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Many program analyses need to reason about pairs of matching actions, such as call/return, lock/unlock, or

set-field/get-field. The family of Dyck languages {𝐷𝑘 }, where 𝐷𝑘 has 𝑘 kinds of parenthesis pairs, can be

used to model matching actions as balanced parentheses. Consequently, many program-analysis problems

can be formulated as Dyck-reachability problems on edge-labeled digraphs. Interleaved Dyck-reachability
(InterDyck-reachability), denoted by 𝐷𝑘 ⊙ 𝐷𝑘 -reachability, is a natural extension of Dyck-reachability that

allows one to formulate program-analysis problems that involve multiple kinds of matching-action pairs.

Unfortunately, the general InterDyck-reachability problem is undecidable.

In this paper, we study variants of InterDyck-reachability on bidirected graphs, where for each edge ⟨𝑝, 𝑞⟩
labeled by an open parenthesis “(𝑎”, there is an edge ⟨𝑞, 𝑝⟩ labeled by the corresponding close parenthesis “)𝑎”,
and vice versa. Language-reachability on a bidirected graph has proven to be useful both (i) in its own right, as

a way to formalize many program-analysis problems, such as pointer analysis, and (ii) as a relaxation method

that uses a fast algorithm to over-approximate language-reachability on a directed graph. However, unlike its

directed counterpart, the complexity of bidirected InterDyck-reachability still remains open.

We establish the first decidable variant (i.e., 𝐷1 ⊙ 𝐷1-reachability) of bidirected InterDyck-reachability. In

𝐷1 ⊙ 𝐷1-reachability, each of the two Dyck languages is restricted to have only a single kind of parenthesis

pair. In particular, we show that the bidirected 𝐷1 ⊙ 𝐷1-reachability problem is in PTIME. We also show that

when one extends each Dyck language to involve 𝑘 different kinds of parentheses (i.e., 𝐷𝑘 ⊙ 𝐷𝑘 -reachability
with 𝑘 ≥ 2), the problem is NP-hard (and therefore much harder).

We have implemented the polynomial-time algorithm for bidirected 𝐷1 ⊙ 𝐷1-reachability. 𝐷1 ⊙ 𝐷1-

reachability provides a new over-approximation method for bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability in the sense that

𝐷𝑘 ⊙ 𝐷𝑘 -reachability can first be relaxed to bidirected 𝐷1 ⊙ 𝐷1-reachability, and then the resulting bidirected

𝐷1 ⊙ 𝐷1-reachability problem is solved precisely. We compare this 𝐷1 ⊙ 𝐷1-reachability-based approach

against another known over-approximating 𝐷𝑘 ⊙ 𝐷𝑘 -reachability algorithm. Surprisingly, we found that the

over-approximation approach based on bidirected 𝐷1 ⊙ 𝐷1-reachability computes more precise solutions, even
though the 𝐷1 ⊙ 𝐷1 formalism is inherently less expressive than the 𝐷𝑘 ⊙ 𝐷𝑘 formalism.
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1 INTRODUCTION

Many static-analysis problems can be formulated as a reachability problem with respect to a

formal language 𝐿 on an edge-labeled graph 𝐺 . Two nodes in 𝐺 are 𝐿-reachable iff there exists

a path between them, and the string spelled out by the path is a word in 𝐿. An 𝐿-reachability

algorithm computes all 𝐿-reachable pairs in 𝐺 . A Dyck language 𝐷𝑘 , which consists of all strings

of well-balanced parentheses over 𝑘 kinds of parentheses, is perhaps the most widely used formal

language in 𝐿-reachability formulations [Reps 1998]. Many practical analyses use Dyck-reachability

to express (ordered) matching actions, such as call/return (i.e., context-sensitivity) [Reps 2000; Yan
et al. 2011], lock/unlock [Kahlon 2009; Ramalingam 2000], file-open/file-close [Späth et al. 2019],

or set-field/get-field (i.e., field-sensitivity) [Arzt et al. 2014; Yan et al. 2011]. Kodumal and Aiken

[2004] observed that “almost all of the applications of [𝐿-reachability, where 𝐿 is a context-free

language] in program analysis are based on Dyck languages.”

Interleaved Dyck-reachability (“InterDyck-reachability” for short) is a more expressive formalism

than Dyck-reachability. An InterDyck-reachability problem is an 𝐿-reachability problem in which

𝐿 involves two interleaved Dyck languages. Let 𝐷𝑝 and 𝐷𝑏 be the Dyck languages of balanced

parentheses and balanced brackets, respectively. The InterDyck language𝐷𝑝 ⊙𝐷𝑏 is the language in
which𝐷𝑝 and𝐷𝑏 are interleaved. For example, the string “[1 (1 [2)1 (2]2]1)2” in𝐷𝑝 ⊙𝐷𝑏 represents the
interleaving of the string “(1)1 (2)2” in 𝐷𝑝 and the string “[1 [2]2]1” in 𝐷𝑏 . The InterDyck-reachability
formalism can be applied to many client applications, such as alias analysis [Cheng and Hwu

2000; Sridharan and Bodík 2006], taint analysis [Arzt et al. 2014; Huang et al. 2015], and typestate

analysis [Späth et al. 2019]. However, precise InterDyck-reachability is undecidable in general [Reps

2000]. Thus, practical analysis usually over-approximates the exact solution.

In this paper, we study variants of InterDyck-reachability restricted to bidirected graphs, where
for each edge ⟨𝑝, 𝑞⟩ labeled by a open parenthesis “(𝑎”, there is an edge ⟨𝑞, 𝑝⟩ labeled by the

corresponding close parenthesis “)𝑎”, and vice versa. Although 𝐿-reachability problems on bidirected

graphs are a special case of general 𝐿-reachability problems, they play an important role in program

analysis. For instance, graph bidirectedness allows pointer analysis to be formulated as a CFL-

reachability problem [Reps 1998, §4.4]. Many context- and field-sensitive alias analyses are based

on bidirected InterDyck-reachability [Xu et al. 2009; Yan et al. 2011]. Moreover, bidirected Dyck-

reachability problems can be solved by a linear-time algorithm [Chatterjee et al. 2018], whereas the

best algorithm for the directed counterpart runs in𝑂 (𝑛3/log𝑛) time [Chaudhuri 2008]. Recent work

by [Li et al. 2020] shows that graph simplification based on bidirected Dyck-reachability can be

used to speed up any InterDyck-reachability algorithm. Bidirected InterDyck-reachability can also

be used as a relaxation of directed InterDyck-reachability (i.e., by introducing all necessary labeled

reversed edges into the underlying graph): the solution of the bidirected variant over-approximates

the solution of the directed variant.

Unfortunately, despite tremendous progress on algorithms for solving bidirected problems,

the question of whether bidirectedness makes any InterDyck-reachability variant decidable has

remained open. This paper fills this gap by studying the computational complexity of two bidirected

InterDyck-reachability variants (i.e., 𝐷1 ⊙ 𝐷1-reachability and 𝐷𝑘 ⊙ 𝐷𝑘 -reachability1). In particular,

the paper makes two main contributions.

1
Except in a few cases, we are not explicit about the actual parenthesis symbols used, referring to 𝐷1 ⊙ 𝐷1 when each

Dyck language has exactly one kind of parenthesis pair, and to 𝐷𝑘 ⊙ 𝐷𝑘 when each language has more than one kind of
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𝑆 ::= 𝑆 𝑆

𝑆 ::= ( 𝑆 )
𝑆 ::= 𝜖

(a) Dyck language 𝐷1.

𝑡
))

𝑠
(

(

)(

(b) Dyck-reachability.

Fig. 1. Dyck language (𝐷1) and Dyck-reachability (𝐷1-reachability).

• We identify the first decidable variant of InterDyck-reachability, namely, bidirected 𝐷1 ⊙ 𝐷1-

reachability. We show that bidirected 𝐷1 ⊙ 𝐷1-reachability is in PTIME.
• For the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability problem with 𝑘 ≥ 2, we establish that it is NP-hard,
and thus likely to be a much harder problem than bidirected 𝐷1 ⊙ 𝐷1-reachability.

We implemented the bidirected 𝐷1 ⊙ 𝐷1-reachability algorithm, and applied it to a real-world

alias analysis [Xu et al. 2009; Yan et al. 2011]. Our empirical evaluation uncovered an interesting

phenomenon. We compared the precision of (i) relaxing a context- and field-sensitive alias analysis

to a context- and field-insensitive variant—by relaxing bidirected𝐷𝑘 ⊙ 𝐷𝑘 -reachability to bidirected
𝐷1 ⊙ 𝐷1-reachability—and applying the polynomial-time 𝐷1 ⊙ 𝐷1-reachability algorithm against

(ii) a known over-approximation algorithm for bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability [Zhang and Su

2017]. Our empirical results show that the exact solution from (i) is more precise than the over-
approximating solution obtained from (ii), even though the 𝐷1 ⊙ 𝐷1 formalism is inherently less

expressive than the 𝐷𝑘 ⊙ 𝐷𝑘 formalism.

Organization. Section 2 defines several concepts used in the rest of the paper. Section 3 presents

the key idea behind our proof of the PTIME complexity of bidirected𝐷1 ⊙ 𝐷1-reachability. Section 4

establishes that 𝐷1 ⊙ 𝐷1-reachability is in PTIME. Section 5 establishes the NP-hardness result
for bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability. Section 6 presents experimental results. Section 7 discusses

related work. Section 8 concludes.

2 PRELIMINARIES

2.1 Formal-Language-Reachability Problems

A large number of program-analysis problems can be formulated as formal-language-reachability

problems. A formal-language-reachability problem in an edge-labeled graph extends ordinary

graph reachability: for a node to be considered reachable (e.g., from a distinguished start node),

it must be connected by a path along which the edge labels spell out a word in a given formal

language 𝐿. Language 𝐿 is used to specify potential “flows of information” in the graph. More

precisely, the restriction to 𝐿-paths provides a mechanism for excluding paths in the graph along

which information could not flow.

Definition 2.1 (Formal-Language-Reachability Problem). Let 𝐿 be a formal language over
an alphabet Σ, and 𝐺 be a graph in which each edge is labeled with a symbol from Σ. Each path
corresponds a word formed by concatenating the symbols of the edges of the path (in the same order
as the edges). A path is an 𝐿-path iff its corresponding word is in the language 𝐿. For each 𝐿-path
from node 𝑢 to 𝑣 , we say that 𝑣 is 𝐿-reachable from 𝑢 and the two nodes are an 𝐿-reachable pair. The
all-pairs 𝐿-reachability problem is to compute all 𝐿-reachable pairs in 𝐺 .

parenthesis pair. It would be more precise to say 𝐷𝑘1 ⊙ 𝐷𝑘2 , but we prefer to avoid the double subscripting. In examples,

when we wish to distinguish between the two languages, we use 𝐷𝑝 ⊙ 𝐷𝑏 (“p” for “parentheses” and “b” for “brackets”).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 59. Publication date: January 2021.



59:4 Yuanbo Li, Qirun Zhang, and Thomas Reps

Example 2.2. Consider the context-free language 𝐷1 defined in Figure 1a. Figure 1b gives an

edge-labeled graph. In this graph, the path from 𝑠 to 𝑡 that traverses the cycle exactly once forms

the word “((()))” in language 𝐷1. Consequently, 𝑡 is 𝐷1-reachable from 𝑠 .

2.2 Dyck Languages and Interleaved Dyck Languages

This section introduces the specific family of languages that we focus on in this paper. An interleaved

Dyck language (InterDyck language) is constructed frommultiple Dyck languages. A Dyck language

generates a set of strings of balanced parentheses:

Definition 2.3 (Dyck Language). A Dyck language 𝐷𝑘 with 𝑘 different kinds of parenthesis pairs
can be defined by the following grammar:

𝑆 ::= 𝑆 𝑆 | (1 𝑆 )1 | (2 𝑆 )2 | . . . | (𝑘 𝑆 )𝑘 | 𝜖.
The language𝐷1 defined in Figure 1a is a special Dyck language with only one kind of parenthesis

pair. In general, program-analysis applications can use the different kinds of parenthesis pairs

in 𝐷𝑘 to track calls/returns through different call-sites of functions and reads/writes to different

fields [Reps 2000; Zhang and Su 2017].

