
62

Efficient Algorithms for Dynamic Bidirected
Dyck-Reachability∗

YUANBO LI, Georgia Institute of Technology, USA

KRIS SATYA, Georgia Institute of Technology, USA

QIRUN ZHANG, Georgia Institute of Technology, USA

Dyck-reachability is a fundamental formulation for program analysis, which has been widely used to capture

properly-matched-parenthesis program properties such as function calls/returns and field writes/reads. Bidi-

rected Dyck-reachability is a relaxation of Dyck-reachability on bidirected graphs where each edge 𝑢
L𝑖−→ 𝑣

labeled by an open parenthesis “L𝑖 ” is accompanied with an inverse edge 𝑣
M𝑖−→ 𝑢 labeled by the corresponding

close parenthesis “M𝑖”, and vice versa. In practice, many client analyses such as alias analysis adopt the bidi-

rected Dyck-reachability formulation. Bidirected Dyck-reachability admits an optimal reachability algorithm.

Specifically, given a graph with 𝑛 nodes and𝑚 edges, the optimal bidirected Dyck-reachability algorithm

computes all-pairs reachability information in 𝑂 (𝑚) time.

This paper focuses on the dynamic version of bidirected Dyck-reachability. In particular, we consider the

problem of maintaining all-pairs Dyck-reachability information in bidirected graphs under a sequence of

edge insertions and deletions. Dynamic bidirected Dyck-reachability can formulate many program analysis

problems in the presence of code changes. Unfortunately, solving dynamic graph reachability problems is

challenging. For example, even for maintaining transitive closure, the fastest deterministic dynamic algorithm

requires 𝑂 (𝑛2) update time to achieve 𝑂 (1) query time. All-pairs Dyck-reachability is a generalization of

transitive closure. Despite extensive research on incremental computation, there is no algorithmic development

on dynamic graph algorithms for program analysis with worst-case guarantees.

Our work fills the gap and proposes the first dynamic algorithm for Dyck reachability on bidirected graphs.

Our dynamic algorithms can handle each graph update (i.e., edge insertion and deletion) in 𝑂 (𝑛 · 𝛼 (𝑛)) time

and support any all-pairs reachability query in 𝑂 (1) time, where 𝛼 (𝑛) is the inverse Ackermann function. We

have implemented and evaluated our dynamic algorithm on an alias analysis and a context-sensitive data-

dependence analysis for Java. We compare our dynamic algorithms against a straightforward approach based

on the 𝑂 (𝑚)-time optimal bidirected Dyck-reachability algorithm and a recent incremental Datalog solver.

Experimental results show that our algorithm achieves orders of magnitude speedup over both approaches.

CCS Concepts: • Theory of computation→Dynamic graph algorithms; • Software and its engineering
→ Automated static analysis.

Additional Key Words and Phrases: Dynamic Graph Algorithms, Dyck-Reachability, Bidirected Graphs,

Incremental Analysis

∗
As noted by Krishna et al. [2023], the worst-case behavior of Procedure 4 is quadratic. We have posted a related note [Zhang

2024] to discuss both the complexity issue and the handling of the cycle case.

Authors’ addresses: Yuanbo Li, Georgia Institute of Technology, Atlanta, USA, yuanboli@gatech.edu; Kris Satya, Georgia

Institute of Technology, Atlanta, USA, ksatya3@gatech.edu; Qirun Zhang, Georgia Institute of Technology, Atlanta, USA,

qrzhang@gatech.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART62

https://doi.org/10.1145/3498724

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://doi.org/10.1145/3498724

62:2 Yuanbo Li, Kris Satya, and Qirun Zhang

ACM Reference Format:
Yuanbo Li, Kris Satya, and Qirun Zhang. 2022. Efficient Algorithms for Dynamic Bidirected Dyck-Reachability.

Proc. ACM Program. Lang. 6, POPL, Article 62 (January 2022), 29 pages. https://doi.org/10.1145/3498724

1 INTRODUCTION

Many program analysis problems can be formulated as graph reachability problems [Reps 1998].

Dyck-reachability is perhaps the most popular graph reachability formulation for program analy-

sis [Zhang et al. 2013]. A Dyck language 𝐷𝑘 consists of all strings of properly matched parentheses

over 𝑘 kinds of parentheses. Given an edge-labeled graph, Dyck-reachability computes whether

two nodes can be connected by a path with labels that spell out a Dyck word. Many practical anal-

yses use Dyck-reachability to express properly-matched-parenthesis program properties, such as

call/return [Reps 2000; Yan et al. 2011], lock/unlock [Kahlon 2009; Ramalingam 2000], file-open/file-

close [Späth et al. 2019], and set-field/get-field [Arzt et al. 2014; Yan et al. 2011]. Kodumal and

Aiken [2004] observed that “almost all of the applications of context-free language reachability in

program analysis are based on Dyck languages.”

Bidirected Dyck-reachability is a variant of Dyck-reachability restricted to bidirected graphs [Chat-

terjee et al. 2018; Zhang et al. 2013]. In bidirected graphs, each “L𝑖”-labeled edge 𝑢
L𝑖−→ 𝑣 is accompa-

nied with a corresponding “M𝑖”-labeled edge 𝑣
M𝑖−→ 𝑢 in the inverse direction, and vice versa. Despite

being a restricted variant, bidirected Dyck-reachability has been widely used in the literature.

It is particularly useful for two reasons: (1) many problems such as pointer analysis are inher-

ently bidirected [Reps 1998]. Indeed, alias analysis for Java has been formulated using bidirected

Dyck-reachability [Yan et al. 2011]; (2) bidirected Dyck-reachability can over-approximate the

directed counterpart. Because running bidirected Dyck-reachability is relatively cheap, it can serve

as a pre-processing step for improving the expensive directed reachability [Li et al. 2020]. Due to

its importance, Dyck-reachability has been extensively studied in the literature [Chatterjee et al.

2018; Reps 1998; Zhang et al. 2013]. However, to our best knowledge, all existing developments of

Dyck-reachability have been focused on “static” graph reachability, where the entire input graph is

known to the reachability algorithm.

This paper focuses on the dynamic problem of bidirected Dyck-reachability, a much less studied

algorithmic topic in program analysis. In general, a dynamic graph algorithm allows changes (i.e.
edge insertions and deletions) to the input graphs [King and Sagert 1999; Roditty 2003]. It typically

allows three operations: (1) pre-processing, which is called for the initial graph; (2) update, which is

called for every input update; and (3) query, which is used to answer reachability queries. Efficient

dynamic algorithms can establish a solid algorithmic foundation for incremental program analysis.

Specifically, with efficient dynamic reachability algorithms, the underlying client analysis can

promptly respond to code changes (i.e., code insertions and deletions). For example, modern IDEs

run incremental analyses such as type checkers, code smell detectors, and dead code analyses to

provide instant feedback to developers [Pacak et al. 2020; Szabó et al. 2021].

Designing asymptotically fast dynamic reachability algorithms is challenging. Recall that the

static linear-time algorithm for bidirected Dyck-reachability is optimal [Chatterjee et al. 2018]. In

the dynamic setting for an edge-labeled graph with𝑚 edges and 𝑛 nodes, a straightforward way is

to run the static algorithm for each update, which leads to a naïve dynamic algorithm for bidirected

Dyck-reachability in 𝑂 (𝑚) pre-processing time, 𝑂 (𝑚) update time and 𝑂 (1) query time. In terms

of the complexity, an 𝑂 (𝑚) time algorithm is arguably reasonable. However, it is apparently not

efficient because it needs to re-compute the reachability information from scratch for each update.

This paper proposes efficient dynamic algorithms for bidirected Dyck-reachability. In particular,

our algorithms can pre-process an initial graph in 𝑂 (𝑚) time, handle each graph update (i.e., edge

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://doi.org/10.1145/3498724

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:3

insertion and deletion) in worst case 𝑂 (𝑛 · 𝛼 (𝑛)) time, and answer any all-pairs reachability query

in 𝑂 (1) time where 𝛼 denotes the inverse Ackermann function. Our key insight is to maintain

the equivalence property of Dyck-reachability on bidirected graphs [Chatterjee et al. 2018; Zhang

et al. 2013] dynamically. In particular, we augment the key data structure used in the 𝑂 (𝑚)-time

optimal bidirected reachability algorithm [Chatterjee et al. 2018] with weights. Our algorithm can

efficiently update weights and maintain the reachability information in 𝑂 (𝑛 · 𝛼 (𝑛)) time for any

edge insertion and deletion.

Unlike existing incremental computation work [Arzt and Bodden 2014; Sreedhar et al. 1997;

Szabó et al. 2021, 2016], our approach can guarantee that our dynamic algorithms do not involve

any redundant computation. With the weights introduced in our algorithm, we can formally

prove the property. Our work is closely related to incremental Datalog evaluation [Ryzhyk and

Budiu 2019; Szabó et al. 2021] because Dyck-reachability can be directly expressed using Datalog

rules. However, Datalog frameworks are general, and do not leverage the equivalence property

exploited in optimal Dyck-reachability [Chatterjee et al. 2018] for bidirected graphs. Improving

general dynamic graph reachability is quite challenging. Even for maintaining dynamic transitive

closure, the best deterministic algorithm requires an 𝑂 (𝑛2) update time to achieve the 𝑂 (1) query
time [Roditty 2003]. Indeed, on general graphs, there is a conditional lower bound result for dynamic

transitive closure [Henzinger et al. 2015]. Specifically, unless the Online Boolean Matrix-Vector

Multiplication (OMv) conjecture [Henzinger et al. 2015] is false, there is no combinatorial algorithm

that can achieve polynomial pre-processing time, 𝑂 (𝑚1/2−𝛿) update time, and 𝑂 (𝑚1−𝛿) query time

simultaneously, for any small constant 𝛿 > 0. Dynamic graph reachability for program analysis

is a less explored area. In particular, there is no asymptotically faster algorithm for bidirected

Dyck-reachability than the straightforward solution with an 𝑂 (𝑚) update time.

We have implemented the dynamic algorithms for bidirected Dyck-reachability and applied

it to two practical client analyses, an alias analysis for Java formulated by bidirected Dyck-

reachability [Yan et al. 2011] and a context-sensitive data-dependence analysis formulated by

Dyck-reachability [Tang et al. 2015]. In addition, we compared our dynamic algorithms with an

𝑂 (𝑛 · 𝛼 (𝑛)) update time against the straightforward algorithm with an𝑂 (𝑚) update time [Chatter-

jee et al. 2018] and an incremental Datalog solver [Ryzhyk and Budiu 2019]. The empirical results

for our proposed dynamic bidirected Dyck-reachability algorithm are encouraging.

• Compared to the straightforward approach that runs the optimal𝑂 (𝑚)-time bidirected Dyck-

reachability algorithm for each update, our dynamic algorithms have achieved a 534x speedup

in the alias analysis and a 331x speedup in the context-sensitive data-dependence analysis.

• Compared to a recent incremental Datalog solver that only recomputes the necessary changes

upon each update, our dynamic algorithms have achieved a 496x speedup in the alias analysis

and a 20x times speedup in the context-sensitive data-dependence analysis.

• In practice, we have observed that our algorithm scales linearly with the graph size.

We make the following main contributions in this paper:

• We present the first algorithmic study on dynamic bidirected Dyck-reachability for program

analysis. Specifically, we propose an efficient dynamic reachability algorithm with an 𝑂 (𝑚)
pre-processing time, an 𝑂 (𝑛 · 𝛼 (𝑛)) update time, and an 𝑂 (1) query time.

• We present a formal analysis of our dynamic algorithms. Our analysis shows that our al-

gorithm is asymptotically faster than the straightforward approach that runs the optimal

𝑂 (𝑚)-time Dyck-reachability algorithm for each update. Moreover, it shows that our algo-

rithm does not incur any redundant computation.

• We conduct extensive evaluations on two client analyses with insertions only, deletions

only, and mixed graph update sequences. The empirical results show that our algorithm

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:4 Yuanbo Li, Kris Satya, and Qirun Zhang

1 class A {

2 A f;

3 A g;

4 };

5 int main(){

6 A a,b,c,d,e,x,y;

7

8 b.f = a;

9 c.g = b;

10 d = c.g;

11 e = d.f

12

13 x.g = a;

14 e = x.g;

15 }

(a) Input program.

𝑎 𝑏 𝑐 𝑑 𝑒

𝑥

L𝑓

M𝑓
L𝑔

M𝑔
L𝑔

M𝑔
L𝑓

M𝑓

L𝑔
M𝑔

L𝑔
M𝑔

(b) Alias analysis graph.

𝑎𝑒 𝑏𝑑 𝑐

𝑥

L𝑓

M𝑓
L𝑔

M𝑔

L𝑔
M𝑔

(c) Merged graph for Figure 1b.

Fig. 1. Context-insensitive alias analysis for Java via bidirected Dyck-reachability.

can achieve orders-of-magnitude speedup over the 𝑂 (𝑚) time approach and an incremental

Datalog solver. Moreover, our algorithm scales linearly with the graph size.

The rest of the paper is structured as follows. Section 2 motivates dynamic Dyck-reachability on

bidirected graphs. Section 3 presents preliminaries. Section 4 discusses our dynamic algorithms for

bidirected Dyck-reachability. Section 5 describes the evaluation setup and results. Finally, Section 6

surveys related work, and Section 7 concludes.

2 MOTIVATING EXAMPLE

We motivate dynamic bidirected Dyck-reachability using a practical context-insensitive alias

analysis for Java [Yan et al. 2011].

2.1 Context-Insensitive Alias Analysis

Alias analysis checks whether two variables can point to the same memory object. We consider a

context-insensitive alias analysis for a Java-like program in Figure 1a. Context-insensitive alias

analysis can be formulated as bidirected Dyck-reachability [Yan et al. 2011; Zhang et al. 2013].

Figure 1b gives the corresponding graph representation 𝐺 for alias analysis. The labeled graph is

bidirected, i.e., for each open-parenthesis edge 𝑢
L𝑙−→ 𝑣 , there exists an inverse edge 𝑣

M𝑙−→ 𝑢 with the

corresponding close-parenthesis label.

