
Persistent Pointer Information

Xiao Xiao Qirun Zhang Jinguo Zhou Charles Zhang
The Prism Research Group

The Hong Kong University of Science and Technology
{richardxx, qrzhang, andyzhou, charlesz}@cse.ust.hk

Abstract
Pointer information, indispensable for static analysis tools, is ex-
pensive to compute and query. We provide a query-efficient per-
sistence technique, Pestrie, to mitigate the costly computation and
slow querying of precise pointer information. Leveraging equiva-
lence and hub properties, Pestrie can compress pointer information
and answers pointer related queries very efficiently. The experiment
shows that Pestrie produces 10.5× and 17.5× smaller persistent
files than the traditional bitmap and BDD encodings. Meanwhile,
Pestrie is 2.9× to 123.6× faster than traditional demand-driven ap-
proaches for serving points-to related queries.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis

General Terms Algorithms, Languages, Performance

Keywords Pestrie, fast querying, compact indexing

1. Introduction
Pointer information (points-to and aliasing) is a prerequisite for
many static analysis tools. In spite of recent progress [15, 19, 21,
32, 40, 46, 47], obtaining precise pointer information (i.e., context-
or flow-sensitive) is still expensive for large-scale production soft-
ware, which dramatically affects the quality of static analysis in
practice.

We observe that, in many scenarios, pointer analysis is per-
formed repeatedly for unchanged code. Hence, persisting and
reusing the precise pointer information across the life cycles of
static analyses can significantly boost programmer’s productivity.
We illustrate this benefit with two real-world settings.

1. Consider in-house regression analysis against a code base
tagged for a release. First, the persistent pointer information of the
released code can be leveraged for change impact analysis [11] and
postmortem debugging of field failures [22] that may occur fre-
quently. In addition, several analyses can be pipelined together to
carry out a more sophisticated task. For instance, when a memory
leak detector [36] is used together with a race detector [25], the per-
sisted pointer information could be shared among different analysis
stages to further speed up the overall bug detection tasks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’14, June 9 - 11, 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594314

Query Description
IsAlias(p, q) Decide if the pointer p is an alias of q
ListPointsTo(p) Output the points-to set for pointer p
ListPointedBy(o) Output the pointers that point to memory o
ListAliases(p) Output the pointers that are aliased to pointer p

Table 1. Queries supported by persistent pointer information.

2. There is an emerging interest in pre-analyzing libraries to
scale whole program analysis. Recent work considers encoding the
program analysis results of the full JDK library for efficiently per-
forming IDE data flow analysis [31] and quickly generating call
graphs for client analysis [2]. In conjunction with fragment anal-
ysis techniques [29, 30], persistence techniques can also avoid the
duplicated analysis effort on libraries, by separately computing and
persisting the points-to relations of a library that are independent of
clients.

The usefulness of persistence is multi-fold. But pointer informa-
tion is typically very difficult to compactly store and, meanwhile,
to efficiently interpret, as also observed by other researchers [3]. A
good persistence scheme needs to compress gigabytes of pointer
information while retaining the ability to efficiently answer pointer
related queries. More specifically, it is important to efficiently
answer the common queries described in Table 1. The first two
queries, IsAlias and ListPointsTo, are the de facto standard for
points-to analyses and, of course, should be served efficiently. The
query ListPointedBy is particularly useful in value-flow analysis
[10] and type-state verification [24]. The last query, ListAliases,
does not widely appear in the literature, but it could be very useful
for applications that track the global information flow and look for
all aliased pointers of a querying pointer [35, 37, 43]. For exam-
ple, using the ListAliases query to generate the aliasing pairs for
a data race detector [25] is 123.6× times faster than the approach
described in the original paper (Section 7.1).

We can tackle the storage challenge with an off-the-shelf com-
pressing technique such as bzip. However, general compressing al-
gorithms cannot leverage any semantics of the points-to relation
and often still produce hundreds of megabytes. More importantly,
the compressed pointer information is not query-efficient due to
the prolonged decoding process. The state-of-the-art pointer analy-
ses, resorting to binary decision diagrams (BDD) [39] or equivalent
context merging (EPA) [41], also cannot simultaneously maintain-
ing high compression and fast querying capabilities. First, BDDs
cannot compress the pointer information with heap cloning well,
as observed by many researchers [5, 40, 41]. Second, BDDs are
inefficient for answering queries such as the ones in Table 1. For
example, our experiments show that a BDD takes 432.3 seconds
to answer the ListPointsTo query even for our smallest benchmark
antlr (Section 7). This implies that answering the IsAlias query us-
ing BDDs will be much slower than the use of bitmaps. This is
because, given two pointers, we have to first decode their points-

to sets from the BDDs and then intersect the sets to determine if
they are aliased. Even worse, to answer the query ListAliases(p),
we have to repeat this costly process for all other pointers. In fact,
many popular analysis infrastructures, e.g., LLVM, GCC, Open64,
Soot, and WALA, rarely employ BDDs to store pointer information
[33]. EPA suffers from the same querying problem that requires the
decompression of the encoded information.

In this paper, we show two observations that can be exploited
to generate compact and query-efficient persistent pointer informa-
tion. The first observation, referred to as the equivalence property,
is based on the conventional observation of equivalent pointers and
objects [14]. Previous work mainly focuses on detecting the equiv-
alent pointers and objects before and during the points-to analysis
[13, 28]. We study a wide range of programs and show that, af-
ter the points-to analysis, even for the precise flow-sensitive and
context-sensitive ones with heap cloning, there is a large number of
equivalent sets in the points-to information.

The second observation is the hub property, referring to objects
that frequently appear in the intersection of two points-to sets, play-
ing the role of hubs in the aliasing relations. Hubs can be leveraged
to reduce storage size and improve the query efficiency because
pointers that point to the same hub are implicit alias pairs. We as-
sign a hub degree to every object and observe that the distribution
of the hub degrees for all objects produced by the same points-to
algorithm are similar in spite of the different programs used. This
suggests that the hub property is not an accidental phenomenon and
is caused by the imprecise nature of the points-to algorithms.

We propose the Pestrie encoding technique that leverages both
the equivalence and the hub properties. The key idea is to partition
the pointers and to divide the aliased pairs into two classes: the
internal pairs and cross pairs. An internal pair consists of two
pointers assigned to the same partition, which can be decided by
comparing partition IDs. A cross pair is formed by two pointers
from different partitions and encoded using rectangular formulas.
The effectiveness of Pestrie is guaranteed by the partition strategy
based on hub degrees, which aims to maximize the number of
internal pairs and minimize the number of cross pairs.

We experimentally compare Pestrie to traditional encoding
techniques based on bitmaps, BDDs, and bzip using a set of C
and Java programs. Quantitatively, Pestrie generates the smallest
encoding, 10.5× and 17.5× smaller than those produced by the
bitmap and the BDD techniques. Pestrie is also 2.9× faster in com-
puting aliasing pairs than a traditional demand-driven approach for
answering the IsAlias query [25], and it is 123.6× faster than the
demand-driven approach if the novel ListAliases query is used. In
addition, constructing and loading the Pestrie encoding only takes
few seconds. To sum up, our work makes three contributions:
• Empirical study: We investigate the characteristics of pointer

information and characterize the equivalence and hub properties.
• Pestrie encoding: We propose an encoding scheme that lever-

ages both the equivalence and the hub properties to compact alias-
ing relations and process queries efficiently.
• Large scale experiments: We compare Pestrie encoding

scheme to bitmap, BDD, and bzip, to demonstrate its compaction
superiority and querying efficiency on a set of C and Java programs.

We organize the rest of this paper as follows. We first present
our empirical results for pointer information in Section 2. Next,
we describe the Pestrie encoding methodology in Sections 3-6.
Finally, we show the experiments in Section 7, discuss the related
work in Section 8, and conclude our paper in Section 9.

2. Characteristics Study
We first present an empirical study to show the equivalence and the
hub characteristics of points-to relations that are common in spite
of the differences in the programming languages and the points-to

Program Language LOC #Pointers #Objects
samba C 2112.7K 1004880 237201
gs C 1508.1K 711082 150009
php C 1312.4K 673156 146760
postgreSQL C 1189.2K 584774 131886
antlr Java 75.4K 302560 76970
luindex Java 67.4K 269878 70426
bloat Java 188.4K 625056 129471
chart Java 375.1K 890971 234811
batik Java 404.5K 766238 137488
sunflow Java 326.2K 552974 106456
tomcat Java 357.5K 657394 103627
fop Java 415.1K 1173406 201122

Table 2. Characterization of the benchmark. LOC of C program
is the number of instructions of its LLVM bitcode file. For Java
program, it is the number of Jimple instructions [38]. The columns
#Pointers and #Objects are the number of pointers and objects.

algorithms. We study a set of C and Java benchmarking programs
(Table 2) widely used in the points-to analysis research literature [5,
13] and divide the subjects into three groups. We extract the points-
to information of the programs in the first group with the flow-
sensitive algorithm by Lhoták et al. [19]. The programs in the
second group are selected from Dacapo-2006 and processed by the
1-object-sensitive analysis with heap cloning in Paddle [20]. We
use JDK 1.4 library for the points-to analysis because this BDD-
based analysis takes too much time on higher versions of JDKs. The
last group of programs are selected from the Dacapo-9.12 suite.
We resolve the use of reflection in these programs by Tamiflex [4]
using the default input and analyze them with the JDK 1.6 library
using geometric points-to analysis [40].