Many practical program analyses need to trackmultiplematching properties simultaneously [Arzt

et al. 2014; Huang et al. 2015; Ramalingam 2000; Späth et al. 2019; Sridharan and Bodík 2006]. For

example, a context- and field-sensitive alias analysis [Xu et al. 2009; Yan et al. 2011] needs to

consider only the paths in which each method call is matched with the corresponding method

return (i.e., context-sensitivity); at the same time, it should consider the paths in which data assigned

to a field of an object can only be passed via an access on the same field (i.e., field-sensitivity).
One Dyck language can be used to capture context-sensitivity, and a second Dyck language can

be used to capture field-sensitivity. Consequently, when an analysis needs to keep track of two

properties simultaneously, we formulate the problem as an InterDyck-reachability problem: an

InterDyck language accepts all words that consist of the interleaving of two Dyck words. We define

the interleaving operator and the InterDyck languages as follows:

Definition 2.4 (Interleaving Operator). Suppose that two languages 𝐿1 and 𝐿2 are defined
over alphabets Σ1 and Σ2, respectively. The interleaving operator ⊙ : 𝐿1 × 𝐿2 → (Σ1 ∪ Σ2)∗ on words
is defined as follows:

𝑎 ⊙ 𝜖 ={𝑎} for 𝑎 ∈ 𝐿1
𝜖 ⊙ 𝑏 ={𝑏} for 𝑏 ∈ 𝐿2

𝑐1𝑎 ⊙ 𝑐2𝑏 ={𝑐1𝑤 | 𝑤 ∈ (𝑎 ⊙ 𝑐2𝑏)} ∪ {𝑐2𝑤 | 𝑤 ∈ (𝑐1𝑎 ⊙ 𝑏)}
for 𝑐1 ∈ Σ1, 𝑐2 ∈ Σ2, 𝑎 ∈ 𝐿1, 𝑏 ∈ 𝐿2.

The interleaving operator can also be overloaded as a binary operator on languages:

𝐿1 ⊙ 𝐿2 =
⋃

𝑎∈𝐿1,𝑏∈𝐿2

𝑎 ⊙ 𝑏.

Definition 2.5 (Interleaved Dyck language). Given two Dyck languages 𝐷𝑚 and 𝐷𝑛 with
disjoint alphabets, the interleaved Dyck language (“InterDyck language”) constructed from 𝐷𝑚 and
𝐷𝑛 is defined as the language 𝐷𝑚 ⊙ 𝐷𝑛 .

Example 2.6. Consider the two Dyck languages 𝐷𝑝 and 𝐷𝑏 defined by the following grammars:

𝐷𝑝 : 𝑆 ::= 𝑆 𝑆 | ( 𝑆 ) | 𝜖
𝐷𝑏 : 𝑆 ::= 𝑆 𝑆 | [ 𝑆 ] | 𝜖.

The interleaved Dyck language 𝐷𝑝 ⊙ 𝐷𝑏 contains such words as “([)]”, “([)(])”, etc.
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1 class T { T f; T g; }

2 T getF(T a){ return a.f; }

3 void setF(T b, T val){ b.f = val; }

4 ...

5 T x,y;

6 setF(y,x);

7 z = getF(y);

(a) Code snippet.

𝑧ret
)7

𝑎
]𝑓

𝑦
(7

𝑏
)6

val
[𝑓

𝑥
(6

(b) Graph representation.

Fig. 2. Alias analysis via InterDyck-language reachability.

2.3 Bidirected InterDyck-Reachability

We proceed to define the InterDyck-reachability problem on bidirected graphs.

Definition 2.7 (Bidirected InterDyck-Reachability). Consider an 𝐿-reachability problem on
a digraph 𝐺 = (𝑉 , 𝐸), where 𝐿 is the InterDyck language 𝐷𝑝 ⊙ 𝐷𝑏 . Let 𝑂 and 𝐶 denote the sets of all
open- and close-parenthesis symbols from 𝐷𝑝 ⊙ 𝐷𝑏 , respectively. For each edge 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸, if the
edge label is an open parenthesis “(𝑖” ∈ 𝑂 , there must exists a reverse edge 𝑒 = ⟨𝑣,𝑢⟩ with edge label
“)𝑖” ∈ 𝐶 , and vice versa. We say that 𝐺 is a bidirected graph (for the InterDyck language 𝐷𝑝 ⊙ 𝐷𝑏)
and the reachability problem is a bidirected InterDyck-reachability problem.

2.4 Applying InterDyck-Reachability in Program Analysis

We illustrate how InterDyck-reachability is used in program analysis by sketching how it can

be used in a context- and field-sensitive alias analysis for a Java-style language [Yan et al. 2011]

shown in Figure 2. We use one Dyck language 𝐷 ′𝑝 to capture context-sensitivity, and another Dyck

language 𝐷 ′
𝑏
to capture field-sensitivity. In 𝐷 ′𝑝 , an open parenthesis “(𝑖” represents a method call

at line 𝑖; a close parenthesis “)𝑖” models a method return to the call-site at line 𝑖 . In 𝐷 ′
𝑏
, an open

bracket “[𝑓 ” represent a write to the field 𝑓 ; a close bracket “]𝑓 ” represents a read to the field 𝑓 .

Consider the program in Figure 2a. The alias analysis checks whether two variables can point to

the same object. In the program, the 𝑓 field of variable 𝑦 is set to the value of variable 𝑥 , and then

variable 𝑧 is set to the value of the 𝑓 field of 𝑦. Thus, variables 𝑥 and 𝑧 can potentially (and in this

case, must) point to the same object.

Figure 2b gives the corresponding graph. The graph is augmented with inverse edges. Specifically,

for each edge ⟨𝑝, 𝑞⟩ labeled with “[𝑓 ”, there always exists an inverse edge ⟨𝑞, 𝑝⟩ labeled with “]𝑓 ”, and
vice versa. Similarly, each “(𝑖”-labeled edges is accompanied with the corresponding “)𝑖”-labeled
edges in the inverse direction. The bidirectedness is a prerequisite for CFL-reachability-based

pointer/alias analysis [Reps 1998; Sridharan et al. 2005], otherwise, two nodes may not be reachable

from each other even by standard graph reachability. To check whether variables 𝑥 and 𝑧 can be

aliases, it suffices to decide whether there exists an InterDyck-path from node 𝑥 to 𝑧. In graph 𝐺 ,

there is a valid InterDyck-path “(6 [𝑓 )6 (7]𝑓 )7”, indicating that the variable 𝑥 and 𝑧 can be aliases in

the original program. Note that the alias analysis based on InterDyck-reachability is a simplification

of the alias reachability presented by Sridharan and Bodík [2006]. The field edges approximate

the field loads and stores in the flow graph [Sridharan and Bodík 2006; Sridharan et al. 2005].

The approximation may lead to spurious aliasing, as discussed by Xu et al. [2009, §4]. However,

experimental results show that, in practice, the overall performance is better than the algorithms

proposed by Sridharan et al. [2005] and Sridharan and Bodík [2006].
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3 OVERVIEW OF THE BIDIRECTED 𝐷1 ⊙ 𝐷1-REACHABILITY PROOF

This section presents the key ideas behind the proof that bidirected 𝐷1 ⊙ 𝐷1-reachability is

polynomial-time solvable. As in most graph-reachability problems, in 𝐷1 ⊙ 𝐷1-reachability it

is infeasible to collect up all𝐷1 ⊙𝐷1-paths because the number of such paths can be infinite, and the

lengths of such paths can be unbounded as well. Instead, the goal is to identify all 𝐷1 ⊙𝐷1-reachable

node pairs (Definition 2.1) . The argument for identifying all 𝐷1 ⊙ 𝐷1-reachable pairs is achievable

in PTIME is structured into two parts:

• We first show that every bidirected 𝐷1 ⊙ 𝐷1-reachable pair (𝑢, 𝑣) is also connected by a

𝐷1 ⊙ 𝐷1-path of a special form, which we call a shallow 𝐷1 ⊙ 𝐷1-path (Definition 3.2).

• We then give a polynomial-time tabulation algorithm to find all (𝑢, 𝑣) pairs that are connected
by at least one shallow 𝐷1 ⊙ 𝐷1-path.

3.1 Bidirectedness and Shallow Paths

Bidirectedness plays a pivotal role in the proof. In particular, bidirectedness enables a path to use

the reverse edges, which allows a path to go back and forth along a sequence of edges in the graph.

As we illustrate below, for a given path 𝑃 that contains some cycles, it is possible to construct a

new path 𝑃 ′ in which the cycles are arranged differently. Cycle rearrangement is the key insight

that enables us to prove the existence of shallow paths, which we now define.

A shallow path is characterized by the number of unmatched open parentheses in each prefix

of the path. To specify the property that a shallow path must satisfy, we first define a quantity to

characterize the unmatched open parentheses in a given path prefix.

Definition 3.1 (Tuple of Unmatched Open Parentheses). Let𝐺 = (𝑉 , 𝐸) be a bidirected graph
for a bidirected 𝐷1 ⊙ 𝐷1-reachability problem, and let 𝑃 = 𝑣0𝑣1 . . . 𝑣𝑙 be a 𝐷1 ⊙ 𝐷1-path in 𝐺 . We
define the tuple of unmatched open parentheses at the 𝑖 th node of 𝑃 , denoted by unmatch(𝑃, 𝑖), to be
the tuple (𝑎, 𝑏), where
• 𝑎 is the number of unmatched open parentheses in the first Dyck language in the length-𝑖 prefix
𝑣0𝑣1 . . . 𝑣𝑖 of the path 𝑃 ,
• 𝑏 is the number of unmatched open parentheses in the second Dyck language in the length-𝑖
prefix 𝑣0𝑣1 . . . 𝑣𝑖 of the path 𝑃 .

Definition 3.2 (Shallow Path). Let 𝐺 = (𝑉 , 𝐸) be a bidirected graph for a 𝐷1 ⊙ 𝐷1-reachability
problem. A 𝐷1 ⊙ 𝐷1-path 𝑃 in 𝐺 is shallow if, for each 𝑖 between 1 and |𝑃 |, the tuple (𝑎, 𝑏) =

unmatch(𝑃, 𝑖) satisfies 𝑎 ≤ 6𝑛 or 𝑏 ≤ 6𝑛, where 𝑛 = |𝑉 | is the number of nodes in 𝐺 .

Figure 3 illustrates the state space of unmatched open parentheses in 𝐷1 ⊙ 𝐷1-paths, along with

the trajectory in that space of a specific shallow 𝐷1 ⊙ 𝐷1-path. In particular, because the number of

unmatched open parentheses for the two Dyck languages must never simultaneously exceed 6𝑛 in

a shallow path, the trajectory can never enter the (6𝑛,∞) × (6𝑛,∞) region of Figure 3.

Given a 𝐷1 ⊙𝐷1-path between two nodes 𝑢 and 𝑣 in bidirected graph𝐺 , there is always a shallow

𝐷1 ⊙ 𝐷1-path that connects 𝑢 and 𝑣 . This property is captured by the following theorem:

Theorem 3.3. In a bidirected 𝐷1 ⊙ 𝐷1-reachability problem, if there exists a 𝐷1 ⊙ 𝐷1-path from
node 𝑢 to node 𝑣 , then there exists a shallow 𝐷1 ⊙ 𝐷1-path from 𝑢 to 𝑣 .

We defer the proof of Theorem 3.3 to Section 4.1, but note here that to establish the existence of

the shallow path, the key observations used in the proof are as follows:

• The bidirectedness of the graph allows a path to go back and forth along a sequence of edges.

• This flexibility always allows us to transform a non-shallow path into a shallow one, by

rearranging cycles in the original 𝐷1 ⊙ 𝐷1-path.
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Fig. 3. State space for unmatched open parentheses in 𝐷1 ⊙ 𝐷1-paths, and the trajectory of a shallow path.

𝑐𝑏
]]]]

𝐶2 : 7) 6]

𝑎
]

𝐶1 : 5( 5[

Original path: 𝑐𝑏
]]]]

𝑏
5𝐶2

𝑎
]

𝑎
7𝐶1

(0, 0)(0, 4)(35, 34)(35, 35)(0, 0)

Rearranged path: 𝑐𝑏
]]]]

𝑏
4𝐶2

𝑎
]

𝑎
𝐶1

𝑏
[

𝑏
𝐶2

𝑎
]

𝑎
6𝐶1

(0, 0)(28, 29)(23, 23)(30, 30)(0, 0)

Fig. 4. Cycle rearrangement in a bidirected graph. In this graph, we assume the bound for the number of the
unmatched parentheses is 30. Cycle rearrangement moves one cycle 𝐶2 from a later position to the current
position to decrease the current number of unmatched parentheses in the path.

The following example provides some intuition about these points, particularly about how cycle

rearrangement is used to transform a non-shallow 𝐷1 ⊙ 𝐷1-path into a shallow one.

Example 3.4 (Cycle Rearrangement). Consider the graph shown in Figure 4. There exists a𝐷1⊙𝐷1-

path from node 𝑎 to node 𝑐 that first goes through cycle 𝐶1 seven times and then cycle 𝐶2 five

times. As we follow the path and reach node 𝑏 for the first time, the tuple of unmatched open

parentheses/brackets is (35, 34). From this 𝐷1 ⊙ 𝐷1-path, we wish to construct a shallow(er) path,

which we will do by exploiting bidirectedness.

To keep the example simple, let us assume that the bound is 30 (rather than 6𝑛). In general, our

construction makes use of bidirectedness of the graph to go back and forth along a sequence of

edges that connect two cycles in the path.