In graph 𝐺 , nodes represent variables in the program; edges represent variable reads and writes.

The alias analysis utilizes Dyck-reachability to capture the matching of reads and writes of the

same field of an object. Specifically, a “L𝑓 ”-labeled edge represents a write to the field 𝑓 and a

“M𝑓 ”-labeled edge represents a read of the field 𝑓 . For example, the statement b.f = a in Figure 1a is

modeled as an edge 𝑎
L𝑓−−→ 𝑏 in Figure 1b. Similarly, the statement d = c.g is modeled as an edge

𝑐
M𝑔−→ 𝑑 . Note that in the bidirected graph𝐺 , there exist two inverse edges 𝑏

M𝑓−−→ 𝑎 and 𝑑
L𝑔−→ 𝑐 for

the above edges. The bidirectedness achieves an over-approximation, which could lead to spurious

aliasing, as discussed by Xu et al. [2009, §4]. However, experimental results demonstrate that, in

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:5

practice, the overall performance is better than the algorithms proposed by Sridharan et al. [2005]

and Sridharan and Bodík [2006].

If two variables may point to the same object at runtime, there exists a Dyck-path (a path with

its labels forming a Dyck-word) between the corresponding nodes. For instance, variables 𝑎 and

𝑒 may point to the same object in Figure 1a. In Figure 1b, there exists a Dyck-path 𝑎
L𝑔−→ 𝑥

M𝑔−→ 𝑒

connecting nodes 𝑎 and 𝑒 . The edge labels form a Dyck-word “L𝑔M𝑔”.

2.2 Bidirected Dyck-Reachability

Dyck-reachability can be solved by the general context-free language (CFL) reachability algo-

rithms [Reps 1998]. It is well-known that CFL-reachability exhibits a (sub)cubic time complex-

ity [Chaudhuri 2008]. For bidirected Dyck-reachability, Zhang et al. [2013] observed an interesting

equivalence property on bidirected graphs, which leads to an average𝑂 (𝑚 log𝑚)-time reachability

algorithm. Chatterjee et al. [2018] further proposed an 𝑂 (𝑚)-time algorithm and proved that the

algorithm is optimal for bidirected Dyck-reachability.

In fast bidirected Dyck-reachability algorithms [Chatterjee et al. 2018; Zhang et al. 2013], Dyck-

reachable node pairs (𝑢, 𝑣) form a binary relation Dyck(𝑢, 𝑣). On bidirected graphs, the Dyck

relation is an equivalence relation. Therefore, the main idea of the fast bidirected Dyck-reachability

algorithms [Chatterjee et al. 2018; Zhang et al. 2013] is to merge nodes 𝑢 and 𝑣 for all (𝑢, 𝑣) ∈ Dyck.
The algorithms eventually generate a merged graph 𝐺𝑚 where each node in 𝐺𝑚 represents a set of

Dyck-reachable nodes in 𝐺 . Figure 1c presents the merged graph 𝐺𝑚 for the graph 𝐺 in Figure 1b.

In Figure 1c, nodes 𝑎, 𝑒 and nodes 𝑏, 𝑑 are merged together, indicating that the nodes 𝑎, 𝑒 and nodes

𝑏, 𝑑 are Dyck-reachable from each other in Figure 1b.

2.3 Dynamic Bidirected Dyck-Reachability

In software development, it is useful that static analysis can respond to code changes. Moreover, an

efficient analysis algorithm can update the analysis results incrementally without re-computing

everything from scratch for each code update. Therefore, this paper considers the dynamic version

of bidirected Dyck-reachability and proposes an efficient algorithm with an 𝑂 (𝑚) pre-processing
time, an 𝑂 (𝑛 · 𝛼 (𝑛)) query time, and an 𝑂 (1) query time.

We motivate our dynamic bidirected Dyck-reachability using the concrete example in Figure 1a.

Given an initial graph𝐺 in Figure 1b, we first call a modified version of the optimal Dyck-reachability

algorithm to obtain the merged graph 𝐺𝑚 in Figure 1c. Suppose that we have a code change of

“removing the statement x.g = a on line 13”. It corresponds to deleting the edge 𝑎
L𝑔−→ 𝑥 (and its

inverse edge 𝑥
M𝑔−→ 𝑎) in 𝐺 (Figure 1b). Therefore, our algorithm needs to update the merged 𝐺𝑚 .

Naïve algorithm. Upon an edge deletion, the naïve approach to update the bidirected Dyck-

reachability result is to apply the optimal bidirected Dyck-reachability algorithm [Chatterjee et al.

2018] on the new graph in 𝑂 (𝑚) time. Specifically, it merges nodes 𝑎, 𝑒 and nodes 𝑏, 𝑑 again. To

merge these nodes together, it needs to traverse four edges 𝑎
L𝑓−−→ 𝑏, 𝑏

L𝑔−→ 𝑐 , 𝑑
L𝑔−→ 𝑐 and 𝑒

L𝑓−−→ 𝑑 to

find the Dyck-paths between them. Clearly, these nodes have already been merged based on the

original graph in Figure 1b. The edge traversals and node merging are redundant.

Our algorithm. Our dynamic algorithm is much more efficient. Instead of working on the input

graph 𝐺 from scratch, our algorithm works directly on the merged graph 𝐺𝑚 . Recall that every

node 𝑛′ in𝐺𝑚 represents a set of Dyck-reachable nodes in𝐺 . Our algorithm only splits nodes 𝑛′ in
𝐺𝑚 whose representing nodes contain the node pairs in the graph 𝐺 which become unreachable

after the edge deletion.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:6 Yuanbo Li, Kris Satya, and Qirun Zhang

The main challenge is to decide if the nodes in 𝐺𝑚 should be split upon an edge deletion. Our

key insight is to maintain a weight attribute for each edge in the merged graph 𝐺𝑚 . Specifically, if

there are 𝑘 edges in the input graph 𝐺 merged into the same edge 𝑒 in the merged graph 𝐺𝑚 , the

weight associated with edge 𝑒 is 𝑘 . In Figure 1c, the weight of edge {𝑎𝑒}
L𝑓−−→ {𝑏𝑑} is 2 because it is

the result of merging the two edges 𝑎
L𝑓−−→ 𝑏 and 𝑒

L𝑓−−→ 𝑑 . Similarily, the weight of edge {𝑎𝑒}
L𝑔−→ {𝑥}

is also 2. These edges indicate that there is more than one Dyck-path connecting the two nodes

𝑎, 𝑒 in the original graph. When the edge 𝑎
L𝑔−→ 𝑥 is deleted, the weight of {𝑎𝑒}

L𝑔−→ {𝑥} becomes

1. Our algorithm checks whether the node {𝑎𝑒} needs to be split. The weight associated with the

outgoing edge {𝑎𝑒}
L𝑓−−→ {𝑏𝑑} is greater than 1, which means that nodes 𝑎, 𝑒 can still be merged by

another Dyck-path without the deleted edge 𝑎
L𝑔−→ 𝑥 . Therefore, our dynamic algorithm terminates

and does not split node {𝑎𝑒} in 𝐺𝑚 .

Compared to the four edge traversals in the naïve approach, our dynamic algorithm only needs

to traverse one edge {𝑎𝑒}
L𝑓−−→ {𝑏𝑑} in 𝐺𝑚 . Moreover, our algorithm does not need to re-compute

the all-pairs reachability information.

3 PRELIMINARIES

This section introduces bidirected Dyck-reachability and its dynamic variant.

3.1 Bidirected Dyck-Reachability

A Dyck language generates a set of strings of properly matched parentheses. It can be used

to model pairs of matching actions in program analysis such as function calls/returns, pointer

references/dereferences, and field writes/reads. A Dyck language 𝐷 with 𝑘 different kinds of

parentheses can be defined by the following context-free grammar:

𝑆 ::= 𝑆𝑆 | L𝑖 𝑆 M𝑖 | 𝜖, for 𝑖 = 1, . . . , 𝑘 .

This paper considers the bidirected variant of Dyck-reachability. We first define bidirected graphs:

Definition 3.1 (Bidirected graphs). Consider a directed graph𝐺 = (𝑉 , 𝐸) with each edge labeled

by a symbol from the alphabet Σ of a Dyck language. The graph is bidirected iff

• for each open-parenthesis edge 𝑢
L𝑖−→ 𝑣 , there exists an inverse edge 𝑣

M𝑖−→ 𝑢 with the

corresponding close-parenthesis label, and

• for each close-parenthesis edge 𝑢
M𝑖−→ 𝑣 , there exists an inverse edge 𝑣

L𝑖−→ 𝑢 with the

corresponding open-parenthesis label.

Consider an edge-labeled graph 𝐺 with each edge labeled by a symbol from the alphabet Σ of a

Dyck language 𝐷 . Each path 𝑝 in 𝐺 can realize a word 𝑅(𝑝) by concatenating all edge symbols in

that path. We say a path is a Dyck-path if the corresponding realized word 𝑅(𝑝) is a Dyck-word.
Moreover, a node pair (𝑢, 𝑣) is Dyck-reachable iff there exists a Dyck-path from node 𝑢 to node 𝑣 in

𝐺 . We also say node 𝑣 is Dyck-reachable from 𝑢.

Definition 3.2 (Bidirected Dyck-reachability). Given a bidirected graph𝐺 defined in Definition 3.1,

compute all Dyck-reachable node pairs in 𝐺 .

Example 3.3. Consider the bidirected graph in Figure 1b. Node 𝑒 is Dyck-reachable from node 𝑎

due to the path 𝑎
L𝑔−→ 𝑥

M𝑔−→ 𝑒 . Based on Definition 3.1, there also exists a corresponding Dyck-path

𝑒
L𝑔−→ 𝑥

M𝑔−→ 𝑎. Therefore, node 𝑎 is Dyck-reachable from 𝑒 as well. Let Dyck(𝑢, 𝑣) denote a binary

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:7

relation that represents Dyck-reachable node pairs. On bidirected graphs, the Dyck(𝑢, 𝑣) relation is

reflexive, symmetric, and transitive. Therefore, it is an equivalence relation [Zhang et al. 2013].

3.2 Dynamic Bidirected Dyck-Reachability

Dynamic bidirected Dyck-reachability extends Definition 3.2 such that the graph𝐺 is modified under

a sequence of edge insertions and deletions. Dynamic graph reachability can express incremental

program analysis problems in the presence of code changes.

Definition 3.4 (Dynamic bidirected Dyck-reachability). Dynamic bidirected Dyck-reachability

maintains all-pairs Dyck-reachability results in a bidirected graph 𝐺 under a sequence of graph

updates including the following opeartions.

• Edge insertion: insert an edge 𝑒 and its corresponding inverse edge 𝑒 ′ to 𝐺 .
• Edge deletion: delete an edge 𝑒 and its corresponding inverse edge 𝑒 ′ from 𝐺 .

After a graph update, we can query any Dyck-reachable pair based on the updated graph 𝐺 .

Different from static graph algorithms, the complexity description of dynamic graph algorithms

contains pre-processing time, update time, and query time.

Definition 3.5 (Complexity of dynamic graph reachability [Abboud and Williams 2014; Henzinger
et al. 2015]). The complexity description of dynamic graph reachability algorithms consists of the

following three components:

• The pre-processing time complexity 𝑝: The time complexity for computing the reachability

information on the initial graph. An initial graph can be empty.

• The update time complexity 𝑢: The time complexity for maintaining all-pairs reachability

after each graph update.

• The query time complexity 𝑞: The time complexity for answering a reachability query.

Therefore, the complexity of a dynamic graph reachability algorithm can be described as a tuple

(𝑝,𝑢, 𝑞). Note that in this work, we focus on dynamic bidirected Dyck-reachability algorithms with

constant query time 𝑞 = 𝑂 (1). For example, the naïve approach that re-runs the optimal bidirected

Dyck-reachability algorithm [Chatterjee et al. 2018] for each graph update exhibits a complexity

tuple of (𝑂 (𝑚),𝑂 (𝑚),𝑂 (1)).
4 DYNAMIC ALGORITHM FOR BIDIRECTED DYCK-REACHABILITY

This section presents our dynamic algorithm for bidirected Dyck-reachability. Our dynamic al-

gorithm can achieve 𝑂 (𝑚) pre-processing time, 𝑂 (𝑛 · 𝛼 (𝑛)) update time and 𝑂 (1) query time.

Section 4.1 provides an overview of our dynamic algorithms and briefly discusses the key insights.

Section 4.2 presents the dynamic algorithm for edge insertions. Section 4.3 describes the dynamic

algorithm for edge deletions. Finally, Section 4.4 analyzes the correctness and the complexity of the

proposed algorithms.

4.1 Overview

The dynamic algorithms take as input an initial bidirected graph and a sequence of edge insertions

and deletions that update the (possibly empty) initial graph. The algorithms maintain a set of

Dyck-reachable pairs to answer any reachability query in constant time after the graph updates.

The algorithms consist of three major components: pre-processing, update, and query. The pre-

processing step generates the initial Dyck-reachability results based on the initial graph. The update

component reads an edge insertion or deletion from the given sequence and updates the maintained

Dyck-reachability result accordingly. Finally, the query component answers reachability queries

between any nodes.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:8 Yuanbo Li, Kris Satya, and Qirun Zhang

Algorithm 1:Main Algorithm for Dynamic Bidirected Dyck-Reachability.

Input : Initial graph 𝐺 = (𝑉 , 𝐸) and an update sequence 𝑆

Output :Maintained merged graph 𝐺𝑚

1 Initialize the results to get the merged graph 𝐺𝑚 from the initial graph 𝐺

2 for operation 𝑜𝑝 (𝑒) in the sequence 𝑆 do
3 if 𝑜𝑝 is an insert oeperation then
4 Insert 𝑒 into the graph 𝐺

5 𝐺𝑚 ← DynamicInsertion (𝑒,𝐺,𝐺𝑚)
6 if 𝑜𝑝 is a delete operation then
7 Delete 𝑒 from the graph 𝐺

8 𝐺𝑚 ← DynamicDeletion (𝑒,𝐺,𝐺𝑚)

9 return 𝐺𝑚

edcba
L1 L2 L2 L1

Fig. 2. An input graph before deleting edge 𝑏
L2−−→ 𝑐 . The close-parenthesis edges are omitted for simplicity.