We normalize the pointer information to a matrix representa-
tion. The points-to matrix PM is a binary matrix, where PM[i][j] =
1 means the pointer i may point to the object j. Although the nor-
malized points-to representation is simple, we can show that the
output of most flow-sensitive, path-sensitive, and context-sensitive
algorithms [12, 39–41] can be transformed to the matrix format
without any loss of precision. We describe the transformation
methodology in Section 6.

2.1 Equivalence Property
Figure 1 presents the summary of percentage of non-equivalent
pointers and objects in our subjects. We consider two pointers to
be equivalent if their points-to sets are the same. Similarly, two
objects are considered equivalent if they are pointed by the same
set of pointers. On average, the number of pointer equivalence
classes is 18.5% of the number of pointers. The objects are more
diverse, with the number of equivalence classes being 83% of the
number of objects. This result tells us that, although we have used
precise points-to algorithms, there are a large number of undetected
equivalent pointers in the final points-to result. The high degree of
equivalence also explains the small memory consumption of BDD-
based points-to analysis because a BDD can detect and merge all
equivalences online.

Nevertheless, we can merge the equivalent pointers and objects
by using a sparse bitmap, which generates more compact informa-
tion compared to BDDs. In general, every BDD node contains rich
meta-data for structural maintenance. For example, in buddy1 and
JavaBDD2, every BDD node occupies 20 bytes [5]. For a large pro-
gram with precise pointer information, a BDD can easily grow to
millions of nodes, which requires large storage space for the meta-
data [5]. In contrast, the meta-data overhead for the bitmap is much

1 http://buddy.sourceforge.net/
2 http://javabdd.sourceforge.net/

Figure 1. Percentage of non-equivalent pointers and objects, and
the distribution of hub degrees.

smaller. Moreover, with bitmaps, we can calculate matrix multi-
plications quickly. Therefore, we can efficiently generate the alias
matrix AM by computing PM × PMT to support the IsAlias and
ListAliases queries.

However, using bitmaps to compress the alias matrix AM is not
effective because AM does not have a large number of equivalent
rows. Since the alias matrix is critical to efficiently answer the
IsAlias and ListAliases queries, we need a more effective way to
compress it.

2.2 Hub Property

When intersecting the points-to sets of pointers p and q to deter-
mine if they are aliases, we observe that certain objects frequently
appear in the intersection sets of two pointers, playing the role of
hubs in the alias relations. Intuitively, an object pointed by many
pointers is more likely to be a hub. Formally, we define the hub
degree metric as follows.

Definition 1. Given an object o and its pointed-by set PMT [o], the
hub degree Ho of o is:

Ho =
√∑

p∈PMT [o](|PM[p]|)2

where |PM[p]| is the points-to set size of p

If we treat the points-to relations as a bipartite graph, our hub
degree formula is equal to the two-round iteration of the hub score
formula in the HITS algorithm [16]. We could also simply define
the hub degree as

∣∣∣PMT [o]
∣∣∣, i.e. the number of pointers that point to

the object o. However, with this metric, we cannot distinguish two
objects that are pointed by the same number of pointers. We will
justify the design of our hub degree metric in Section 5.2.

The distribution of the hub degrees of our benchmark programs
is also plotted in Figure 1. On average, the hub degrees of 70.2%
of the objects are larger than 5000. This means large hub nodes
frequently appear in points-to results. In fact, Das et al. have a

PM PMT



o1 o2 o3 o4 o5

p1 1 0 0 0 1
p2 1 0 0 0 0
p3 1 1 1 0 1
p4 1 1 1 1 0
p5 0 0 0 1 0
p6 0 1 0 0 0
p7 0 0 1 0 1





p1 p2 p3 p4 p5 p6 p7

o1 1 1 1 1 0 0 0
o2 0 0 1 1 0 1 0
o3 0 0 1 1 0 0 1
o4 0 0 0 1 1 0 0
o5 1 0 1 0 0 0 1



Table 3. Sample points-to matrix and its transpose form.

similar observation called blob nodes in designing their one-level-
flow algorithm [8].

An interesting phenomenon is that the programs processed by
the same points-to algorithm have similar percentages of the point-
ers and objects equivalence classes as well as the hub degree distri-
butions. This tells us that the existence of large numbers of equiv-
alent pointers and hub nodes is due to the imprecise nature of the
points-to algorithm and not the result of the code patterns in our
selected programs.

3. Pestrie Persistence Scheme
In this section, we present the Pestrie scheme that persists pointer
information by utilizing both the equivalence and the hub proper-
ties.

3.1 Constructing Pestrie Representation
The main idea for the Pestrie construction is partitioning all point-
ers so that the equivalent pointers are explicitly represented to al-
low points-to information be retrieved by a reachability analysis.
A naı̈ve approach is to pick an arbitrary object o1 and partition the
pointers into two groups, one containing all pointers pointing to o1
and the other for the rest of pointers. For each group, we use the
next object o2 to partition them into two groups again. We recur-
sively partition the groups with objects o3, . . ., om, for all objects. In
the end, two pointers in the same group must have identical points-
to sets. The partition process can be visualized as a decision tree.
Pestrie is the compact form of this decision tree.

We can construct Pestrie more efficiently. We illustrate the
construction algorithm with an exemplary points-to matrix in Table
3. We first compute the pointed-by matrix PMT . We then sort the
objects by their hub degrees to establish the object order. In our
example, the object order is o1, o2, o3, o4, o5. We further process
the rows of PMT in the object order by scanning the pointers in
each row. The result of each step is illustrated in Table 4. We further
explain each step as follows.

Step 1. We process row o1 of PMT and put all pointers that point
to o1, together with o1, into group-1.

Step 2. We process row o2 and identify a new pointer p6, which
has not yet been added to the Pestrie. We put o2 and p6 into a
new group, namely, group-2. For the other two pointers p3 and
p4 in row o2, we extract them out of group-1 and put them in a
new group-3. We introduce two edges to encode the information
that p3 and p4 point to both o1 and o2. Specifically, we insert the
tree edge (solid arrow) group-1 → group-3 since the members of
group-3 are the previous members of group-1. Hence, group-3 is
an offspring of group-1. Moreover, we insert the cross edge (dashed
arrow) group-2→ group-3 representing the fact that the two groups
have no prior connection.

Step 3. We repeat step 2 to process the pointers in row o3. This
time, group-3 becomes empty because p3 and p4 are again pulled
out. Since it is unnecessary to produce an empty group, we keep
p3 and p4 in group-3 and directly connect group-4 to group-3 by a
cross edge. However, as we will see, directly keeping p3 and p4 in
group-3 yields an incorrect points-to relation.

Table 4. Partitioning process. In each step we take a row of PMT and assign the pointers in that row to some groups.

Step 4. & 5. Again, we repeat step 2 to process rows o4 and o5.
During the processing of row o4, we extract p4 from group-3 and
form a new group, group-5, containing o4 and p5. Similarly, during
the processing of row o5, we extract p1, p3 and p7 to form a new
group containing o5. The final Pestrie is given in Figure 2, where
the edge labels will be explained shortly.

Figure 2. Pestrie for our sample
points-to matrix. Edge labels are
used in ξ-reachability analysis.

This partitioning al-
gorithm works in O(nm)
time, where n and m are the
numbers of pointers and
objects. Specifically, scan-
ning the input matrix takes
O(nm) time, and moving
pointers among different
groups is also O(nm), since
every pointer is moved at
most m times and there
are n pointers. Pestrie
has O(n + m) groups and
O(nm) cross edges. Hence,
the space complexity is
O(nm). Nevertheless, due
to our object order de-
fined by the hub degree,
the memory consumption
of Pestrie in practice is
very small. We offer more
discussions on this issue in Section 5.2.

3.2 Pestrie Properties

According to the construction, each Pestrie node represents a
group of pointers that have identical points-to sets. Therefore, each
Pestrie node forms an equivalent set (ES). For convenience, we use
the terms node and group interchangeably. In particular, we define
a Pestrie node as an origin iff it contains the object o. Two Pestrie
nodes are connected via either a cross edge or a tree edge iff they
contain pointers that point to some common objects. Moreover, the
Pestrie nodes connected via tree edges form a Partially Equivalent
Set (PES) since they point to a common origin but their points-to
sets are not fully identical.