In our example, we need to rearrange the positions of the cycles so that the number of unmatched

open parentheses never goes higher than 30. When the original path reaches node𝑏 for the first time,

the number of unmatched parentheses/brackets for 𝐷1 and 𝐷1 both exceed 30. We can construct an

alternative path in which the number of unmatched symbols for at least one of the two languages

is no larger than 30; this path is labeled as the “rearranged path” in Figure 4. The rearranged path

is based on the original path; the difference is that one occurrence of cycle 𝐶2 is shifted earlier in

the path. The rearranged path begins by going around cycle 𝐶1 six times (instead of seven); then

uses the edge ⟨𝑎, 𝑏⟩ to reach node 𝑏; goes around cycle𝐶2 once; then uses the (reversed) edge ⟨𝑏, 𝑎⟩
to return to node 𝑎; goes around cycle 𝐶1 a final time; and finishes up by returning to 𝑏, going

around 𝐶2 four times, and going to node 𝑐 . Because the first occurrence of cycle 𝐶2 cancels some

open parentheses and open brackets, the number of unmatched symbols for at least one of the two

languages—in this case, both languages—is no larger than 30 at each point in the rearranged path.

In general, it turns out that we can always transform a non-shallow 𝐷1 ⊙ 𝐷1-path into a shallow

one via such cycle rearrangements (Section 4.1).
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3.2 From Shallow Paths to a Tabulation Algorithm

Theorem 3.3 reduces the problem of bidirected 𝐷1 ⊙ 𝐷1-reachability to the problem of finding all

pairs of nodes that are connected by a shallow 𝐷1 ⊙𝐷1-path. In this section, we sketch why shallow

𝐷1 ⊙ 𝐷1-reachability can be solved in PTIME. At a high level, the reason is that shallowness—i.e., at
each position in the path, the number of unmatched parentheses for at least one of the languages is

bounded—enables us to use a summary-based approach to store information about certain segments

of shallow paths. These summary edges can be tabulated in polynomial time, as can information

about all node pairs that are connected by shallow 𝐷1 ⊙ 𝐷1-paths.

In Section 4.2, we give a tabulation algorithm for finding summary edges and all node pairs

that are connected by shallow 𝐷1 ⊙ 𝐷1-paths (Algorithm 2). Figure 3 can be used to illustrate the

concept behind the tabulation strategy used in the algorithm.

• For a shallow𝐷1⊙𝐷1 path, because it never steps into the (6𝑛,∞)×(6𝑛,∞) region, once it steps
out of the [0, 6𝑛] × [0, 6𝑛] region from the 𝑎 = 6𝑛 line, it always stays in the (6𝑛,∞) × [0, 6𝑛]
region until it comes back to the line 𝑎 = 6𝑛. It indicates that even though the path segments

in the (6𝑛,∞) × [0, 6𝑛] region can have an unbounded number of open parentheses in one

Dyck language, eventually, these parentheses are all matched with the close parentheses. An

analogous observation holds for the [0, 6𝑛] × (6𝑛,∞) region.
• Such segments can be represented by summary edges, of which there are only a polynomial

number, and we can compute all the summary edges for path segments in the (6𝑛,∞)× [0, 6𝑛]
and [0, 6𝑛] × (6𝑛,∞) regions in polynomial time.

• We can explore all paths within the [0, 6𝑛] × [0, 6𝑛] region—including all summary edges on

the [0, 6𝑛] × {6𝑛} and {6𝑛} × [0, 6𝑛] borders—in polynomial time.

• From the information tabulated in this fashion, we can enumerate all shallow 𝐷1 ⊙ 𝐷1-

reachable pairs in polynomial time.

Theorem 3.5. For a given bidirected𝐷1 ⊙ 𝐷1-reachability problem, if there is a shallow𝐷1⊙𝐷1-path
between nodes 𝑢 and 𝑣 , Algorithm 2 will identify 𝑢, 𝑣 are shallow 𝐷1 ⊙ 𝐷1-reachability.

Together with Theorem 3.3, we have the following corollary:

Corollary 3.6. Algorithm 2 solves the bidirected 𝐷1 ⊙ 𝐷1-reachability problem precisely.

4 PROOF OF THE PTIME SOLVABILITY OF BIDIRECTED 𝐷1 ⊙ 𝐷1-REACHABILITY

This section presents the details of the PTIME proof for bidirected 𝐷1 ⊙ 𝐷1-reachability. In Sec-

tion 4.1, we prove Theorem 3.3, demonstrating how to construct a shallow path, given a 𝐷1 ⊙ 𝐷1-

reachable path. In Section 4.2, we prove Theorem 3.5, establishing that our tabulation algorithm

identifies all shallow 𝐷1 ⊙ 𝐷1-reachable pairs, and analyze the time complexity of the algorithm.

Our result shows that the bidirected 𝐷1 ⊙ 𝐷1-reachability problem is in PTIME.

4.1 Shallow-Path Property

This section proves that between any 𝐷1 ⊙ 𝐷1-reachable nodes 𝑢, 𝑣 , there always exists a shallow

path that connects 𝑢 and 𝑣 . We prove this property by showing that, given any 𝐷1 ⊙ 𝐷1-path 𝑃 in

a bidirected graph, we can construct a shallow 𝐷1 ⊙ 𝐷1-path 𝑃 ′ based on 𝑃 . In the shallow-path

construction, we exploit the bidirectedness of the graph. The bidirected edges enable the constructed

path 𝑃 ′ to go back and forth over segments of 𝑃 , which provides the flexibility to rearrange in 𝑃 ′

the position of cycles from the original path 𝑃 . We divide the tuples of unmatched open parentheses

for a given path position into four regions as follows (see Figure 5):

Definition 4.1 (Unmatched Number Regions). We classify a 𝐷1 ⊙ 𝐷1-path 𝑃 at each node
position as being in one of four states. In particular, for the path 𝑃 at the 𝑖 th node position, we define
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Fig. 5. Regions and region transitions during shallow-path construction.

four regions according to the values in the tuple (𝑎, 𝑏) of unmatched open parentheses at the 𝑖 th node,
as depicted in Figure 5:

• Forbidden Region: When the tuple (𝑎, 𝑏) satisfies 𝑎 > 6𝑛 and 𝑏 > 6𝑛, path 𝑃 is in the forbidden
region at the 𝑖 th node. A shallow path never steps into the forbidden region.
• Warning Region:When the tuple (𝑎, 𝑏) satisfies 𝑎 ≥ 4𝑛 and 𝑏 ≥ 4𝑛, but is not in the forbidden
region, path 𝑃 is in the warning region at the 𝑖 th node.
• Safe Region A: When the tuple (𝑎, 𝑏) satisfies 𝑎 ≥ 2𝑛 and 𝑏 ≥ 2𝑛, but is not in the warning
region or the forbidden region, path 𝑃 is in safe region 𝐴 at the 𝑖 th node.
• Safe Region B: If at the 𝑖 th node the path 𝑃 is not in any of the regions defined above, it is in
safe region 𝐵 at the 𝑖 th node.

We devise a method to construct a shallow path 𝑃 ′ based on the original path 𝑃 . The starting

point for the construction is the observation that if the constructed path 𝑃 ′ never steps into the

forbidden region, 𝑃 ′ is a shallow 𝐷1 ⊙ 𝐷1-path. The construction therefore “steers” 𝑃 ′ away from

the forbidden region. The key insight behind the method is that when we find path 𝑃 ′ stepping
into the warning region, we can move a cycle from a later position to the current position so that

the constructed path 𝑃 ′ is forced out of the warning region after the rearrangement. Because the

warning region acts as a buffer around the forbidden region, 𝑃 ′ never has a chance to step into the

forbidden region. The proof is constructive, so we describe the proof in the form of algorithms.

Shallow Path Construction Algorithm. Algorithm 1 describes our approach to shallow-path

construction. In the algorithm, we use a tuple (𝑠1, 𝑠2) with 𝑠1, 𝑠2 ∈ {+,−, 0, ?} to characterize the

type of a cycle. When the cycle has more open-parentheses edges than close-parenthesis edges

in the first Dyck language, 𝑠1 is ‘+’. If it has more close parentheses than open parentheses, 𝑠1
is ‘−’. For cycles with equal number of open and close parentheses, 𝑠1 is ‘0’. When the relation

between the numbers of open and close parentheses of the first Dyck language is unimportant, 𝑠1
is ‘?’. The value of 𝑠2 characterizes the cycle’s type with respect to the second Dyck language in

an analogous fashion. In the algorithm, we treat the nodes 𝑣𝑖 , 𝑣 𝑗 , 𝑖 ≠ 𝑗 , in a path 𝑃 = 𝑣0𝑣1 . . . 𝑣 |𝑃 |
as different nodes due to their different indexes, even though they may correspond to the same

node in the actual graph. This treatment helps the algorithm distinguish cycles according to the

sequence of (indexed) nodes that they consist of. For example, two cycles 𝐶1 = 𝑣𝑖𝑣𝑖+1𝑣𝑖+2𝑣𝑖+3 and
𝐶2 = 𝑣 𝑗𝑣 𝑗+1𝑣 𝑗+2𝑣 𝑗+3 are considered as two different cycles, even though they may actually represent

the same cyclic sequence of edges in the graph.
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Algorithm 1: Shallow-Path Construction

Input : Edge-labeled bidirected graph 𝐺 = (𝑉 , 𝐸),
An 𝐷1 ⊙ 𝐷1-path 𝑃 = 𝑣0𝑣1 · · · 𝑣 |𝑃 |

Output :A shallow 𝐷1 ⊙ 𝐷1-path 𝑃 ′

1 𝑖 ← 0

2 𝐿1, 𝐿2 ← ∅
3 𝑃 ′ ← empty path

4 while 𝑖 ≠ |𝑃 | do
5 prev← get_region (𝑃 ′)
6 𝑃 ′ ← 𝑃 ′ · 𝑣𝑖
7 𝑖 ← 𝑖 + 1
8 cur← get_region (𝑃 ′)
9 (𝑎, 𝑏) ← unmatch (𝑃 ′, |𝑃 ′ |)

10 if prev is safe region A, cur is warning region then
11 if 𝑎 = 4𝑛 then
12 cycle rearrangement for cycle type (−, ?)
13 if 𝑏 = 4𝑛 then
14 cycle rearrangement for cycle type (?,−)

15 if prev is safe region A and cur is safe region B then
16 if there exists a (−,−) cycle 𝐶 in 𝐿1 ∪ 𝐿2 then
17 reverse rearrangement for 𝐶

18 if 𝑣𝑖 is in some cycle 𝐶 in the lists 𝐿1, 𝐿2 then
19 𝑖 = 𝑖 + |𝐶 |
20 𝐿1 ← 𝐿1 \ {𝐶}, 𝐿2 ← 𝐿2 \ {𝐶}

21 return 𝑃 ′

In Algorithm 1, the variable 𝑖 tracks the index in the original path 𝑃 that corresponds to the

position in the new path 𝑃 ′. We also introduce two rearrangement lists 𝐿1 and 𝐿2. In particular, 𝐿1
records the cycles that are moved earlier in 𝑃 ′ to lower the number of unmatched parentheses for

the first Dyck language; 𝐿2 records the moved cycles for the second Dyck language. The cycles in

the lists 𝐿1 and 𝐿2 have been already used in the new path 𝑃 ′, but not yet in the current prefix of

the original path 𝑃 . Algorithm 1 constructs the shallow path as follows:

• Lines 5-9. In most cases, the newly constructed path 𝑃 ′ simply follows the original path

𝑃 . In lines 6-7, the algorithm appends node 𝑣𝑖 to 𝑃 ′, 𝑖 is incremented to indicate that node

𝑣𝑖 has already been used in 𝑃 ′. In lines 5 and 8-9, the algorithm collects the information of

unmatched tuple (𝑎, 𝑏) of 𝑃 ′ and the region of 𝑃 ′ to help decide whether 𝑃 ′ need to deviate

from path 𝑃 in the construction. The construction deviates from path 𝑃 base on three cases.

• Lines 10-14. The algorithm detects that the constructed path 𝑃 ′ steps into the warning

region from safe region 𝐴. To prevent the path going further and possibly stepping into the

forbidden region, the algorithm “moves” a cycle that occurs later in path 𝑃 to the end of path

𝑃 ′.2 As shown in lines 11-12, if the path steps into the warning region with 𝑎 = 4𝑛—i.e., the
number of unmatched open parentheses for the first Dyck language is 4𝑛—the algorithm uses

a (−, ?) cycle 𝐶 , which will bring down the number of unmatched parentheses for the first

Dyck language, thereby forcing 𝑃 ′ to leave the warning region. Then the rearrangement also

2
The algorithm “moves” the cycle in the sense previously explained in Example 3.4.
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adds cycle 𝐶 to 𝐿1, to record that this cycle has already been used in 𝑃 ′, but has not yet been
reached in the original path 𝑃 . Lines 13-14 are the analogous steps for paths stepping into the

warning region with 4𝑛 unmatched open parentheses of the second Dyck language. We call

this cycle-moving behavior “cycle rearrangement.” The details of cycle rearrangement are

discussed in Procedure 1 later in the section, where we also demonstrate that (i) it is always

feasible to perform cycle rearrangement, and (ii) during the rearrangement, path 𝑃 ′ cannot
step into the forbidden region.