Our dynamic algorithms work directly on the merged graph 𝐺𝑚 . In the merged graph 𝐺𝑚 , each

node represents a set of nodes that are reachable to each other in the input graph 𝐺 [Chatterjee

et al. 2018; Zhang et al. 2013]. The key challenge arises when deleting an edge. Upon an edge

deletion, the algorithm needs to split nodes that are no longer reachable in the merged graph 𝐺𝑚 .

In particular, we need to find a termination condition for the recursive node splitting. We provide

an overview of our dynamic algorithms and present our idea for addressing the key challenge.

Pre-processing. The pre-processing step takes input graphs to generate the initial Dyck-reachability
results. The algorithm for this step is similar to a static algorithm for bidirected Dyck-reachability.

We use a modified version of the optimal bidirected Dyck-reachability algorithm [Chatterjee et al.

2018] for pre-processing.We denote this modified optimal Dyck-reachability as procedure Opt-Dyck′.
The modification for procedure Opt-Dyck’ is to maintain an extra attribute weight for edges in

the merged graph 𝐺𝑚 . In the merged graph 𝐺𝑚 , each edge 𝑒 represents a set of edges 𝐸𝑒 in the

input graph due to the merged nodes. We define the weight of 𝑒 as weight(𝑒) = |𝐸𝑒 |. The details of
maintaining the weight are discussed in Section 4.2.

Dynamic update. To update the reachability results efficiently, our dynamic update algorithms

work directly on the merged graph 𝐺𝑚 . We use the notation resp_node to represent the mapping

from nodes in the input graph 𝐺 to their representative merged nodes in 𝐺𝑚 . To maintain the

bidirected Dyck-reachability results, the dynamic update algorithms maintain the merged graph

𝐺𝑚 . The dynamic algorithm handles two types of graph updates: edge insertion and edge deletion.

For an edge insertion, the intuition is to insert the corresponding edge into the merged graph 𝐺𝑚

and then treat the newly merged graph 𝐺𝑚 as an input graph for the bidirected Dyck-reachability

algorithm. Section 4.2 discusses the details for handling edge insertions.

The key challenge is to handle dynamic updates for edge deletions. For each edge deletion, our

dynamic deletion algorithm splits the nodes in the graph that just became unreachable. The node

splitting is recursive on node predecessors.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:9

𝑐𝑏𝑑𝑎𝑒
L1 L2

(a) The merged graph.

𝑐

𝑏

𝑑

𝑎𝑒

L1
L1 L2

(b) After removing edge 𝑏
L2−−→ 𝑐 ,

split node 𝑏, 𝑑 .

𝑐

𝑏

𝑑

𝑎

𝑒

L1

L1
L2

(c) Recursively split node 𝑎, 𝑒 .

Fig. 3. Node splitting on merged graph.

Example 4.1 (Recursive node splitting). Consider an update to delete the edge 𝑏
L2−→ 𝑐 in the graph

in Figure 2.
1
Before the edge deletion, node pairs (𝑏, 𝑑) and (𝑎, 𝑒) are Dyck-reachable. Thus, in

the corresponding merged graph in Figure 3a, the nodes 𝑏, 𝑑 and nodes 𝑎, 𝑒 are merged together,

respectively. After deleting the edge 𝑏
L2−→ 𝑐 in the graph, there does not exist any Dyck-path.

Therefore, the node pairs (𝑏, 𝑑) and (𝑎, 𝑒) are no longer Dyck-reachable. As shown in Figure 3, the

dynamic algorithm first splits node {𝑏𝑑} and recursively splits its predecessor node {𝑎𝑒}.

However, two nodes can still be Dyck-reachable after the edge deletion. In this case, if the

dynamic algorithm splits them into two representative nodes, it has to merge them back later. We

consider this to be a redundant computation. To avoid any redundant computations, we should

not split the nodes in the graph with unchanged reachability results. As shown in Example 9, the

algorithm recursively splits the predecessors after splitting the current node. The key challenge is to

decide when to stop the recursive splitting in the dynamic algorithm for edge deletion. Our insight

for addressing the challenge is to use an attribute weight of the edges in𝐺𝑚 to help determine when

the splitting should terminate. The first observation is that, after an edge deletion, if a predecessor

node does not have an outgoing edge 𝑒 with weight(𝑒) ≥ 2, then there exists no other Dyck-path to

merge the nodes in the predecessor together. Therefore, the dynamic algorithm should recursively

split this predecessor node (Section 4.3).

Consider Example 9 again. After splitting node {𝑏𝑑}, node {𝑎𝑒} has outgoing edges {𝑎𝑒}
L1−→ 𝑏

and {𝑎𝑒}
L1−→ 𝑑 . The weight of edge {𝑎𝑒}

L1−→ 𝑏 is 1 because only one 𝑎
L1−→ 𝑏 edge in the original

graph is merged onto it. Similarly, the weight of the other edge {𝑎𝑒}
L1−→ 𝑑 is also 1. Because there

is no outgoing edge with weight greater than 1, the algorithm continues the node splitting. Thus,

the node {𝑎𝑒} needs to be split recursively.

Query. Given the merged graph𝐺𝑚 and the mapping resp_node, answering reachability queries is

straightforward. For a reachability query of two nodes 𝑢 and 𝑣 , we return whether resp_node(𝑢)
and resp_node(𝑣) are the same node in merged graph 𝐺𝑚 .

Main algorithm. Algorithm 1 presents themain algorithm for dynamic bidirectedDyck-reachability.

The algorithm takes as input an initial graph, an update sequence for the graph, and maintains

the merged graph for each edge update. Line 1 describes the pre-processing step, which calls the

optimal bidirected Dyck-reachability algorithm [Chatterjee et al. 2018]. Lines 2-8 perform the

dynamic updates based on the update sequence 𝑆 . The update is either an insertion or a deletion

with respect to an edge 𝑒 , representing the changes to be made in the input graph𝐺 . The algorithm

calls the corresponding dynamic algorithm for edge insertion and edge deletion accordingly.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:10 Yuanbo Li, Kris Satya, and Qirun Zhang

Algorithm 2: Dynamic Insertion for Bidirected Dyck-Reachability.

Input :Updated edge-labeled bidirected graph 𝐺 = (𝑉 , 𝐸),
The inserted edge 𝑒 = 𝑢

𝑙−→ 𝑣 in 𝐺 ,

The merged graph 𝐺𝑚 = (𝑉 ′, 𝐸 ′)
Output :Updated 𝐺𝑚

1 if 𝑢 is a new node in 𝐺 then
2 𝑉 ′ ← 𝑉 ′ ∪ {𝑢}
3 resp_node (u) = u

4 if 𝑣 is a new node in 𝐺 then
5 𝑉 ′ ← 𝑉 ′ ∪ {𝑣}
6 resp_node (v) = v

7 add edge 𝑒 ′ = resp_node (u)

𝑙−→ resp_node (v) in 𝐸 ′

8 Opt-Dyck’ (𝐺,𝐺𝑚)

9 return 𝐺𝑚

4.2 Dynamic Insertion Algorithm

The dynamic insertion algorithm maintains the updated merged graph 𝐺𝑚 after inserting the edge

𝑒 . In particular, it needs to insert a corresponding edge in the merged graph 𝐺𝑚 and invokes the

optimal bidirected Dyck-reachability algorithm variant Opt-Dyck’ on the merged graph𝐺𝑚 directly.

Optimal Dyck-reachability algorithm variant. The difference between the variant Opt-Dyck’

procedure and the original optimal bidirected Dyck-reachability algorithm [Chatterjee et al. 2018]

is that Opt-Dyck’ also needs to maintain an extra attribute weight for edges in the merged graph

𝐺𝑚 . The weight for each edge in the graph should be initialized to be 1 before the Dyck-reachability

algorithm starts. Procedure Opt-Dyck’ needs to update attribute weight whenever node merging

happens. When two nodes 𝑥,𝑦 are merged together, the incoming and outgoing edges of node

𝑥 are moved and become the incoming and outgoing edges of node 𝑦. The weights of the edges

are moved accordingly as well. In addition, for some incoming edge 𝑒1 = 𝑢 −→ 𝑥 or outgoing edge

𝑒2 = 𝑥 −→ 𝑣 of node 𝑥 , if the corresponding edges 𝑒3 = 𝑢 −→ 𝑦, 𝑒4 = 𝑦 −→ 𝑣 already exist, the

updated weights weight(𝑒3), weight(𝑒4) after the merging should be weight(𝑒1)+ weight(𝑒3) and
weight(𝑒2)+ weight(𝑒4) respectively. This modification does not affect the complexity of the optimal

algorithm.

Algorithm 2 describes the dynamic insertion algorithm. The algorithm takes an input graph 𝐺 ,

the inserted edge 𝑢
𝑙−→ 𝑣 and the merged graph 𝐺𝑚 as inputs and updates the merged graph 𝐺𝑚 .

• Lines 1-6 check whether the inserted edge 𝑒 involves any new nodes that do not exist in

the current graph 𝐺 . If there are such new nodes, the algorithm inserts the corresponding

nodes into the merged graph 𝐺𝑚 on lines 2 and 5. Then the algorithm updates the mapping

resp_node on lines 3 and 6.

• Lines 7-8 update the merged graph 𝐺𝑚 . In particular, line 7 adds the corresponding edge

𝑒 ′ for the inserted edge in the merged graph 𝐺𝑚 . The inserted edge in the merged graph

can possibly cause more merging in the graph. Line 8 uses the optimal bidirected Dyck-

reachability algorithm [Chatterjee et al. 2018] variant Opt-Dyck’ to perform the node merging

in 𝐺𝑚 . Opt-Dyck’ updates merged graph 𝐺𝑚 , which is the output of the edge insertion.

1
For brevity, we omit close-parenthesis edges in the bidirected graphs used in Section 4.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:11

Algorithm 3: Dynamic Deletion for Bidirected Dyck-Reachability.

Input :Updated edge-labeled bidirected graph𝐺 = (𝑉 , 𝐸) ,
The deleted edge 𝑒 = 𝑢

𝑙−→ 𝑣 in𝐺 ,

The merged graph𝐺𝑚 = (𝑉 ′, 𝐸′)
Output :Updated𝐺𝑚

1 Denote 𝑒 = 𝑢
𝑙−→ 𝑣

2 𝑢′ ← resp_node (u)

3 𝑣′ ← resp_node (v)

4 weight (𝑢′ 𝑙−→ 𝑣′) ← weight (𝑢′ 𝑙−→ 𝑣′) − 1

5 if weight (𝑢′
𝑙−→ 𝑣′) == 0 then

6 remove edge (𝑢′ 𝑙−→ 𝑣′) in𝐺𝑚

7 split_further (𝑢,𝐺,𝐺𝑚)

8 split_further (𝑣,𝐺,𝐺𝑚)

9 return𝐺𝑚

4.3 Dynamic Deletion Algorithm

The dynamic algorithm for edge deletion updates the merged graph 𝐺𝑚 by node splitting because

some of the reachable node pairs may become unreachable after the edge deletion. As discussed in

Section 4.1, these nodes need further split.

Challenge. As discussed in Example 9, nodes in the merged graph𝐺𝑚 need to split if their successor

node got split. A naïve approach is to split all nodes in the merged graph, equivalent to recomputing

everything from scratch. The key challenge of dynamic updates for edge deletion is to determine

the termination condition of the recursive node splitting. The insight of our algorithm is to use the

weight of the edges to decide when to terminate the node splitting to avoid redundant computation.

The weight of an edge 𝑒 ′ in the merged graph 𝐺𝑚 represents the number of edges in the input

graph 𝐺 that are merged into 𝑒 ′ in 𝐺𝑚 . For an edge 𝑒 ′, we denote 𝑆𝑒′ = {𝑒𝑖 = 𝑢𝑖
𝑙−→ 𝑣𝑖 }𝑖=1,...,𝑘

as the set of edges in 𝐺 that are merged into 𝑒 ′ in 𝐺𝑚 . If the weight satisfies the condition of

weight(𝑒 ′) = |𝑆𝑒′ | > 1, there exists at least one Dyck-path that merges the set of nodes {𝑢𝑖 }𝑖=1,...,𝑘
together in 𝐺𝑚 . We describe this condition on edges as a weight condition and further develop a

splitting condition to decide when to split nodes.

Definition 4.2 (Weight condition). For an edge 𝑒 ′ in 𝐺𝑚 and the set of edges 𝑆𝑒′ = {𝑒𝑖 = 𝑢𝑖
𝑙−→

𝑣𝑖 }𝑖=1,...,𝑘 merged into 𝑒 ′, if weight(𝑒 ′) > 1, we say the edge 𝑒 ′ satisfies the weight condition. If 𝑒 ′

satisfies the weight condition, after running the dynamic Dyck-reachability algorithm, the nodes

{𝑢𝑖 }𝑖=1...𝑘 should be in the same node in the maintained 𝐺𝑚 .

Definition 4.3 (Split condition and splitting restriction relation). For a node 𝑢 ′ in the merged graph

𝐺𝑚 , each of its outgoing edges {𝑒 ′𝑖 }𝑖 satisfying the weight condition generates a set of nodes {𝑢𝑖 𝑗 } 𝑗
described in Definition 4.2. The node set {𝑢𝑖 𝑗 } 𝑗 should not get split by the algorithm. We define

these sets as splitting restriction sets. Two nodes 𝑣1, 𝑣2 in the same splitting restriction sets satisfy

the splitting restriction relation. After an edge deletion, the node 𝑢 ′ should be split into two nodes

𝑢 ′
1
and 𝑢 ′

2
if satisfying the following split condition: (1) Nodes 𝑢 ′

1
, 𝑢 ′

2
are the merging nodes for two

disjoint non-empty node sets𝑉1,𝑉2 in𝐺 , respectively; and (2) there exists no node pair (𝑣1, 𝑣2) with
𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 such that 𝑣1, 𝑣2 satisfy the splitting restriction relation.