The internal structure of a PES is a tree, because every group is
built by extracting members from its parent, an operation that can-
not produce cycles. An origin is the root of the tree since all groups
are extracted from it and, hence, every PES has a unique origin.
Due to the uniqueness, we use the origin as the PES identifier, such
as PES o1. Two pointers form an internal pair iff they belong to the
same PES. We associate each pointer in the Pestrie with its PES
identifier. It is immediate two pointers are aliases if they have the

same PES identifiers. We use an example to summarize the Pestrie
terminology.

Example 1. Consider a Pestrie in Figure 2. There are nine equiv-
alent sets (ESs) depicted as Pestrie nodes. The shadowed areas
represent five partial equivalent sets (PESs). In each of the PES,
the bold node represents the origin. Tree edges in Pestrie are de-
picted as solid arrows and cross edges are dashed arrows. More-
over, (p3, p4) is an internal pair.

The most important Pestrie property is that points-to informa-
tion could be retrieved by a reachability analysis.

Lemma 1. A pointer p pointing to object o j implies that p is
reachable from o j in the Pestrie.

Proof. We prove it by a case analysis.

Case 1. The PES identifier of p is o j. By the Pestrie construction,
p is reachable from its origin o j.

Case 2. The PES identifier of p is oi, where i , j. In this case,
p is connected to o j via a path that consists of a cross edge.
The reason is that, when we use an object o j for partition, we
connect cross edges to the the set of Pestrie nodes T that are not
in PES o j. Since we have p ∈ T , p is reachable from o j via a
cross edge o j → np. Although p may be moved to other groups
in the subsequent construction steps, p is always reachable from
o j through o j { np { p, where np { p describes the ancestor
to descendant path within PES oi.

�
However, pi is reachable from o j does not imply pi points to o j.

Consider Figure 2 again. There is a path between p4 and o5, but p4
does not point to o5. The problem is that the cross edge o5 → p3
is built after we isolate p3 and p4 in Step 4. If we permit empty
group, p3 is moved to a child group in Step 5 and we create two
tree edges p∅ → p3 and p∅ → p4, where p∅ is the original group of
p3. Therefore, the path between p4 and o5 is p4 ← p∅ → p3 ← o5,
and consequently, p4 is unreachable from o5. Since Pestrie does not
permit empty groups, we need to handle carefully the hidden empty
groups p∅ and their corresponding tree edges in the reachability
analysis. Namely, if a path starts with a cross edge x → y, it can
only go through the tree edges y→ z under certain conditions. The
conditional reachability analysis is called ξ-reachability, which can
correctly retrieve the points-to information from Pestrie.

3.3 ξ-Reachability
The ξ-reachability analysis requires annotations on both the tree
and cross edges. For convenience, we call a tree edge y → z a tree
edge of y. Suppose node y already has k (k ≥ 0) tree edges. When
adding a new tree edge y → z1, we label it by k indicating that it
is the (k + 1)th tree edge of y. When building a cross edge x → y,

we label it by the number of tree edges of y at that time and the
label on the cross edge is called ξ-value. With the labels, we define
that the node u is ξ-reachable from the node x iff there is a path
x

ω1
−−→ y

ω2
−−→ z→ . . . u, which satisfies:

1. x
ω1
−−→ y is a cross edge and the edges y

ω2
−−→ z → . . . u are all

tree edges;
2. ω2 ≥ ω1.
We refer to the second property ω2 ≥ ω1 as the ξ-condition. The

condition guarantees that all tree edges on the path are created after
the creation of the cross edge x → y. Since the tree edge y → z
is created earlier than any of the tree edges in the sub-tree of z,
the ξ-condition only concerns the labels on the first two edges. In
consequence, we have the following theorem:

Theorem 1. A pointer pi points to an object o j iff pi is ξ-reachable
from o j in the Pestrie.

Example 2. Consider the example in Figure 2. The tree edge
p3 → p4 created in Step 4 is the 0th edge, hence the cross edge
o5 → p3 created in Step 5 is labeled by 1. Therefore, p4 does not
point to o5, since the path o5

1
−→ p3

0
−→ p4 is not a ξ-path.

3.4 Generating Pestrie Persistent File
Our aim of building Pestrie is to answer alias queries efficiently.
However, up until this step, the alias information can only be re-
trieved by the ξ-reachability analysis. Consider the IsAlias(p, q)
query. If pointers p and q are in the same PES, we can quickly de-
cide that they are aliases since (p, q) is an internal pair. Otherwise,
we check whether or not (p, q) is a cross pair by testing whether p
and q are ξ-reachable from an object o simultaneously.

However, using ξ-reachability to check cross pairs takes O(n +
m) time, which is slow. A better approach is to encode cross pairs
and to look-up the encoded result at query time. A naı̈ve way to
generate all cross pairs is enumerating all objects o and pairing up
all nodes that are ξ-reachable from o. Instead, since the ξ-reachable
nodes induced by a cross edge form a sub-tree, we employ a
sub-tree pairing approach to efficiently generate cross pairs. This
encoding technique, referred to as rectangle encoding, compactly
represents the cross pairs and achieves O(log n) query time.

3.4.1 Encoding Cross Pairs

Figure 3. Encoding ξ-
reachable nodes. If the
pre-order of y is Iy and
the largest pre-order of z
is Ez, we encode the cir-
cled sub-tree as [Iy, Ez].

The insight of efficiently generat-
ing cross pairs is that the set of
ξ-reachable nodes with respect to
a cross edge x

ω
−→ y is a sub-

tree of node y. For the example in
Figure 3, node y has (ω + k + 1)
children. Among them, only some

children z with tree edges y
ω′

−→ z
are ξ-reachable from x, where ω′ ∈
[ω,ω + k]. These children form a
sub-tree of y, which is highlighted
in the circled area.

We extend the interval label-
ing scheme [1] to compactly rep-
resent sub-trees. We first associate
each tree node n with an interval
label [In, En], where In is the pre-
order timestamp obtained from the
DFS walk on the tree and En is the
largest pre-order timestamp of the whole sub-tree rooted at n. To
obtain the labels In and En, we perform a DFS traversal on Pestrie
that excludes the cross edges. We visit the PES in object order of
their origins. For a node that is not an origin, we follow its tree
edges in reversed order, i.e. the kth tree edge is visited before the

o1, p2 p3 p4 p1 o2, p6 o3 p7 o4, p5 o5
I 0 1 2 3 4 5 6 7 8
E 3 2 2 3 4 6 6 7 8

Table 5. The pre-order and largest pre-order timestamps for all
nodes.

(k − 1)th tree edge. For an origin, it is free to visit its tree edges in
any order, since a ξ-path cannot pass an origin. The result of the
DFS traversal is assigning an interval label to every node.

The interval labels for our sample Pestrie (Figure 2) are shown
in Table 5. Interval labels can be used to decide the reachability
relation on trees in O(1) time, where node v is reachable from u
iff Iu ≤ Iv and Ev ≤ Eu, i.e., [Iv, Ev] ⊆ [Iu, Eu]. After this step,
we assign the interval labels to all cross edges to represent the ξ-
reachable sub-trees induced by those cross edges, as illustrated in
Figure 3. Specifically, given a cross edge x

ω
−→ y, its sub-tree interval

formed by the nodes that are ξ-reachable from x is [Iy, Ez], where z
is the target of tree edge y

ω
−→ z. If the largest label of the tree edges

of y is less than ω, y is the unique node that is ξ-reachable from x
and the interval label for x

ω
−→ y is defined to be [Iy, Iy]. In addition,

every PES is also encoded as the interval label of its origin node.
For example, PES o1 is encoded as [0, 3].

Since a cross pair consists of two pointers that are ξ-reachable
from the same origin node o, we directly combine the interval
labels of two sub-tress and construct a rectangle label to encode the
cross pairs obtained from the two sub-trees. Formally, a rectangle
label is in the form <X1, X2,Y1,Y2>, where [X1, X2] and [Y1,Y2] are
disjoint interval labels for two sub-trees. They are disjoint because
the two sub-trees belong to different PES. Due to the disjointness,
in a rectangle label, we always refer X1 and X2 to be the smaller
timestamps, i.e., X1 ≤ X2 < Y1 ≤ Y2. With rectangle labels, the
IsAlias(p, q) query can be answered by testing whether or not the
point (p, q) is enclosed by a rectangle in O(log n) time with an
appropriate data structure.