• Lines 15-17. The algorithm detects that the path 𝑃 ′ steps into the safe region 𝐵 from safe

region 𝐴. If there is a (−,−) cycle 𝐶 recorded in either 𝐿1 or 𝐿2, the algorithm moves the

reverse cycle of 𝐶 , denoted by 𝐶 , to the end of 𝑃 ′, thereby cancelling the rearrangement

effects for cycle 𝐶 . It also removes cycle 𝐶 from its rearrangement lists 𝐿1 and 𝐿2. We call

this reverse-cycle movement “reverse rearrangement.” We present the details of reverse

rearrangement in Procedure 2 later in the section. Reverse rearrangement guarantees the

validity of the constructed path 𝑃 ′, i.e., during the construction of 𝑃 ′, there are always more

open parentheses than close parentheses in both 𝐷1 languages.

• Lines 18-20. The algorithm finds that the original path 𝑃 encounters a cycle that has already

been used in the constructed path 𝑃 ′. It skips over the cycle in 𝑃 , and removes the cycle from

the rearrangement lists 𝐿1 and 𝐿2.

Figure 5 illustrates all possible transitions between regions in shallow-path construction. Due

to the invariants of the construction, a shallow path 𝑃 ′ can never step into the forbidden region.

Consequently, 𝑃 ′ is a shallow 𝐷1 ⊙ 𝐷1-path. In the remainder of the section, we describe the details

of cycle rearrangement and reverse rearrangement.

Cycle Rearrangement. When the constructed path 𝑃 ′ steps into thewarning region, Algorithm 1

performs a cycle rearrangement. The goal of cycle rearrangement is to lower the number of

unmatched open parentheses in the constructed path 𝑃 ′ by moving a (−, ?) or (?,−) cycle that
occurs in a latter position of 𝑃 to the current position of 𝑃 ′, thereby decreasing the number of

unmatched open parentheses for the appropriate Dyck language, and forcing path 𝑃 ′ to step out of

the warning region after the rearrangement.

Procedure 1 performs the cycle rearrangement. The rearrangement is for a cycle of some specified

type, held in the input parameter type. The cycle-rearrangement algorithm attaches the closest

simple cycle 𝐶 of the required type to the end of path 𝑃 ′. Suppose at the beginning of Procedure 1,

a path 𝑃 ′ ends with a node 𝑣𝑖 . Procedure 1 finds the path in 𝑃 from 𝑣𝑖 to cycle 𝐶 . This connecting

path is accumulated in variable bridge, and the path fragment appended to 𝑃 ′ is the sequence

bridge ·𝐶 · bridge. Note that the effects of bridge and its reverse bridge cancel each other, in the

sense that the net change in the tuple of unmatched open parentheses at the end of 𝑃 ′ versus at the

end of 𝑃 ′ · bridge ·𝐶 · bridge is due to the unmatched parentheses in 𝐶 . In addition, Procedure 1

also records the information that cycle 𝐶 has been used in 𝑃 ′ by adding cycle 𝐶 to the appropriate

rearrangement list, 𝐿1 or 𝐿2, according to the sought-for cycle type: if type is (−, ?), 𝐶 is added to

𝐿1; if type is (?,−), 𝐶 is added to 𝐿2.

Specifically, in lines 3-17, Procedure 1 considers simple cycles that are successively further and

further away from 𝑣𝑖 , while gathering up a cycle-free connecting path bridge between node 𝑣𝑖 and

the current cycle under consideration. The test in lines 5-6 causes all cycles that are already in the

rearrangement lists 𝐿1 and 𝐿2 to be skipped over because they have already been used in path 𝑃 ′.
To maintain bridge as a cycle-free path, whenever the algorithm identifies a cycle in lines 7-16,

the cycle is deleted from connecting path bridge. If the cycle satisfies the cycle-type requirement,

bridge ·𝐶 · bridge is appended to 𝑃 ′ (line 11) , and 𝐶 is recorded in the appropriate rearrangement

list (lines 12-15). Otherwise, the algorithm looks for the next cycle.
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Procedure 1: Cycle Rearrangement

Input : Edge-labeled bidirected graph 𝐺 = (𝑉 , 𝐸),
The original 𝐷1 ⊙ 𝐷1 path 𝑃 = 𝑣0𝑣1 · · · 𝑣 |𝑃 |
Currently constructed shallow path 𝑃 ′

Rearrangement lists 𝐿1, 𝐿2
Current corresponding node 𝑣𝑖
The type of cycle to rearrange: type ∈ {(?,−), (−, ?)}

Output :Updated shallow path 𝑃 ′

Modified rearrangement lists 𝐿1, 𝐿2
1 bridge← 𝑣𝑖

2 pos← 𝑖

3 while true do
4 pos← pos +1
5 if 𝑣pos is in any of the cycles of 𝐿1 or 𝐿2 then
6 continue

7 if 𝑣pos as a node already exists in bridge then
8 There exists a cycle 𝐶 in bridge
9 bridge← bridge −𝐶

10 if C belongs to the desired cycle type type then
11 𝑃 ′← 𝑃 ′ + bridge +𝐶 + bridge
12 if type is (−, ?) then
13 𝐿1 ← 𝐿1 ∪ {𝐶}
14 if type is (?,−) then
15 𝐿2 ← 𝐿2 ∪ {𝐶}
16 break

17 bridge← bridge + 𝑣pos
18 return 𝑃 ′, 𝐿1, 𝐿2

Note that it is always feasible and valid to carry out the cycle-rearrangement operation when it

is invoked by Algorithm 1. Consider the tuple (𝑎, 𝑏) of unmatched open parentheses for node 𝑣𝑖
at the end of path 𝑃 ′. We know that 𝑎 > 4𝑛 and 𝑏 > 4𝑛 because 𝑣𝑖 is in the warning region. Then

the cycle-rearrangement algorithm can always find a cycle with more close parentheses than open

parentheses, otherwise the original path cannot be a valid 𝐷1 ⊙𝐷1-path. Then we show the validity

of cycle rearrangement in terms of the shallow-path construction, i.e., during cycle rearrangement,

path 𝑃 ′ cannot step into the forbidden region. When Algorithm 1 invokes cycle rearrangement,

path 𝑃 ′ has just stepped into the warning region. Without loss of generality, let us assume that it

was the first Dyck language that just crossed the 4𝑛 threshold of unmatched open parentheses; i.e.,

𝑎 = 4𝑛 + 1. We observe that

• because bridge is acyclic, |bridge| ≤ 𝑛 − 1, and
• for the simple cycle 𝐶 , |𝐶 | ≤ 𝑛.

Consequently, the total number of unmatched open parentheses at any point in the fragment

bridge ·𝐶 · bridge is at most 2𝑛 − 1. When bridge ·𝐶 · bridge is attached to 𝑃 ′, the total number of

unmatched parentheses for the first Dyck language cannot exceed 6𝑛 at any point, meaning that

the path 𝑃 ′ · bridge ·𝐶 · bridge never enters the forbidden region.
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Procedure 2: Reverse Rearrangement

Input : Edge-labeled bidirected graph 𝐺 = (𝑉 , 𝐸),
The original 𝐷1 ⊙ 𝐷1 path 𝑃 = 𝑣0𝑣1 · · · 𝑣 |𝑃 |
Currently constructed shallow path 𝑃 ′

Rearrangement list 𝐿1, 𝐿2
Current corresponding node 𝑣𝑖
The simple cycle 𝐶 to be reversed

Output :Updated shallow path 𝑃 ′

Modified Rearrangement List 𝐿1, 𝐿2
1 bridge← 𝑣𝑖

2 pos← 𝑖

3 while true do
4 pos← pos +1
5 if 𝑣pos is in 𝐶 then
6 bridge← bridge + 𝑣pos
7 𝑃 ′ ← bridge +𝐶 + bridge
8 if 𝐶 ∈ 𝐿1 then
9 Remove 𝐶 from 𝐿1

10 else
11 Remove 𝐶 from 𝐿2

12 break

13 bridge← bridge + 𝑣pos
14 if 𝑣pos as a node already exists in bridge then
15 There exists a cycle 𝐶 in bridge
16 bridge← bridge −𝐶

17 return 𝑃 ′, 𝐿1, 𝐿2

Reverse Rearrangement. In Algorithm 1, some simple cycles of 𝑃 of type (−, ?) or (?,−) are
moved to earlier relative positions in 𝑃 ′. 𝑃 ′ could use up all of the unmatched open parentheses, in

which case one or both components of the tuple of unmatched open parentheses at some position

of 𝑃 ′ could become negative; this indicates that 𝑃 ′ becomes an invalid 𝐷1 ⊙ 𝐷1-path. The shallow

path construction uses reverse rearrangement to ensure the validity of the constructed path 𝑃 ′.
In particular, reverse rearrangement attaches to 𝑃 ′ the reverse cycle 𝐶 of a moved (−,−) cycle 𝐶
that is already part of 𝑃 ′. The net effect of reverse rearrangement is to raise the number of open

parentheses at the end of 𝑃 ′: 𝐶 is a (+, +) cycle.
Procedure 2 presents the reverse-rearrangement method. The loop body (lines 4-16) carries out

the search for the cycle 𝐶 . Note that the search starts from position i (line 2), which represents the

corresponding position in the original path 𝑃 ′ of the current position in the constructed path 𝑃 ′. If

the algorithm finds 𝐶 , it appends bridge ·𝐶 · bridge to 𝑃 ′. The net effect is equivalent to appending

the reverse cycle 𝐶 at the end of 𝑃 ′. In lines 14-16, if the algorithm encounters an irrelevant cycle,

it is removed from bridge. This guarantees bridge is always acyclic.
Note that the reverse-rearrangement operation is always feasible when Algorithm 1 invokes it.

The connecting path bridge is acyclic, so we have |bridge| ≤ 𝑛 − 1. 𝐶 is a simple cycle, so |𝐶 | ≤ 𝑛.

Consequently, the total number of close parentheses in bridge ·𝐶 · bridge is at most 2𝑛 − 1. When

Algorithm 1 invokes reverse rearrangement, path 𝑃 ′ has just stepped into safe region B. Thus,

for the tuple of unmatched open parentheses (𝑎, 𝑏), it has 𝑎 ≥ 2𝑛 and 𝑏 ≥ 2𝑛. Without loss of
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𝐶1

(−, ?)
𝐶2

(−, ?)

𝑚1 : 𝑎 > 3𝑛

𝐿1 = {𝐶2}
skip 𝐶2

𝐿1 = ∅
𝑚2 : 𝑎 ≤ 2𝑛

Fig. 6. The reason why 𝐿1 = ∅ by the time 𝑃 ′ encounters a (−, ?) cycle. The dashed arrow represents the
path 𝑃 ′ from the moment𝑚1 when it finishes the last cycle rearrangement, to the moment𝑚2 when the
value of 𝑎 becomes no larger than 2𝑛.

generality, let us assume that it was the first Dyck language that just touched the 2𝑛 threshold of

unmatched open parentheses; i.e., 𝑎 = 2𝑛 and 𝑏 > 2𝑛. When bridge · 𝐶 · bridge is attached to 𝑃 ′,
the total number of unmatched open parentheses for the first Dyck language cannot reach 0 at any

point, meaning that the path 𝑃 ′ · bridge ·𝐶 · bridge never uses up all the unmatched parentheses.

Correctness of Shallow Path Construction. To present the correctness of the shallow path

construction, we first verify the constructed path is indeed shallow. Then we show that the con-

structed path is a valid InterDyck path. We verify the constructed path 𝑃 ′ is shallow by showing

that it never steps into the forbidden region. Algorithm 1 invokes cycle rearrangement to steer

path 𝑃 ′ from the warning region back to safe region A in lines 10-14. Similarly, for each invocation

of reverse rearrangement in lines 15-17 of Algorithm 1, it steers 𝑃 ′ from safe region B back to safe

region A. The reason is that the reversal of a (−,−) cycle is a (+, +) cycle, and appending a (+, +)
cycle directs the trajectory of 𝑃 ′ in the north-east direction in Figure 5. As we described above,

during the construction, 𝑃 ′ never steps into the forbidden region, thus it is a shallow path.

Then we show that during the construction, the path 𝑃 ′ will never use up unmatched open

parentheses/brackets, thus it is a valid InterDyck path. We start with a Lemma.

Lemma 4.2. Let (𝑎, 𝑏) = unmatch(𝑃 ′, 𝑖). If 𝐿1 ≠ ∅, then 𝑎 > 2𝑛; if 𝐿2 ≠ ∅, then 𝑏 > 2𝑛.

Proof. By the symmetry of 𝑎 and 𝑏, it suffices to prove just one of the two cases—if 𝐿1 ≠ ∅,
then 𝑎 > 2𝑛. We prove the lemma by contradiction. Suppose that the path 𝑃 ′ constructed so far

satisfies 𝐿1 ≠ ∅ and 𝑎 ≤ 2𝑛. Let us compare two moments𝑚1 and𝑚2 in the construction of 𝑃 ′: (i)
𝑚1, earlier in the construction of 𝑃 ′, just after the most-recent cycle rearrangement, and (ii)𝑚2, the

(hypothetical) current moment when we have 𝐿1 ≠ ∅ and 𝑎 ≤ 2𝑛. At𝑚1, we must have 𝑎 > 3𝑛.