Example 4.4 (Node splitting using weight condition). Consider the input graph 𝐺 in Figure 4a

and an update of deleting the edge 𝑑
L1−→ 𝑏 in 𝐺 . The first graph in Figure 4b presents the merged

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:12 Yuanbo Li, Kris Satya, and Qirun Zhang

Procedure 4: split_further(𝑢,𝐺,𝐺𝑚)
Input :𝑢 The node in𝐺′ to split on

𝐺 : the input graph after the edge deletion

𝐺𝑚 : the merged graph

Output :𝐺𝑚 : the merged graph after the node splitting on 𝑢

1 orig_respnode← resp_node (u)

2 nodes← {𝑣 | resp_node(𝑣) = orig_respnode}
3 groups← make-disjoint-set(nodes)

4 for outgoing edge 𝑒′ from resp_node (𝑢) with weight (𝑒′) = 𝑘 > 1 do

5 let {𝑒𝑖 = 𝑠𝑖
𝑙−→ 𝑡𝑖 }𝑖=1...𝑘 be the set of edges merged into 𝑒′

6 groups.join({𝑠𝑖 }𝑖=1...𝑘)
7 if groups only has one partition then
8 return𝐺𝑚

9 split resp_node (𝑢) into groups.partitions

10 update the resp_node mapping accordingly

11 𝑉 ′ = 𝑉 ′ ∪ groups.partitions \{resp_node(𝑢) }

12 for 𝑒′ = 𝑤
𝑙−→ orig_respnode in 𝐸′ do

13 weight (resp_node(𝑤) 𝑙−→ orig_respnode) = 0

14 remove edge resp_node(𝑤) 𝑙−→ orig_respnode in𝐺𝑚

15 let {𝑒𝑖 = 𝑠𝑖
𝑙−→ 𝑡𝑖 }𝑖=1...𝑘 be the set of edges merged into 𝑒′

16 for node 𝑣 in partitions 𝑃 of groups with the multiset 𝑃 ∩ {𝑠𝑖 }𝑖 ≠ ∅ do

17 add resp_node (𝑤) 𝑙−→ 𝑣 in 𝐸′

18 weight (resp_node (𝑤) 𝑙−→ 𝑣) = |𝑃 ∩ {𝑠𝑖 }𝑖 |

19 for 𝑒′ = orig_respnode

𝑙−→ 𝑤 in 𝐸′ do

20 weight (orig_respnode

𝑙−→ resp_node(𝑤)) = 0

21 remove edge orig_respnode

𝑙−→ resp_node(𝑤) in𝐺𝑚

22 let {𝑒𝑖 = 𝑠𝑖
𝑙−→ 𝑡𝑖 }𝑖=1...𝑘 be the set of edges merged into 𝑒′

23 for node 𝑣 in partitions 𝑃 of groups with the multiset 𝑃 ∩ {𝑠𝑖 }𝑖 ≠ ∅ do

24 add 𝑣
𝑙−→resp_node (𝑤) in 𝐸′

25 weight (𝑣
𝑙−→resp_node (𝑤)) = |𝑃 ∩ {𝑠𝑖 }𝑖 |)

26 for node 𝑤 in predecessors of 𝑢 in𝐺′ before the splitting do
27 split_further (w,𝐺,𝐺𝑚)

28 return𝐺𝑚

graph 𝐺𝑚 for Figure 4a before the deletion of edge 𝑑
L1−→ 𝑏. After the edge deletion, in the merged

graph 𝐺𝑚 , node {𝑎𝑐𝑑 𝑓 } still has two outgoing edges {𝑎𝑐𝑑 𝑓 }
L1−→ 𝑏 and {𝑎𝑐𝑑 𝑓 }

L2−→ 𝑒 with weight 2.

As described in Definition 4.3, both edges satisfy the weight condition and each edge generates a

splitting restriction set. The splitting restriction set of edge {𝑎𝑐𝑑 𝑓 }
L1−→ 𝑏 is {𝑎, 𝑐} and the splitting

restriction set of {𝑎𝑐𝑑 𝑓 }
L2−→ 𝑒 is {𝑑, 𝑓 }. By splitting the node {𝑎𝑐𝑑 𝑓 } into two nodes {𝑎𝑐} and {𝑑 𝑓 },

the split condition in Definition 4.3 is satisfied because {𝑎, 𝑐} and {𝑑, 𝑓 } are non-empty disjoint sets,

and there exists no node pair (𝑣1, 𝑣2) ∈ {𝑎, 𝑐} × {𝑑, 𝑓 } with 𝑣1, 𝑣2 in the same splitting restriction

set. Thus the algorithm splits the node {𝑎𝑐𝑑 𝑓 } into {𝑎𝑐} and {𝑑 𝑓 } as shown in Figure 4b.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:13

f

e

d

cb

a

L1
L1

L1

L2

L2

(a) The input graph before the edge deletion.

e

bacdf

Before the node splitting

L1,3

L2,2

edf

bac

After the node splitting

L1,2

L2,2

(b) The merged graph for node splitting.

Fig. 4. The illustrative example for node splitting condition.

Algorithm 3 presents the details of the dynamic algorithm for edge deletions. The algorithm

takes the original graph 𝐺 , the deleted edge 𝑢
𝑙−→ 𝑣 and the merged graph 𝐺𝑚 as input, and then

generates the updated merged graph 𝐺𝑚 . The algorithm consists of two major components: the

edge deletion part and the splitting part. We describe each step in detail.

The splitting algorithm. Procedure 4 presents the splitting algorithm, which takes as input a

specified node 𝑢 to split in 𝐺𝑚 , the input graph 𝐺 , and the merged graph 𝐺𝑚 . It splits the node

𝑢 and performs the subsequent splitting in𝐺𝑚 . If the splitting condition is satisfied, Procedure 4

splits the nodes and updates the edges and their weight accordingly. The splitting procedure calls

itself on the predecessor nodes recursively. Specifically,

• Lines 1-11 split the node 𝑢 in the merged graph. The algorithm first decides the result nodes

of the splitting in lines 1-6. The variable groups represents a disjoint-set of nodes in the

merged node. The nodes in the same partition in groups should satisfy the splitting restriction

relation and remain merged together during the node splitting. Then in lines 4-6 the algorithm

iterates over the edges 𝑒 ′ in 𝐺𝑚 satisfying the weight condition. Each edge 𝑒 ′ satisfying the

weight condition generates a splitting restriction set. We keep the splitting restriction set

in the variable group, line 6 joins the set of nodes in the same splitting restriction set in

groups. The splitting condition is not satisfied if all the nodes in the groups are in the same

splitting restriction set. In this case, the split_further function stops at line 8. Otherwise

the algorithm splits the node 𝑢. Lines 9-11 split the node according to the splitting restriction

set in groups and update the representative node mapping resp_node.

• Lines 12-25 update the edges in the merged graph after the node splitting. Specifically, lines 12-

18 update the incoming edges to the new node and modify their weights accordingly in the

graph. Lines 19-25 update the outgoing edges and their weights in the merged graph.

• Lines 26-27 recursively split the predecessor nodes of 𝑢.

The deletion algorithm. Algorithm 3 presents the dynamic deletion algorithm. The deletion

algorithm deletes an edge according to the input sequence and calls the split_further procedure

to split the nodes. In Algorithm 3, lines 2-3 find the corresponding nodes 𝑢 ′ =resp_node(𝑢), 𝑣 ′ =
resp_node(𝑣) that nodes 𝑢, 𝑣 are merged into in graph 𝐺𝑚 . The weight of the corresponding 𝑒 ′ in
𝐺𝑚 of the deleted edge 𝑒 is decremented in line 4. If the weight reaches 0, the edge is deleted. Lines

7-8 split nodes 𝑢, 𝑣 from the merged nodes 𝑢 ′, 𝑣 ′ and also perform the subsequent splitting.

Example 4.5. We illustrate the algorithm on the graph in Example 4.4. Consider the case where

the dynamic algorithm handles an edge deletion for edge 𝑒 = 𝑑
L1−→ 𝑏. In lines 2-3 of the Algorithm 3,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:14 Yuanbo Li, Kris Satya, and Qirun Zhang

the dynamic algorithm identifies the corresponding edge 𝑒 ′ = {𝑎𝑐𝑑 𝑓 }
L1−→ 𝑏. The weight of 𝑒 ′ is

decremented by 1 in line 4. Then, the split_further procedure runs on the node {𝑎𝑐𝑑 𝑓 }.
In lines 4-6 of Procedure 4, node {𝑎𝑐𝑑 𝑓 } has two outgoing edges satisfying the weight condition.

After the edge deletion, the first outgoing edges {𝑎𝑐𝑑 𝑓 }
L1−→ 𝑏 is merged by 𝑎

L1−→ 𝑏 and 𝑐
L1−→ 𝑏. Thus

it generates a splitting restriction set {𝑎, 𝑐} in line 6. Similarly, the outgoing edge {𝑎𝑐𝑑 𝑓 }
L2−→ 𝑒 is

merged by 𝑑
L2−→ 𝑒 and 𝑓

L2−→ 𝑒 . The splitting restriction set for {𝑎𝑐𝑑 𝑓 }
L2−→ 𝑒 is {𝑑, 𝑓 }. The splitting

condition is satisfied, and the node {𝑎𝑐𝑑 𝑓 } is split into two nodes {𝑎𝑐} and {𝑑 𝑓 }. Because {𝑎𝑐𝑑 𝑓 }
node has no incoming edges, lines 12-18 are skipped. Then, lines 19-25 update the edge {𝑎𝑐𝑑 𝑓 }

L2−→ 𝑒

to {𝑑 𝑓 }
L2−→ 𝑒 and all the edge weights are updated as well. Finally, lines 26-28 recursively split

the predecessor nodes of {𝑎𝑐𝑑 𝑓 }. Because the node {𝑎𝑐𝑑 𝑓 } does not have any predecessors, the

recursive node splitting terminates.

4.4 Algorithm Analysis

4.4.1 Correctness. In this section, we show the correctness of our dynamic bidirected Dyck-

reachability algorithm. The correctness of the pre-processing and the query algorithm is immediate.

Thus, we focus on establishing the correctness of the dynamic updates.

Recall that there are two types of graph updates: edge insertions and edge deletions. We first

show the correctness of the dynamic update for edge insertions.

Lemma 4.6. For an edge insertion, the dynamic algorithmmaintains the bidirected Dyck-reachability
result correctly, i.e., two nodes are Dyck-reachable in 𝐺 iff they are in the same merged node in the
maintained merged graph 𝐺𝑚 ,

Proof. Algorithm 2 handles the update of edge insertion for the edge 𝑒 in the dynamic algorithm.

Algorithm 2 only inserts the corresponding edge 𝑒 ′ of 𝑒 in the merged graph and then calls

the procedure Opt-Dyck’. The soundness and completeness of the maintained merged graph is

guaranteed due to the Lemmas 3.1 and 3.2 in the work of Chatterjee et al. [2018].

□

Algorithm 3 handles the graph updates for edge deletions. To prove the correctness of Algorithm

3, we first show that after deleting an edge from graph𝐺 , the deletion algorithm correctly maintains

the merged graph 𝐺𝑚 . We discuss the correctness of the reachability between an arbitrary node

pair (𝑢, 𝑣) in the graph 𝐺 based on three cases.

• Before the edge deletion, nodes 𝑢, 𝑣 are Dyck-reachable. After the edge deletion, 𝑢, 𝑣 are still

Dyck-reachable. This case is discussed in Lemma 4.7.

• Before the edge deletion, nodes 𝑢, 𝑣 are Dyck-reachable.After the edge deletion, 𝑢, 𝑣 are no

longer Dyck-reachable. Lemma 4.8 covers the correctness for this case.

• Before the edge deletion, nodes 𝑢, 𝑣 are not Dyck-reachable. After the edge deletion, 𝑢, 𝑣 are

still not Dyck-reachable. This case is discussed in Lemma 4.9.

Notice that edge deletions do not introduce new Dyck-paths in the graph, thus it is impossible that

two nodes that are initially not Dyck-reachable become Dyck-reachable after the edge deletion.

Lemma 4.7. For any two distinct nodes 𝑢, 𝑣 that are Dyck-reachable, and still Dyck-reachable after
the deletion of an arbitrary edge, Algorithm 3 maintains the merged graph 𝐺𝑚 such that 𝐺𝑚 satisfies
resp_node(𝑢) == resp_node(𝑣).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:15

𝑢𝑣 𝑎· · · 𝑏 · · · 𝑐

𝑑 · · · 𝑠 𝑡
𝑒

Fig. 5. Illustration for Lemma 4.7: Algorithm 3 does not split reachable node pair (𝑢, 𝑣).

𝑢𝑣 𝑎1𝑎2· · · 𝑏1𝑏2

𝑑

· · · 𝑠𝑠2 𝑡𝑡2 𝑔· · ·𝑒

Fig. 6. Illustration for Lemma 4.8: Procedure 4 works on node pair (𝑢, 𝑣) which is Dyck-reachable before the

edge insertion but no longer reachable after the deletion.

Proof. Because nodes 𝑢, 𝑣 are Dyck-reachable before and after the deletion of edge 𝑒 = 𝑠
𝑙−→ 𝑡

there exists a Dyck-path 𝑃 between 𝑢, 𝑣 such that 𝑃 does not involve 𝑒 . Figure 5 depicts this

situation. Suppose the path {𝑢𝑣} −→ · · · −→ 𝑎 −→ 𝑏 −→ · · · −→ 𝑐 −→ · · · −→ 𝑏 −→ 𝑎 −→ · · · −→ {𝑢𝑣} is
the corresponding Dyck-path 𝑃 ′ in the merged graph 𝐺𝑚 . Algorithm 3 applies the node splitting

algorithm recursively along the predecessor nodes. Suppose that node 𝑎 in the path 𝑃 ′ is the
first predecessor of nodes 𝑠, 𝑡 and Algorithm 3 tries to split node 𝑎. Because weight(𝑎 −→ 𝑏) > 1,

which satisfies the weight condition , the corresponding node of 𝑎 in path 𝑃 do not get split. This

guarantees that the nodes 𝑢, 𝑣 remain in the same node in 𝐺𝑚 . □

Lemma 4.8. For two distinct nodes 𝑢, 𝑣 that are Dyck-reachable before the deletion of edge 𝑒 = 𝑠
𝑙−→ 𝑡 ,

but no longer Dyck-reachable after the edge deletion. Algorithm 3 splits these two nodes 𝑢, 𝑣 such that
resp_node(𝑢) ≠ resp_node(𝑣).

