may contradict the typing rules, leading to type
errors. Even the state-of-the-art DL model Typilus [2] generates
about 10% of predictions that cannot pass the test of a type checker.
The type correctness issue makes the DL-based methods hard to be
directly deployed into large codebases without validation. Recent
work [2, 39] leverages a search-based validation in which a type
checker is used to validate all combinations of types returned by DL
models and remove those combinations containing wrong types.
However, these approaches cannot correct the wrong types but
only filter them out.

(ii) Inaccurate prediction of rare types. Rare types refer to the
typeswith low occurrence frequencies in datasets [2]. Low-frequency
problem has become one of the bottlenecks of DL-based meth-
ods [24, 30, 46, 50, 60]. For example, Typilus’s accuracy drops by
more than 50% for the types with occurrence frequencies fewer
than 100, compared to the accuracy of the types with occurrence
frequencies more than 10,000. More importantly, rare types totally
account for a significant amount of annotations even though each
of them rarely appears. We analyze the type frequencies of two
benchmark datasets from Typilus [2] and Type4Py [34], and find
a long tail phenomenon, i.e., the top 10 types in the two datasets
already account for 54.8% and 67.8% of the total annotations, and
more than 10,000 and 40,000 types in two datasets are rare types
with frequency proportions less than 0.1%. They still occupy 35.5%
and 25.5% of total annotations for the two respective datasets and
become the long “tail” of type distributions.

To remedy the limitations of the previous studies, this paper pro-
poses a hybrid type inference framework named HiTyper, which
conducts static type inference and accepts recommendations from
DL models (Static+DL). We propose a novel representation, named
type dependency graph (TDG), for each function, where TDG
records the type dependencies among variables. Based on TDG,
we reformulate the type inference task into a blank filling problem
where the “blanks” (variables) are connected with dependencies so
that both static approaches and DL models can fill the types into
“blanks”.

HiTyper infers the “blanks” in TDG mainly based on static type
inference, which automatically addresses DL models’ rare type pre-
diction problem since static type inference rules are insensitive to
type occurrence frequencies. HiTyper extends the inference ability
of static type inference by accepting recommendations from DL
models when it encounters some “blanks” that cannot be statically
inferred. Different from the search-based validation by Pradel et
al. [39], HiTyper builds a series of type rejection rules to filter out
all wrong predictions on TDG, and then continues to conduct static
type inference based on the reserved correct predictions.

We evaluate HiTyper on two public datasets. One dataset is
released by Allamanis et al. in the paper of Typilus [2], and the
other is ManyTypes4Py [35], one large dataset recently released
for this task. Experiment results show that HiTyper outperforms
both SOTA DL models and static type inference tools. Compared

Figure 1: Type dependency graph of the parse() fromCode.1.

with two SOTA DL models Typilus and Type4Py, HiTyper presents
a 10%∼12% boost on the performance of overall type inference,
and a 6% ∼ 71% boost on the performance of certain kinds of type
inference such as return value type inference and user-defined type
inference. Without the recommendations from neural networks and
only looking at the static type inference part, HiTyper generally
outputs 2× ∼ 3× more annotations with higher precision than cur-
rent static type inference tools Pyre [40] and Pytype [45]. HiTyper
can also identify wrong human annotations in real-world projects.
We identify seven wrong annotations in six projects of Typilus’s
dataset and submit pull requests to correct these annotations. Two
project owners have approved our corrections.

Contributions. Our contributions can be concluded as follows:
• To the best of our knowledge, we are the first to propose
a hybrid type inference framework that integrates static
inference with DL for more accurate type prediction.
• We design an innovative type dependency graph to strictly
maintain type dependencies of different variables.
• We tackle some challenges faced by previous studies and
design a series of type rejection rules and a type correction
algorithm to validate neural predictions.
• Extensive experiments demonstrate the superior performance
of the proposed HiTyper than SOTA baseline models and
static type inference tools in the task.

2 MOTIVATING EXAMPLE

Listing 1 illustrates an example of code snippet from the WebDNN
project.1 Results of several baselines, including static type inference

1https://github.com/mil-tokyo/webdnn

https://github.com/mil-tokyo/webdnn

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

techniques - Pytype and Pysonar2, and state-of-the-art DL models -
Typilus, are depicted in Table 1.

1 #src/graph_transpiler/webdnn/graph/shape.py

2 def parse(text):

3 normalized_text = _normalize_text(text)

4 tmp = ast.literal_eval(normalized_text)

5 shape = []

6 placeholders = {}

7 for i, t in enumerate(tmp):

8 if isinstance(t, str):

9 pt = Placeholder(label=t)

10 placeholders[t] = pt

11 elif isinstance(t, int):

12 pt = t

13 shape.append(pt)

14 return shape , placeholders

Listing 1: A Function fromWebDNN.

Static Inference. According to Table 1, we can find that the
static type inference techniques fail to infer the type of the argu-
ment text since the argument is at the beginning of data flow
without any assignments or definitions. One common solution to
infer the type is to use inter-procedural analysis and capture the
functions that call parse() [52]. However, tracing the functions in
programs, especially in some libraries, is not always feasible. As
for the return value, by analyzing the data flow and dependencies
between variables, static inference can easily identify that shape
(line 5, 13) and placeholders (line 6, 10) consist of the return value.
It can recursively analyze the types of the two variables, and fi-
nally output the accurate type of the return value. Indeed, both
Pysonar2 and Pytype can correctly infer that the return value is a
tuple containing a list and dict.

DL Approach. The DL model Typilus [2] accurately predicts
the type as str according to the semantics delivered by the argu-
ment text and contextual information. The case illustrates that DL
models can predict more types than static inference. However, Typ-
ilus fails to infer the type of the return value of parse(). Current
DL models cannot maintain strict type dependencies between vari-
ables. Therefore, Typilus only infers the type as a tuple but cannot
accurately predict the types inside the tuple. When adding a type
checker to validate Typilus’s predictions, its argument prediction is
reserved since it does not violate any existing type inference rules.
However, for the return value, its 2nd and 3rd type predictions in
Table 1 by Typilus are rejected since the return value of parse()
explicitly contains two elements with different types. The 1st predic-
tion is also rejected because it contains the type Optional[text]
that does not appear in the return value. In this case, the model
does not produce any candidate type for the return value.

Static+DL Approach. For the code example, we find that static
inference is superior than DL models when sufficient static con-
straints or dependencies are satisfied, while DL models are more
applicable for the types lacking sufficient static constraints. Given
the code, HiTyper first generates the TDG of it, as shown in Fig. 1,
and tries to fill all nodes in TDG with corresponding types ("blank
filling"). For the argument text, HiTyper identifies that the type
cannot be inferred by static inference (it does not have any input
edges) and asks DL for recommendations.HiTyper does not directly
output the predictions from DL as final type assignments. Instead,

Table 1: Prediction results of different baselines for Listing 1.

Approach Baseline Argument Return Value

Ground
Truth str Tuple[List[int, Placeholder],

Dict[str, Placeholder]]

Static

Pysonar2 ? Tuple[List[int],Dict]
Pytype ? Tuple[List, Dict]

DL Typilus 1. str

1. Tuple[collections.OrderedDict[
Text, List[DFAState]],
Optional[Text]],Tuple[Any,
List[Tuple[Any]], Any]
2. Tuple[Text]
3. Tuple[torch.Tensor]

Static

+ DL

HiTyper
(Typilus) str Tuple[List[int, Placeholder],

Dict[str, Placeholder]]

HiTyper validates the prediction’s correctness and accepts the re-
sult only if no type inference rules are violated. When predicting
the return value, HiTyper captures its type dependencies based on
the TDG (it connects with two input nodes) and directly leverages
static inference to infer the type. For this case, DL predictions are
not required, largely avoiding the imports of wrong types.