The reason is because a cycle rearrangement happens when path 𝑃 ′ steps into the warning region

(and hence 𝑎 > 4𝑛), and a cycle rearrangement always attaches a simple cycle with length less than

𝑛. Thus, as the construction proceeded from𝑚1 to𝑚2, the number 𝑎 of unmatched open symbols

for the first Dyck language changed from 𝑎 > 3𝑛 to 𝑎 ≤ 2𝑛. In other words, 𝑎 dropped in value by

more than 𝑛 from moment𝑚1 to moment𝑚2.

We first demonstrate that such a drop can happen only if 𝑃 ′ passes through some (−, ?) cycle 𝐶1.

To establish this claim, suppose that 𝑃 ′ does not go through a (−, ?) cycle; then the path appended

to 𝑃 ′ as the construction proceeded from𝑚1 to𝑚2 can be decomposed into several (+, ?) cycles
and a set of path segments 𝑆chains , where there are no repetitions of nodes among any of the path

segments in 𝑆chains . Each (+, ?) cycle can only increase 𝑎, so only the path segments in 𝑆chains can

decrease the value of 𝑎. Because 𝑆chains has no repeated nodes, the total number of nodes is less

than 𝑛, which contradicts the fact that the decrease of 𝑎 needs to be larger than 𝑛. Consequently, as

the construction proceeded from𝑚1 to𝑚2, 𝑃
′
must have been extended with some (−, ?) cycle 𝐶1.
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All cycles recorded in 𝐿1 have the type (−, ?). Because of the greedy search carried out by

Procedure 1, cycle rearrangement is always performed with respect to the (−, ?) cycle that is closest
to the position in path 𝑃 at the time Procedure 1 is invoked. Consequently, at moment𝑚1 every

cycle recorded in 𝐿1 comes earlier in path 𝑃 than cycle 𝐶1. Figure 6 depicts this situation, where

cycle 𝐶2 is an arbitrary member of 𝐿1. The dashed arrow indicates how as the construction of 𝑃 ′

proceeds from𝑚1 to𝑚2, each cycle in 𝐿1 (such as 𝐶2) is skipped over and removed from 𝐿1—see

lines 18-20 of Algorithm 1. This aspect of Algorithm 1 will drain 𝐿1 of all its members before the

algorithm gets to append cycle𝐶1 to 𝑃
′
. As a consequence, 𝐿1 = ∅ at moment𝑚2, which contradicts

the assumption that 𝐿1 ≠ ∅. We have shown that it is impossible to have 𝐿1 = ∅∧ 𝑎 ≤ 2𝑛, and thus

if 𝐿1 ≠ ∅, then 𝑎 > 2𝑛 as was to be shown. □

The following theorem establishes that the constructed path 𝑃 ′ is a valid 𝐷1 ⊙ 𝐷1-path.

Theorem 4.3. In the newly constructed path 𝑃 ′, at each node position 𝑗 , let (𝑎, 𝑏) = unmatch(𝑃 ′, 𝑗).
Then 𝑎 ≥ 0 ∧ 𝑏 ≥ 0. Consequently, 𝑃 ′ is a valid 𝐷1 ⊙ 𝐷1-path.

Proof. We prove this theorem by contradiction, showing that it is impossible to have 𝑎 < 0

or 𝑏 < 0. Without loss of generality, suppose that at some moment during the construction of 𝑃 ′,
𝑎 < 0 at the end of 𝑃 ′—i.e., 𝑃 ′ moved from safe region B to a situation in which 𝑎 < 0. In this case,

by Lemma 4.2, we must have 𝐿1 = ∅—otherwise, 𝑎 must be greater than 2𝑛.

Now consider the other rearrangement list, 𝐿2. First, suppose that 𝐿2 is also ∅—i.e., both 𝐿1 = ∅
and 𝐿2 = ∅. In this situation, either (i) no cycle rearrangements have been performed so far in

creating 𝑃 ′, (ii) for each rearranged cycle𝐶 that appears in 𝑃 ′, a reverse rearrangement with respect

to 𝐶 has also been performed in 𝑃 ′, or (iii) for each rearranged cycle 𝐶 that appears in 𝑃 ′, the
while-loop in lines 4–20 of Algorithm 1 has also encountered 𝐶 and removed it from 𝐿1 or 𝐿2 in

line 20. Note that in Algorithm 1, the value of variable 𝑖 establishes the correspondence between

the current position in 𝑃 ′ and a prefix 𝑣0𝑣1 . . . 𝑣𝑖 of the original path 𝑃 . When 𝐿1 = ∅ ∧ 𝐿2 = ∅,
if 𝑃 ′ contains a cycle 𝐶 from a rearrangement, it either contains the cycle 𝐶 from a subsequent

reverse rearrangement, or the prefix 𝑣0𝑣1 . . . 𝑣𝑖 of path 𝑃 also contains the cycle 𝐶 . The prefix

𝑣0𝑣1 . . . 𝑣𝑖 of 𝑃 and 𝑃 ′ are “synchronized” in the weak sense that unmatch(𝑃, 𝑖) = unmatch(𝑃 ′, |𝑃 ′ |).
In particular, the number of unmatched open parentheses at the ends of 𝑣0𝑣1 . . . 𝑣𝑖 and 𝑃

′
must be

equal. Consequently, it is impossible to have 𝑎 < 0, otherwise at location 𝑖 in 𝑃 , the number of

unmatched open parenthesis would also be negative. It means that the original path 𝑃 is not a valid

𝐷1 ⊙ 𝐷1-path, which contradicts the underlying assumption of the shallow-path construction.

Now suppose that 𝐿2 ≠ ∅. Except during cycle rearrangement, path 𝑃 ′ is either in safe region

B or safe region A throughout the shallow-path construction. Cycles can only be inserted in the

rearrangement list 𝐿2 by cycle rearrangements. After a cycle rearrangement, the path 𝑃 ′ is in the

safe region A. Note that if 𝑃 ′ ever enters safe region A, it can only re-enter safe region B after

all (−,−) cycles have been drained from 𝐿2 and 𝐿1. The reason is because whenever a reverse

rearrangement is performed in lines 15–17 of Algorithm 1, 𝑃 ′ is steered back to safe region A.

Thus, 𝑃 ′ can only re-enter safe region B if there are no more (−,−) cycles in 𝐿1 ∪ 𝐿2 Consequently,
whenever 𝑃 ′ is in safe region B, if there are cycles recorded in 𝐿2 they must have the type ({0, +},−).
Now consider path 𝑃 ′: it contains each of the ({0, +},−) cycles that are recorded in 𝐿2. We now

compare the number of unmatched open parentheses at the end of prefix 𝑣0𝑣1 . . . 𝑣𝑖 of 𝑃 and at the

end of 𝑃 ′ (as constructed so far). Because all the cycles in 𝐿2 have type ({0, +},−), path 𝑃 ′ can have

some additional unmatched open parentheses compared to path 𝑃 at position 𝑖 . If at the end of 𝑃 ′

we have 𝑎 < 0, then the number of unmatched open parentheses at position 𝑖 of 𝑃 must also be

negative. That would mean that path 𝑃 is not a valid 𝐷1 ⊙ 𝐷1-path, which again contradicts the

underlying assumption of the shallow-path construction. □
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Theorem 4.3 guarantees that the constructed path is always a valid 𝐷1 ⊙ 𝐷1-path. The shallow-

path construction also ensures that 𝑃 ′ cannot step into the forbidden region. Consequently, the

path 𝑃 ′ is a shallow 𝐷1 ⊙ 𝐷1-path.

4.2 Bidirected 𝐷1 ⊙ 𝐷1-reachability Algorithm

This section presents our algorithm to compute all pairs connected by shallow 𝐷1 ⊙ 𝐷1-paths

for bidirected 𝐷1 ⊙ 𝐷1-reachability problem, which—by the results of Section 4.1—provides the

solution to the bidirected 𝐷1 ⊙ 𝐷1-reachability problem. As shown in Figure 3, for a shallow path,

we can enumerate all the intermediate states of the path in the [0, 6𝑛] × [0, 6𝑛] region. For the
path segments that pass out of the square region [0, 6𝑛] × [0, 6𝑛], we track them using the “CO

summary”, which is defined as follows:

Definition 4.4 (Close-Open (CO) summary). A CO summary counts a bounded number of
unmatched close parentheses and unmatched open parentheses, while allowing any number of matched
brackets. The CO summary of unbalanced parentheses, denoted by CO) ( , is defined by the grammar:

𝐶0𝑂0 ::= 𝜖

𝐶𝑖𝑂 𝑗 ::= ‘[’ 𝐶𝑖𝑂 𝑗 ‘]’ for 0 ≤ 𝑖, 𝑗 ≤ 6𝑛

𝐶𝑖𝑂 𝑗 ::= ‘)’ 𝐶𝑖−1𝑂 𝑗 for 1 ≤ 𝑖 ≤ 6𝑛

𝐶𝑖𝑂 𝑗 ::= 𝐶𝑖𝑂 𝑗−1 ‘(’ for 1 ≤ 𝑗 ≤ 6𝑛

𝐶𝑖𝑂 𝑗 ::= 𝐶𝑎𝑂𝑏 𝐶𝑐𝑂𝑑 where 𝑖 = 𝑎 +max(𝑐 − 𝑏, 0), 𝑗 = 𝑑 +max(𝑏 − 𝑐, 0), 0 ≤ 𝑖, 𝑗, 𝑎, 𝑏, 𝑐, 𝑑 ≤ 6𝑛.

The language of CO summary involves the alphabets of two Dyck languages. Above, we used
parentheses to represent the symbols of the first Dyck language and brackets for the symbols of the
second Dyck language. 𝑛 denotes the number of nodes in the graph 𝐺 .

The CO summary of the unbalanced brackets is also defined in a similar manner, denoted by

CO] [ , in which the roles of parentheses and brackets are interchanged. Both CO) ( and CO] [ are
context-free languages, and hence the all-pairs CO) ( and all-pairs CO] [-reachability problems can

be computed via standard𝐶𝐹𝐿-reachability algorithms in polynomial time [Reps 1998]. We refer to

such information as “CO summary information.”

We then argue that the CO summary information can summarize all path segments that pass out

of, and then return to, the [0, 6𝑛] × [0, 6𝑛] region in Figure 3. The path segment 𝑢 ⇝ 𝑣 in Figure 3

is an example of the kind of path segment that will be summarized by CO summary information.

In a CO) (-path, there can be no more than 6𝑛 unmatched close and open parentheses, whereas the
brackets are always matched. Similarly, in a CO] [-path, there can be no more than 6𝑛 unmatched

close and open brackets, whereas the parentheses are always matched. Consider again the path

segment 𝑢 ⇝ 𝑣 , it has no more than 6𝑛 unmatched close and open brackets, but the parentheses are

always matched. In other words, 𝑢 ⇝ 𝑣 is a CO] [-path. A dual kind of path segment that passes out

of the central [0, 6𝑛] × [0, 6𝑛] region, traverses the [0, 6𝑛] × (6𝑛,∞) region, and then returns to the

[0, 6𝑛] × [0, 6𝑛] region has no more than 6𝑛 unmatched close and open parentheses, but the brackets

are always matched. Consequently, it is a CO) (-path. Then, the finite sets of pairs obtained by

computing all-pairs CO) ( and all-pairs CO] [-reachability can summarize all possible path segments

of shallow 𝐷1 ⊙ 𝐷1-paths in 𝐺 that pass out of, and return to, the central [0, 6𝑛] × [0, 6𝑛] region.
Assume that we have the access to the CO summary information 𝑆1 = CO] [ and 𝑆2 = CO) ( , which

can be computed in polynomial-time, Algorithm 2 identifies all 𝐷1 ⊙ 𝐷1 shallow-path-reachable

pairs. Algorithm 2 constructs a new undirected graph 𝐺 ′. Each node in 𝐺 ′ has a label (𝑣, 𝑎, 𝑏). The
first entry, 𝑣 , is a node in the original graph 𝐺 , whereas 𝑎 and 𝑏 are counts of unmatched open
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Algorithm 2: Precise 𝐷1 ⊙ 𝐷1 Algorithm

Input : Edge-labeled bidirected graph 𝐺 = (𝑉 , 𝐸),
CO summary information 𝑆1 = CO] [
CO summary information 𝑆2 = CO) (

Output :A set of 𝐷1 ⊙ 𝐷1 reachable pairs Sol
1 Sol←∅.
2 𝐺 ′ ← a new graph with 𝑛 ∗ 6𝑛 ∗ 6𝑛 nodes and no edges.