Proof. We prove the lemma by contradiction. Because𝑢, 𝑣 are Dyck-reachable before the deletion

of 𝑒 = 𝑠
𝑙−→ 𝑡 but no longer reachable after the edge deletion, all Dyck-paths between 𝑢, 𝑣 must

include the edge 𝑠
𝑙−→ 𝑡 . For an arbitrary Dyck-path 𝑃 between 𝑢, 𝑣 , the path 𝑃 must contain the

edge 𝑒 . Figure 6 depicts the situation. We denote an arbitrary Dyck-path 𝑃 = 𝑢 −→ · · · −→ 𝑎1 −→ 𝑏1
−→ · · · −→ 𝑠 −→ 𝑡 −→ · · · −→ 𝑔 −→ · · · −→ 𝑡2 −→ 𝑠2 −→ · · · −→ 𝑏2 −→ 𝑎2 −→ · · · −→ 𝑣 in 𝐺 . Without loss of

generality, we omit the edge labels. Algorithm 3 tries to split nodes recursively from the node

{𝑠𝑠2} to {𝑢𝑣} along the path. For the sake of contradiction, suppose that the nodes 𝑢, 𝑣 are still in
the same node,i.e.resp_node(𝑢) =resp_node(𝑣), after the update. This indicates the node splitting
terminates early along the path to {𝑢𝑣}. Suppose that the splitting terminates at node {𝑎1𝑎2}. Then,
there must exist an outgoing edge {𝑎1𝑎2} −→ 𝑑 with weight greater than 1 to keep the nodes 𝑎1𝑎2
merged together. This means there exists a Dyck-path using nodes in the merged node 𝑑 , which

is a new Dyck-path that does not involve 𝑒 . Notice that if the new Dyck-path using nodes in the

merged node 𝑑 still involves 𝑒 , we can apply the same argument repetitively until we find the

Dyck-path that does not involve 𝑒 . Because we have a Dyck-path between 𝑢, 𝑣 that does not involve

𝑒 , it contradicts the hypothesis. □

Lemma 4.9. Let 𝑢, 𝑣 be two distinct nodes that are not Dyck-reachable before and after the edge
deletion. When Algorithm 3 terminates, resp_node(𝑢) ≠ resp_node(𝑣).

This lemma is straightforward because Algorithm 3 does not merge nodes.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:16 Yuanbo Li, Kris Satya, and Qirun Zhang

Theorem 4.10. After an edge insertion or edge deletion, two nodes 𝑢, 𝑣 in the input graph 𝐺 are
Dyck-reachable, if and only if resp_node(𝑢) = resp_node(𝑣) after applying the dynamic bidirected
Dyck-reachability algorithm.

Proof. The theorem follows immediately from Lemmas 4.7, 4.8 and 4.9. □

As the merged graph 𝐺𝑚 is updated correctly, the correctness of the algorithm follows.

Corollary 4.11 (Correctness of dynamic algorithm). Algorithm 1 maintains the bidirected
Dyck-reachability result correctly for given graph update sequences.

4.4.2 Complexity. Before presenting the running time complexity for our algorithm, we first show

that our dynamic algorithm does not have any redundant computation.

Definition 4.12 (Redundant computation). There are two types of redundant computation in

dynamic Dyck-reachability algorithm:

• Handling edge insertions. Consider two nodes 𝑢, 𝑣 that are Dyck-reachable before the inser-

tion. If the dynamic algorithm merges the two nodes 𝑢, 𝑣 again in the merged graph 𝐺𝑚 , the

merging between 𝑢, 𝑣 is considered as redundant computation.

• Handling edge deletions. If two Dyck-reachable node are split in the merged graph in the

algorithm and later merged back together. The splitting and the merging for these nodes are

considered redundant computation in the algorithm.

Theorem 4.13 (No redundant computation). There is no redundant computation defined in
Definition 4.12 in Algorithm 1.

Proof. To illustrate there exists no redundant computation in Algorithm 1, it suffices to show

that the there is no redundant computation in the dynamic insertion and deletion algorithms, i.e.,
Algorithm 2 and Algorithm 3. We first consider Algorithm 2, this dynamic insertion algorithm uses

the merged graph𝐺𝑚 with an inserted edge as inputs for the Opt-Dyck’ procedure. If two nodes 𝑢, 𝑣

are Dyck-reachable in the graph 𝐺 , they are in the same node in 𝐺𝑚 before the insertion. Because

Opt-Dyck’ does not split nodes, thus nodes 𝑢, 𝑣 do not get merged again. Therefore, there is no

redundant computation in Algorithm 2 for edge insertions. Algorithm 3 handles edge deletions.

When two nodes 𝑢, 𝑣 are merged together, the weight always increases for at least one edge.

Specifically, the weight of the edge that introduces the merging increases. In the dynamic update

for edge deletions, edge weights only decrease except for lines 18 and 25. Because the sum of

the weights of the new edges in lines 18 and 25 is the weight of the edge 𝑒 ′ in line 12 and 19,

respectively, which gets deleted in lines 14 and 21. The weights associated with these two lines still

decrease. Thus the dynamic algorithm does not merge any nodes. As Corollary 4.11 guarantees

the correctness of the algorithm, there is no redundant computation for edge deletion updates. In

conclusion, there is no redundant work in the dynamic bidirected Dyck-reachability algorithm. □

Next, we focus on the update complexity of the dynamic algorithm. We first introduce a key

quantitative relation between the input graph 𝐺 and the merged graph 𝐺𝑚 .

Lemma 4.14. The edge number |𝐸 ′ | of the merged graph 𝐺𝑚 is 𝑂 (𝑛) where 𝑛 = |𝑉 | is the node
number in the input graph 𝐺 .

Proof. We partition the edge set 𝐸 ′ into 𝑘 distinct sets {𝐸 ′𝑖 }𝑖=1...𝑘 . For the directed merge graph

𝐺𝑚 , we have that
∑

𝑣∈𝑉 𝑑𝑖𝑛 (𝑣) = |𝐸 ′ |𝑖 for each type of parentheses. For each type of parentheses,

the in-degree of an arbitrary node 𝑑in (𝑣) ≤ 1. Therefore, it follows that

∑
𝑣∈𝑉 𝑑𝑖𝑛 (𝑣) is𝑂 (|𝑉 |). With

𝑘 sets of edges, |𝐸 ′ | is still 𝑂 (|𝑉 |). □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:17

Lemma 4.15. The dynamic algorithm for edge insertion has a complexity of 𝑂 (𝑛).

Proof. This follows from the complexity of the Opt-Dyck’ algorithm. Its complexity has been

shown to be linear to the edge number in the merged graph𝐺𝑚 [Chatterjee et al. 2018]. According

to the Lemma 4.14, the complexity is linear to the node number in 𝐺 . □

Lemma 4.16. The time complexity of the dynamic algorithm for edge deletion is 𝑂 (𝑛 · 𝛼 (𝑛)) where
𝑛 is the number of nodes in the input graph.

Proof. Wefirst analyze the complexity for procedure split_further. The procedure split_further

recursively runs on the predecessors of the nodes. We first claim that the number of the recursive

runs of split_further is 𝑂 (|𝑉 ′ |) where 𝑉 ′ is the node set of the updated merged graph 𝐺𝑚 . It is

due to the property that if the split_further procedure does not split nodes, as shown in lines 7-8,

then the procedure terminates early and stops the recursive runs. Thus, the number of runs of

procedure split_further is bounded by the node number changes in the merged graph, which is

𝑂 (|𝑉 ′ |). In lines 4-6, the number of iteration depends on the number of outgoing edges for 𝑣 ′, so
the complexity is bounded by the out-degree 𝑑out (𝑣 ′) in𝐺𝑚 . This means the total execution time of

lines 4-6 is 𝑂 (|𝐸 ′ |). Because the join operation of disjoint-set is 𝑂 (𝛼 (𝑛)) [Tarjan 1975], the total

running time for these lines is𝑂 (𝑛 ·𝛼 (𝑛)). For the weight update, lines 12-18 and lines 19-25 iterate
on the incoming and outgoing edges in the merged graph 𝐺𝑚 . Thus, lines 12-18 and lines 19-25

execute 𝑂 (|𝐸 ′ |) times during all executions of split_further, so the running time for these lines is

bounded by 𝑂 (𝑛) as well. Finally, as we discussed the total number of executions of split_further

is 𝑂 (𝑛), the total running time of lines 26-28 is also bounded by 𝑂 (𝑛). In conclusion, the total

running time for split_further during all executions is 𝑂 (𝑛 · 𝛼 (𝑛)). With the constant running

time of the deletion algorithm in lines 1-9, the overall running time of the dynamic algorithm for

edge deletion is 𝑂 (𝑛 · 𝛼 (𝑛)) □

Theorem 4.17. The time complexity of the dynamic insertion and dynamic deletion algorithm of
bidirected Dyck-reachability is 𝑂 (𝑛 · 𝛼 (𝑛)) where 𝑛 is the number of nodes in the input graph and
𝛼 (𝑛) is the inverse Ackermann function.

Proof. It follows from Lemmas 4.15 and 4.16 immediately. □

5 EVALUATION

This section evaluates the performance of our dynamic bidirected Dyck-reachability algorithms.

We compare our dynamic algorithms against an incremental Datalog engine (DDlog) [Ryzhyk and

Budiu 2019]. Incremental computation based on Datalog is perhaps the most popular approach for

incremental program analysis. DDlog and LogiQL (a commercial product of LogicBlox) are two

popular incremental Datalog solvers. We choose DDlog because it is more recent and it is publicly

available.
2
We describe four evaluated algorithms as follows.

• DynDyck. Our dynamic algorithm described in Algorithm 1. The algorithm processes each

graph update in 𝑂 (𝑛 · 𝛼 (𝑛)) time.

• DynDyck𝑛 . The naïve dynamic algorithm by running the optimal Dyck-reachability [Chat-

terjee et al. 2018] for each update. It processes each graph update in 𝑂 (𝑚) time.

• DDlog. The incremental Datalog solver which only performs the minimum computation

necessary to handle each graph update.

• DDlog𝑛 . The naïve Datalog approach that recomputes everything (by running DDlog) from

scratch upon each update.

2
https://github.com/vmware/differential-datalog.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://github.com/vmware/differential-datalog

62:18 Yuanbo Li, Kris Satya, and Qirun Zhang

Table 1. Benchmark statistics and running time for alias analysis.

Subject # Node # Edges # Fields 𝑇Dyck (s) 𝑇DDlog (s)

antlr 23031 21353 1246 0.42 215.63

bloat 26656 23598 1360 0.45 221.50

chart 51356 44501 3132 0.85 1193.37

eclipse 24004 21943 2857 0.49 216.40

fop 46253 39125 2857 0.79 809.11

hspldb 21646 20271 1160 0.36 214.41

jython 28033 24889 1398 0.52 215.46

luindx 22631 20915 1228 0.41 214.75

lusearch 23344 21569 1275 0.43 215.02

pmd 24586 22522 1322 0.51 218.17

xalan 21574 20186 1152 0.49 221.26

Table 2. Benchmark statistics and running time for data-dependence analysis.

Subject # Node # Edges # Client Edges # Parens 𝑇Dyck (s) 𝑇DDlog (s)

btree 1811 1757 455 801 0.01 0.03

sample 931 834 11 389 0.02 0.02

mushroom 899 809 1 376 0.02 0.02

parser 1686 1561 27 690 0.02 0.03

check 5240 5267 1304 2167 0.07 0.07

compiler 4189 4101 184 1646 0.05 0.06

compress 4375 4238 341 1721 0.05 0.06

crypto 6202 6300 1464 2540 0.08 0.09

derby 6116 5948 371 2358 0.08 0.08

helloworld 4074 3969 89 1596 0.05 0.06

mpegaudio 9650 9391 1978 3564 0.11 0.12

scimark 4583 4429 477 1782 0.05 0.06

startup 5493 5367 280 2165 0.07 0.07

sunflow 3891 3792 31 1520 0.05 0.05

xml 23922 24391 806 9128 0.34 0.31

In the experiments, we focus on evaluating two aspects of the dynamic algorithms: efficiency and

scalability. For efficiency, we focus on demonstrating the benefits of dynamic algorithms, i.e., the
speedups of DynDyck and DDlog over DynDyck𝑛 and DDlog𝑛 , respectively. For scalability, we

focus on illustrating the running time increase based on the length of update operations. Finally, we

evaluate all algorithms based on three settings: (1) Incremental setting (Section 5.2). We randomly

insert all edges to initially empty graphs; (2) Decremental setting (Section 5.3). We randomly delete

edges from the original graphs; and (3) Mixed setting (Section 5.4). We interleave edge insertions

and edge deletions randomly in the graph.

5.1 Experimental Setup

Benchmarks. We use two sets of benchmark programs in our evaluation.

• Alias analysis. We first consider a context-insensitive alias analysis for Java in the standard

DaCapo suite [Blackburn et al. 2006]. The analysis problem has been formulated as a bidirected

Dyck-reachability problem [Yan et al. 2011; Zhang et al. 2013]. Specifically, the analysis utilizes

Dyck-reachability to model field-sensitivity. The “L𝑖”-labeled edges depict field writes and

the “M𝑖”-labeled edges field reads in Java. We obtain the Symbolic Points-to Graphs using

the tool described in the work of Yan et al. [2011]. Table 1 presents the basic statistics of the

graphs in this benchmark, including the node number, edge number and the total number of

different fields for each benchmark. We also apply the optimal bidirected Dyck-reachability

algorithm [Chatterjee et al. 2018] and the Datalog solver DDlog on the benchmark graphs. The

performance of the two algorithms are reported in 𝑇Dyck and 𝑇DDlog columns of Table 1. For

this benchmark, the Dyck-reachability is on average 617× faster than the Datalog approach.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:19

• Data-dependence analysis. In addition, we evaluate the dynamic algorithms using a context-

sensitive data-dependence analysis described in the work of Tang et al. [2015]. The analysis

utilizes Dyck-reachability to model context-sensitivity. Specifically, the “L𝑖”-labeled edges

depict function calls and the “M𝑖”-labeled edges function returns. We apply the analysis

to the same benchmark programs given in the reference paper [Tang et al. 2015], which

consists of 11 Java programs from SPECjvm2008
3
and four randomly selected programs from

GitHub. Note that the input graphs considered in the original work are directed graphs. In our

experiment, we use the relaxed bidirected graphs as an over-approximation for the analysis.