3 HITYPER

In this section, we first introduce the definitions used in HiTyper
and then elaborate the details of HiTyper.

3.1 Definition of Types

Fig. 3 shows the definitions of different types according to the
official documentation of Python [9] and its type checker mypy [8].
Note that we remove the object type and Any type since they are
not strict static types. In general, all types can be classified into
built-in types and user-defined types. Built-in types are predefined
in the language specification of Python while user-defined types
are created by developers. Developers can define the operations or
methods supported by a user-defined type and overwrite some built-
in operations for their user-defined types. For example, developers
can define an __add__()method in a class so that two types derived
from this class can be directly added together using the built-in
operator +. The operation is called operator overloading. We create
a subcategory for user-defined types with operator overloading
behaviors since they have different type inference rules.

The type categories showed in Fig. 3 are widely used in most
static type inference techniques [37, 40, 45]. Differently, DL-based
studies [2, 35] generally categorize the types into common types
and rare types based on a pre-defined threshold of occurrence fre-
quencies (e.g., 100 in [2]). For a fair comparison, we also follow
this definition for evaluation. By analyzing the rare types in two
public datasets Typilus and ManyTypes4Py, we find that 79.02% and
99.7% of rare types actually are user-defined types. Because static
inference technique is frequency-insensitive and cannot recognize
rare types, we mainly add supports for user-defined types on static
inference side of HiTyper.

3.2 Overview

HiTyper accepts Python source files as input and outputs JSON
files recording the type assignment results. Fig. 2 illustrates its

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

 Type Dependency
 Graph Generator

Blank Type Dependency Graph
(TDG)

 Forward Type
 Inference

Patially-Inferred
TDG TDG with

Hot Type Slots

 Deep
 Neural Network

Recommended
TDG

Type Dependency Graph Generation Static Type Inference

Final Output

Fully-Inferred
TDG

Similarity-based
Type Correction

 Backward Type
 Rejection

 Source
 Files

 Hot Type Slots
 Finder

Neural Type Prediction

Figure 2: Overall architecture ofHiTyper. Black solid nodes, hollownodes, red nodes and yellownodes in the type dependency

graphs represent inferred type slots, blank type slots, hot type slots, and the type slots recommended byDLmodel, respectively.

\ ∈ Type (Θ) ::= W | U [\, ..., \] | D | None | type
W ∈ Elementary Type (Γ) ::= int | float | str | bool | bytes

U ∈ Generic Type (�) ::= List | Tuple | Dict | Set |
Callable | Generator | Union

1 ∈ Builtin Type (�) ::= W | U [\]
D ∈ User De�ned Type (*) ::= all classes and named

tuples in code

> ∈ Overloading User ::= 0;; 2;0BB4B F8Cℎ
De�ned Type ($) operator overloading in code

Figure 3: Types in Python.

overall architecture. HiTyper includes three major components:
type dependency graph generation, static type inference, and neural
type prediction. The static type inference component comprises
two main steps, i.e., forward type inference and backward type
rejection.

TypeDependencyGraph (TDG)Generation. Specifically, given
a Python source file,HiTyper first generates TDGs for each function
and identifies all the imported user-defined types (Sec. 3.3). TDG
transforms every variable occurrence and expression into nodes and
maintains type dependencies between them so that static inference
and DL models can work together to fill types into it.

Static Type Inference - Forward Type Inference. To main-
tain the correctness of prediction results, HiTyper focuses on infer-
ring types using static inference. Given a TDG, HiTyper conducts
forward type inference by walking through the graph and imple-
menting the type inference rules saved in each expression node
(Sec. 3.4). However, due to the limitation of static inference, in most
cases HiTyper can only infer partial type slots, i.e., variables, in-
dicated as black solid nodes in the partially-inferred TDG in Fig. 2;
while the blank nodes denote the type slots without sufficient static
constraints and remaining unsolved. To strengthen the inference
ability of HiTyper, we ask DL models for recommendations.

Neural Type Recommendation. Through the hot type slot
finder, HiTyper identifies a key subset of the blank nodes as hot
type slots, marked as red nodes in Fig. 2, for obtaining recommen-
dations from DL models. HiTyper also employs a similarity-based

type correction algorithm to supplement the prediction of user-
defined types, which are the primary source of rare types (Sec. 3.5).
The types recommended by the neural type prediction component
are filled into the graph, resulting in the recommended TDG.

Static Type Inference - Backward Type Rejection.HiTyper
utilizes type rejection rules to validate the neural predictions in hot
type slots (Sec. 3.4). Then it traverses the whole TDG to transmit
the rejected predictions from output nodes to input nodes so that all
nodes in TDG can be validated. Finally HiTyper invokes forward
type inference again to infer new types based on the validated
recommendations.

The interactions between forward type inference and backward
type rejection could iterate until the TDG reaches a fixed point,
i.e., the types of all nodes do not change any more. Meanwhile,
the iterations between static inference and neural prediction can
repeat several times until all type slots are inferred, or a maximum
iteration limit is reached.

3.3 Type Dependency Graph Generation

This section introduces the creation of type dependency graph
(TDG), which describes the type dependencies between different
variables in programs. Fig. 4 presents the syntax of all the expres-
sions that generate types in Python, where each expression corre-
sponds to a node in the AST (Abstract Syntax Tree). Given the AST
of a program, HiTyper can quickly identify these expressions. The
expression nodes constitute a major part of TDG. We define TDG
as below.

Definition.We define a graph� = (#, �) as a type dependency
graph (TDG), where # = {=8 } is a set of nodes representing all
variables and expressions in source code, and � is a set of directed
edges of =8 → = 9 indicating the type of = 9 can be solved based on
the type of =8 by type inference rules. We also denote =8 is the input
node of = 9 and = 9 is the output node of =8 here.

The TDG contains four kinds of nodes:

• symbol nodes represent all the variables for which the types
need to be inferred. We also use type slots to indicate symbol
nodes in the following sections.
• expression nodes represent all the expressions that generate
types as shown in Fig. 4.
• branch nodes represent the branch of data flows.

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

4 ∈ Expr ::= E | 2 | 4 blop 4 | 4 numop 4 |
4 cmpop 4 | 4 bitop 4 |
(4, ..., 4) | [4, ..., 4] |
{4 : 4, ..., 4 : 4} | {4, ..., 4} |
[4 for 4 in 4] | {4 for 4 in 4} |
{4 : 4 for 4, 4 in 4} | (4 for 4 in 4) |
4 (4, ..., 4) | 4 [4 : 4 : 4] | 4.E

E ∈ Variables ::= all identi�ers in code

2 ∈ Constants ::= all literals in code

1;>? ∈ Boolean Operations ::= �=3 | $A | #>C
=D<>? ∈ Numeric Operations ::= �33 | (D1 | "D;C | �8E | ">3 |

*�33 | *(D1
18C>? ∈ Bitwise Operations ::= !(ℎ8 5 C | '(ℎ8 5 C | �8C$A | �8C�=3 |

�8C->A | �;>>A�8E | �=E4AC
2<?>? ∈ Compare Operations ::= �@ | #>C�@ | !C | !C� | �C | �C� |

�B | �B#>C | �= | #>C�=

Figure 4: The syntax of expressions for typing in Python

• merge nodes represent the merge of data flows.