Next, we present our efficient algorithm to generate and encode
rectangle labels. We first classify the cross pairs. Suppose two
pointers p and q belong to PES oa and PES ob, respectively. A cross
pair belongs to two cases:
• Case-1 pair. p also points to ob or q also points to oa. For

example, pointer p7 in Figure 2 points to o3, p4 in PES o1 also
points to o3. Therefore, p4 and p7 form a Case-1 pair.
• Case-2 pair. Both pointers p and q point to a third object oc,

where oc , oa and oc , ob. For example, pointers p1 and p7 in
Figure 2 both point to o5 but none of them belong to PES o5.

Similarly, rectangles are also classified as Case-1 and Case-2
rectangles, which encode the Case-1 and Case-2 cross pairs re-
spectively. Moreover, the Case-1 rectangle <X1, X2,Y1,Y2> also
encodes the points-to information since Y1 is the pre-order times-
tamp of an origin node. For instance, in rectangle <1, 2, 5, 6>, 5 is
the timestamp for o3.

The generation process of rectangle labels is illustrated in Table
6. We visit Pestrie in the object order to pair the cross edges
belonging to each origin node. The importance of using the object
order will be explained shortly. Consider the origin node o3, which
has a single cross edge o3 → p3 that induces the sub-tree {p3, p4},
labeled as [1, 2]. Meanwhile, PES o3 is encoded as [5, 6]. Of course,
the nodes in the sub-trees {p3, p4} and {o3, p7} form Case-1 cross
pairs, hence we encode these pairs succinctly by a rectangle label:
<1, 2, 5, 6>, a combination of the interval labels for corresponding
sub-trees.

For PES o5, the sub-tree labels for the cross edges o5 → p3,
o5 → p1, and o5 → p7 are [1, 1], [3, 3], and [6, 6], respectively. The
label for o5 → p3 is [1, 1] because the tree edge label p3 → p4 is

Table 6. Generating encoded cross pairs. We enumerate the origins in the object order to compute the cross pairs. The shadowed areas in
the box are the ξ-reachable nodes for corresponding cross edges.

[0, 9)

[0, 4)

[0, 2) [2, 4)

<1, 2, 5, 6>

<1, 2, 4, 4> <2, 2, 7, 7>

<1, 1, 8, 8>

[4, 9)

<6, 6, 8, 8>

<3, 3, 8, 8>

<3, 3, 6, 6>

Figure 4. Rectangles generated from our sample points-to matrix.

0, which is smaller than the ξ-value 1 of o5 → p3. Therefore, p4 is
not ξ-reachable from o5 according to the ξ-condition. Note that the
rectangle <1, 1, 6, 6> obtained by pairing {p3} with {p7} is enclosed
by the rectangle <1, 2, 5, 6> that pairs {p3, p4} with {o3, p7}. There-
fore, the redundant rectangle <1, 1, 6, 6> needs to be discarded. We
can find and delete all redundant rectangles according to the fol-
lowing theorem:

Theorem 2. If we visit the PES origin nodes in the object order, a
newly generated rectangle is either completely inside or outside of
the previously generated rectangles.

Theorem 2 indicates that a rectangle never overlaps with other
rectangles. Therefore, if the corner point (X1,Y1) is covered by a
rectangle R, the whole rectangle <X1, X2,Y1,Y2> must be covered
by R. We employ a segment tree to quickly retrieve the point cover
information. The initial segment is [0,Ne), where Ne is the number
of Pestrie nodes. Every node of the segment tree represents a
segment interval [a, b], where the middle point is mid = a+b

2 . Inside
tree node, we use a balanced tree to store the rectangles that are
intersected by the vertical line x = mid. All existing rectangles
are stored in the balanced trees sorted by their Y1 coordinates.
When a new rectangle R is generated, we test whether its corner
point (X1,Y1) is covered by existing rectangles. If it is covered, we
discard R directly. The final structure for our example is shown in
Figure 4.

Theoretically, encoding cross pairs takes O(mn2 log2 n) time.
This is because, for each PES, we pair at most O(n2) sub-trees.
Hence, in total, we pair O(mn2) sub-trees for m PESs. For each
sub-tree pair, we execute the point enclosure query and it is per-
formed in O(log2 n), because we visit O(log n) segment tree nodes
and spend O(log n) time for searching the balanced tree at every

p o r v h t

Preorder Time-stamps

Rectangles

Vertical Lines

Horizontal Lines

Points

p

o

e

r

p

h

t

e

Figure 5. Layout of the encoding file.

segment tree node. For each uncovered rectangle, inserting it into
the segment tree takes O(log n) time. The size of encoded cross
pairs is O(R + n), where R is the number of stored rectangles and it
is bounded by O(n2).

3.4.2 Generating Persistent File
We store the encoded rectangles in a file on disk. The format
of the encoding file is depicted in Figure 5. The first row is the
file header that specifies the dimensions of the Pestrie structure
and the quantities of various types of rectangles. The second row
contains the pre-order timestamps of all pointers and objects, which
are the timestamps of their enclosing ES groups. The next four
rows describe rectangles. We split the rectangles into four cases:
points, vertical lines, horizontal lines, and rectangles. In this way,
we reduce the encoding size because a substantial number of the
rectangles are points and lines, which can be encoded by two
and three integers, respectively. For example, five of the seven
rectangles in Figure 4 are points and one of them is a line, which
requires only thirteen integers to be stored in the persistent file.

4. Querying Encoded Information
We decode the persistent file and construct the querying structure in
two steps. In the first step, we infer the PES identifiers for pointers.
Those identifiers are essential to the IsAlias query but discarded
in order to generate the small persistent file. To obtain the PES
identifiers, we first load all pointers and objects and sort them using
their pre-order timestamps. The sorted order is the object order used
for Pestrie construction. Next, for the pointer p with the pre-order
timestamp Ip, we use a binary search to determine the value for
k such that Ik ≤ Ip < Ik+1, where Ik and Ik+1 are the pre-order
timestamps for the kth and (k + 1)th objects in the object order. The
value k is the PES identifier of p, because the pre-order timestamp
of any node t with PES identifier k must have It ∈ [Ik, Ik+1).

In the second step, we load the rectangles and build a static
query structure. Specifically, we maintain Ne lists and denote each
list as ptList[k], where Ne is the number of ES groups. For each

Figure 6. Query Structure. ptList[k] records the rectangles that
intersect the vertical line x = k. R3 and R5 are case-1 rectangles,
where we can extract points-to information.

input rectangle <X1, X2,Y1,Y2>, we insert it into lists ptList[a],
where a ∈ [X1, X2]. For example, the rectangle R1 in Figure 6 is in-
serted into lists ptList[2], ptList[3], . . . , ptList[8]. We also generate
a rectangle <Y1,Y2, X1, X2> and insert it into lists ptList[b], where
b ∈ [Y1,Y2], because the alias relation is symmetric and we need
the full alias relations to answer the ListAliases query. Finally, for
each list ptList[i], 0 ≤ i < Ne, we sort the referenced rectangles by
their Y1 coordinates.

Although a rectangle is referenced by multiple lists in our static
query structure, the increase of memory consumption is not appar-
ent since the numbers of horizontal lines and rectangles are much
smaller than the numbers of vertical lines and points. Next, we use
the query structure to answer queries.

IsAlias(p, q): We first compare the PES identifiers of p and q
to test if they are an internal pair. If they are not, we use a binary
search on ptList[Ip] to test if point (Ip, Iq) is covered by a rectangle,
where Ip and Iq are the pre-order timestamps of p and q. This
procedure works in O(log n).

ListAliases(p): Suppose the pre-order timestamp of p is Ip.
The pointers that are aliased to p are encoded by the rectangles
that intersect with the vertical line x = Ip. Therefore, we visit
the rectangles in ptList[Ip]. For each rectangle <X1, X2,Y1,Y2>,
the pointers with pre-order timestamps in the range [Y1,Y2] are all
aliased to p. The algorithm works in O(K) time, where K is the size
of answer set.

ListPointsTo(p): For each rectangle R = <X1, X2,Y1,Y2> in
ptList[Ip], where Ip is the pre-order timestamp of p, we output the
points-to relation x → Y1 if R is a Case-1 rectangle. To further
shorten the query time, we can recover the points-to matrix PM
and directly return PM[p] as the answer.

5. Pestrie Optimization
We can tune the object order to achieve the minimal encoding size
and shortest querying time, because different object orders produce
different Pestrie. More specifically, our goal is to minimize the
number of cross edges and to maximize the number of internal
pairs. In this section, we study these optimization opportunities.

5.1 Theoretical Barrier
When using different object orders to construt Pestrie, the number
of cross edges in the generated Pestrie are different, becuse the
cross edges can be shared in different ways. In fact, we show
that the sharing scheme of cross edges in Pestrie is very similar
to the sharing scheme of nodes in standard Trie (Theorem 4 in
Appendix A).3 Therefore, minimizing the number of cross pairs
can potentially reduce the encoding size, which is defined as:

3 Therefore, we name our data structure Pestrie (PES trie).

Optimal Pestrie Construction Problem (OPC): Finding an ob-
ject order π to construct a Pestrie with the minimum number of
cross edges.