3 In graph 𝐺 ′, give each node a label (𝑖, 𝑗, 𝑘) where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗, 𝑘 ≤ 6𝑛

4 foreach 𝑢
(
−→ 𝑣 ∈ 𝐸 do

5 for j = 1 to 6n-1 do
6 for k = 1 to 6n do
7 add an undirected edge between node (𝑢, 𝑗, 𝑘) and (𝑣, 𝑗 + 1, 𝑘) in 𝐺 ′

8 foreach 𝑢
[
−→ 𝑣 ∈ 𝐸 do

9 for j = 1 to 6n do
10 for k = 1 to 6n-1 do
11 add an undirected edge between node (𝑢, 𝑗, 𝑘) and (𝑣, 𝑗, 𝑘 + 1) in 𝐺 ′

12 foreach summary 𝑢
𝐶𝑎𝑂𝑏−−−−−→ 𝑣 ∈ 𝑆1 do

13 for j = a to min(6𝑛 − 𝑏 + 𝑎, 6𝑛) do
14 for k = 1 to 6n do
15 add an undirected edge between node (𝑢, 𝑗, 𝑘) and (𝑣, 𝑗 − 𝑎 + 𝑏, 𝑘) in 𝐺 ′.

16 foreach summary 𝑢
𝐶𝑎𝑂𝑏−−−−−→ 𝑣 ∈ 𝑆2 do

17 for j = 1 to 6n do
18 for k = a to min(6𝑛 − 𝑏 + 𝑎, 6𝑛) do
19 add an undirected edge between node (𝑢, 𝑗, 𝑘) and (𝑣, 𝑗, 𝑘 − 𝑎 + 𝑏) in 𝐺 ′

20 Run an undirected-graph-reachability algorithm on 𝐺 ′

21 foreach node pair ((𝑢, 0, 0), (𝑣, 0, 0)) ∈ 𝐺 ′ do
22 if (𝑢, 0, 0) and (𝑣, 0, 0) are connected ∈ 𝐺 ′ then
23 Sol← Sol ∪ {(u, v)}

24 return Sol

parentheses and unmatched open brackets, respectively. We only create nodes in 𝐺 ′ for which
0 ≤ 𝑎, 𝑏 ≤ 6𝑛, and thus 𝐺 ′ has 36𝑛3 + 12𝑛2 + 𝑛 nodes in total.

• Lines 4-11. For every open-parenthesis-edge between 𝑣1, 𝑣2 in the original graph, we create

an undirected edge between (𝑣1, 𝑖, 𝑗) and (𝑣2, 𝑖 + 1, 𝑗) as described in lines 4-7. Similarly, in

lines 8-11, for an open-bracket-edge between 𝑣1, 𝑣2, we create an undirected edge between

(𝑣1, 𝑖, 𝑗) and (𝑣2, 𝑖, 𝑗 + 1). Thus, all path segments of shallow 𝐷1 ⊙ 𝐷1-paths in 𝐺 that stay

within the central [0, 6𝑛] × [0, 6𝑛] region will be connected in 𝐺 ′. For example, if between

nodes 𝑢, 𝑣 in 𝐺 there is a path with two unmatched open parentheses and three unmatched

open brackets, then there will be a path in 𝐺 ′ between the nodes (𝑢, 0, 0) and (𝑣, 2, 3).
• Lines 12-19. To capture the path segments that pass out of and return to the [0, 6𝑛] × [0, 6𝑛]
square, we use the𝐶𝑂 summary information to guide the edge construction. In lines 12-15, if

nodes 𝑢, 𝑣 are connected by a 𝐶𝑝𝑂𝑞 summary in 𝑆1 = CO] [ , then we connect node (𝑢, 𝑖, 𝑗)
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and (𝑣, 𝑖, 𝑗 − 𝑝 + 𝑞). Similarly in lines 16-19, the algorithm performs the similar construction

for 𝐶𝑂 summary information in 𝑆2 = CO) ( . By this means, all path segments of shallow

𝐷1 ⊙ 𝐷1-paths in𝐺 that pass out of and return to the [0, 6𝑛] × [0, 6𝑛] square are represented
in the new undirected graph 𝐺 ′.
• Lines 20-23. Bidirected 𝐷1 ⊙ 𝐷1-reachability is now performed by a standard algorithm for

undirected graph reachability on𝐺 ′. As shown in lines 21-23, if nodes (𝑢, 0, 0) and (𝑣, 0, 0) are
connected, nodes 𝑢, 𝑣 are 𝐷1 ⊙ 𝐷1-reachable in the bidirected 𝐷1 ⊙ 𝐷1-reachability problem.

Complexity Analysis of the Bidirected 𝐷1 ⊙ 𝐷1-reachability Algorithm. Here we analyze
the time complexity of our algorithm for bidirected 𝐷1 ⊙ 𝐷1-reachability. The algorithm has two

steps: (i) compute the CO summary information, and (ii) perform Algorithm 2. To compute the CO

summary information in step (i), we can use any standard CFL-reachability algorithm. One standard

algorithm has 𝑂 (𝑛3) time complexity when the grammar size is considered to be a constant [Reps

1998]. However, in our case the size of the grammar is not a constant: the CO summary grammar

has 𝑛2 non-terminals and 𝑂 (𝑛4) productions. A variation of the time-complexity argument for the

standard algorithm can be used to show that the running time for the CFL-reachability step is𝑂 (𝑛7).
For step (ii), the for loops in lines 4-7 and 8-11 of Algorithm 2 have time complexity 𝑂 (𝑛3). Lines
12-15 and 16-19 insert edges into graph 𝐺 ′. 𝐺 ′ has 𝑂 (𝑛3) nodes, and in the worst case the number

of edges is 𝑂 (𝑛6); thus, in the worst case, the number of insertions is 𝑂 (𝑛6). Finally, running a

standard algorithm for undirected-graph reachability on a graph with𝑚 edges takes 𝑂 (𝑚) time,

and thus the time complexity of line 20 is 𝑂 (𝑛6). To sum up, the total running time for the precise

𝐷1 ⊙ 𝐷1-reachability algorithm is𝑂 (𝑛7); therefore, the 𝐷1 ⊙ 𝐷1-reachability problem is in PTIME.

5 BIDIRECTED 𝐷𝐾 ⊙ 𝐷𝐾 -REACHABILITY COMPLEXITY

The InterDyck-reachability problem on directed graphs has been known to be undecidable [Reps

2000]. Note that the graph construction used in the undecidability proof of Reps [2000] cannot

be applied to the bidirected case. This section shows that even with the bidirected relaxation, the

problem is still at least NP-hard. We establish the hardness by reducing an NP-complete problem,

paths avoiding forbidden pairs, to the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability problem.

5.1 Overview

We first present an overview of the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability proof. In our reduction from

the paths avoiding forbidden pairs (PAFP) problem to bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability, we construct
a new graph such that 𝐷𝑘 ⊙ 𝐷𝑘 -reachability between nodes of the new graph provides the solution

for the corresponding PAFP instance. The graph for 𝐷𝑘 ⊙ 𝐷𝑘 -reachability consists of three major

parts: the transformed graph, the preprocessing graph, and the checker graph. To facilitate the

discussion of the reduction, we first reduce the PAFP problem to another variant of bidirected

InterDyck-reachability: the 𝑁 -fold 𝐷1-reachability problem (Section 5.2). The reduction to 𝑁 -fold

𝐷1-reachability serves as a bridge to the reduction to bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability. In particular,

it contains the same three parts as the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability reduction. However, one

of the parts, the checker graph, is much simpler and more intuitive, thus paving the way for the

illustration of the reduction to bidirected𝐷𝑘 ⊙ 𝐷𝑘 -reachability (Section 5.3). We start by introducing

the PAFP problem, which is defined as follows:

Definition 5.1 (Paths Avoiding Forbidden Pairs). Given a graph 𝐺 = (𝑉 , 𝐸) and two nodes 𝑠,
𝑡 ∈ 𝑉 and a set of node pairs 𝐹 = {𝑓1, . . . , 𝑓 |𝐹 |} ⊆ (𝑉 ×𝑉 ), the paths avoiding forbidden pairs problem
is to decide whether there exists a path from 𝑠 to 𝑡 such that the path contains at most one node in each
node pair in 𝐹 . Such paths are called 𝐹 -paths.
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𝑠 𝑎 𝑏

𝑐 𝑑 𝑡

𝐹 = {(𝑠, 𝑏), (𝑠, 𝑐), (𝑏, 𝑑)}

Fig. 7. A path avoiding forbidden pairs instance.

start end· · · · · ·𝑠in 𝑡out
𝜖· · · · · ·𝑝1 · · · · · · 𝑝 |𝐹 |+ |𝑉 |

𝜖

Preprocessing graph 𝐺𝑝 Transformed graph 𝐺𝑡 Checker graph 𝐺𝑐

Fig. 8. Overview for the 𝑁 -fold 𝐷1 reachability reduction.

The complexity of PAFP problems has been extensively studied in the literature [Gabow et al. 1976;

Kovác 2014]. It is known that the complexity for many variants of the problem are NP-complete,

and here we focus on the variant on directed acyclic graphs for our reduction.

Theorem 5.2 ( [Gabow et al. 1976]). The paths with forbidden pairs problem on directed acyclic
graphs is NP-complete.

Example 5.3 (Paths Avoiding Forbidden Pairs). Figure 7 provides an instance of the PAFP problem.

Consider the directed acyclic graph in Figure 7. It is associated with a forbidden-pair set 𝐹 =

{(𝑠, 𝑏), (𝑠, 𝑐), (𝑏, 𝑑)}. The instance is to decide whether there exists a path from node 𝑠 to node 𝑡

such that the path only involves at most one of the nodes in each forbidden pair in the set 𝐹 . This

instance has a positive answer because the path 𝑠 → 𝑎 → 𝑑 → 𝑡 is an 𝐹 -path, i.e., it involves at
most one node in each forbidden pair.

5.2 Complexity of Bidirected 𝑁 -Fold 𝐷1-Reachability

This section establishes the NP-hardness of the 𝑁 -fold 𝐷1-reachability problem on bidirected

graphs. It serves as an warm-up construction for 𝐷𝑘 ⊙ 𝐷𝑘 -reachability on bidirected graphs. We

define the bidirected 𝑁 -fold 𝐷1-reachability problem as follows.

Definition 5.4 (Bidirected 𝑁 -fold 𝐷1-reachability). An instance of the 𝑁 -fold 𝐷1-
reachability problem is an instance of 𝐿-reachability where 𝐿 is an interleaved Dyck language
𝐿 ::= 𝐷1 ⊙ 𝐷1 ⊙ · · · ⊙ 𝐷1︸                   ︷︷                   ︸

𝑁 times

. An instance of the bidirected 𝑁 -fold 𝐷1-reachability problem is a problem

instance on a graph that is bidirected for the alphabet symbols in the 𝑁 Dyck languages.

We then present the polynomial time reduction from PAFP problem to 𝑁 -fold 𝐷1-reachability

problem. In this case, the upper bound for 𝑁 is 𝑂 ( |𝑉 |2), where 𝑉 is the set of nodes of the graph

𝐺 = (𝑉 , 𝐸) in the PAFP problem. In the reduction, we construct a new graph with three major parts:

the transformed graph 𝐺𝑡 , the preprocessing graph 𝐺𝑝 , and the checker graph 𝐺𝑐 , illustrated in

Figure 8. In the graph constructed for 𝑁 -fold 𝐷1-reachability, the preprocessing and transformed

graphs are connected by an edge labeled by the 𝜖 symbol from the last node in 𝐺𝑝 to the 𝑠in node

in𝐺𝑡 . The transformed graph and the checker graph are connected by another “𝜖”-edge from the

𝑡out node in𝐺𝑡 to the start node in𝐺𝑐 . We design the graphs with the following properties in mind.

• Transformed Graph. The transformed graph𝐺𝑡 is based on the original graph in the PAFP

instance. There exists an 𝐹 -path between nodes 𝑠 and 𝑡 in the PAFP problem iff there exists
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a path in the transformed graph from 𝑠in to 𝑡out that spells out a word consisting of only

non-repeated open parentheses.

• Preprocessing Graph. The preprocessing graph 𝐺𝑝 serves to append an arbitrary prefix

of up to |𝐹 | + |𝑉 | open parentheses. 𝐹 is the set of the forbidden pairs and 𝑉 is the node set

of the PAFP graph. The constructed graph has |𝐹 | + |𝑉 | different kinds of open parentheses.

The preprocessing graph and the transformed graph can produce a path that uses every kind

of open parenthesis exactly once iff the PAFP instance has a solution. This path could start

from an arbitrary node in the preprocessing graph and end at node 𝑡out in 𝐺𝑡 .

• Checker Graph. The checker graph 𝐺𝑐 will consume exactly one instance of every kind of

open parenthesis, thereby checking whether 𝐺𝑝 and 𝐺𝑡 can produce such a path.

This construction reduces a PAFP instance to a corresponding instance of the 𝑁 -fold𝐷1-reachability

problem. If any node in the preprocessing graph is 𝑁 -fold 𝐷1-reachable to the end node of the

checker graph, then in the original PAFP problem, there is an 𝐹 -path from 𝑠 to 𝑡 . If the PAFP

problem has a solution, then at least one node in the preprocessing graph is 𝑁 -fold 𝐷1-reachable to

the end node of the checker graph. The rest of the section describes the three major parts of the

constructed graph for 𝑁 -fold 𝐷1-reachability.