The programs considered in this benchmark are relatively small. We choose the second

benchmark because the Datalog approach ran out of time in the first benchmark. In this

benchmark, the edges in the input graphs fall into two categories. The first category contains

edges that encode information about the library code. The second category contains edges

that encode information about client code and interactions between libraries and clients.

Table 2 presents the statistics of the graphs extracted from the benchmark, including the node

number, edge number, the number of client-related edges and the number of parenthesis

types. Similarily, we evaluated the static algorithm of Dyck-reachability and Datalog on

the benchmark graphs. The 𝑇Dyck and 𝑇DDlog columns report the performance result. In this

benchmark, the two (static) algorithms have a similar performance. The bidirected Dyck-

reachability algorithm is 1.23× faster than the Datalog solver on average.

Datalog approach for Dyck-reachability. In our experiments, we compare the performance of

our dynamic bidirected Dyck-reachability algorithm against Differential Datalog [Ryzhyk and Budiu

2019], a recent incremental Datalog engine. Logic programming has widely been applied to static

analysis problems [Bravenboer and Smaragdakis 2009; Madsen et al. 2016; Reps 1993] and Datalog

is one of the popular declarative logic programming languages. We translate the bidirected Dyck-

reachability problem to a corresponding Datalog program. Specifically, the labeled edges in the

input graphs can be translated to relations in Datalog programs. For example, we use the relations

open(𝑢, 𝑖, 𝑣) and close(𝑢, 𝑖, 𝑣) to present edges𝑢
L𝑖−→ 𝑣 and𝑢

M𝑖−→ 𝑣 in the input graph, respectively. The

Dyck grammar can be represented as three Datalog rules “S(𝑢, 𝑣) :– open(𝑢, 𝑖, 𝑎) 𝑆 (𝑎, 𝑏) close(𝑏, 𝑖, 𝑣)”,
“S(𝑢, 𝑣) :– S(𝑢, 𝑎) 𝑆 (𝑎, 𝑣)”, and “S(𝑢, 𝑣) :– epsilon(𝑢, 𝑣)”. The DDlog solver offers a commit command

for expressing incremental changes in the inputs. To capture the dynamic updates in the input

graphs, we add the commit command after each edge insertion and deletion. Finally, the edge

insertions and deletions are encoded as commands insert and delete in DDlog, respectively,

according to its documentation.
4
As our proposed algorithms are sequential algorithm, we compare

against the sequential version of DDlog.

Sequence generation. Both the Dyck-reachability algorithm and Datalog implementation take as

input an initial graph and a sequence of edge insertion and deletion operations. We generate three

different types of operation sequences: incremental, decremental, and mixed sequences.

• Incremental Sequences. The goal of executing the incremental sequences is to explore the

performance of the dynamic algorithm for edge insertions. For each input graph in the two

benchmarks, we generate an incremental sequence by inserting all edges into an initially

empty graph in a random order.

• Decremental Sequences. We design the decremental sequences to evaluate the performance of

the dynamic algorithm for edge deletions. The decremental sequences simulate the situation

of code deletions. In the first benchmark, algorithms take the complete input graphs from

3
https://www.spec.org/jvm2008/.

4
https://github.com/vmware/differential-datalog/blob/master/doc/command_reference/command_reference.md.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://www.spec.org/jvm2008/
https://github.com/vmware/differential-datalog/blob/master/doc/command_reference/command_reference.md

62:20 Yuanbo Li, Kris Satya, and Qirun Zhang

Table 3. Running time of DynDyck and DDlog

over incremental and decremental sequences for

programs in the alias analysis benchmark.

Subject

DynDyck Time (s) DDlog Time (s)

Incremental Decremental Incremental Decremental

antlr 1.28 2.28 542.15 542.47

bloat 1.64 2.41 554.34 551.05

chart 5.75 8.42 4920.39 5044.22

eclipse 1.40 2.34 538.94 532.53

fop 4.52 4.39 2582.05 2782.81

hspldb 1.18 2.29 536.61 533.48

jython 1.83 2.52 544.61 559.69

luindx 1.27 2.22 536.74 534.27

lusearch 1.35 2.21 537.95 558.32

pmd 1.45 2.20 548.81 563.62

xalan 1.17 2.12 537.07 558.48

Table 4. Running time of DynDyck and DDlog

for programs in the data-dependence analysis

benchmark. Each “∗” denotes that the running

time is less than 0.01 seconds.

Subject

DynDyck Time (s) DDlog Time (s)

Incremental Decremental Incremental Decremental

btree 0.02 0.01 0.69 0.17

sample 0.01 0.00* 0.29 0.00*

mushroom 0.01 0.00* 0.30 0.00*

parser 0.02 0.00* 0.62 0.01

check 0.09 0.03 2.10 0.53

compiler 0.06 0.00* 1.56 0.09

compress 0.06 0.00* 1.61 0.13

crypto 0.12 0.07 2.60 0.64

derby 0.11 0.01 2.35 0.16

helloworld 0.06 0.00* 1.51 0.04

mpegaudio 0.25 0.01 3.66 0.72

scimark 0.07 0.01 1.76 0.18

startup 0.09 0.01 2.09 0.13

sunflow 0.05 0.00* 1.50 0.02

xml 1.48 0.04 10.09 0.33

the benchmark as initial graphs. All edges are deleted from the graphs in a random order. In

the second benchmark, because the library codebase is usually untouched by developers, our

decremental sequences only delete all client edges based on a random order.

• Mixed Sequences. The mixed sequences focus on investigating the performance of the dynamic

algorithm in the presence of both edge insertion and deletion operations. In mixed sequences,

to ensure the validity of edge insertions, we only insert edges that exist in the original

input graphs. We do not insert purely random edges because those edges might be invalid

according to the program semantics. To achieve this, before generating the mixed sequences,

we delete a set of edges and collect these edges in a candidate insertion pool. The insertion

operations randomly choose edges from the candidate insertion pool. When deleting an

edge, we also put the deleted edge back to the pool. Similar to the decremental setting, in

the second benchmark, we only add client edges to the candidate insertion pool. The mixed

sequences consists of 50% insertion operations and 50% deletion operations. We evaluate the

performance of different approaches over sequences of different lengths, ranging over 10%,

20%, 30%, 40%, 50% of all graph edges in each alias analysis benchmark program and all client

edges in each data-dependence analysis benchmark program.

Implementation. We implement all algorithms in C++. Both the optimal static Dyck-reachability

algorithm [Chatterjee et al. 2018] and our dynamic Dyck-reachability algorithm share similar data

structures. All executables are compiled using GCC with the “-O2” optimization flag. For DDlog,

we use the latest stable release v0.41.0 as of June 2021. All experiments were conducted on a server

with two AMD EPYC 7402 CPUs and 512GB RAM, running Ubuntu 20.04.

5.2 Performance Evaluation on Incremental Sequences

We report the performance comparisons based on dynamic insertion operations. As described

above, we evaluate the four different algorithms DynDyck, DynDyck𝑛 , DDlog and DDlog𝑛 over

the incremental sequences on two benchmarks. Recall that we also collect the running time for the

corresponding static approaches on the original graphs in Table 1 and Table 2, i.e., the final graphs
after processing the entire incremental sequences. The running time of the static approaches can

be treated as a lower bound for the running time of any dynamic insertion algorithms. Tables 3 and

4 present the detailed results for our experiments on incremental sequences for two benchmarks.

We discussed the following observations for the experimental results.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:21

antlr bloat chart eclipse fop hspldb jython luindx lusearch pmd xalan
0

500

1,000

1,500

2,000

7
9
2

7
6
8 8
9
2

7
7
6 8
5
8

7
8
0

7
8
0

7
5
8

7
7
4

8
0
5

7
8
19
3
3

1
,3
4
6

1
,3
6
9

9
9
4

2
,1
1
0

8
7
6

1
,3
5
4

9
0
6

4
4
2

5
0
2

4
0
55
1
3

5
3
0

5
6
0

5
1
3 6
0
6

4
9
4

5
5
4

5
1
6

5
1
6

5
8
1

4
9
2

S
p
ee
d
u
p

1 Incremental 2 Decremental
3 Mixed

Fig. 7. Speedup of DynDyck over DynDyck𝑛 for alias analysis.

bt
re

e

sa
m

pl
e

m
us

hr
oo

m
pa

rs
er

ch
ec

k

co
m

pi
le
r

co
m

pr
es

s

cr
yp

to

de
rb

y

he
llo

w
or

ld

m
pe

ga
ud

io

sc
im

ar
k

st
ar

tu
p

su
nfl

ow xm
l

0

200

400

600

2
0
9

7
4

6
9

1
4
2

3
2
1

2
9
4

2
9
3 3
4
0

3
4
8

2
7
8

3
5
3

2
8
3 3
2
4

2
7
1

6
2
9

4
4

3
0

2
8 4
0

9
6

8
2 8
4 1
0
7

1
0
6

8
0

1
5
5

8
4 1
0
0

7
4

3
5
3

S
p
ee
d
u
p

1 DynDyck Incremental 2 DDlog Incremental

Fig. 8. Speedup Comparison of DynDyck and DDlog over naïve updates on incremental sequences for data-

dependence analysis.

Efficiency. The “Incremental” columns in Tables 3 and 4 describe the execution time of DynDyck

and DDlog based on incremental sequences. The “Running Time” columns in Tables 1 and 2

describe the execution time of the algorithms in the static setting. The performance of DynDyck is

close to the optimal (static) solution in Tables 1 and 2. In the first benchmark, the running time of

DynDyck is on average 3.66× more than the running time of the optimal (static) solution. In the

second benchmark, the running time is 1.46× more. It demonstrates that our dynamic DynDyck

algorithm is efficient because the running time is not far away from the static solution. The running

time of dynamic DDlog is on average 2.71× and 26.48× more than that of the static DDlog on

two benchmarks, respectively. We notice that the slow down ratio of DynDyck is much smaller

than that of DDlog in the second benchmark. The slow down ratio for the first benchmark is

slightly larger. We note that the length of the incremental sequence of the first benchmark is

significant longer than that of the second benchmark because the graphs in the first benchmark

contain 4× more edges on average. At the same time, DynDyck is 541× faster than DDlog in the

first benchmark. Therefore, the bookkeeping cost in DynDyck is relatively more significant than

that in DDlog, which leads to the slightly larger slow down.

Figure 7 presents the speedup of the running time for DynDyck over DynDyck𝑛 . The first bar

represents the speedups for the incremental sequences. DynDyck has achieve 796.58× speedup

compared to DynDyck𝑛 . It shows that DynDyck is extremely efficient. We do not compare the

speedup of DynDyck and DDlog over naives updates from the first benchmark as DDlog runs out

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:22 Yuanbo Li, Kris Satya, and Qirun Zhang

Sequence portion

R
el

at
iv

e
tim

e

0.00

0.05

0.10

0.15

0.20

0-1
0%

10
-20

%

20
-30

%

30
-40

%

40
-50

%

50
-60

%

60
-70

%

70
-80

%

80
-90

%

90
-10

0%

DDlog DynDyck

(a) Incremental sequences.

Sequence portion

R
el

at
iv

e
tim

e

0.00

0.05

0.10

0.15

0.20

10
%-20

%

20
%-30

%

30
%-40

%

40
%-50

%

50
%-60

%

60
%-70

%

70
%-80

%

80
%-90

%

90
%-10

0%

DDlog DynDyck

(b) Decremental sequences.

Fig. 9. Running time for each 10% of the sequences. The line with triangle data points is for dynamic bidirected

Dyck-reachability algorithm. The line with square data points is for DDlog

of the time budget of 30 minutes. For the second benchmark, Figure 8 illustrate the comparison of

speedups forDynDyck andDDlog. TheDDlog has achieved only a 97.4× speedup whileDynDyck
a 282.4× speedup over the naïve counterpart. Even though the naïve DynDyck𝑛 algorithm itself is

more efficient than DDlog𝑛 , DynDyck achieves more significant speedups than DDlog in practice.

Scalability. Figure 9a illustrates the average relative running time of executing each 10% of the

entire incremental sequences. For each program, we define the relative running time as 𝑇 /𝑇inc
where 𝑇 is the fractional running time and 𝑇inc is the total running time of DynDyck and DDlog

for both benchmarks. Figure 9a shows the increase of the running time compared to the sequence

size increase. DynDyck does not demonstrate a increase of running time with the increase graph

size. The running time of DDlog grows more and more dramatically as the graph size gets larger.

It clearly shows that DynDyck is more scalable than the incremental DDlog.

Summary:

• Efficiency. In the incremental setting, DynDyck achieves 796.58× and 282.4× speedup over

DynDyck𝑛 on two benchmarks, respectively. It also achieves better speedup compared to

DDlog because DDlog has only 97.4× speedup over DDlog𝑛 on the second benchmark. In

addition, starting with an empty graph, DynDyck is only 3.66× and 1.46× slower than the

optimal Dyck-reachability algorithm in the static setting on two benchmarks.

• Scalability. As shown in Figure 9a, DynDyck scales linearly in terms of sequence size

increases. It is more scalable than DDlog.

5.3 Performance Evaluation on Decremental Sequences

We report the performance comparisons based on dynamic deletion operations. Specifically, we eval-

uate the four algorithms over decremental sequences. When executing the decremental sequences,

we record the running time for every 10% portion of entire sequences.