Since internal pairs can always be encoded in linear space and
queried in O(1) time, the second optimization problem is maximiz-
ing the number of internal pairs, which is defined as:

Optimal Pointer Partition Problem (OPP): Given n pointers,
m objects, a points-to matrix PM, and m groups A1, A2, . . . , Am.
An ordering π is a permutation of the groups, where πi = j means
group A j is placed at the ith position. With an ordering π, we put
pointer p in group πi iff PM[p][πi] = 1, and ∀k < i, PM[p][πk] = 0.
The OPP problem asks for an order π to maximize the function Oπ

defined as follows:

Maximize : Oπ =
∑m

i=1 I2
i , Ii =

∣∣∣Aπi

∣∣∣
Unfortunately, both the OPC and OPP problems are NP-hard

and the proofs can be found in Appendix A. Therefore, we in turn
search for a good heuristic.

5.2 Heuristic

We use the object order obtained by sorting their hub degrees
to construct Pestrie. The object order essentially makes pointer
partitions uneven. We show in Theorem 3 that the optimal solution
of OPP problem only depends on σ2, where σ is the standard
deviation of Ii. It is maximized if the distribution of pointers is
uneven.

Theorem 3. For any ordering π, Oπ = mσ2 + n2

m .

Proof. First, note that:

1.
∑m

i=1 Ii = n;
2. Let ā = n

m , we have mā2 = ān = n2

m .

For any permutation π, we have the transformation:

Oπ

m
=

∑m
i=1 I2

i

m

=
(
∑m

i=1 I2
i) − 2ān + mā2

m
+ ā2

=

∑m
i=1 (I2

i − 2āIi + ā2)
m

+ ā2

=

∑m
i=1(Ii − ā)2

m
+ ā2

= σ2 + ā2

=⇒ Oπ = mσ2 + n2

m �

The OPC problem also favors our heuristic. As shown by
Comer, the greedy heuristic that selecting an attribute at each level
which adds the smallest number of nodes to the next level almost
builds an optimal Trie [6]. Since Pestrie is a variant of Trie (Sec-
tion A.2), Comer’s heuristic implies the guideline that pointers with
similar points-to sets should be kept in the same ES node as long
as possible during Pestrie construction. Since the pointers with
large points-to sets (we refer to them as L-pointers) could derive
more cross edges, L-pointers should be picked in each step of the
partitioning as much as possible according to Comer’s heuristic.
Since the L-pointers likely point to common objects, especially
those that have large hub degrees, first using the objects with larger
hub degrees to partition pointers can potentially keep these pointers
staying in the same ES node for longer time.

6. Implementation
6.1 Preparing Points-to Matrix
Our boolean matrix representation for pointer information is not
the default format for all points-to algorithms. Therefore, we need
to canonicalize the input information. Our matrix representation
(PM), in essence, is the standard representation for the flow- and
context-insensitive points-to results, which does not subsume the
constrained points-to information produced by various pointer
analysis. For example, the flow-sensitive points-to information,
such as p points to o at the program point l, is represented as
p

l
−→ o. Fortunately, the constrained points-to representation can be

transformed to our binary matrix easily.
In the flow-sensitive analysis, such as the one developed by

Lhoták et al. [19], a points-to relation p
l
−→ o is first represented as

(l, p)→ o, where (l, p) describes the version of pointer p defined at
program point l. We can map every location pointer pair (l, p) to a
new pointer pl, which is mapped to a unique integer that represents
a row in PM. Therefore, the original points-to relation is encoded
in a unconstrained format pl → o.

Transforming the context-sensitive information is similar to
transforming flow-sensitive information. A context-sensitive points-
to relation can be encoded as p

c
−→ o, where the constraint c is the

context condition for this points-to relation. Again, we first rewrite
the expression p

c
−→ o as (c, p) → o. Then, we replace all occur-

rences of (c, p) with a new pointer pc and construct the points-to
relation pc → o. If the object is also constrained with a context,
e.g. (c1, p)→ (c2, o), we also replace (c2, o) with oc2 .

The result of the full context-sensitive analysis, such as the one
developed by Xiao et al. [40], can also be transformed to our for-
mat. However, we cannot fully represent the points-to relations with
all contexts, which could exceed 264. For our experiments, we first
generate the 1-callsite-sensitive result by merging the contexts. We
then transform the 1-callsite-sensitive information to our format.
We exemplify how to generate 1-callsite-sensitive information for
the result produced by geomPTA [40], which is used in our evalu-
ation. In the first step, we merge all contexts c1, c2, · · · , ck that are
introduced by the same callsite into a single representative context
C. Then, for every points-to relation (c1, p) → (c2, o), we replace
it with (C1, p) → (C2, o), where C1 and C2 are the representative
contexts for c1 and c2, respectively.

Path-sensitive points-to information, such as the work by Hacket
et al. [12], can also be transformed to binary matrix format. The ba-
sic idea is finding a finite set of basis logic expressions and rewrit-
ing every path condition as a disjunction of these expressions. This
is similar to representing every vector with a linear combination
of basis vectors. In this way, a points-to relation p

l
−→ o is written

as p
l1

∨
l2

∨
···

∨
lk

−−−−−−−−−−→ o, where l1, l2, · · · , lk are chosen from the basis
logic predicates set. The points-to relation can be split into multiple

relations p
l1
−→ o∪ p

l2
−→ o∪ · · · ∪ p

lk
−→ o. Then, every pair of pointer

and basis logic predicate (p, l1) can be mapped to a new pointer pl1 .
Finally, p

l
−→ o is transformed to a vector of pl1 → o, pl2 → o, · · · ,

plk → o.

6.2 Variable Correlation across Analysis Cycles
Since all variables in persistent files are mapped to integers, we
should keep the mapping consistent to incorporate the persistent
pointer information used in program analysis tools. To achieve the
goal, we save to disk the IR produced by the program analysis tool
and the mapping from variable names to integers produced in the
first run. In future runs, we directly load the saved contents to avoid
rebuilding the IR and guarantee original variable mapping. In ad-
dition, the call graph and mapping from call edges to integers are

also saved for future use. After the transformation of the context-
sensitive points-to result to binary matrix, we map each context
pointer pair (c, p) to pc, where c consists of the integers for cor-
responding call edges. To answer queries such as ListPointsTo(c,
p), the naming of the call edges should also be consistent across
analysis runs in order to find the correct pc that (c, p) is mapped to.

7. Experiments
In this section, we evaluate the compression capability and the
querying efficiency of the Pestrie persistent scheme, by comparing
to the bitmap-based encoding scheme, the BDD encoding, and the
off-the-shelf bzip compressor. The subjects in Table 2 are also used
in our experiments. Both the bitmap and the Pestrie algorithms are
written in C++, compiled by g++ 4.8 with -O2 option.4 The sparse
bitmap implementation is taken from the GCC compiler, which is a
highly optimized library. We use the default 128 bits for each sparse
bitmap block, which is optimal in our evaluation. We conduct the
experiments on a 64bit machine with an Xeon 3.0GHz processor
and 32GB main memory, running Ubuntu 13.04.

7.1 Performance Evaluation
We first generate the encoded pointer information. Our Pestrie
approach generates a single file PesP as shown in Figure 5. The
bitmap approach generates a file BitP that encodes the points-to
matrix PM and the alias matrix AM. The BDD and bzip approaches
encode only the points-to matrix PM, referred to as BDD and bzip,
respectively. Next, we use a real client to evaluate their querying
performance.

7.1.1 Querying Performance
We assess the querying efficiency by computing aliasing pairs [25]
— data conflicting load and store statements pairs — in two ways.
The first method extracts the base pointers for all the stores and
loads.5 Then, it enumerates all pairs of base pointers and uses the
IsAlias query to determine if they have an access conflict. The
second method uses the ListAliases(p) query to retrieve the list
of base pointers that are aliased to a given base pointer p. The
querying performance results are collected in Table 7.

Querying Time. We observe that, for IsAlias query, the most
popular query for the alias information, using PesP is on average
(by geometric mean) 1.6× faster than using BitP. PesP is faster
because locating a bit in sparse bitmap is not in constant time.
In fact, in GCC’s implementation, it uses a linked list to manage
sparse bitmap blocks, which needs O(n) time to scan the linked
list to determine the existence of a bit. In Pestrie, the search only
takes O(log n) time. For ListAliases query, both PesP and BitP are
efficient, because the querying results have been pre-computed and
the query can be answered by only outputting the pre-computed
results.