Transformed-Graph Construction. To construct the transformed graph 𝐺𝑡 , for every node 𝑣

in the original graph, we introduce two nodes 𝑣in and 𝑣out in the transformed graph. In the PAFP

instance, the forbidden pair set 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓 |𝐹 |} has a subset 𝐹𝑣 = {𝑓𝑖1 , . . . , 𝑓𝑖 |𝐹𝑣 | } that contains
all the forbidden pairs that involve node 𝑣 . Then we connect 𝑣in to 𝑣out with a path that spells out

the word that consists of all the open parentheses that have an index corresponding to a forbidden

pair in 𝐹𝑣 , followed by a final open parenthesis that represents node 𝑣 itself, e.g., “(𝑖1 (𝑖2 . . . (𝑖 |𝑓𝑣 | (node𝑣 ”.
If there is no forbidden pair involving node 𝑣 , i.e., 𝐹𝑣 = ∅, then we connect 𝑣in with 𝑣out with a

single edge labeled “(node𝑣 ”. The edges in the transformed graph are bidirected. Figure 9 provides an

example of the construction, for a node 𝑎 in the original graph. Suppose that in the forbidden-pair

set 𝐹 , the subset of all forbidden pairs involving node 𝑎 is 𝐹𝑎 = {𝑓𝑖 , 𝑓𝑗 , 𝑓𝑘 }. We then add a path from

𝑎in to 𝑎out that spells out the word “(𝑖 (𝑗 (𝑘 (node𝑎 ”. For every edge 𝑒 = (𝑢, 𝑣) in the original PAFP

graph, we insert a bidirected 𝜖 edge from 𝑢out to 𝑣in in the transformed graph 𝐺𝑡 . The transformed

graph 𝐺𝑡 ensures the property in the following lemma.

Lemma 5.5. In the transformed graph, there exists a path from 𝑠 to 𝑡 with only non-repeated open
parentheses if and only if there exists an 𝐹 -path in the original graph from 𝑠 to 𝑡 .

Proof. The “if” direction. Suppose that in the original paths avoiding forbidden pair problem,

there exists an 𝐹 -path from node 𝑠 to 𝑡 . Then we can always find a simple 𝐹 -path in the graph.

Because the 𝐹 -path involves at most one node in each node pair, for a simple 𝐹 -path, due to the

construction its corresponding path in the transformed graph contains at most one instance of

each kind of open-parenthesis symbol.

The “only if” direction. Suppose that we have a path whose word contains at most one instance

of each open-parenthesis symbol. Then there is always a simple path satisfying this “at most

one instance” property as well. For the simple path, the construction forbids the possibility to

exploit the bidirected edges in the transformed graph. Between every pair of nodes 𝑣in and 𝑣out,

to use the reversed edges from 𝑣out to 𝑣in, the )node𝑣 parenthesis edge must be matched with the

corresponding open parenthesis, which only exists in the edge from 𝑣in to 𝑣out. If there exists such

an open parenthesis in the path, the path is not a simple path, because both of the nodes 𝑣in and

𝑣out are used twice. Thus, the simple path with the word containing each open parenthesis at most

once corresponds to an 𝐹 -path in the PAFP instance. □
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𝑎out
(node𝑎(𝑘(𝑗

𝑎in
(𝑖

𝑎

Forbidden pairs 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓 |𝐹 |},
and 𝑓𝑖 ,𝑓𝑗 , 𝑓𝑘 in 𝐹 involve node 𝑎

Fig. 9. Node construction in transformed graph.
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Fig. 10. Transformed graph construction example for the PAFP instance in Example 5.3.
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Fig. 11. Preprocessing graph.

Example 5.6 (Transformed-Graph Construction). Here we present a concrete example of the

transformed-graph construction, based on the PAFP from Figure 7. In Figure 10, given the original

graph and the forbidden-pair set 𝐹 , we can construct the corresponding transformed graph following

the construction described above.

This example illustrates the property of the transformed graph. For an 𝐹 -path 𝑠 → 𝑎 → 𝑑 → 𝑡 in

the original graph, there is a corresponding path 𝑠in → 𝑠out → 𝑎in → 𝑎out → 𝑑in → 𝑑out → 𝑡in →
𝑡out spells out the word “(1 (2 (𝑠 (𝑎 (3 (𝑑 (𝑡 ”, which contains each open parenthesis at most once.

Preprocessing-Graph Construction. The transformed graph only produces paths with at most
one edge for each kind of open parenthesis. However, the checker graph verifies whether there

exists a path that contains every kind of open parenthesis exactly once. Preprocessing graph 𝐺𝑝
appends the other missing open parentheses that are not included in the transformed graph. For

convenience, we denote the node set 𝑉 = {𝑣1, . . . , 𝑣 |𝑉 |} and their corresponding parentheses as

(𝑣1 , . . . (𝑣|𝑉 | . In the preprocessing graph 𝐺𝑝 , we have |𝐹 | + |𝑉 | nodes 𝑝1, . . . , 𝑝 |𝐹 |+ |𝑉 | . Each pair of

nodes 𝑝𝑖 and 𝑝𝑖+1 are connected by |𝐹 | + |𝑉 | parallel edges, with the labels “(1”, “(2”, . . . , “( |𝐹 |”, “(𝑣1”,
. . . “(𝑣|𝑉 | ”, as shown in Figure 11. The edges constructed are bidirected. In the preprocessing graph,

a path from node 𝑝𝑖 to 𝑝𝑛 can append 𝑛 − 𝑖 arbitrary open parenthesis to a path that starts at 𝑝𝑛 .

Due to the construction, we obtain the following lemma:

Lemma 5.7. In the constructed graph, 𝑠in is 𝑁 -fold 𝐷1-reachable to 𝑡out if and only if there exists a
path from some node 𝑝𝑖 in the preprocessing graph to the node start in the checker graph with exactly
one open parenthesis for each kind.

Checker-Graph Construction. In the checker graph, there is one path from node start to node
end that consumes every kind of open parenthesis exactly once. To construct such a checker graph

for 𝑁 -fold 𝐷1-reachability, we only need to create a path that spells out “)1)2 . . . )|𝐹 |)𝑣1 . . . )𝑣|𝑉 | ” from
node start to node end (see Figure 12). Note that each constructed edge should be bidirected. In the

checker graph, each close parenthesis consumes one corresponding open parenthesis. The checker
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end
)𝑣|𝑉 |)𝑣1)|𝐹 |)2

start
)1 · · · · · · · · · · · ·

Fig. 12. Checker graph for 𝑁 -fold 𝐷1-reachability.

· · · · · ·· · · · · ·· · · · · · 𝜖 𝜖· · · · · · 𝜖
start end

𝜖 𝜖

𝐶1 graph 𝐶2 graph 𝐶 |𝐹 |+ |𝑉 | graph

Fig. 13. Overview of checker graph 𝐺𝑐 for bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability.

𝑐𝑖out

]𝑘 (𝑘 , for 𝑘 ≠ 𝑖

𝑐𝑖in
)𝑖

)𝑘 [𝑘 , for 𝑘 ≠ 𝑖

Fig. 14. Checker component𝐶𝑖 for bidrected 𝐷𝑘 ⊙𝐷𝑘 -reachability. The ciin node contains |𝐹 | + |𝑉 | − 1 parallel
loops. The purpose is to transform the open parenthesis “(𝑘 ” to “[𝑘 ” in the other language. The “)𝑖”-edge
between the ciin node and ciout node consumes exactly one “(𝑖” parenthesis. The parallel loops at the ciout
node can transform the “[𝑘 ”-edges back to parenthesis edges. The total effect of the 𝐶𝑖 component is to
consume an “(𝑖” parenthesis regardless its position in the path.

graph contains exactly one occurrence of each kind of close parenthesis, thus matching with a path

that has exactly one occurrence of each kind of open parenthesis.

When we put the three component graphs together, if there exists an 𝐹 -path, then there exists

an path from some node 𝑝𝑖 in the preprocessing graph to the node start of the checker graph

with exactly one occurrence of each kind of open parenthesis. The continuation of the path to the

end node of the checker graph causes the path to be accepted as an 𝑁 -fold 𝐷1-path. Conversely,

if we find any 𝑁 -fold 𝐷1-path between any node in the preprocessing graph and the end node

of the checker graph, there must exist a path in the transformed graph that contains every open

parenthesis at most once. We can interpret that path as a solution in the paths avoiding forbidden

pairs problem. We have reduced the paths avoiding forbidden pairs problem to the bidirected 𝑁 -fold

𝐷1-reachability problem, and thus the bidirected 𝑁 -fold 𝐷1-reachability is NP-hard.

Theorem 5.8. The bidirected 𝑁 -fold 𝐷1-reachability problem is NP-hard.

5.3 Complexity of Bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -Reachability
The reduction from a PAFP instance to an instance of bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability again in-

volves constructing a graph with three major parts. The preprocessing graph and the transformed

graph used in the reduction remain the same as for 𝑁 -fold 𝐷1-reachability. The difference in the

construction for the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability problem is a more complicated checker graph.

We first provide an overview of the structure of the checker graph 𝐺𝑐 in Figure 13. There are

|𝐹 | + |𝑉 | components between the start and end nodes, each constructed to consume one kind of

open parenthesis exactly once. In the reduction for the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability problem,

all the open parentheses that appear in the preprocessing graph and the transformed graph are

symbols in the first Dyck language. The use of interleaving with symbols from the second Dyck

language only comes into play in the checker graph. In contrast, in the construction for 𝑁 -fold

𝐷1-reachability, the open parentheses in the preprocessing graph and the transformed graph came
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from separate 𝐷1 languages. As we will see, for the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability problem, in the

checker graph, we also need to handle some issues related to the ordering of the open parentheses

along the path through the preprocessing graph and the transformer graph.

We denote the 𝑖 th graph component of the checker graph by𝐶𝑖 . In graph𝐶𝑖 , the goal is to consume

one (𝑖 parenthesis from the path that came through the preprocessing graph and the transformer

graph. Overall, the goal of the checker graph is to consume every open-parenthesis symbol (of

the first Dyck language) exactly once. For each checker component 𝐶𝑖 , as illustrated in Figure 14,

the checker needs to consume one occurrence of the symbol “(𝑖”. We illustrate the functionality

of such a component with a concrete example. Suppose that there is a path “(1 (2 (3” before the
checker 𝐶2. The purpose of the loop in the ciin node (in this case 𝑖 = 2) in Figure 14 is to transform

the open parentheses after “(2” to correspondingly numbered bracket symbols. After the loop, the

path can be “(1 (2 (3)3 [3”. It then “consumes” the “(2” symbol, and the path becomes “(1 (2 (3)3 [3)2”.
Finally, the loop on the second node in Figure 14 will transform the bracket edges back to the

corresponding parenthesis edges: the path “(1 (2 (3” becomes “(1 (2 (3)3 [3)2]3 (3” after the checker

component 𝐶2. Notice that because the path labeled “(1 (2 (3)3 [3)2]3 (3” can always be matched by

the same close-parenthesis string as the path labeled “(1 (3”, we can regard checker component 𝐶2

as having “consumed” exactly one open-parenthesis symbol from the middle of the string, namely

“(2”. The checker graph for the construction checks whether a path contains each open-parenthesis

symbol exactly once. By an argument similar to the one given in Section 5.2, we can show that this

construction reduces the PAFP problem to bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability.

Theorem 5.9. The bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability problem is NP-hard.

In addition, we can use a 𝐷2 language to simulate the behavior of a 𝐷𝑘 language in polynomial

time. For example, a naïve approach is to use “(1 (2. . . (2︸ ︷︷ ︸
𝑖 times

” to represent “(𝑖 .” Thus, we have:

Corollary 5.10. The bidirected 𝐷2 ⊙ 𝐷2-reachability problem is NP-hard.

6 EVALUATION

We have implemented the precise bidirected 𝐷1 ⊙ 𝐷1-reachability algorithm in Algorithm 2 and

applied it to a context- and field-sensitive alias analysis for Java. The bidirected𝐷1 ⊙ 𝐷1-reachability

algorithm provides a new over-approximation approach for bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability. Specif-
ically, it first relaxes bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability to bidirected 𝐷1 ⊙ 𝐷1-reachability and then

solves the 𝐷1 ⊙ 𝐷1-reachability problem precisely. To explore the precision of the bidirected

𝐷1 ⊙ 𝐷1-reachability algorithm, our evaluation addresses the following research questions:

• As an over-approximation method for 𝐷𝑘 ⊙ 𝐷𝑘 -reachability, what is the precision of bidi-

rected 𝐷1 ⊙ 𝐷1-reachability compared with other approximation algorithms?

• How much over-approximation is there when bidirected 𝐷1 ⊙ 𝐷1-reachability is used to

over-approximate bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability?
6.1 Experimental Setup

Context-sensitive field-sensitive alias analysis. Our experiments adopt an existing context-sensitive

field-sensitive alias analysis for Java [Xu et al. 2009; Yan et al. 2011]. We apply it to the standard

Dacapo benchmark [Blackburn et al. 2006]. Section 2.4 describes the alias analysis with an example.

Recall that the analysis is formulated as a bidirected InterDyck-reachability problem.

Over-approximating 𝐷𝑘 ⊙ 𝐷𝑘 -reachability algorithm. We compare the precision of our 𝐷1 ⊙ 𝐷1-

reachability algorithm with a 𝐷𝑘 ⊙ 𝐷𝑘 -reachability algorithm based on linear conjunctive language

reachability (LCL-reachability) [Zhang and Su 2017]. The 𝐷𝑘 ⊙ 𝐷𝑘 languages are a subclass of the
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Table 1. Precision and performance results for bidirected 𝐷1 ⊙ 𝐷1-reachability, bidirected LCL-reachability,
and bidirected 𝐷 ′-reachability algorithms. Note that 𝐷 ′-reachability under-approximates 𝐷𝑘 ⊙ 𝐷𝑘 -
reachability. The precision column reports the numbers of 𝐷𝑘 ⊙ 𝐷𝑘 -reachable pairs.

Precision Time (s)

𝐷1 ⊙ 𝐷1 LCL 𝐷′ 𝐷1 ⊙ 𝐷1 LCL 𝐷′

antlr 1526931 1548761 1516159 22584.9 0.59 0.74

bloat 1593965 1614797 1585031 19249.7 0.62 0.83

chart - 4866011 4711077 - 1.17 1.65

eclipse 1528643 1561457 1512137 32858.5 0.87 0.77

fop 3503778 3667004 3427676 44784.1 2.69 1.49

hsqldb 1515720 1536380 1507386 29122.4 0.56 0.69

jython 1568236 1592280 1557182 18782.9 0.73 0.89

luindex 1518813 1537773 1510299 16472.0 0.54 0.71

lusearch 1520970 1541082 1511882 27845.5 0.56 0.75

pmd 1574309 1593967 1566059 30241.3 0.56 0.76

xalan 1515312 1534172 1507196 21930.4 0.54 0.72

LCL languages. The LCL-reachability algorithm is inherently an over-approximation algorithm.

We evaluate the LCL-reachability algorithm on the bidirected graphs.

An under-approximating 𝐷𝑘 ⊙ 𝐷𝑘 -reachability algorithm. To understand the false positives in

both the 𝐷1 ⊙ 𝐷1-reachability and the LCL-reachability algorithms, we compare the solution set

with that of an under-approximating 𝐷 ′-reachability algorithm. Let the InterDyck language be

𝐷𝑝 ⊙ 𝐷𝑏 . We can treat it as a Dyck language 𝐷 ′ with alphabet Σ𝐷′ = Σ𝐷𝑝
∪ Σ𝐷𝑏

. The new Dyck

language𝐷 ′ is a subset of the𝐷𝑝 ⊙𝐷𝑏 language: only well-balanced words are accepted; interleaved
words are rejected. Therefore, we can run the 𝐷 ′

𝑘
-reachability algorithm to obtain a lower bound

on the number of pairs for both 𝐷𝑘 ⊙ 𝐷𝑘 over-approximations.

Implementation We use the implementation described in the work of Yan et al. [2011] to derive the

alias-analysis graphs from the DaCapo suite [Blackburn et al. 2006]. All graphs are pre-processed by

a graph-simplification algorithm for InterDyck-reachability [Li et al. 2020]. We have implemented

both the LCL-reachability algorithm and the precise bidirected 𝐷1 ⊙ 𝐷1-reachability algorithm

in C++. All executables are compiled by g++-5.4 with -O2 optimization. The experiments were

conducted on a machine with a Xeon E5-2650 CPU with 96 GB memory, running Ubuntu 16.04.

6.2 Precision Comparison with the LCL-Reachability Algorithm

To evaluate the precision, we compared the numbers of reported reachable pairs between the

precise 𝐷1 ⊙ 𝐷1-reachability algorithm and the LCL-reachability algorithm. Both algorithms over-

approximate 𝐷𝑘 ⊙ 𝐷𝑘 -reachability. Table 1 presents the precision and performance results for both

algorithms. For the 𝐷1 ⊙ 𝐷1-reachability algorithm, we are able to obtain precise solutions to the

relaxed problems, except for the chart benchmark, which consumes too much memory. In Table 1,

we observe that the numbers of reachable pairs reported by the bidirected 𝐷1 ⊙ 𝐷1-reachability

algorithm is consistently smaller than those reported by LCL-reachability. On average, bidirected

𝐷1 ⊙ 𝐷1-reachability obtains a solution that is about 2.0% smaller than the one obtained via the

LCL-reachability algorithm. Table 1 indicates an interesting result: at least for context-sensitive

field-sensitive alias analysis, the benefit of having a precise 𝐷1 ⊙ 𝐷1-reachability algorithm can

outweigh its disadvantage of being based on a less expressive formalism.

6.3 Precision Comparison with the 𝐷 ′-Reachability Algorithm

To understand the degree of over-approximation introduced by using 𝐷1 ⊙ 𝐷1-reachability to solve

a relaxation of 𝐷𝑘 ⊙ 𝐷𝑘 -reachability, we also compared the precision of the 𝐷1 ⊙ 𝐷1-reachability
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algorithm with the under-approximating 𝐷 ′-reachability algorithm. Table 1 shows that the gap

between the numbers of reachable pairs found in the 𝐷1 ⊙ 𝐷1-reachability algorithm and the

numbers found by the under-approximating 𝐷 ′-reachability algorithm is relatively small. On

average, the precise 𝐷1 ⊙ 𝐷1-reachability algorithm produced solutions that were 0.89% larger than

the ones obtained via 𝐷 ′-reachability. This result indicates that in the simplified 𝐷𝑘 ⊙ 𝐷𝑘 graphs,
the over-approximation introduced by ignoring distinctions between different parenthesis symbols

in each Dyck language is insignificant.

6.4 Discussion

From Table 1, we can also observe that the bidirected 𝐷1 ⊙ 𝐷1-reachability algorithm is very slow

compared to the LCL-reachability algorithm. Recall that the time complexity of𝐷1 ⊙ 𝐷1-reachability

algorithm is 𝑂 (𝑛7), which poses significant challenges for any practical use. Our work focuses

on establishing the PTIME result for 𝐷1 ⊙ 𝐷1-reachability. In particular, the 𝐷1 ⊙ 𝐷1-reachability

algorithm used in the experiments is directly adopted from the PTIME proof. On the other hand,

our experimental study suggests that the 𝐷1 ⊙ 𝐷1-reachability algorithm offers a precise over-

approximation for 𝐷𝑘 ⊙ 𝐷𝑘 -reachability, after some pre-processing [Li et al. 2020]. Designing an

efficient bidirected 𝐷1 ⊙ 𝐷1-reachability algorithm remains an interesting future direction.

It is perhaps surprising to see that the bidirected 𝐷1 ⊙ 𝐷1-reachability algorithm can achieve

better precision than the LCL-reachability algorithm for 𝐷𝑘 ⊙ 𝐷𝑘 -reachability. Note that LCL-

reachability is perhaps the most precise 𝐷𝑘 ⊙ 𝐷𝑘 -reachability algorithm based on empirical evalua-

tions [Zhang and Su 2017]. In our experiments, the input graphs of all algorithms are pre-processed

by a graph-simplification algorithm [Li et al. 2020]. The graph simplification itself can also contribute

to the precision improvements. Specifically, graph simplification utilizes the parenthesis-index

information in 𝐷𝑘 ⊙ 𝐷𝑘 to remove irrelevant edges. For the original bidirected graphs where 𝑛 is

significantly larger, our 𝑂 (𝑛7)-time 𝐷1 ⊙ 𝐷1-reachability algorithm is too expensive to evaluate.

7 RELATEDWORK

The computational complexity of InterDyck-reachability problem has been extensively studied. It

has been shown that the InterDyck-reachability problem on directed graphs is undecidable [Ra-

malingam 2000; Reps 2000]. The undecidability proof by Reps [2000] reduces the Post Correspon-

dence Problem (PCP) to InterDyck-reachability. Given two lists of words 𝐿1 = {𝑥1, . . . , 𝑥𝑘 }.𝐿2 =

{𝑦1, . . . , 𝑦𝑘 }, the PCP problem is to decide whether there exists a list of indices {𝑖1, . . . , 𝑖𝑙 } such that

the string 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑙 is the same as 𝑦𝑖1𝑦𝑖2 . . . 𝑦𝑖𝑙 . The proof use a Dyck language 𝐷2 to encode the

strings, with ‘(1’ parenthesis representing ‘0’ and the ‘(2’ parenthesis representing ‘1’. The other
Dyck language keeps track of the indices of the chosen words. A valid index list exists if and only if

there exists an InterDyck-path in the graph representing 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑙𝑦𝑖𝑙𝑦𝑖𝑙−1 . . . 𝑦𝑖1 . However, in the

bidirected variants, the same proof technique does not work. In a directed graph, graphs can always

force a path to first finish all 𝑥𝑖 words and then go through 𝑦𝑖 words. The bidirectedness of the

graph introduces additional paths. A valid InterDyck-reachable path may represent the following

string: 𝑥𝑖1𝑥𝑖2𝑦𝑖2𝑥𝑖3𝑦𝑖3𝑦𝑖1 . For these InterDyck-paths, we cannot reconstruct solutions of the PCP

instance. Thus, the reduction technique does not apply to the bidirected variant, and the complexity

for bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability still remains open.

InterDyck-reachability is the natural formalism when an analysis needs to keep track of

two balanced-parenthesis properties. Various practical approaches have been proposed to over-

approximate InterDyck-reachability solutions. The traditional approach includes using a context-

free language (CFL) to approximate the InterDyck language, and then solving the CFL-reachability

problem [Sridharan and Bodík 2006; Sridharan et al. 2005; Yan et al. 2011]. Recently, the conjunctive-

language-reachability approach was proposed to approximate InterDyck-reachability [Zhang and
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Su 2017]. It uses a conjunctive language to describe an InterDyck language precisely, and provides

an approximation algorithm for the reachability problem for linear conjunctive languages. The

synchronized push-down systems (SPDSs) of Späth et al. [2019] also provides an approach to solve

InterDyck-reachability. An SPDS uses a push-down automaton with two stacks. Each stack can

handle the parenthesis matching for one Dyck language. To over-approximate𝐷𝑘 ⊙ 𝐷𝑘 -reachability,
SPDSs computes the 𝐷𝑘 ⊙ 𝐷𝑘 -reachability twice, each time ignoring one of the two stacks in the

system. SPDSs collect the intersection of the two solution sets as the final result. SPDSs can also

recognize incomplete InterDyck-paths, i.e., prefixes of InterDyck-paths.
In contrast to over-approximation algorithms, Madhusudan and Parlato [2011] propose a bounded

tree-width approach, which can provide an under-approximate solution for InterDyck-reachability

problems. InterDyck-reachability can be considered to be a variant of the state-reachability problem

for multi-stack pushdown automata. In the context of concurrent program analysis, a natural

semantic restriction for under-approximation is to consider only the states reachable within a

bounded number of context switches [Qadeer and Rehof 2005]. The emptiness problem for multi-

stack pushdown automata with bounded context-switches can be further reduced to the emptiness

problem for graph automata for a special class of graphs (the so-called multiply nested words) with

bounded tree-width. The bounded tree-width approach decides the emptiness problem for such

graph automata. It provides a technique to explore state reachability for multi-stack pushdown

automata with a bounded number of context switches, thus providing an under-approximation for

the InterDyck-reachability problem.

8 CONCLUSION

This paper identifies an important class of InterDyck-reachability problems. Even though there are

many practical applications of bidirected InterDyck-reachability, the computational complexity had

been unaddressed. Our results in this paper start to fill in the picture. To the best of our knowledge,

we have identified the first decidable variant of any InterDyck-reachability problem—namely,

bidirected 𝐷1 ⊙ 𝐷1-reachability—and showed that it is solvable in PTIME. We also showed that

bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability is NP-hard.
We experimented with an implementation of the algorithm for precise bidirected 𝐷1 ⊙ 𝐷1-

reachability. We applied it to a context- and field-sensitive alias analysis. The experiment compared

the precision of (i) relaxing the problem to bidirected 𝐷1 ⊙ 𝐷1-reachability and solving the re-

laxed problem precisely, with (ii) a different over-approximation algorithm for bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -
reachability. Surprisingly, the 𝐷1 ⊙ 𝐷1-reachability approach produced more precise results than

the 𝐷𝑘 ⊙ 𝐷𝑘 -reachability approach. This experiment may show the benefit of obtaining a precise

solution, even though the bidirected 𝐷1 ⊙ 𝐷1-reachability formalism is inherently less expressive

than the bidirected 𝐷𝑘 ⊙ 𝐷𝑘 -reachability formalism.
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