HiTyper creates a node for every variable occurrence instead
of every variable in TDG because Python’s type system allows
variables to change their types at run-time. Similar to static single
assignment (SSA), HiTyper labels each occurrence of a variable
with the order of occurrences, so that each symbol node in the
TDG has a format of $name$order($lineno) to uniquely indicate
a variable occurrence. For example, in Fig. 1, we create three symbol
nodes (pt0(9), pt1(10), pt2(12)) for variable pt as it appears
three times in Listing 1 (Line 9, 10, and 12).

Import Analysis. Before establishing TDG for every input func-
tion, HiTyper first conducts import analysis to extract all user-
defined types so that it can distinguish the initialization of user-
defined types from regular function calls. HiTyper first collects
all classes in source files, which constitute the initial set of user-
defined types. Then it analyzes all local import statements such
as “from package import class", and adds the imported classes into
the user-defined type set. For all global import statements such
as “import package", HiTyper locates the source of this package
and adds all the classes and named tuples in the source into the
user-defined type set. For each imported class, HiTyper solves
the location of external source files and checks whether operator
overloading methods exist in this class.

Type Dependency Graph Generation. Given the AST of in-
put code and all the user-defined types extracted by import analysis,
HiTyper creates TDG for each function based on the main logic
shown in Alg. 1. HiTyper first locates all the variables and ex-
pressions in the code by traversing the whole AST. Specifically, to
visit each AST node, HiTyper employs the ASTVisitor provided by
Python’s module ast [43].HiTyper identifies expressions according
to the definitions of expression nodes in Python (as depicted in
Fig. 4) and records every visited expression node using an expres-
sion stack. Whenever HiTyper identifies an expression node (Line

Algorithm 1 Type Dependency Graph Generation
Input: The AST of given function, func_ast;
Output: Type dependency graph of the given function, C6

Initialize an expression stack ex_stack
Initialize a variable stack var_stack

1: for all =>34 ∈ func_ast && node is not visited do

2: // handle expression nodes
3: if node.type ∈ Expressions then
4: ex_stack.push(node); ex_node← new ex(node)
5: visit(node.operands); ex_stack.pop(node)
6: if not ex_stack.empty() then
7: C6.addEdge(ex_node→ ex_stack.top())
8: end if

9: C6.addNode(ex_node)
10: end if

11: // handle symbol nodes
12: if node.type == ast.Name then
13: sym_node← new symbol(node)
14: if node.ctx == write then
15: C6.addEdge(ex_stack.top()→ sym_node)
16: else

17: C6.addEdge(E0A_BC02: .top()→ sym_node)
18: C6.addEdge(sym_node→ ex_stack.top())
19: end if

20: E0A_BC02: .push(sym_node); C6.addNode(sym_node)
21: end if

22: // handle branch and merge nodes
23: if checkTypeBranch(node) then
24: branch_node← new branch(node)
25: C6.addNode(branch_node)
26: 2CG1, 2CG2← Branch(2CG)
27: visit(node.left, 2CG1); visit(node.right, 2CG2)
28: end if

29: if checkTypeMerge(node) then
30: merge_node← new merge(node)
31: C6.addNode(merge_node)
32: 2CG ←Merge(2CG1, 2CG2)
33: end if

34: end for

3), it builds a same node in the current TDG and pushes it into the
expression stack. HiTyper will then recursively visits the expres-
sion’s operands to capture new expression nodes until it encounters
a variable node (Line 12), which is the leaf node of the AST.

HiTyper builds a symbol node in TDG for each visited identifier
node of AST, and maintains a variable map to record all the occur-
rences of each variable. The AST already indicates the context of
each variable occurrence, i.e., whether read or write.

(i) If the variable context is read, HiTyper will obtain the last
occurrence of the variable according to the maintained variable
map under the current context. It then creates an edge from the
symbol node of the last occurrence to the symbol node of the current
variable (Line 16 - 18).

(ii) If the variable context is write, HiTyper will fetch the value
from the last expression in the expression stack and build an edge

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

connecting from the expression node to the symbol node of the
current variable (Line 14 - 15).

Analogous to regular data flow analysis, HiTyper also checks
whether the data flow branches (Line 23 - 27) or merges at certain
locations (Line 29 - 32).

In TDG, each symbol node keeps a list of candidate types while
each expression node includes type inference rules and type rejec-
tion rules. When HiTyper walks through TDG, the rules will be
activated to produce new types. Thus, types can flow from argu-
ments to return values. By traversal, HiTyper obtains the types of
each symbol node and outputs the type assignment. The leveraged
type inference rules and type rejection rules are detailed in the next
subsections.

3.4 Static Type Inference

This section describes the type inference and rejection rules inte-
grated in expression nodes, which are the key component of our
static type inference. Fig. 5 denotes all the type inference and rejec-
tion rules used in static type inference. Each rule consists of some
premises (contents above the line) and conclusions (contents below
the line). They obey the following form:

c ⊢ 4 : \ .
In this form, c is called the context, which includes lists that assign
types to expression patterns. 4 is the expression showed in Fig. 4,
and we use 41, ..., 4= to represent different expressions. \ is the type
showed in Fig. 3. We use \1, ..., \= to represent different types. A
rule under this form is called a type judgement or type assignment.
Our goal is to get the context c that assigns types to all the variables
in code.

The premises of each rule in Fig. 5 are the types of input nodes
\1, \2, ... that constructs an expression, and the valid type set e\ for
the current operation. Usually type inference rules only have one
conclusion, which is the result type of current expression. However,
as we also involve neural predictions in TDG and use type rejection
rules to validate them, the conclusions of each rule in Fig. 5 have
two parts: 1) the result type of current expression node and 2) the
validated types of input nodes. (Some rules may not have the second
part because they accept any input types.)

The result type of the current expression node is what traditional
static type inference techniques usually infer. We denote it as for-
ward type inference. However, there exist types that are not allowed
to conduct certain operations, which are guided by type constraints.
When a type constraint is violated, e.g., adding an integer to a string,
traditional static inference techniques [37, 40, 45] throw type errors.
For the wrongly predicted cases, HiTyper does not directly throw
a type error since it accepts recommendations from DL models. To
“sanitize” the recommendations from DL models, we create type
rejection rules to validate and remove the wrong predictions in
input nodes. We call this as backward type rejection.

Forward Type Inference. HiTyper starts forward type infer-
ence with the nodes that do not have input nodes in TDG. It gradu-
ally visits all nodes in the graph and activates corresponding type
inference rules if their premises are satisfied, i.e., all input nodes are
fully inferred. This is the forward traversal of TDGs. As forward
type inference in HiTyper is similar to traditional static type infer-
ence techniques, we only discuss the [Call] rule for which HiTyper

has a special strategy. The premise of the [Call] rule requires the
type of callees, which is beyond the scope of current functions. This
premise is one major barrier for most static inference techniques
to fully infer a program due to a large number of external APIs
in Python programs [19, 52]. HiTyper only focuses on inferring
the types of functions with explicit implementation in the current
source code, in which the TDGs of the functions are connected.
HiTyper does not infer external calls for two reasons: 1) DL models
perform well on predicting the types of commonly-used APIs that
frequently occur in the training set; 2) Python maintains a type-
shed [44] project to collect the type annotations of frequently-used
modules, so HiTyper can directly access the types.

Backward Type Rejection. An input type in an expression
must fulfill two constraints before it can conduct the expression:
1) it must be the valid type to conduct a certain expression, 2) it
must have a valid relationship with other input types. HiTyper
rejects the input types that violate these two constraints. It first
checks whether the type is valid for an expression. We indicates
valid types for each expression as e\ in Fig. 5. For example, in [In,
NotIn] rule, the types of 42 must be iterable so int is not allowed
and should not be in the valid type set e\ . Then HiTyper checks
whether the relationships between all inputs are valid. Apart from
valid types for a certain operation, some operations also require
the inputs to satisfy a certain relationship. For example, in [Add]
rule, the two operands must have the same type. For types of two
inputs int and str, even though they are in the valid type set of
this operation, they are still rejected because they are not the same
type. Therefore, in the [Add] rule, the final valid input types are
the intersection of all input type sets \1, \2 and valid type set e\ .

Type Rejection rules can validate and reject the input types of
an operation. However, the input types are the results of previous
operations, so the type rejection process will also affect the input
types of previous operations. To thoroughly remove the influence
of wrong types, HiTyper also rejects the input types that result
in the rejected types according to forward type inference rules.
HiTyper gradually validates all type slots by starting from the type
slots without output edges and producing the rejected input types.
Then it traverses other slots until the whole TDG is visited. This is
the backward traversal of TDGs.

Correctness. Different from the DL-based approaches [18, 35],
HiTyper can always guarantee the correctness of its type assign-
ments based on static inference. According to the architecture of
HiTyper in Fig. 2, the type assignments generated by HiTyper
have two cases: 1) If the static inference can successfully handle a
program, HiTyper does not need to invoke DL models to give type
recommendations. Consequently, the type assignments fully based
on the inference rules (Fig. 5) are sound because they are collected
from the Python official implementation CPython [10]; and 2) If
the static inference cannot fully infer a program and the DL models
are invoked to provide type recommendations (Sec. 3.5), HiTyper
utilizes type rejection rules to validate the recommendations and
then calls the type inference rules again to infer the remaining
types. In this case, our rejection rules thoroughly eliminate the
influence of wrong recommendations, and the final results are also
produced by static inference. Therefore, HiTyper always maintains
the type correctness.

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

E ∈ Dom(c)
c ⊢ E : \ (Variable)

c ⊢ 2 : \ (Constant)

c ⊢ 4 : \
c ⊢ 4.E : \ .E (Attribute)

c ⊢ 41 : \1 c ⊢ 42 : \2 e\ = {bool, int, $}
c ⊢ 41 bitop 42 : \ ∧ e\ c ⊢ 41 : \1 ∧ e\ c ⊢ 42 : \2 ∧ e\

(LShift, RShift)

c ⊢ 41 : \1 e\ = {bool, int, float, $}

c ⊢ 42 : \2 \ ′ = 64C">A4%A428B4)~?4 (\1 ∧ e\, \2 ∧ e\)
c ⊢ 41 numop 42 : \ ′ c ⊢ \1 ∧ e\ c ⊢ \2 ∧ e\

(Numeric Operations)

c ⊢ 41 : \1 e\1 = {int, bool}

c ⊢ 42 : \2 e\2 = {Γ, List, Tuple, $}
c ⊢ 41 numop 42 : \2 ∧ e\2 c ⊢ 41 : \1 ∧ e\1 c ⊢ 42 : \2 ∧ e\2

(Mult)

c ⊢ 41 : \1 c ⊢ 42 : \2 e\ = {Γ, List, Tuple, $}
c ⊢ 41 cmpop 42 : bool c ⊢ 41 : \1 ∧ \2 ∧ e\ c ⊢ 42 : \1 ∧ \2 ∧ e\

(Lt,LtE,Gt,GtE)

c ⊢ D (41, ..., 4=) : D
(Class Instantiation)

c ⊢ 41 : \1 ... c ⊢ 4= : \=
c ⊢ (41, ..., 4=) : Tuple[\1, ..., \=] c ⊢ [41, ..., 4=] : List[\1, ..., \=]
c ⊢ {41, ..., 4=} : Set[\1, ..., \=] (Tuple, List, Set)

c ⊢ 4 : \ e\ = {�, str, bytes} \ ′ = 64C�;4<4=C)~?4 (\ ∧ e\)
c ⊢ for E in 4 : \ ′ c ⊢ 4 : \ ∧ e\

(Comprehension)
c ⊢ for E in 41 : \1 c ⊢ 42 [E] : \2

c ⊢ (42 [E] for E in 41) : Generator[\2]
(Generator)

c ⊢ for E in 41 : \1 c ⊢ 42 [E] : \2
c ⊢ [42 [E] for E in 41] : List[\2]
c ⊢ {42 [E] for E in 41} : Set[\2]

(List, Set Comprehension)

c ⊢ 41 : \1 c ⊢ 42 : \2
c ⊢ 41 blop 42 : Union[\1, \2]

(Boolean Operations)

c ⊢ 41 : \1 c ⊢ 42 : \2 e\ = {bool, int, Set, $}
c ⊢ 41 bitop 42 : \ ∧ e\ c ⊢ 41 : \1 ∧ e\ c ⊢ 42 : \2 ∧ e\

(BitOr, BitAnd, BitXor)

c ⊢ 41 : \1 c ⊢ 42 : \2 e\ = {Γ, List, Tuple, $}
c ⊢ 41 numop 42 : \ ∧ e\ c ⊢ 41 : \1 ∧ \2 ∧ e\ c ⊢ 42 : \1 ∧ \2 ∧ e\

(Add)

c ⊢ 41 : \1 c ⊢ 42 : \2 e\ = {Γ, Set, $}
c ⊢ 41 numop 42 : \ ∧ e\ c ⊢ 41 : \1 ∧ \2 ∧ e\ c ⊢ 42 : \1 ∧ \2 ∧ e\

(Sub)
c ⊢ 41 : \1 c ⊢ 42 : \2
c ⊢ 41 cmpop 42 : bool

(Eq,NotEq,Is,IsNot)

c ⊢ 41 : \1 c ⊢ 42 : \2e\ = {str, bytes, List, Tuple, Set, Dict, Generator}
c ⊢ 41 cmpop 42 : bool c ⊢ 42 : \2 ∧ e\

(In,NotIn)
c ⊢ 4 : \ c ⊢ 41 : \1 ... c ⊢ 4= : \=e\ = {Callable[[\1, ..., \=], \]} \ ′ = 64C'4CDA=)~?4 (\ ∧ e\)

c ⊢ 4 (41, ..., 4=) : \
(Call)

c ⊢ 41 : \1 ... c ⊢ 4= : \=
c ⊢ {41 : 42, ..., 4=−1 : 4=} : Dict[\1 : \2, ..., \=−1 : \=]

(Dict)

c ⊢ 41 : \1 c ⊢ 42 : \2 e\1 = {Dict} \ ′ = 64C+0;D4)~?4 (\1 ∧ e\1)
c ⊢ 41 [42] : \ ′ c ⊢ 41 : \1 ∧ e\1

(SubScript)
c ⊢ for E in 41 : \1 c ⊢ 42 [E] : \2 c ⊢ 43 [E] : \3
c ⊢ {42 [E] : 43 [E] for E in 41} : Dict[\2 : \3]

(Dict Comprehension)

c ⊢ 41 : \1 c ⊢ 42 : \2 e\1 = {�, str, bytes}e\2 = {int, bool} \ ′ = 64C�;4<4=C)~?4 (\1 ∧ \2)
c ⊢ 41 [42] : \ ′ c ⊢ 41 : \1 ∧ e\1 c ⊢ 42 : \2 ∧ e\2

(Slice)

Figure 5: Type inference and rejection rules of expressions in Python

3.5 Neural Type Recommendation

HiTyper conducts static type inference based on type inference
rules When static type inference can fully infer all the variables
in TDG. However, some variables are hard to be statically typed
so that HiTyper only gets a partially-inferred TDG. In this case,
HiTyper asks DL models for recommendations. The neural type
recommendation part of HiTyper includes two procedures: hot
type slot identification and similarity-based type correction.

Hot Type Slot Identification. Some variables can impact the
types of many other variables because they locate at the beginning
of the data flow or possess type dependencies with many variables.
We call these variables as hot type slots. Given the types of hot type

slots, static type inference techniques can infer the remaining type
slots. Therefore, to optimize the type correctness of HiTyper, DL
models are only invoked on the hot type slots instead of all the
blank type slots.

To identify the hot type slots,HiTyper first removes slots already
filled by static type inference and obtains a sub-graph with all
the blank type slots. Then HiTyper employs a commonly-used
dominator identification algorithm semi-NCA [14] to capture all
dominators in the sub-graph. A node - dominiating another node
. in a graph means that each entry node to. must pass- . Thus, if a
type slot - dominates another type slot . , . ’s type can be inferred
from - ’s type. HiTyper gradually removes the type slots . from

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

Table 2: Comparison with the baseline approaches. Top-1,3,5 of HiTyper means it accepts 1,3,5 candidates from deep neural

networks in type recommendation phase. The neural network in HiTyper is the corresponding comparison DL model.

Dataset Type Category Approach

Top-1 Top-3 Top-5

Exact
Match

Match to
Parametric

Exact
Match

Match to
Parametric

Exact
Match

Match to
Parametric

ManyTypes4Py

Argument

Naive Baseline 0.14 0.16 0.33 0.38 0.43 0.51
Type4Py 0.61 0.62 0.64 0.66 0.65 0.68
HiTyper 0.65 0.67 0.70 0.74 0.72 0.76

Return Value

Naive Baseline 0.07 0.10 0.19 0.28 0.28 0.42
Type4Py 0.49 0.52 0.53 0.59 0.54 0.63
HiTyper 0.60 0.72 0.63 0.76 0.65 0.77

Local Variable

Naive Baseline 0.13 0.17 0.33 0.45 0.47 0.65
Type4Py 0.67 0.73 0.71 0.78 0.72 0.79
HiTyper 0.73 0.85 0.74 0.86 0.75 0.86

All

Naive Baseline 0.13 0.16 0.31 0.40 0.43 0.57
Type4Py 0.62 0.66 0.66 0.72 0.67 0.73
HiTyper 0.69 0.77 0.72 0.81 0.72 0.82

Typilus’s

Dataset

Argument

Naive Baseline 0.19 0.20 0.38 0.42 0.46 0.50
Typilus 0.60 0.65 0.69 0.74 0.71 0.76
HiTyper 0.63 0.68 0.72 0.76 0.76 0.79

Return Value

Naive Baseline 0.11 0.11 0.28 0.31 0.36 0.43
Typilus 0.41 0.57 0.48 0.62 0.50 0.64
HiTyper 0.57 0.70 0.63 0.75 0.64 0.77

All

Naive Baseline 0.17 0.18 0.35 0.39 0.44 0.48
Typilus 0.54 0.62 0.63 0.70 0.65 0.72
HiTyper 0.61 0.69 0.69 0.76 0.72 0.78

Algorithm 2 Type correction of user-defined types
Input: Variable name, =0<4;

Valid user defined type set, (;
Type String recommended by deep neural networks, C ;
Penalty added for name-type similarity to align with type-type
similarity, ?4=0;C~;

Output: Corrected type of current variable, 2C ;
1: if C ∈ (or isBuiltin(C) then
2: 2C ← C ;
3: else
4: largest_sim← 0; largest_type← #>=4;
5: CF ← BPE(C); =0<4F ← BPE(=0<4);
6: for each ?C ∈ (do

7: ?CF ← BPE(?C);
8: if B8<(?CF, CF) ¡ largest_sim then

9: largest_sim← sim(?CF, CF); largest_type← ?C ;
10: end if

11: if B8<(?CF, =0<4F) + ?4=0;C~ ¡ largest_sim then

12: largest_sim← sim(?CF, =0<4F); largest_type← ?C ;
13: end if

14: end for

15: 2C ← largest_type;
16: end if

the sub-graph until no type slots can be removed. In the smallest
sub-graph, each type slot is not dominated by other type slots, and
all the slots are hot type slots. For these type slots, HiTyper accepts
type recommendations from DL models.

Similarity-based Type Correction for User-defined Types.

DL models provide one or more type recommendations for each

hot type slot, depending on the strategy (Top-1, -3, or -5) HiTyper
uses. Some DL models [18, 39] treat user-defined types as OOV
tokens and do not predict the types, while other models [2, 45]
directly copy user-defined types from the training set but fail to
predict those never appearing in the training set. We propose to
complement the recommendation of user-defined types using the
similarity-based type correction algorithm shown in Alg. 2. Note
that HiTyper only focuses on replacing the explicitly incorrect
user-defined types, i.e., those never imported or defined in current
source file, with the most similar user-defined types collected by
import analysis.

Specifically, if the recommended type does not belong to built-
in types, HiTyper checks whether the type appears in the user-
defined type set collected from import analysis (Line 1). If the check
result is False, the type will be regarded as explicitly incorrect
and should be corrected. For these incorrect user-defined types,
HiTyper replaces them with the most similar candidate in the user-
defined type set. HiTyper employs Word2Vec [32] to embed two
types and the variable name into word embeddings, and calculates
the cosine distance as the similarity of the two types (Line 6-12).
For the OOV tokens, HiTyper splits them into subtokens using the
BPE algorithm [12, 53] (Line 5). Finally, HiTyper chooses the type
candidate with the largest similarity to fill the user-defined type
(Line 15).

4 EVALUATION

In the section, we answer the following research questions:
RQ1: How effective is HiTyper compared to baseline approaches?
RQ2: Can HiTyper well predict the rare types?

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

Table 3: Type distribution in the test set. “Rare” indicates

rare types and “User” indicates user-defined types.

Category Total Rare User Arg Return Local

Typilus

Count 15,772 7,103 5,572 11,261 4,511 -
Prop. 100% 45% 35% 71% 29% -

Type4Py

Count 37,408 14,035 10,023 11,807 5,491 20,110
Prop. 100% 37% 27% 32% 15% 53%

RQ3: What is the performance of the static type inference compo-
nent in HiTyper?
4.1 Experimental Setup

Dataset. We used the two Python datasets mentioned in Sec. 2
for evaluation. One is the Typilus’s Dataset released by Allamanis
et al. [2]; and the other one is ManyTypes4Py released by Mir et
al. [34], with the number of different types in the test set and more
detailed statistics shown in Table 3 and Sec. 2, respectively.

Evaluation Metrics. Following the previous work [2, 35], we
choose two metrics Exact Match and Match to Parametric for evalu-
ation. The two metrics compute the ratio of results that: 1) Exact
Match: completely matches human annotations. 2) Match to Para-
metric: satisfy exact match when ignoring all the type parameters.
For example, List[int] and List[str] are considered as matched
under this metric.

Baseline Approaches. To verify the effectiveness of the pro-
posedHiTyper, we choose five baseline approaches for comparison:

1) A naive baseline. It represents a basic data-driven method. We
build this baseline following thework [39], whichmakes predictions
by sampling form the distribution of the most frequent ten types.

2) Pytype [45] and Pyre Infer [40]. They are two popular Python
static type inference tools from Google and Facebook, respectively.

3) Typilus [2] and Type4Py [35]. Typilus is a graphmodel that uti-
lizes code structural information. Type4Py is a hierarchical neural
network that uses type clusters to predict types.

Implementation of HiTyper The entire framework of Hi-
Typer is implemented using Python, which contains more than
9,000 lines of code. We obtain all typing rules and rejection rules
from Python’s official documentation [9] and its implementation
CPython2. We use Word2Vec model from the gensim library [62]
as the embedding when calculating the similarity between two
types. We train the Word2Vec model by utilizing all the class names
and variable names in the training set of Typilus. The dimension
of the word embeddings and size of the context window are set
as 256 and 10, respectively. Due to the small training corpus for
Word2Vec, we choose Skip-Gram algorithm for model training [33].
We choose Typilus and Type4Py as the neural network model from
which HiTyper accepts type recommendations. We choose the ex-
act hyper-parameters for Typilus and Type4Py used in the original
papers. We run all experiments on Ubuntu 18.04. The system has a
Intel(R) Xeon(R) CPU (@2.4GHz) with 32GB RAM and 2 NVIDIA
TiTAN V GPUs with 12GB RAM.

4.2 RQ 1: Effectiveness of HiTyper

We evaluate the effectiveness of HiTyper considering different type
categories, including arguments, local variables, and return values.
The results are depicted in Table 2.
2https://github.com/python/cpython

Overall performance. The naive baseline achieves high scores
regarding the top-5 exact match metric for different type categories,
some of which are even close to the performance of DL models.
Since the naive baseline only predicts types with high occurrence
frequencies in the dataset, the results indicate the challenge of
accurately predicting rare types. Typilus and Type4Py mitigate
the challenge by using similarity learning and type clusters and
achieve ∼0.6 regarding the top-1 exact match metric. HiTyper fur-
ther improves the metric by 11% and 15% compared with Typilus
and Type4Py, respectively. HiTyper also enhances the top-1 match
to parametric metric by 17% and 11% compared with Typilus and
Type4Py, respectively. The improvement indicates the effectiveness
of HiTyper in accurate type prediction. Besides, HiTyper presents
better performance than the respective DL models regarding the
top-3,5 metrics, demonstrating that HiTyper infers new results
based on the static type inference rules, instead of just filtering out
or reordering the predictions of DL models.

Type categories. Both Type4Py and Typilus perform better on
the argument category than the return value category, which may
reflect the difficulty of predicting the types of return values. By
building upon type inference rules and TDGs, HiTyper can handle
the complicated type dependencies of return values and thereby
improve Type4Py and Typilus by 22% and 39%, respectively, w.r.t.
the Top-1 exact match metric. HiTyper also slightly meliorates
the prediction of the argument category by 7% and 5% compared
with Type4Py and Typilus, respectively. The improvement may be
attributed to the type correction for user-defined types. Moreover,
HiTyper outperforms Type4Py by 9% for predicting local variables.

Answer to RQ1:HiTyper shows great improvement (11% ∼ 15%)
on overall type inference performance, and the most significant
improvement is on return value inference (22% ∼ 39%).

4.3 RQ 2: Prediction of Rare Types

Rare types are defined as the types with proportions less than 0.1%
among the annotations in the datasets, and we observe that 99.7%
and 79.0% of rare types are user-defined types in ManyTypes4Py
and Typilus’s dataset, respectively. Table 4 illustrates the predic-
tion results of rare types and user-defined types. We can observe
that the naive baseline barely infers rare types and user-defined
types. Besides, the performance of Type4Py and Typilus drops sig-
nificantly for the two type categories, which indicates that type
occurrence frequencies can impact the performance of DL mod-
els. HiTyper shows the best performance on predicting the two
type categories. Specifically, for inferring the rare types, HiTyper
outperforms Type4Py and Typilus by 31% and 34%, respectively,
w.r.t. the top-1 exact match metric. Regarding the prediction of
user-defined types, HiTyper increases the performance of Type4Py
and Typilus by 69% and 47%, respectively.

Answer to RQ2: HiTyper greatly alleviates the prediction issue
of rare types faced by DL models by achieving a ¡ 30% boost,
taking the advantage of the static type inference component.

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

Table 4: Comparison with the baseline DL approaches.

Dataset Type Category Approach

Top-1 Top-3 Top-5

Exact
Match

Match to
Parametric

Exact
Match

Match to
Parametric

Exact
Match

Match to
Parametric

ManyTypes4Py

User-defined Types

Naive Baseline 0.00 0.00 0.00 0.00 0.00 0.00
Type4Py 0.29 0.29 0.34 0.34 0.36 0.36
HiTyper 0.49 0.49 0.56 0.56 0.58 0.58

Rare Types

Naive Baseline 0.03 0.07 0.08 0.21 0.13 0.35
Type4Py 0.39 0.46 0.45 0.54 0.47 0.57
HiTyper 0.51 0.66 0.56 0.72 0.58 0.73

Typilus’s

Dataset

User-defined Types

Naive Baseline 0.00 0.00 0.00 0.00 0.00 0.00
Typilus 0.32 0.32 0.40 0.40 0.42 0.42
HiTyper 0.47 0.47 0.56 0.56 0.60 0.60

Rare Types

Naive Baseline 0.00 0.01 0.01 0.03 0.03 0.09
Typilus 0.32 0.43 0.41 0.53 0.43 0.55
HiTyper 0.43 0.55 0.52 0.63 0.56 0.67

Table 5: Comparison with static type inference tools.

Dataset

Type

Category

Approach

Exact #Correct

Match Annotations

ManyTypes4Py

Argument

Pytype - 0
Pyre Infer 0.96 613
HiTyper 0.94 1060

Return

Value

Pytype 0.81 777
Pyre Infer 0.84 662
HiTyper 0.86 2603

All

Pytype 0.81 777
Pyre Infer 0.89 1275
HiTyper 0.88 3663 (16918*)

Typilus’s

Dataset

Argument

Pytype - 0
Pyre Infer 0.96 543
HiTyper 0.88 983

Return

Value

Pytype 0.79 552
Pyre Infer 0.71 484
HiTyper 0.91 2461

All

Pytype 0.79 552
Pyre Infer 0.82 1027
HiTyper 0.90 3444

* The number of correct annotations when including local variables.

4.4 RQ 3: Performance of the Static Type

Inference Component

In this RQ, we evaluate the performance of the static type inference
component inHiTyper compared with popular static type inference
tools Pytype [45] and Pyre [40]. The results are shown in Table 5.
We only consider the type categories of argument and return value
for comparison since Pyre and Pytype do not infer types for local
variables. We use the metric number of correct annotations to replace
the metric match to parametric that is usually used to evaluate DL
models, considering that the results of static inference are exact
and not recommendations.

As shown in Table 5, the exact match scores of all the static
tools are greatly high, and HiTyper achieves the best performance.
The results indicate the effectiveness of the static type inference
component in HiTyper. We also find that there remains ∼10% of
the results inconsistent with human annotations in the datasets.
By using Python’s official type checker mypy to check these re-
sults, we observe that all the types annotated by HiTyper do not

produce type errors, which reflects the correctness of the proposed
HiTyper. After manual checking of these inconsistent types, we
find this inconsistency is caused by subtypes, we further discuss
them in Sec. 5. Besides, mypy’s results indicate very few incon-
sistent cases are caused by incorrect human annotations. To test
whether HiTyper can rectify the incorrect annotations, we replace
the original annotations with the results inferred by HiTyper, and
inspect whether the original type errors are fixed. We finally cor-
rect 7 annotations on 6 GitHub repositories, including memsource-
wrap [13], MatasanoCrypto [1], metadata-check [58], coach [20],
cauldron [54], growser [55], and submit pull requests to these repos-
itory owners. The owners of MatasanoCrypto and cauldron have
approved our corrections.

While Pytype and Pyre present high exact match scores, the num-
bers of variables they can accurately infer are small. Table 5 shows
that HiTyper generally outputs 2x argument types and 3x return
value types compared with them in both datasets, which suggests
HiTyper’s stronger inference ability than Pyre and Pytype. Such
improvements attribute to HiTyper’s import analysis and [Class In-
stantiation] rule on supporting the inference of user-defined types,
and inter-procedural analysis on supporting the inference of class
attributes and functions.
Answer to RQ3: Only considering the static inference part, Hi-
Typer still outperforms current static type inference tools by
inferring 2× ∼ 3× more variables with higher accuracy.

5 DISCUSSION

Inference of subtypes. Although HiTyper achieves promising
results for type prediction and passes the check of mypy, it is still
unable to infer some variable types (around 10%). The failure mainly
occurs in the inference of subtypes.

1 #File: miyakogi.wdom/wdom/node.py

2 #Human annotation: AbstractNode

3 #Typilus: ForeachClauseNode HiTyper: Node

4 def _append_element(self , node: AbstractNode) ->

AbstractNode:

5 if node.parentNode:

6 node.parentNode.removeChild(node)

7 self.__children.append(node)

8 node.__parent = self

Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA

9 return node

10 def _append_child(self , node):

11 if not isinstance(node , Node):

12 raise TypeError

13 ...

14 return self._append_element(node)

Listing 2: An example HiTyper fails to infer.

Listing 2 shows an example for which HiTyper’s result is in-
consistent with the original annotations but still passes the check
of mypy. The return statement at Line 9 indicates that the type
of return value is the same as the type of argument node. Typilus
predicts the type as ForeachClauseNode, which is invalid since it
is not imported in the code and is from other projects in the training
set.HiTyper infers the type as xml.dom.Node, because the function
is called by another function named _0??4=3_2ℎ8;3 in the same
file and the caller transmits a variable with type Node. However,
developers annotate the variable as AbstractNode, the parent type.
Such behavior is common in practice and poses a challenge for
accurate type prediction.

6 RELATEDWORK

Static and dynamic type inference. Existing static type infer-
ence techniques towards different programming languages, such as
Java [4], JavaScript [21], Ruby [11], Python [17] or using different
static analysis techniques [5, 7, 38], and inference tools used in
industry such as Pytype [45], Pysonar2 [42] and Pyre [40] are cor-
rect by design with relatively high accuracy on some simple builtin
types and generic types, but due to the dynamic feature [51] of
programming languages, they can hardly handle user-defined types
and some complicated generic types.HiTyper extends the inference
ability of static inference techniques by conducting import analy-
sis and inter-procedural analysis to handle the user-defined types,
class attributes and functions in code. Dynamic type inference tech-
niques [3, 36, 49] and type checkers such as Mypy [37], Pytype [45],
Pyre Check [40], Pyright [41] calculate the data flow between func-
tions and infer types according to several input cases. They can
more accurately predict types than static type inference techniques
but have limited code coverage and large time consumption. Thus,
they encounter difficulties when deployed on large scales of code.

Machine learning in type inference. Traditional static and
dynamic type inference techniques employ rule-based methods
and give the exact predicted type for each type slot. Xu et al. [59]
introduce probabilistic type inference, which returns several can-
didate types for one variable. Hellendoorn et al. [18] regard types
as word labels and build a sequence model DeepTyper to infer
types. However, their model treats each variable occurrence as a
new variable without strict constraints. Dash et al. [6] introduce
conceptual types which divide a single type such as str to more
detailed types such as url,phone, etc. Pradel et al. [39] design 4
separate sequence models to infer function types in Python. They
also add a validation phase to filter out most wrong predictions
using type checkers. Allamanis et al. [2] propose a graph model
to represent code and use KNN to predict the types. The method
enlarges type set but still fails when the predicted types are not
occurring in the training set. Although DL models have shown
great improvement in this task, it still faces the type correctness
and rare type prediction problem, HiTyper addresses these two

problems by integrating DL models into the framework of static
inference since static inference is data-insensitive and implemented
on type inference rules that are sound by design. Despite efforts
on Python type inference, there are also a bunch of work on type
inference of other dynamically typed programming languages. Wei
et al. [57] propose a neural graph network named LambdaNet to
conduct probabilistic type inference on JavaScript programs. Jesse
et al. [22] propose a BERT-style model named TypeBert that ob-
tains better performance on type inference of JavaScript than most
sophisticated models.

7 CONCLUSION

In the work, we propose HiTyper, a hybrid type inference frame-
work which iteratively integrates DL models and static analysis
for type inference. HiTyper creates TDG for each function and
validates predictions from DL models based on typing rules and
type rejection rules. Experiments demonstrate the effectiveness of
HiTyper in type inference, enhancement for predicting rare types,
and advantage of the static type inference component in HiTyper.

8 ACKNOWLEDGMENTS

The authors would like to thank the efforts made by anonymous
reviewers. The work described in this paper was supported by
the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (No. CUHK 14210920 of the General Re-
search Fund), National Natural Science Foundation of China under
project No. 62002084, Stable support plan for colleges and univer-
sities in Shenzhen under project No. GXWD20201230155427003-
20200730101839009, and supported, in part, by Amazon under an
Amazon Research Award in automated reasoning; by the United
States National Science Foundation (NSF) under grants No. 1917924
and No. 2114627; and by the Defense Advanced Research Projects
Agency (DARPA) under grant N66001-21-C-4024. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors, and do not necessarily reflect
the views of the above sponsoring entities.

REFERENCES

[1] aldur. The return value at line 295., 2021.
https://github.com/aldur/MatasanoCrypto/blob/master/matasano/blocks.py.

[2] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. Typilus:
Neural type hints. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2020, page 91–105, New
York, NY, USA, 2020. Association for Computing Machinery.

[3] Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks.
Dynamic inference of static types for ruby. SIGPLAN Not., 46(1):459–472, January
2011.

[4] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards
type inference for javascript. In Proceedings of the 19th European Conference on
Object-Oriented Programming, ECOOP’05, page 428–452, Berlin, Heidelberg, 2005.
Springer-Verlag.

[5] Sheng Chen and Martin Erwig. Principal type inference for gadts. In Rastislav
Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 416–428. ACM, 2016.

[6] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. Refinym: Using
names to refine types. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, page 107–117, New York, NY, USA, 2018.
Association for Computing Machinery.

[7] Michael Emmi and Constantin Enea. Symbolic abstract data type inference. In
Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

ICSE ’22, May 21–29, 2022, Pi�sburgh, PA, USA Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu

POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 513–525. ACM,
2016.

[8] Python Software Foundation. Official documentation of Mypy, 2020.
https://mypy.readthedocs.io/en/stable/builtin_types.html.

[9] Python Software Foundation. Official documentation of Python3, 2020.
https://docs.python.org/3.

[10] Python Software Foundation. Cpython. python’s official implementation, 2021.
https://github.com/python/cpython.

[11] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static
type inference for ruby. In Proceedings of the 2009 ACM Symposium on Applied
Computing, SAC ’09, page 1859–1866, New York, NY, USA, 2009. Association for
Computing Machinery.

[12] Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38,
February 1994.

[13] gengo. The return value at line 853., 2021. https://github.com/gengo/memsource-
wrap/blob/master/memsource/api.py.

[14] Loukas Georgiadis, Robert Tarjan, and Renato Werneck. Finding dominators in
practice. volume 10, pages 69–94, 01 2006.

[15] Github. The 2020 state of the octoverse, 2020. https://octoverse.github.com/.
[16] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and

Andreas Stefik. An empirical study on the impact of static typing on software
maintainability. Empirical Software Engineering, 19, 10 2013.

[17] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. Maxsmt-based
type inference for python 3. In Hana Chockler and Georg Weissenbacher, editors,
Computer Aided Verification, pages 12–19, Cham, 2018. Springer International
Publishing.

[18] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.
Deep learning type inference. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018, page 152–162, New York, NY, USA, 2018.
Association for Computing Machinery.

[19] Mingzhe Hu, Yu Zhang, Wenchao Huang, and Yan Xiong. Static type inference
for foreign functions of python. In 32nd International Symposium on Software
Reliability Engineering, October 2021.

[20] IntelLabs. The return value at line 95. https://github.com/IntelLabs/coach/blob/
master/rl_coach/memories/non_episodic/experience_replay.py, 2021.

[21] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
javascript. In Proceedings of the 16th International Symposium on Static Analysis,
SAS ’09, page 238–255, Berlin, Heidelberg, 2009. Springer-Verlag.

[22] Kevin Jesse, Premkumar T. Devanbu, and Toufique Ahmed. Learning type an-
notation: Is big data enough? In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, page 1483–1486, New York, NY, USA, 2021.
Association for Computing Machinery.

[23] Jetbrains. Python developer survey conducted by jetbrains and python soft-
ware foundation, 2020. https://www.jetbrains.com/lp/python-developers-survey-
2020/.

[24] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi
Feng, and Yannis Kalantidis. Decoupling representation and classifier for long-
tailed recognition, 2020.

[25] C. M. Khaled Saifullah, M. Asaduzzaman, and C. K. Roy. Exploring type inference
techniques of dynamically typed languages. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
70–80, 2020.

[26] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-based
Python JIT compiler. In 2nd LLVMWorkshop on the LLVM Compiler Infrastructure
in HPC.

[27] Triet H. M. Le, Hao Chen, and Muhammad Ali Babar. Deep learning for source
code modeling and generation: Models, applications, and challenges. ACM
Comput. Surv., 53(3), June 2020.

[28] Jukka Lehtosalo. PEP 589 – TypedDict: Type hints for dictionaries with a fixed
set of keys, March 2019. https://www.python.org/dev/peps/pep-0589/.

[29] Ivan Levkivskyi, Jukka Lehtosalo, and Łukasz Langa. PEP 544 –
protocols: Structural subtyping (static duck typing), March 2017.
https://www.python.org/dev/peps/pep-0544/.

[30] Jialun Liu, Yifan Sun, Chuchu Han, Zhaopeng Dou, and Wenhui Li. Deep rep-
resentation learning on long-tailed data: A learnable embedding augmentation
perspective, 2020.

[31] Rabee Sohail Malik, Jibesh Patra, andMichael Pradel. Nl2type: Inferring javascript
function types from natural language information. In Proceedings of the 41st
International Conference on Software Engineering, ICSE ’19, page 304–315. IEEE
Press, 2019.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed representations ofwords and phrases and their compositionality. NIPS’13,
page 3111–3119, Red Hook, NY, USA, 2013. Curran Associates Inc.

[33] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.

Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages
3111–3119, 2013.

[34] Amir M. Mir, Evaldas Latoskinas, and Georgios Gousios. Manytypes4py: A
benchmark python dataset for machine learning-based type inference. CoRR,
abs/2104.04706, 2021.

[35] Amir M Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios.
Type4py: Deep similarity learning-based type inference for python. arXiv preprint
arXiv:2101.04470, 2021.

[36] Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. Dynamic type inference
for gradual hindley-milner typing. Proc. ACM Program. Lang., 3(POPL):18:1–18:29,
2019.

[37] Mypy. https://github.com/python/mypy/.
[38] Zvonimir Pavlinovic, Yusen Su, and Thomas Wies. Data flow refinement type

inference. Proc. ACM Program. Lang., 5(POPL):1–31, 2021.
[39] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. TypeWriter:

Neural Type Prediction with Search-Based Validation, page 209–220. Association
for Computing Machinery, New York, NY, USA, 2020.

[40] Pyre check. https://pyre-check.org/.
[41] Pyright. https://github.com/microsoft/pyright.
[42] Pysonar2. https://github.com/yinwang0/pysonar2.
[43] Python. The python ast module, 2021. https://github.com/python/cpython/blob/

3.9/Lib/ast.py.
[44] Python. The typeshed project, 2021. https://github.com/python/typeshed.
[45] Pytype. https://github.com/google/pytype.
[46] Vikas Raunak, Siddharth Dalmia, Vivek Gupta, and Florian Metze. On long-tailed

phenomena in neural machine translation. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 3088–3095, Online, November
2020. Association for Computational Linguistics.

[47] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. A large-
scale study of programming languages and code quality in github. Commun.
ACM, 60(10):91–100, September 2017.

[48] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program prop-
erties from "big code". SIGPLAN Not., 50(1):111–124, January 2015.

[49] Brianna M. Ren, John Toman, T. Stephen Strickland, and Jeffrey S. Foster. The
ruby type checker. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, page 1565–1572, New York, NY, USA, 2013. Association for
Computing Machinery.

[50] Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, and
Hongsheng Li. Balanced meta-softmax for long-tailed visual recognition, 2020.

[51] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the
dynamic behavior of javascript programs. PLDI ’10, page 1–12, New York, NY,
USA, 2010. Association for Computing Machinery.

[52] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and
Dimitris Mitropoulos. Pycg: Practical call graph generation in python. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021, pages 1646–1657. IEEE, 2021.

[53] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany, August 2016. Association for Computational Linguistics.

[54] sernst. The return value at line 35., 2021.
https://github.com/sernst/cauldron/blob/master/cauldron/steptest/functional.py.

[55] tomdean. The return value at line 56., 2021.
https://github.com/tomdean/growser/blob/master/growser/handlers/rankings.py.

[56] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. PEP 484 – Type Hints,
2014. https://www.python.org/dev/peps/pep-0484/.

[57] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. Lambdanet: Probabilistic
type inference using graph neural networks. CoRR, abs/2005.02161, 2020.

[58] wtsi hgi. The return value at line 151., 2021. https://github.com/wtsi-hgi/metadata-
check/blob/master/mcheck/metadata/seqscape_metadata/seqscape_metadata.py.

[59] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python
probabilistic type inference with natural language support. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, page 607–618, New York, NY, USA, 2016. Association for
Computing Machinery.

[60] Ningyu Zhang, Shumin Deng, Zhanlin Sun, GuanyingWang, Xi Chen,Wei Zhang,
and Huajun Chen. Long-tail relation extraction via knowledge graph embeddings
and graph convolution networks. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 3016–3025,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[61] Łukasz Langa. PEP 589 – type hinting generics in standard collections, March
2019. https://www.python.org/dev/peps/pep-0585/.

[62] Radim Řehůřek and Petr Sojka. Software framework for topic modelling with
large corpora. pages 45–50, 05 2010.

https://github.com/IntelLabs/coach/blob/master/rl_coach/memories/non_episodic/experience_replay.py
https://github.com/IntelLabs/coach/blob/master/rl_coach/memories/non_episodic/experience_replay.py
https://github.com/python/cpython/blob/3.9/Lib/ast.py
https://github.com/python/cpython/blob/3.9/Lib/ast.py

	Abstract
	1 Introduction
	2 Motivating Example
	3 HiTyper
	3.1 Definition of Types
	3.2 Overview
	3.3 Type Dependency Graph Generation
	3.4 Static Type Inference
	3.5 Neural Type Recommendation

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ 1: Effectiveness of HiTyper
	4.3 RQ 2: Prediction of Rare Types
	4.4 RQ 3: Performance of the Static Type Inference Component

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