We also evaluate the on-demand versions of these queries. The
results are collected in Table 7 with “Demand” label. To mimic
the conventional usage, we only use the PM matrix to evaluate
queries. Specifically, IsAlias(p, q) is answered by intersecting
the points-to sets of p and q, which takes 2.9× more time than
querying with Pestrie. In case of ListAliases(p) query, we execute
IsAlias(p, q) with all other base pointers q and cache the query-
ing result in cache(p). Next time we query ListAliases(p′), where
p′ is an equivalent pointer to p, we directly use the cached result
cache(p) as the answer. With the cache optimization, the demand
version of ListAliases is 2× faster than that of IsAlias, though it
is still 123.6× slower than the Pestrie-based ListAliases. Since
the demand-driven IsAlias is the unique interface for many tools,

4 Code can be found at: https://github.com/richardxx/pestrie.
5 For example, in a store p. f = q, p is the base pointer.

Program IsAlias (s) ListAliases (s) ListPointsTo (s) Decoding Time (s) Querying Memory (MB)
PesP BitP Demand PesP BitP Demand PesP BDD PesP BitP PesP BitP

samba 62.7 66.2 103.7 0.02 0.04 55.3 0.01 - 0.12 0.13 47.7 144.0
gs 36.5 45.8 146.6 0.23 0.64 81.1 0.11 - 0.19 0.22 37.2 157.8

php 65.2 120.9 745.1 1.3 2.1 350.5 0.4 - 0.31 0.31 52.7 215.7
postgreSQL 51.4 101.6 843.2 2.8 4.1 365.3 0.91 - 0.44 0.38 53.4 249.5

antlr 21.6 28.3 35.1 0.07 0.28 26.7 0.03 43.2 0.2 0.16 45.6 81.9
luindex 17.5 23.7 28.7 0.04 0.11 22.0 0.02 30.2 0.2 0.13 42.2 98.4
bloat 78.3 101.2 134.2 0.18 0.14 105 0.09 138.3 0.67 0.28 92.0 210.0
chart 107.2 124.2 207.2 0.28 0.2 147.9 0.3 602.6 0.99 0.4 154.9 446.5
batik 48 114.5 117.6 4.0 3.9 30.3 0.18 - 11.9 2.18 782.2 939.1

sunflow 26.7 56.4 68.5 1.9 2.2 26.5 0.12 - 7.3 1.4 555.2 623.1
tomcat 32.6 79.6 71.3 3.4 3.5 29.6 0.15 - 15.7 2.6 1186.1 917.8

fop 105.1 209.9 205.9 9.2 7.8 57.5 0.31 - 16.7 3.3 1165.8 1350.1

Table 7. Summary of query time, persistence loading time, and querying structure memory size.

such as Soot and LLVM, we argue that a well designed persistence
scheme and a comprehensive query interface are very helpful for
speeding up client applications.

An interesting observation is that the BitP version of IsAlias
is not always faster than the demand version, such as in tomcat
and fop. The reason is that both versions of IsAlias take O(n) time
and their performance is significantly sensitive to the input. On the
other hand, the O(log n) complexity of PesP is a strong guarantee
for time critical applications.

We also compare the performance of answering the List-
PointsTo query with PesP and BDD. The pointers used for query
evaluation are also the base pointers. The BDD-based queries are
directly answered through the Paddle interface with the JavaBDD
backend [20]. Comparatively, BDD is 1609.6× slower. Although
Paddle is implemented in Java, the significant performance gap
cannot be primarily contributed by the language difference. There-
fore, BDD is not a compelling choice for query-intensive applica-
tions.

Persistence Decoding Time. We measure the time to decode
the persistent information for querying. As shown in Table 7,
both Pestrie and bitmap encodings can be decoded efficiently. The
largest case fop only takes 16.7s, while the points-to analysis for
fop consumes 1.7 hours. Even more, the points-to analysis on chart
takes 4.6 hours, but decoding its Pestrie persistence file only takes
0.5s. Therefore, with persistent pointer information, clients can
start their own jobs more efficiently.

Query Memory Usage. Query memory is the memory con-
sumed by the querying structure. As shown in Table 7, the largest
program fop only uses 1165MB of memory to maintain the query
structure, whereas the pointer analysis for fop uses 22GB mem-
ory. Another observation is that PesP consumes less memory than
BitP in all cases except tomcat. This proves that the static querying
structure of PesP does not increase memory usage significantly.

7.1.2 Persistence Generation Performance

Storage Size. We summarize the sizes of persistent files for all four
encoding approaches in Table 8. On average, the size of PesP is
10.5× smaller than the size of BitP, which proves that the hub prop-
erty is a good observation for compressing alias matrix. Moreover,
PesP is 17.5× smaller than BDD and 39.3× smaller than bzip. Note
that the size of BDD and bzip encoding in our experiments is only
the size of the points-to matrix PM, which is much smaller than
the alias matrix AM. However, with PM alone, we can only answer
aliasing queries on demand.

Persistence Construction Time. As shown in Table 8, con-
structing the bitmap persistent encoding is faster for the first eight
programs, and constructing the Pestrie encoding is faster for the
last four programs. The sparse bitmap is efficient for calculating
PM × PMT if the matrix is sparse. Specifically, for pointer p, the

Program Storage (MB) Construction Time (s)
PesP BitP BDD bzip PesP BitP bzip

samba 5.3 20.4 - 3.2 3.5 0.7 120.3
gs 3.6 30.1 - 45 19.9 5.3 690.2

php 3.5 46.7 - 141 38.7 12.6 2259.9
postgreSQL 3.1 54.5 - 572 65.1 16.9 7023.1

antlr 2.6 13.0 45.0 9.2 1.2 0.8 75.7
luindex 2.3 12.7 40.0 7.9 1.1 0.7 59.4
bloat 5.5 46.6 92.1 33 7.5 4.4 284.2
chart 8.6 58.3 158.5 380 12.1 6.5 1628.2
batik 7.0 172.7 - 5300 109.0 344.4 16106.4

sunflow 4.7 113.4 - 2200 62.0 228.7 8349.5
tomcat 5.0 146.3 - 1900 57.4 545.0 8765.8

fop 26.9 255.7 - 15000 169.9 615.4 21183.1

Table 8. Summary of encoding size and construction time.

Figure 7. Impact of object order on Pestrie performance.

alias set of p is the union of the rows o in PMT , where p points
to o. Merging is fast when PM is sparse since only a few pointers
are visited. However, for the IsAlias query, we intersect the points-
to set of p with the points-to sets of all other base pointers. Most
of them are not aliased with p. This is why the demand version
of IsAlias even takes more time than constructing the bitmap en-
coding in the first eight cases. When the points-to matrix becomes
dense, the merging process wastes a significant amount of time to
merge the same pointers multiple times. However, the dense matrix
is favored by Pestrie, because large rectangles can be generated
and many redundant rectangles are pruned by Theorem 2. This is
why Pestrie is faster for the last four subjects.

7.2 Heuristic Effectiveness
The object order obtained by sorting hub degrees is effective for
constructing compact and query-efficient Pestrie persistence. To
prove our claim, we compare PesP to Pesrand, a Pestrie persistence
constructed by random object order. The comparison result is sum-
marized in Figure 7, which plots the ratio of the time or the space

consumption of Pesrand over PesP. On average, decoding Pesrand
takes 3.2× more time and answering IsAlias query is 1.8× slower,
compared to PesP. Generally, Pesrand has many more cross edges,
which result in a large number of small rectangles. Also, due to
the additional cross edges, it takes 5.3× more time to generate the
Pesrand encoding. An interesting observation is that Pesrand genera-
tion is faster in some cases such as gs, because the cross edges in
Pesrand are more evenly distributed and thus, less point enclosure
queries are issued. Finally, the persistent file produced by Pesrand is
5.9× larger, which is also caused by the additional cross edges.

8. Related Work
Modular Points-to Analysis. There is a large body of work on
building function summaries for incremental and scalable pro-
gram analysis [9, 12, 45]. However, function summaries cannot
be queried directly, as they should be linked to build the whole pro-
gram information before answering queries. Function summaries
are usually small, hence they do not need special treatment for
compaction. For example, on average of 0.075 entry aliasing edges
and 0.391 exit aliasing edges are generated by Hackett et al. [12],
which are summed up to only several megabytes even for a large
program. In contrast, the whole program information always con-
tains gigabytes of data as shown in our experiment. Moreover, link-
ing summaries to build the whole program information takes a long
time so that using summaries cannot quickly boot the applications
based on pointer information.

Demand-driven Points-to Analysis. Unlike modular analysis,
demand-driven points-to analysis can provide short time and small
memory footprints for querying pointer information [34, 42, 44,
48]. However, the demand-driven approach cannot be used in
query-intensive situation due to its long query processing time [42].
Moreover, it is unknown how to answer the ListAliases query ef-
ficiently in a demand-driven manner. Therefore, persistent pointer
information is more attractive for query-intensive applications.