Efficiency. The “Decremental” columns in Tables 3 and 4 present the running time of the four

evaluated algorithms over decremental sequences. For the absolute running time, DynDyck is on

average 382× faster than DDlog, which demonstrates that DynDyck is very efficient for decre-

mental sequences. As DDlog𝑛 runs out of time budget for the first benchmark, we only compare

the speedups for DynDyck and DDlog over naive updates for the second benchmark. Figure 10

demonstrates the speedup comparison for two appraoches in the data-dependence analysis bench-

mark. Compared to the naïve DynDyck𝑛 , DynDyck achieves on average a 1021.5× speedup for

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:23

bt
re

e

sa
m

pl
e

m
us

hr
oo

m
pa

rs
er

ch
ec

k

co
m

pi
le
r

co
m

pr
es

s

cr
yp

to

de
rb

y

he
llo

w
or

ld

m
pe

ga
ud

io

sc
im

ar
k

st
ar

tu
p

su
nfl

ow xm
l

0

500

1,000

1,500

2,000

2
6
8

6
4
0

2
,1
4
3

8
8
6

4
5
1

2
9
8

6
1
4

2
3
7 4
5
8

3
6
5

2
,3
0
8

6
9
3

2
6
1 3
7
2

1
,3
0
5

8
5

4
7

3
2 6
7 1
6
9

1
1
4

1
5
4

1
8
3

1
7
2

1
2
3 3
1
3

1
5
8

1
5
0

9
6

7
0
6

S
p
ee
d
u
p

1 DynDyck Decremental 2 DDlog Decremental

Fig. 10. The speedup comparison of DynDyck and DDlog on the decremental sequences for the data-

dependence analysis benchmarks.

the first benchmark and a 753.3× speedup for the second benchmark. It shows DynDyck achieves

significant improvements over DynDyck𝑛 .

Compared to DDlog, DynDyck achieves more significant speedup over the naïve approach.

Specifically, the speedup of DynDyck in the second benchmark is 753.3× on average. However, the

average speedup for DDlog is 171.2×. In addition, DynDyck is 381× and 20× faster than DDlog

on the two analysis benchmarks.

Scalability. Figure 9b demonstrates the average relative running time of executing every 10%

portion of the decremental sequences. We define the relative running time as 𝑇 /𝑇dec where 𝑇 is the

fractional running time and 𝑇dec is the running time of executing the entire decremental sequences.

Figure 9b shows how the running time changes when the graph size decreases. In decremental

sequences, when executing the first a few 10% sequences, the graph is relatives larger. The figure

demonstrates that when the graph size decreases, the relative running time decrease of DynDyck

algorithm is less significant than that of DDlog. It further shows that the running time for DDlog

on decremental sequences for larger graphs increases more significantly. Therefore, DynDyck is

more scalable than DDlog on large graphs.

Summary:

• Efficiency. In the decremental setting, DynDyck achieves 1021.5× and 753.3× speedup over

DynDyck𝑛 on two benchmarks. Compared to DDlog, DynDyck achieves better speedup

because DDlog has achieved only only a 171.2× speedup on the second benchmark.

• Scalability. As shown in Figure 9b, DynDyck more scalability because the running time

increase compared to DDlog is less significant.

5.4 Performance Evaluation on Mixed Sequences

The last experiment reports the performance of four algorithms on the mixed sequences, which

reflects a more practical setting. This experiment demonstrates the overall performance of the

dynamic algorithms for bidirected Dyck-reachability.

Recall that in the mixed setting, we choose the sequences that contain 10%, 20%, 30%, 40% and

50% of all graph edges in each benchmark. Figure 7 demonstrates the speedups of DynDyck over

DynDyck𝑛 on mixed sequences for first benchmark. We do not include the speedup of DDlog

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:24 Yuanbo Li, Kris Satya, and Qirun Zhang

bt
re

e

sa
m

pl
e

pa
rs
er

ch
ec

k

co
m

pi
le
r

co
m

pr
es

s

cr
yp

to

de
rb

y

he
llo

w
or

ld

m
pe

ga
ud

io

sc
im

ar
k

st
ar

tu
p

su
nfl

ow xm
l

0

200

400

600
2
5
3

2
4
3 3
0
8 3
5
9

2
8
5

3
8
3

2
8
0 3
1
2

2
7
9

4
6
6

3
9
4

2
4
8 2
8
9

7
3
7

7
8

4
3 7
3

1
5
4

1
2
3

1
3
8 1
8
7

1
7
3

1
2
4

3
0
2

1
4
9

1
5
5

1
0
1

6
6
6

S
p
ee
d
u
p

1 DynDyck Mixed 2 DDlog Mixed

Fig. 11. Speedup comparison for DynDyck and DDlog over mixed sequences for data-dependence analysis.

for this benchmark as it runs out of the time budget of 24 hours. Figure 11 demonstrates the

speedup comparison between DynDyck and DDlog over DynDyck𝑛 and DDlog𝑛 for the second

benchmark. For each benchmark, we compare the average speedup of the 5 mixed sequences with

different length. On average, DynDyck achieves 534× and 331× speedup compared to DynDyck𝑛

in two benchmarks, respectively. It shows that DynDyck is quite efficient compared to DynDyck𝑛 .

We also compare the speedup achieved by DDlog with DynDyck in the second benchmark. On

average, DDlog achieves a 176× speedup while DynDyck achieves a 331× speedup. Even though

DynDyck𝑛 is more efficient than DDlog𝑛 , DynDyck can achieve more speedup than the DDlog.

Summary:

• Efficiency. In the mixed setting, DynDyck achieves 534× and 331× speedups over DynDyck𝑛
in two benchmarks, respectively. It is more efficient than DDlog because DDlog can only

achieve a 176× speedup over DDlog𝑛 on the second benchmark.

6 RELATEDWORK

6.1 Dyck-Reachability

Dyck reachability is central to program analysis as many program analyses have to match properly

matched parentheses property [Chatterjee et al. 2018; Zhang et al. 2013]. Dyck-reachability is

expensive to solve. The traditional CFL-reachability algorithm exhibits a cubic time complexity [Reps

1998]. Chaudhuri [2008] proposes a subcubic CFL-reachability algorithm, which improves the

cubic complexity by a logarithmic factor. Chatterjee et al. [2018] establish a cubic conditional

lower for Dyck-reachability in general case. For bidirected graphs, Zhang et al. [2013] present

an 𝑂 (𝑚 log𝑚)-time algorithm by exploiting an equivalence Dyck-relation. The result has been

improved to𝑂 (𝑚)-time by Chatterjee et al. [2018]. Moreover, Chatterjee et al. [2018] also prove that

the 𝑂 (𝑚)-time algorithm is optimal. However, all existing Dyck-reachability and CFL-reachability

algorithms handle only static graphs. Our work fills the gap and presents the first dynamic bidirected

Dyck-reachability algorithm.

6.2 Dynamic Graph Algorithms

Dyck-reachability is a generalization of standard graph reachability (i.e., transitive closure). The
problem of dynamic transitive closure has been extensively studied [Demetrescu and Italiano 2000;

King and Sagert 1999; Roditty 2003; Roditty and Zwick 2004; Sankowski 2004]. Henzinger et al.

[2015] give a conditional lower bound of (poly,𝑚1/2−𝛿 ,𝑚1−𝛿) on dynamic transitive closure for any

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:25

small constant 𝛿 > 0 based on the Online Boolean Matrix-Vector Multiplication (OMv) conjecture.

This bound even holds for the 𝑠-𝑡 reachability problem, where both 𝑠 and 𝑡 are fixed for all queries.

Note that for bidirected Dyck-reachability, the naïve approach of running the 𝑂 (𝑚)-time optimal

algorithm for each update gives a dynamic algorithm with a complexity tuple (𝑂 (𝑚),𝑂 (𝑚),𝑂 (1)).
For directed graphs with 𝑛 vertices and𝑚 edges, the straightforward dynamic transitive closure

algorithm based on BFS or DFS exhibits a complexity tuple (𝑂 (1),𝑂 (1),𝑂 (𝑚 + 𝑛)) [Frigioni et al.
2001]. Roditty [2003] gives a deterministic dynamic transitive closure algorithm with an 𝑂 (𝑛2)
update time and an𝑂 (1) query time. Roditty and Zwick [2004] propose a dynamic transitive closure

algorithm with an 𝑂 (𝑚 + 𝑛 log𝑛) update time and an 𝑂 (𝑛) query time. Ramalingam and Reps

[1996] study the complexity of of dynamic graph algorithms and discuss various upper-bound and

lower-bound results. Existing fast dynamic transitive closure algorithms cannot be directly applied

to bidirected Dyck-reachability.

6.3 Incremental Program Analysis

Incremental program analysis has been extensively studied in the literature, such as dataflow

analysis [Burke and Ryder 1990; Carroll and Ryder 1988; Ryder and Paull 1988] and incremental

alias analysis [Liu et al. 2019; Lu et al. 2013; Saha and Ramakrishnan 2005a; Yur et al. 1999].

Incremental algorithms selectively update analysis results after a program change instead of

recomputing everything from scratch. Liu [2003]; Ramalingam and Reps [1993] conduct surveys on

incremental computation related to program analysis. Sreedhar et al. [1997] propose an incremental

algorithm for maintaining dominator trees in flow graphs. Saha and Ramakrishnan [2005b, 2006]

propose incremental evaluation methods for logic programs. Szabó et al. [2016] propose a DSL for

incremental program analysis based on incremental graph pattern matching. Szabó et al. [2018]

propose a framework that supports incremental maintenance of recursive lattice-value aggregation

in Datalog. Pacak et al. [2020] compile incremental type checkers to Datalog programs. Szabó

et al. [2021] propose a Datalog-based approach for supporting whole-program lattice-based data-

flow analyses. Eichberg et al. [2007] propose incremental static analyses specified in Prolog using

incremental tabled evaluation. Infer [Distefano et al. 2019] leverages incremental compositional

analysis to improve performance. Reviser [Arzt and Bodden 2014] is an incremental framework

for IFDS/IDE-based program analyses. Self-adjusting computation [Acar 2009; Acar et al. 2009;

Hammer et al. 2015] involves incremental computation. Specifically, given a set of input changes, self-

adjusting computation performs change propagation, where it reuses the memorized intermediate

results for all sub-computations. Adapton [Hammer et al. 2014] is an incremental computation

library based on demand-driven semantics. Moreover, there exist automatic incrementalizers for

object-oriented languages [Liu et al. 2005] and dynamic data structures [Shankar and Bodík 2007].

Different from existing work, our work focus on the algorithmic problem of bidirected Dyck-

reachability. Our dynamic algorithms are asymptotically faster than the straightforward approach

based on the optimal bidirected Dyck-reachability algorithm.

7 CONCLUSION

This paper has presented efficient dynamic algorithms for bidirected Dyck-reachability. Our algo-

rithms can handle dynamic graph updates in 𝑂 (𝑚) pre-processing time, 𝑂 (𝑛 · 𝛼 (𝑛)) update time,

and 𝑂 (1) query time. To the best of our knowledge, this is the first algorithmic result for dynamic

Dyck-reachability. We have applied the dynamic bidirected Dyck-reachability algorithms to two

practical client analyses. The evaluation results show that our dynamic algorithms can achieve

orders-of-magnitude speedup over a straightforward approach and an incremental Datalog solver.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

62:26 Yuanbo Li, Kris Satya, and Qirun Zhang

ACKNOWLEDGMENTS

We thank Shuo Ding, Benjamin Mikek, and the anonymous reviewers for their feedback on earlier

drafts of this paper. Specifically, we would like to thank Leonid Ryzhyk for discussions on DDlog

and for suggesting a better set of Datalog rules for Dyck-reachability. This work was supported, in

part, by Amazon under an Amazon Research Award in automated reasoning; by the United States

National Science Foundation (NSF) under grants No. 1917924 and No. 2114627; and by the Defense

Advanced Research Projects Agency (DARPA) under grant N66001-21-C-4024. The first author was

partially supported by the Facebook Graduate Fellowship. Any opinions, findings, and conclusions

or recommendations expressed in this publication are those of the authors, and do not necessarily

reflect the views of the above sponsoring entities.

REFERENCES
Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures Imply Strong Lower Bounds for Dynamic

Problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014. IEEE Computer Society, 434–443. https://doi.org/10.1109/FOCS.2014.53

Umut A. Acar. 2009. Self-adjusting computation: (an overview). In Proceedings of the 2009 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation, PEPM 2009, Savannah, GA, USA, January 19-20, 2009,
Germán Puebla and Germán Vidal (Eds.). ACM, 1–6. https://doi.org/10.1145/1480945.1480946

Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan. 2009. An experimental analysis of

self-adjusting computation. ACM Trans. Program. Lang. Syst. 32, 1 (2009), 3:1–3:53. https://doi.org/10.1145/1596527.

1596530

Steven Arzt and Eric Bodden. 2014. Reviser: efficiently updating IDE-/IFDS-based data-flow analyses in response to

incremental program changes. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India
- May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 288–298. https:

//doi.org/10.1145/2568225.2568243

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick D. McDaniel. 2014. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for Android apps. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014. 259–269. https://doi.org/10.1145/2594291.2594299

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von

Dincklage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In

OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented Programing, Systems, Languages,
and Applications (Portland, OR, USA). ACM Press, New York, NY, USA, 169–190. https://doi.org/10.1145/1167473.1167488

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens (Eds.). ACM,

243–262. https://doi.org/10.1145/1640089.1640108

Michael G. Burke and Barbara G. Ryder. 1990. A Critical Analysis of Incremental Iterative Data Flow Analysis Algorithms.

IEEE Trans. Software Eng. 16, 7 (1990), 723–728. https://doi.org/10.1109/32.56098

Martin D. Carroll and Barbara G. Ryder. 1988. Incremental Data Flow Analysis via Dominator and Attribute Updates. In

Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego, California,
USA, January 10-13, 1988, Jeanne Ferrante and P. Mager (Eds.). ACM Press, 274–284. https://doi.org/10.1145/73560.73584

Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2018. Optimal Dyck reachability for data-dependence

and alias analysis. Proc. ACM Program. Lang. 2, POPL (2018), 30:1–30:30. https://doi.org/10.1145/3158118

Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,
George C. Necula and Philip Wadler (Eds.). ACM, 159–169. https://doi.org/10.1145/1328438.1328460

Camil Demetrescu and Giuseppe F. Italiano. 2000. Fully Dynamic Transitive Closure: Breaking Through the O(n
2
) Barrier. In

41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California,
USA. IEEE Computer Society, 381–389. https://doi.org/10.1109/SFCS.2000.892126

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Facebook.

Commun. ACM 62, 8 (2019), 62–70. https://doi.org/10.1145/3338112

Michael Eichberg, Matthias Kahl, Diptikalyan Saha, Mira Mezini, and Klaus Ostermann. 2007. Automatic Incrementalization

of Prolog Based Static Analyses. In Practical Aspects of Declarative Languages, 9th International Symposium, PADL 2007,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/1480945.1480946
https://doi.org/10.1145/1596527.1596530
https://doi.org/10.1145/1596527.1596530
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1109/32.56098
https://doi.org/10.1145/73560.73584
https://doi.org/10.1145/3158118
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1109/SFCS.2000.892126
https://doi.org/10.1145/3338112

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:27

Nice, France, January 14-15, 2007 (Lecture Notes in Computer Science, Vol. 4354), Michael Hanus (Ed.). Springer, 109–123.

https://doi.org/10.1007/978-3-540-69611-7_7

Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos D. Zaroliagis. 2001. An Experimental Study of Dynamic

Algorithms for Transitive Closure. ACM J. Exp. Algorithmics 6 (2001), 9. https://doi.org/10.1145/945394.945403

Matthew A. Hammer, Jana Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S. Foster, Michael W. Hicks, and David Van Horn.

2015. Incremental computation with names. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA,
October 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 748–766. https://doi.org/10.1145/2814270.2814305

Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. 2014. Adapton: composable, demand-driven

incremental computation. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 156–166.

https://doi.org/10.1145/2594291.2594324

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. 2015. Unifying and Strength-

ening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
Rocco A. Servedio and Ronitt Rubinfeld (Eds.). ACM, 21–30. https://doi.org/10.1145/2746539.2746609

Vineet Kahlon. 2009. Boundedness vs. Unboundedness of Lock Chains: Characterizing Decidability of Pairwise CFL-

Reachability for Threads Communicating via Locks. In Proceedings of the 24th Annual IEEE Symposium on Logic in
Computer Science, LICS 2009. IEEE Computer Society, 27–36. https://doi.org/10.1109/LICS.2009.45

Valerie King and Garry Sagert. 1999. A Fully Dynamic Algorithm for Maintaining the Transitive Closure. In Proceedings of
the Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, Jeffrey Scott

Vitter, Lawrence L. Larmore, and Frank Thomson Leighton (Eds.). ACM, 492–498. https://doi.org/10.1145/301250.301380

John Kodumal and Alexander Aiken. 2004. The set constraint/CFL reachability connection in practice. In Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation 2004, Washington, DC, USA, June
9-11, 2004. ACM, 207–218. https://doi.org/10.1145/996841.996867

Shankaranarayanan Krishna, Aniket Lal, Andreas Pavlogiannis, and Omkar Tuppe. 2023. On-The-Fly Static Analysis via

Dynamic Bidirected Dyck Reachability. arXiv:2311.04319 [cs.PL]

Yuanbo Li, Qirun Zhang, and Thomas W. Reps. 2020. Fast graph simplification for interleaved Dyck-reachability. In

Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 780–793. https://doi.org/

10.1145/3385412.3386021

Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. 2019. Rethinking Incremental and Parallel Pointer Analysis. ACM
Trans. Program. Lang. Syst. 41, 1 (2019), 6:1–6:31. https://doi.org/10.1145/3293606

Yanhong A. Liu. 2003. Iterate, Incrementalize, and Implement: A systematic approach to efficiency improvement and

guarantees. Electron. Notes Theor. Comput. Sci. 90 (2003), 45–47. https://doi.org/10.1016/S1571-0661(03)00007-0

Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel, and Yanni Ellen Liu. 2005. Incrementalization across

object abstraction. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and Richard P.

Gabriel (Eds.). ACM, 473–486. https://doi.org/10.1145/1094811.1094848

Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. 2013. An Incremental Points-to Analysis with CFL-Reachability. In Compiler
Construction - 22nd International Conference, CC 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7791),
Ranjit Jhala and Koen De Bosschere (Eds.). Springer, 61–81. https://doi.org/10.1007/978-3-642-37051-9_4

Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to flix: a declarative language for fixed points

on lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 194–208. https:

//doi.org/10.1145/2908080.2908096

André Pacak, Sebastian Erdweg, and Tamás Szabó. 2020. A systematic approach to deriving incremental type checkers.

Proc. ACM Program. Lang. 4, OOPSLA (2020), 127:1–127:28. https://doi.org/10.1145/3428195

G. Ramalingam. 2000. Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans. Program. Lang. Syst.
22, 2 (2000), 416–430. https://doi.org/10.1145/349214.349241

G. Ramalingam and Thomas W. Reps. 1993. A Categorized Bibliography on Incremental Computation. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, South
Carolina, USA, January 1993, Mary S. Van Deusen and Bernard Lang (Eds.). ACM Press, 502–510. https://doi.org/10.

1145/158511.158710

G. Ramalingam and Thomas W. Reps. 1996. On the Computational Complexity of Dynamic Graph Problems. Theor. Comput.
Sci. 158, 1&2 (1996), 233–277. https://doi.org/10.1016/0304-3975(95)00079-8

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://doi.org/10.1007/978-3-540-69611-7_7
https://doi.org/10.1145/945394.945403
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1109/LICS.2009.45
https://doi.org/10.1145/301250.301380
https://doi.org/10.1145/996841.996867
https://arxiv.org/abs/2311.04319
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3293606
https://doi.org/10.1016/S1571-0661(03)00007-0
https://doi.org/10.1145/1094811.1094848
https://doi.org/10.1007/978-3-642-37051-9_4
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/3428195
https://doi.org/10.1145/349214.349241
https://doi.org/10.1145/158511.158710
https://doi.org/10.1145/158511.158710
https://doi.org/10.1016/0304-3975(95)00079-8

62:28 Yuanbo Li, Kris Satya, and Qirun Zhang

Thomas W. Reps. 1993. Demand Interprocedural Program Analysis Using Logic Databases. In Applications of Logic Databases
(The Kluwer International Series in Engineering and Computer Science 296), Raghu Ramakrishnan (Ed.). Kluwer, 163–196.

Thomas W. Reps. 1998. Program analysis via graph reachability. Inf. Softw. Technol. 40, 11-12 (1998), 701–726. https:

//doi.org/10.1016/S0950-5849(98)00093-7

Thomas W. Reps. 2000. Undecidability of context-sensitive data-independence analysis. ACM Trans. Program. Lang. Syst. 22,
1 (2000), 162–186. https://doi.org/10.1145/345099.345137

Liam Roditty. 2003. A faster and simpler fully dynamic transitive closure. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA. ACM/SIAM, 404–412. http:

//dl.acm.org/citation.cfm?id=644108.644172

Liam Roditty and Uri Zwick. 2004. A fully dynamic reachability algorithm for directed graphs with an almost linear update

time. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,
László Babai (Ed.). ACM, 184–191. https://doi.org/10.1145/1007352.1007387

Barbara G. Ryder and Marvin C. Paull. 1988. Incremental Data-Flow Analysis. ACM Trans. Program. Lang. Syst. 10, 1 (1988),
1–50. https://doi.org/10.1145/42192.42193

Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In Datalog 2.0 2019 - 3rd International Workshop on the
Resurgence of Datalog in Academia and Industry (CEUR Workshop Proceedings, Vol. 2368). 56–67. http://ceur-ws.org/Vol-

2368/paper6.pdf

Diptikalyan Saha and C. R. Ramakrishnan. 2005a. Incremental and demand-driven points-to analysis using logic pro-

gramming. In Proceedings of the 7th International ACM SIGPLAN Conference on Principles and Practice of Declar-
ative Programming, July 11-13 2005, Lisbon, Portugal, Pedro Barahona and Amy P. Felty (Eds.). ACM, 117–128.

https://doi.org/10.1145/1069774.1069785

Diptikalyan Saha and C. R. Ramakrishnan. 2005b. Symbolic Support Graph: A Space Efficient Data Structure for Incremental

Tabled Evaluation. In Logic Programming, 21st International Conference, ICLP 2005, Sitges, Spain, October 2-5, 2005,
Proceedings (Lecture Notes in Computer Science, Vol. 3668), Maurizio Gabbrielli and Gopal Gupta (Eds.). Springer, 235–249.

https://doi.org/10.1007/11562931_19

Diptikalyan Saha and C. R. Ramakrishnan. 2006. A Local Algorithm for Incremental Evaluation of Tabled Logic Programs.

In Logic Programming, 22nd International Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings
(Lecture Notes in Computer Science, Vol. 4079), Sandro Etalle and Miroslaw Truszczynski (Eds.). Springer, 56–71. https:

//doi.org/10.1007/11799573_7

Piotr Sankowski. 2004. Dynamic Transitive Closure via Dynamic Matrix Inverse (Extended Abstract). In 45th Symposium
on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings. IEEE Computer Society,

509–517. https://doi.org/10.1109/FOCS.2004.25

Ajeet Shankar and Rastislav Bodík. 2007. DITTO: automatic incrementalization of data structure invariant checks (in

Java). In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation,
San Diego, California, USA, June 10-13, 2007, Jeanne Ferrante and Kathryn S. McKinley (Eds.). ACM, 310–319. https:

//doi.org/10.1145/1250734.1250770

Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-sensitive data-flow analysis using synchronized

Pushdown systems. Proc. ACM Program. Lang. 3, POPL (2019), 48:1–48:29. https://doi.org/10.1145/3290361

Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. 1997. Incremental Computation of Dominator Trees. ACM Trans.
Program. Lang. Syst. 19, 2 (1997), 239–252. https://doi.org/10.1145/244795.244799

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive points-to analysis for Java. In Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June
11-14, 2006. ACM, 387–400. https://doi.org/10.1145/1133981.1134027

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven points-to analysis for Java. In

Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA. ACM, 59–76. https://doi.org/10.1145/1094811.1094817

Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing lattice-based program

analyses in Datalog. Proc. ACM Program. Lang. 2, OOPSLA (2018), 139:1–139:29. https://doi.org/10.1145/3276509

Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental whole-program analysis in Datalog with lattices. In

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 20211, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1–15. https://doi.org/10.1145/3453483.3454026

Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a DSL for the definition of incremental program analyses.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 320–331. https://doi.org/10.1145/2970276.

2970298

Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. 2015. Summary-Based Context-Sensitive

Data-Dependence Analysis in Presence of Callbacks. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/345099.345137
http://dl.acm.org/citation.cfm?id=644108.644172
http://dl.acm.org/citation.cfm?id=644108.644172
https://doi.org/10.1145/1007352.1007387
https://doi.org/10.1145/42192.42193
http://ceur-ws.org/Vol-2368/paper6.pdf
http://ceur-ws.org/Vol-2368/paper6.pdf
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1007/11562931_19
https://doi.org/10.1007/11799573_7
https://doi.org/10.1007/11799573_7
https://doi.org/10.1109/FOCS.2004.25
https://doi.org/10.1145/1250734.1250770
https://doi.org/10.1145/1250734.1250770
https://doi.org/10.1145/3290361
https://doi.org/10.1145/244795.244799
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1094811.1094817
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3453483.3454026
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298

Efficient Algorithms for Dynamic Bidirected Dyck-Reachability 62:29

on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David

Walker (Eds.). ACM, 83–95. https://doi.org/10.1145/2676726.2676997

Robert Endre Tarjan. 1975. Efficiency of a Good But Not Linear Set Union Algorithm. J. ACM 22, 2 (1975), 215–225.

https://doi.org/10.1145/321879.321884

Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-Reachability-Based Points-To Analysis Using Context-

Sensitive Must-Not-Alias Analysis. In ECOOP 2009 - Object-Oriented Programming, 23rd European Conference, Genoa,
Italy, July 6-10, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5653), Sophia Drossopoulou (Ed.). Springer,

98–122. https://doi.org/10.1007/978-3-642-03013-0_6

Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven context-sensitive alias analysis for Java. In Proceedings
of the 20th International Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011,
Matthew B. Dwyer and Frank Tip (Eds.). ACM, 155–165. https://doi.org/10.1145/2001420.2001440

Jyh-Shiarn Yur, Barbara G. Ryder, and William Landi. 1999. An Incremental Flow- and Context-Sensitive Pointer Aliasing

Analysis. In Proceedings of the 1999 International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA, May
16-22, 1999, Barry W. Boehm, David Garlan, and Jeff Kramer (Eds.). ACM, 442–451. https://doi.org/10.1145/302405.302676

Qirun Zhang. 2024. A Note on Dynamic Bidirected Dyck-Reachability with Cycles. CoRR abs/2401.03570 (2024).

arXiv:2401.03570 https://arxiv.org/abs/2401.03570

Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms for Dyck-CFL-reachability with applications

to alias analysis. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 435–446. https://doi.org/10.1145/

2491956.2462159

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 62. Publication date: January 2022.

https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1145/321879.321884
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/302405.302676
https://arxiv.org/abs/2401.03570
https://arxiv.org/abs/2401.03570
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/2491956.2462159

	Abstract
	1 INTRODUCTION
	2 MOTIVATING EXAMPLE
	2.1 Context-Insensitive Alias Analysis
	2.2 Bidirected Dyck-Reachability
	2.3 Dynamic Bidirected Dyck-Reachability

	3 PRELIMINARIES
	3.1 Bidirected Dyck-Reachability
	3.2 Dynamic Bidirected Dyck-Reachability

	4 DYNAMIC ALGORITHM FOR BIDIRECTED DYCK-REACHABILITY
	4.1 Overview
	4.2 Dynamic Insertion Algorithm
	4.3 Dynamic Deletion Algorithm
	4.4 Algorithm Analysis

	5 EVALUATION
	5.1 Experimental Setup
	5.2 Performance Evaluation on Incremental Sequences
	5.3 Performance Evaluation on Decremental Sequences
	5.4 Performance Evaluation on Mixed Sequences

	6 RELATED WORK
	6.1 Dyck-Reachability
	6.2 Dynamic Graph Algorithms
	6.3 Incremental Program Analysis

	7 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