Encoding Pointer Information. Whaley et al. are the first to
store points-to relations in BDDs to support higher order context-
sensitive analysis compactly [17, 39]. Due to the availability of pre-
cise points-to information, Martin et al. develop a defects analysis
engine [23] and Naik et al. implement Chord, a system for static
race and deadlock detection [25, 26]. All these systems successfully
demonstrate the importance of encoding points-to information to
save recurring time for points-to analysis. However, as we showed,
BDDs are not query efficient. Our encoding scheme, Pestrie, can
be more compact and query-efficient than BDDs.

Other than BDD, Le et al. describe a bitmap encoding for Mod-
Ref information [18], which helps a JIT compiler for aggressive
online optimizations. Their approach for compacting Mod-Ref in-
formation is similar to our bitmap encoding for pointer information
described in Section 2.1, which is shown less effective compared to
the Pestrie approach.

9. Conclusion and Future Work
In this paper, we present a compact and query-efficient persistence
scheme Pestrie for pointer information. Pestrie serves queries ef-
ficiently and achieves small persistence storage size. The main fo-
cus of our future work is applying persistence technique to pre-
compute pointer information for libraries in order to reduce the cost
of points-to analysis for framework-heavy programs.

Acknowledgments
We especially thank Atanas Rountev, who proofread this paper
and proposed numerous improvement suggestions. We also thank
the PLDI reviewers for their useful feedback. This research is
supported by RGC GRF grant RGC622909 and RGC621912 and
also by the HKUST RFID Center.

References
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management

of transitive relationships in large data and knowledge bases. In
SIGMOD, 1989.

[2] K. Ali and O. Lhoták. Averroes: Whole-program analysis without the
whole program. In ECOOP, 2013.

[3] E. Bodden. Pointer analyses for open programs. In O. Lhotak,
Y. Smaragdakis, and M. Sridharan, editors, Pointer Analysis (Dagstuhl
Seminar 13162). 2013.

[4] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming
reflection: Aiding static analysis in the presence of reflection and
custom class loaders. In ICSE, 2011.

[5] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. In OOPSLA, 2009.

[6] D. Comer. Analysis of a heuristic for full trie minimization. ACM
Trans. Database Syst., Sept. 1981.

[7] D. Comer and R. Sethi. The complexity of trie index construction. J.
ACM, July 1977.

[8] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the impact
of scalable pointer analysis on optimization. In SAS, 2001.

[9] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In
PLDI, 2011.

[10] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via
scalable path-sensitive value flow analysis. In ISSTA, 2004.

[11] N. Dor, T. Lev-Ami, S. Litvak, M. Sagiv, and D. Weiss. Customization
change impact analysis for ERP professionals via program slicing. In
ISSTA, 2008.

[12] B. Hackett and A. Aiken. How is aliasing used in systems software?
In FSE, 2006.

[13] B. Hardekopf and C. Lin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In PLDI, 2007.

[14] B. Hardekopf and C. Lin. Exploiting pointer and location equivalence
to optimize pointer analysis. In SAS, 2007.

[15] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions
of lines of code. In CGO, 2011.

[16] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
J. ACM, 1999.

[17] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis as
database queries. In PODS, 2005.

[18] A. Le, O. Lhoták, and L. Hendren. Using inter-procedural side-effect
information in JIT optimizations. In CC, 2005.

[19] O. Lhoták and K.-C. A. Chung. Points-to analysis with efficient strong
updates. In POPL, 2011.

[20] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation. ACM Trans.
Softw. Eng. Methodol., 2008.

[21] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance of flow-
sensitive points-to analysis using value flow. In FSE, 2011.

[22] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. PSE:
Explaining program failures via postmortem static analysis. In FSE,
2004.

[23] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and
security flaws using PQL: a program query language. In OOPSLA,
2005.

[24] N. A. Naeem and O. Lhotak. Typestate-like analysis of multiple
interacting objects. In OOPSLA, 2008.

[25] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java. In PLDI, 2006.

[26] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock
detection. In ICSE, 2009.

[27] C. M. Papadimitriou. Computational complexity. Addison-Wesley,
Reading, Massachusetts, 1994.

[28] A. Rountev and S. Chandra. Off-line variable substitution for scaling
points-to analysis. In PLDI, 2000.

[29] A. Rountev and B. G. Ryder. Points-to and side-effect analyses for
programs built with precompiled libraries. In CC, 2001.

[30] A. Rountev, B. G. Ryder, and W. Landi. Data-flow analysis of program
fragments. In FSE, 1999.

[31] A. Rountev, M. Sharp, and G. Xu. IDE dataflow analysis in the
presence of large object-oriented libraries. In CC, 2008.

[32] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts
well: understanding object-sensitivity. In POPL, 2011.

[33] M. Sridharan. Practical aspects of pointer analysis. In O. Lhotak,
Y. Smaragdakis, and M. Sridharan, editors, Pointer Analysis (Dagstuhl
Seminar 13162). 2013.

[34] M. Sridharan and R. Bodı́k. Refinement-based context-sensitive
points-to analysis for Java. In PLDI, 2006.

[35] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI, 2007.
[36] Y. Sui, D. Ye, and J. Xue. Static memory leak detection using full-

sparse value-flow analysis. In ISSTA, 2012.
[37] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ:

effective taint analysis of web applications. In PLDI, 2009.
[38] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and

V. Sundaresan. Optimizing Java bytecode using the Soot framework:
Is it feasible? In CC, 2000.

[39] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In PLDI, 2004.

[40] X. Xiao and C. Zhang. Geometric encoding: forging the high perfor-
mance context sensitive points-to analysis for Java. In ISSTA, 2011.

[41] G. Xu and A. Rountev. Merging equivalent contexts for scalable heap-
cloning-based context-sensitive points-to analysis. In ISSTA, 2008.

[42] G. Xu, A. Rountev, and M. Sridharan. Scaling CFL-reachability-based
points-to analysis using context-sensitive must-not-alias analysis. In
ECOOP, 2009.

[43] G. Xu, D. Yan, and A. Rountev. Static detection of loop-invariant data
structures. In ECOOP, 2012.

[44] D. Yan, G. Xu, and A. Rountev. Demand-driven context-sensitive alias
analysis for Java. In ISSTA, 2011.

[45] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise
procedure summaries. In POPL, 2008.

[46] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by level: making
flow- and context-sensitive pointer analysis scalable for millions of
lines of code. In CGO, 2010.

[47] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su. Fast algorithms for Dyck-
CFL-reachability with applications to alias analysis. In PLDI, 2013.

[48] X. Zheng and R. Rugina. Demand-driven alias analysis for C. In
POPL, 2008.

A. Theorems
A.1 Proof for Theorem 2

Suppose there are two cross edges, e1: r1
ξ1
−→ y1 and e2: r2

ξ2
−→ y2,

where y1 and y2 belong to the same PES. Assume e1 is created
earlier than e2. We have the following lemma.

Lemma 2. If [Ie1 , Ee1] ∩ [Ie2 , Ee2] , ∅, we have [Ie2 , Ee2] ⊆
[Ie1 , Ee1].

Proof. • y1 = y2: This implies ξ1 < ξ2. Clearly, Ie1 = Ie2 and
Ee1 > Ee2 . The result is immediate.
• y1 , y2: y1 must be an ancestor of y2. Let S = [Ie1 , Ee1] ∩

[Ie2 , Ee2]. Clearly, ∀y′ ∈ S , y′ is ξ-reachable from e1 and is
ξ-reachable from e2, thus, the path y1 { y′ must pass y2.
Therefore, y2 is also ξ-reachable from e1 and, in turn, all nodes
in the sub-tree of y2 are ξ-reachable from e1, i.e. [Ie2 , Ee2] ⊆
[Ie1 , Ee1].

�

Theorem 2. If we visit the PES origin nodes in the object order, a
newly generated rectangle is either completely inside or outside of
the previously generated rectangles.

Proof. Suppose we pair two cross edges e1: r
ξ1
−→ y1 and e2:

r
ξ2
−→ y2 to generate a rectangle label R1: < Ie1 , Ee1 , Ie2 , Ee2 >,

where (Ie1 , Ie2) is the lower left point. Suppose there is an existing
rectangle R2: < Ie3 , Ee3 , Ie4 , Ee4 > generated by the cross edges e3:

r′
ξ3
−→ y3 and e4: r′

ξ4
−→ y4. We have:

• (Ie1 , Ie2) is enclosed by R2, i.e. [Ie1 , Ee1] ∩ [Ie3 , Ee3] , ∅ and
[Ie2 , Ee2] ∩ [Ie4 , Ee4] , ∅. According to Lemma 2, we have
[Ie1 , Ee1] ⊆ [Ie3 , Ee3] and [Ie2 , Ee2] ⊆ [Ie4 , Ee4], i.e. R1 is inside
of R2.
• (Ie1 , Ie2) is not enclosed by R2. If R1 overlaps R2, we must

have [Ie1 , Ee1] ∩ [Ie3 , Ee3] , ∅ and [Ie2 , Ee2] ∩ [Ie4 , Ee4] , ∅.
According to Lemma 2, R1 is enclosed by R2, which contradicts
our assumption. Therefore, R1 is outside of R2.

�

A.2 The OPC Problem
We prove that the OPC problem is NP-hard. The main idea is
establishing the relationship between the number of cross edges in
the Pestrie Gpes (we refer to them

∣∣∣Gpes

∣∣∣) and the number of nodes
in the standard Trie Tstd (we refer to them |Tstd |), where both Gpes

and Tstd are constructed by the same pointed-by matrix PMT . In
Trie terminology, a row in PMT is a record and every object is an
attribute [7]. The attribute testing order is exactly the object order
for Pestrie. Of course, we use the same order for attribute testing
and partitioning pointers. Specifically, Tstd is built as follows:

Step 1. We build the root node Vroot for Tstd, initialize tailp =
Vroot for all pointers p and tailo = Vroot for all objects o.

Step 2. We scan every row of PMT and update Tstd and the val-
ues for tail. Suppose we are scanning the ith row and the corre-
sponding attribute (object) is oi. For each pointer p in the row, we
build an edge Nold

oi
−→ Nnew if it does not exist, where Nold = tailp.

Then, we update tailp to be Nnew. After processing all the pointers
in the ith row, we process oi in the same manner as a pointer. There-
fore, in some abuse of terminology, we use object oi and pointer oi
interchangeably.

Figure 8 demonstrates the insertion of the first four rows of the
pointed-by matrix in Table 3 into a standard Trie. We have the
following observation for the Trie construction:

Lemma 3. After processing the jth row of PMT , we have
∣∣∣Gpes

∣∣∣ =

|Tstd | − j, ∀0 < j ≤ m, where m is the number of rows in PMT .

Proof. We first collect o j and all the pointers appearing in row j
of PMT in a container Φ. Then, we cluster the pointers in Φ into
NC classes by their tail values. Therefore, we will create NC edges
in Tstd for row j (please review Step 2). Comparatively, in the
Pestrie counterpart, before processing row j, the pointers are also
residing in NC different ES groups. For pointers p and q in the same
class, we must have p and q have the same points-to sets before
processing row o j, otherwise tailp , tailq and, thus, p and q are not
in the same class. Therefore, the pointers in row j also belong to
Nc different nodes in the Pestrie counterpart, and p and q belong
to the same node in Pestrie. Since object o j and the pointers not
appeared in row i, where i < j, all have tail = Vroot, we do not build
cross edges for o j and those pointers in Pestrie. Therefore, only

p1,p2,p3,p4,o1

p5,p6,p7
o2,o3,o4,o5

Root

o1,p1,p2

p5,p7
o3,o4,o5

Root

p3,p4
o2,p6

o4,p5

Root

p3

p4

p5,o4,o5

Root

o2,p6

p3,p4

o3,p7

o1,p1,p2

o1,p1,p2

o2,p6
o3,p7

o5

(1).

(2).

(3).

(4).

o1

o2

o2

o3

o3

o4

o4

Figure 8. First four steps of constructing a standard Trie with the
pointed-by matrix in Table 3. A solid arrow is the Trie edge and a
dotted arrow is the tailp value of pointer p.

Nc − 1 cross edges are created in step j of Pestrie construction. As
a consequence, after processing the jth row,

∣∣∣Gpes

∣∣∣ = |Tstd | − j. �

Theorem 4. The OPC problem is NP-hard.

Proof. First,
∣∣∣Gpes

∣∣∣ = |Tstd | − m after all m rows are processed,
according to Lemma 3. Since the term m is irrelevant to object
order chosen for constructing Gpes, minimizing

∣∣∣Gpes

∣∣∣ is equal to
minimizing |Tstd |. However, the optimal Trie problem is NP-hard
[7], thus the OPC problem is NP-hard. �

A.3 The OPP Problem
We first define a new problem called MSS problem as follows:

Maximum Squared Sum Problem (MSS): Given n elements
and m groups, a binary matrix B where B[i][j] = 1 means that
element i can be put into group j. We compute an arrangement
M for the elements to maximize the objective function OM , where
M[i] = j means that element i is assigned to group j:

Maximize : OM =

m∑
j=1

S 2
j , Where: S j = |{i|M[i] = j}|

The difference between OPP problem (Section 5) and MSS
problem is that, in OPP, each pointer p is kept in the first group
Ai in the permutation π, where PM[p][i] = 1. For example, if
PM[p][a] = 1 and PM[p][b] = 1, p will be assigned to group a if a
ordered prior to b in the permutation π. However, in MSS problem,
it is free to put an element e in any group g where B[e][g] = 1. The
two problems are connected with the following lemma:

Lemma 4. The MSS problem can be polynomially reduced to OPP
problem, i.e. MSS ≤p OPP.

Proof. We build a configuration graph GM to describe an arrange-
ment M in MSS, where each node represents a group. If we can
transfer more than zero elements from group x to group y, we add
an edge x

δ
−→ y, where the label δ indicates the number of trans-

ferable elements from x to y. Moreover, S x denotes the number of
elements assigned to group x.

We first show that, if M is optimal, GM is a DAG. Suppose there
is an edge x

δ
−→ y where S x ≤ S y. We can obtain a better solution

if we transfer all δ elements from x to y. After we exchange δ
elements, we have:

(S x − δ)2 + (S y + δ)2 = S 2
x + S 2

y + 2δ × (δ + S y − S x)

Since 2δ × (δ + S y − S x) is greater than zero (δ > 0), the
arrangement after the transfer is better than before. Hence, the
optimal arrangement must be that, for any edge x

δ
−→ y, we have

S x > S y. Therefore, GM is a DAG because, a cycle must include an

edge x
δ
−→ y where S x ≤ S y, which is a contradiction.

Second, suppose the groups are ordered. We show that an ar-
rangement M has a DAG configuration graph GM if, for any ele-
ment a, a is assigned to the group g0, where g0 is the first group
in the order and a can be assigned to groups g0, g1, . . . , gk. This is
because, assigning elements in this way can only produce edges in
the form g0 → g1, · · · , g0 → gk. Therefore, we cannot have an edge
gi → g j, where j is ordered prior to i, i.e. GM is a DAG.

Combing the two observations, by enumerating all ordering of
the groups and for every order, assigning the elements x to the first
group in the order that is permitted to hold x, we can obtain the
optimal arrangement. This description is in fact equal to the OPP
problem. Therefore, an instance of MSS problem is also an instance
of OPP problem, i.e. MSS ≤p OPP.

�

Lemma 5. The MSS problem is NP-hard.

Proof. We reduce the exact cover by 3-sets problem (EX3) to MSS
problem. The EX3 problem is defined as follows:

EX3: Exact Cover by 3-sets: Given a complete set S , and a
list of subsets s1, s2, . . . , sm carrying the elements in S . Each set
si has exactly three elements and n, the number of elements in S , is
divisible by three. The problem asks if we can select some subsets
from the list, where their union is S and they are mutually disjoint.

The NP-hardness proof of EX3 can be found in [27]. Next, we
reduce EX3 to MSS. We treat every subset in EX3 as a group in
MSS, and ∀a ∈ si, we fill B[a][si] = 1. We claim that the answer
of EX3 is Yes iff the optimal answer of MSS is 3n.

if: Any solution of the EX3 problem must have n
3 sets. Corre-

sponding to this solution, the answer for the reduced MSS problem
is 32 × n

3 = 3n.
only if: If the objective function OM for an arrangement M is 3n,

every group in M has either 0 or 3 elements. Otherwise, suppose
we have n3, n2, and n1 groups that have 3, 2, and 1 elements,
respectively. Clearly, n3 = n

3 and n2 = n1 = 0 is a solution to
the equation OM = 9n3 + 4n2 + n1 = 3n. Suppose we split a groups
with 3 elements into b groups with 2 elements and c groups with 1
element. We have n3 = n

3 − a and n1 + n2 = a. However, in such
case, 9n3 + 4b + c < 3n because, the quadratic function f (x) = x2

has the following property:

∀a, b, c > 0 where a × 3 = b × 2 + c × 1,
we have a × f (3) > b × f (2) + c × f (1).

Therefore, after the splitting, the value of OM becomes smaller.
Thus, the only solution for OM = 3n is n3 = n

3 and n2 = n1 = 0,
which is a solution to the original EX3 problem, i.e. EX3 ≤P MSS
and MSS is NP-hard. �

Theorem 5. The OPP problem is NP-hard.

Proof. Combining Lemma 4 and Lemma 5, the result is immediate.
�

