Timepatch: A Novel Technique for the

Parallel Simulation of Multiprocessor Caches”

Gautam Shah
Umakishore Ramachandran
Richard Fujimoto

e-mail: {gautam, rama, fujimoto}@cc.gatech.edu
Technical Report GIT-CC-94-52

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280 USA

Abstract

We present a new technique for the parallel simulation of cache coherent shared memory
multiprocessors. Our technique is based on the fact that the functional correctness of the
simulation can be decoupled from its timing correctness. Thus in our simulations we can exploit
as much parallelism as is available in the application without being constrained by conservative
scheduling mechanisms that might limit the available parallelism in order to guarantee the
timing correctness of the simulation. Further, application specific details (which can be gleaned
from the compiler) such as data layout in the caches of the target architecture can be exploited
to reduce the overhead of the simulation. The simulation correctness is guaranteed by patching
the performance related timing information at specific points in the program (commensurate
with the programming model). There are two principal advantages to this technique: being
able to simulate larger parallel systems (both problem size and number of processors) than
is feasible to simulate sequentially; and being able to speed up the simulation compared to a
sequential simulator. For proof of concept, we have implemented this technique for an execution-
driven parallel simulator on the KSR-2, a cache-coherent shared memory machine, for a target
architecture that uses an invalidation-based protocol. We validate the performance statistics
gathered from this simulator (using traces) by comparing it against a sequential simulator. We
show that the method is both viable and promises to offer significant speedups with the number
of processors. We provide a detailed performance study of our technique using some benchmark
application programs.

Key Words:
Parallel simulation, performance evaluation, cache consistency, execution-driven simulation,
shared memory multiprocessors, performance debugging.

*This work has been funded in part by NSF PYI award MIPS-9058430 and a matching equipment grant from
DEC.

1 Introduction

Shared memory multiprocessors usually have private caches associated with each processor. There
are many parameters to be tuned with respect to the cache design such as the cache size, the line
size, associativity, the replacement policy, and the protocol used for cache coherence. Thus cache
simulations play a very important role in the design cycle of building shared memory multiprocessors
by aiding the choice of appropriate parameter values for a specific cache protocol and estimating the
performance of the system. Various simulation techniques including trace-driven [EK88, ASHHS8S],
and execution-driven [Fuj83, CMM*88, DGH91] methods have been used for this purpose. Most
of the known approaches to cache simulation are sequential. Such simulations impose a heavy
burden on system resources both in terms of space and time. The elapsed time for the simulation is
particularly limiting on the size of the system that can be simulated with realistic workloads. Given
the availability of commercial multiprocessors it is attractive to consider their use in reducing the
elapsed time for the simulation by parallelizing the simulation itself. The expected benefit is in
being able to simulate larger parallel systems (both number of processors and problem size) than
can be feasibly simulated sequentially (due to space and time constraints), and the potential for
speeding up the simulation compared to a sequential simulator.

Parallel simulation techniques are viable if they result in speedups as more number of processors
are employed in the simulation. Typically these techniques fall into two categories - conservative
and optimistic. In conservative techniques two parallel units of work can be scheduled at the same
time if and only if one is guaranteed not to affect the execution of the other [Fuj90, CM79]. From
the point of view of simulating cache-coherent multiprocessors, such a restriction invariably inhibits
the simulation from being able to exploit the available parallelism in the application. On the other
hand, optimistic scheduling techniques such as Time Warp [Jef85] have not been used for simulating
shared memory systems because a naive application of this technique could result in considerable
state saving overhead that may dominate the execution.

We develop a new technique, called timepatch, that exploits the available parallelism in the
application for driving the parallel simulation of caches for shared memory multiprocessors. The
method is based on using application specific knowledge to yield a mechanism that is conservative
with respect to generating a correct sequence of instruction execution (commensurate with the pro-
gramming model), but is optimistic with respect to the timing information. Specifically, functional
correctness of the simulated execution is ensured by executing the synchronization operations in the
application faithfully as would be executed on the target parallel machine. The timing correctness
of the simulation is accounted for at well-defined points in the application (such as synchroniza-
tion points). Thus the technique widens the window over which units of simulation work can be

executed in parallel without having to synchronize with one another for timing correctness com-

pared to conservative techniques. Further, since the technique never requires having to go back
in simulated time (despite the optimism with respect to the timing information) there is no need
for rollbacks (and the implied state savings) compared to optimistic techniques. Further we use
application specific knowledge (that can be gleaned from the compiler) such as the data layout in
the caches to reduce the overhead of simulation. The result is a significant speedup in simulation
time for our technique which tracks the speedup inherent in the original parallel application.

The main contributions of this work are:
e a novel technique for parallel simulation of cache-coherent multiprocessors,

e development of performance enhancement strategies aimed at reducing the overheads of par-

allel simulation,

e a proof of concept prototype implementation that embodies the technique and the enhance-

ments,

e performance results showing the improvement in performance with increasing number of

Processors.

In Section 2 we present the background and related work on which our research is developed.
We next state our assumptions and develop the technique in Section 3. The implementation and
related issues are outlined in Section 4. Section 5 gives validation and preliminary results of
the implementation. We then identify the overheads in the simulator in Section 6, and suggest
implementation ideas and optimizations to reduce these overheads. Using these optimizations, we
show the improved performance of the technique for two applications in Section 7. Finally we

present some concluding remarks and direction for future research in Section 8.

2 Related Work

Traditionally most cache studies have used either traces or synthetic workloads to drive the simula-
tion. There are drawbacks to both of these approaches. Trace-driven simulation has some validity
concerns as observed by several researchers [FH92, GH93, Bit89] due to the distortions that may
be introduced due to the instrumentation code that is inserted for collecting the traces. These dis-
tortions include non-uniform slowdown of the parallel processes due to varying amount of tracing
code in each process, and overall slowdown in the execution speed of all processes owing to tracing.
Since the execution path of a parallel program depends on the ordering of the events in the pro-
gram, both these distortions have the potential of completely changing the execution path unless
timing dependencies are carefully eliminated from the traces [GH93]. Program startup effects may

also distort the results, especially if the trace length is not long. Further, the traces obtained from

one machine may not represent true interactions in another machine. Lastly, the traces usually do
not capture OS related activities (such as interrupts, context switches, and 1/O) unless hardware
instrumentation is available [SA88]. Many synthetic workload models have been proposed that
could avoid the problems associated with traces [AB86, Pop90]. Since application characteristics
vary widely, it is difficult to generate a synthetic workload model that is representative of the
memory access pattern across a wide range of applications. The drawbacks with both trace-driven
and probabilistic simulation can be overcome with an execution-driven simulator. In this approach,
real applications are used as the workload on the simulated target architecture. Thus the observed
memory access pattern will be the actual one that will be seen on the target architecture. The
primary disadvantage of this approach is that it is extremely slow since each instruction has to be
simulated for the new architecture in question.

A simple modification to the execution-driven simulation technique has the potential for con-
siderably reducing the simulation time in an execution-driven simulator. In cache simulations,
we are interested only in the processor interaction with the cache/memory subsystem. Thus, we
simulate only those events that are external to the processor, i.e., those that interact with the
memory subsystem and we let the other “compute” instructions execute on the native hardware.
In our case, the events of interest include loads, stores and synchronization. This technique of
trapping only on “interesting” events saves considerable simulation time and has been used by oth-
ers [DGH91, BDCW91, CMM*88]. This method, often referred to as “program augmentation”,
is certainly less expensive than execution-driven simulations in which every instruction is inter-
preted [Lig92]. An inherent assumption with this method is that instruction fetches do not affect
the caching behavior of memory hierarchy. In spite of program augmentation, it may be infeasi-
ble (both in terms of space and time) to simulate large system and problem sizes with sequential
simulation. Therefore, we explore methods of parallelizing the simulator in this research.

Synchronization of parallel simulators are often characterized as being conservative or optimistic.
For example, in the conservative approach employed in the Wisconsin Wind Tunnel [RHL192],
only events that will not be causally affected by another event are processed in parallel. If ¢ (called
the lookahead), is the minimum time (for e.g. inter-processor communication time) required for one
event to affect another event then we have a range of timestamps (from T to T+t, where T is the
current lowest timestamp) that can be processed in parallel. Thus the parallelism is limited to the
number of events that fall within this window of size ¢. Further, deadlocks are a potential problem
with some conservative algorithms [CM79]. In the optimistic approach [Jef85], events are processed
as soon as they are generated, as though they are independent of others. Such optimism might result
in incorrectness in simulating the actual behavior of the application. This situation (when causal
violations in processing events are detected) is rectified by rolling back the prematurely executed

event computation to a previous correct state, and re-executing the computation to preserve the

causal dependencies. The optimistic approach requires preserving the necessary state information
to restart computation in case of a possible rollback. This state saving could be a considerable
overhead in simulating the cache behavior of shared memory parallel systems, though incremental
state saving may alleviate this problem somewhat.

A parallel cache simulation scheme, based on a time-parallel simulation technique, using pro-
gram traces has been proposed by Heidelberger and Stone [HS90]. A portion of the program trace
is allocated to each processor. In this scheme, each processor assumes an initial state, and simu-
lates its portion of the trace independent of the other processors. The statistics computed by each
processor could be wrong due to an incorrect initial state. To address this situation, each processor
gets its initial state from its logical predecessor and re-executes the simulation. This step may
need to be repeated until the initial state of each processor matches the final state of its logical
predecessor. The time-partitioning method is a fairly promising technique since typically there is
just one repetition in a cache simulation because of the locality of references. However, it has the
usual problem associated with trace-driven methods. In [HS90], it is also shown that it is sufficient
to execute the traces for a set of cache lines instead of the entire cache. An implementation of a
parallel trace-driven simulation on a MasPar is discussed in [NGLR92], which offers extensions to
the above approach.

Dickens et al. [DHN94] suggest a technique for parallel simulation of message-passing programs.
Their objective is to simulate the performance of these programs on a larger configuration of a target
machine on a smaller host machine. The Wisconsin Wind Tunnel [RHLT92] uses a direct execution
approach to simulate a shared memory multiprocessor on a message-passing machine. Using a
portion of the memory at each node of CM-5 as a cache, WWT simulates a fine-grained version of
shared virtual memory [LH89] through the ECC bits of the CM-5 memory system. The use of ECC
bits allows WWT to avoid trapping on each memory operation compared to other execution-driven
simulators. Thus only misses and access violations (which manifest as ECC errors in the WWT)
are handled through special software trap handlers that simulate the target cache protocol. Using
the minimum network latency ¢ as the lag, WW'T implements a conservative parallel simulation
technique requiring all processors to synchronize every) cycles for processing the events generated
in that window. Even though our goals are similar the approaches are orthogonal (see Section 3)
and our technique can further benefit from ideas such as hardware assist to recognize events. Our
approach for parallel cache simulation uses a technique that obviates the need for synchronization

every QQ cycles inherent in conservative approaches such as WWTT.

3 The Timepatch Technique

The objective is to develop an execution-driven simulation platform that would enable gathering
performance statistics (such as cache hit/miss rates, and message counts) of parallel programs
executing on a larget shared memory parallel machine. The target machine is simulated on a host
which is also a shared memory parallel machine. Consider a shared memory parallel program with n
threads to be executed on a n processor target machine, on which each thread is bound to a unique
target processor. We use this program to drive our simulator on the host machine. We map each
thread of the program to a separate physical processor of the host machine. Each host processor
simulates the activity of the thread (mapped on to it) on the target processor. The simulation has to
faithfully model the functional behavior of the original program as well as the timing behavior due
to interprocessor communication and synchronization on the target machine. We assume a basic
load/store type RISC architecture for the processors of the target machine where interprocessor
interactions occur only due to memory reference instructions. We further assume that each target
processor has a private cache which is maintained consistent using some cache consistency protocol.
Thus the “interesting” events that have to be modeled for gathering the performance statistics of
the memory hierarchy of the target machine are the load, store and synchronization operations.
Only these interesting events trap into the simulator so that their behavior on the target machine
can be modeled faithfully. Upon such traps, the simulator updates the state of the accessed cache
block commensurate with the cache protocol implemented on the target machine and performs the
intended operation (such as load/store of the data item). The “uninteresting” instructions in the
thread are executed at the native speed of the host processor (i.e. they are not simulated at the
instruction level). Instead, the time it takes to execute these instructions on the target machine is
accounted for in the simulation.

As alluded to above, a simulation has to guarantee two kinds of correctness: behavioral and
timing. A conservative simulation approach addresses both these correctness criteria simultaneously
by never allowing event processing to get ahead of the permissible lag. Since no knowledge about
the interaction between the events is available to the conservative simulator it must necessarily
assume that any event can potentially affect another event outside the lag. In an execution-driven
simulation of a shared memory parallel system it is possible to decouple the two correctness criteria
as discussed below.

To ensure behavioral correctness it is sufficient if we “simulate” the synchronization events in
the parallel program correctly (i.e. as they would happen on the target machine) since these events
in turn guarantee the correctness of the shared memory accesses governed by them. The correctness
of the shared memory accesses governed by the synchronization events is guaranteed because of

the following reason. Our host machine is also a shared memory multiprocessor and thus will

reflect modifications to the shared state affected by the simulated parallel program. Simulating a
synchronization event correctly implies ensuring that these events are executed in the same time
order as in a conservative simulation, and providing a consistent view of the shared state of the
parallel program to all the participating processors at such synchronization points. If the program
uses implicit synchronization (i.e. it has data races), then behavioral correctness can still be ensured
so long as such accesses can be recognized and flagged by the compiler.

The timing correctness criterion is achieved by a technique called timepatch which is described
below. Each processor maintains its notion of simulated time which is advanced locally. The
update of simulated time occurs due to one of two reasons. Firstly, upon executing a block of
compute instructions on the host processor a call is made to the simulator to advance the time by
the amount of time that block would have taken to execute on the target machine. Secondly, due
to the traps into the simulator for the interesting instructions. The load/store events can be to
either shared or private memory. These memory accesses may interfere with accesses from other
processors of the target machine due to either true or false sharing on the target machine. However,
each host processor simulates these load/store accesses as though they are non-interfering with
other processors on the target machine and accounts only for the hit/miss timing. The potentially
incorrect assumption that these accesses do not interfere with other processors may therefore result
in the local notions of simulated time being inaccurate. Thus, at a synchronization point, these
timing inconsistencies have to be fixed so that synchronization access is granted in our simulation
to the processor that would actually be ahead in time on the target machine and therefore preserve
behavioral correctness. Such timing inconsistencies can be corrected as follows. We maintain a
history of all the memory accesses on a per processor basis. At synchronization points we merge
these history logs to determine the ordering relationship between these accesses. Using this global
ordering we can determine the inter-processor interactions (such as invalidation messages) that
were previously not accounted and appropriately modify the notion of time of the corresponding
processors. Details of how this reconciliation is done are presented in the next section.

The simulation technique outlined above is conservative with respect to the behavioral correct-
ness since it faithfully executes the synchronization events in the parallel program in time order.
However, it is optimistic with respect to timing correctness since it allows each processor to ac-
count for timing between synchronization points independent of other processors. The price for
this optimism is the time overhead in performing the timepatch at synchronization points and the
space overhead for recording the history of accesses made by each processor.

Figure 1 demonstrates the timepatch technique with an example. Let us say that the application
uses 2 logical processors. We consider only load, store and synchronization operations since those
are sufficient to illustrate our idea. Consider the events at time 732 on processor 0 and 772 on

processor 1. As can be seen from Figure 1 there is no order implied between these two events. In

-~

Logi cal Logi cal
Processor 0 Processor 1
T 1: LD A0 .
Simulated
T02. ST Al» Time
TO3: Lock X
Timepatch *— _ __) R
T04: Unl ock X
- - — - 7 T T
Timepatch Y
Timepatch‘J Barrier |-
T05: . ><

Figure 1: A Timepatch Example

our method, each logical processor is bound to a physical processor and execution is not stalled until
synchronization points. Thus in our simulator these events can be processed in parallel. However,
if we assume that A1 and Bl reside on the same cache line and that an invalidation-based protocol
is in effect on the target processor, the events T2 and 772 could indeed affect each other. Assume
that Tp2 (store to Al) occurs after 712 (load of B1) but before 713 (load of B1). In this case, this
second load of B1 on processor 1 (event 773) will be a miss due to the invalidation of that cache
line by the store of Al on processor 0 (event 732). Observe that even though our hit/miss and
timing information may be incorrect, the program’s functional correctness is not violated because
the shared memory is kept consistent by the underlying host processor. At synchronization points,
the timepatch technique has to be applied and timing errors have to be fixed before granting these
synchronization requests. Consider the events Tp3 and 775 that correspond to the lock requests
on processors 0 and 1 respectively. Let us say that on the target processor, processor 0 gets the
locks first. However in the simulation it is possible that processor 1 reaches the lock request before
processor 0 does due to different speeds of the host processors. To ensure that the behavior on
the target machine is accurately reproduced, timepatch is applied at 715 and it is determined that
processor 0 is lagging behind processor 1 in simulated time and that processor 0 could possibly
affect the outcome of this access. Based on this outcome, processor 1 is stalled until the simulated
time of other processors (in this case only processor 0) advances to processor 1’s current notion
of time. Observe that while the timepatch operation is in progress only processor 1 is stalled
waiting for other processors to cross time 7715 so that it can be granted synchronization. The other
processors can continue processing the events of their respective threads. Similarly if processor 0

arrived at the event Ty3 first it only needs to stall until processor 1 crosses Tp3. A barrier is a

special synchronization operation and after this operation the simulated time on all the processors
participating in the barrier is the same; i.e., values of Tp5 and 116 are exactly the same.
The above example illustrates how the timepatch technique works. In the next section, we

detail the implementation of this technique on the KSR-2.

4 Implementation

4.1 Description

The target machine to be simulated is a CC-NUMA machine. Each node has a direct-mapped
64 KByte private cache. The shared memory implemented by the target machine is sequentially
consistent using a Berkeley style invalidation based cache coherence protocol with a full mapped
directory. We assume that local accesses (hits in the simulated cache) cost X cycles while remote
accesses (misses in the local cache) cost Y cycles. We also assume that invalidations cost Z cycles
irrespective of the amount of sharing. X, Y, and Z thus parameterize the latency attributes of the
network that are relevant from the point of view of consistency maintenance.

The above assumption ignores the contention that could result on the network due to remote
accesses generated from the processors. As a result the execution time for a parallel application may
be worse than what we might observe. Further the performance statistics could also be affected by
this assumption. The main motivation for not simulating the network activities in detail is the time
overhead for simulating this aspect of the system architecture. The rationale for this assumption is
as follows. In a well-balanced design of a parallel architecture one would expect that the network
would be able to handle typical loads generated by applications. For example, experimental results
on a state-of-the-art machine such as the KSR-2 have shown that the latencies for remote accesses
do not vary significantly for a wide variety of network loads [RSRM93]. In [SSRV94], it was
reported that the contention overheads observed in several applications were quite small. Recent
studies [CKP193] have also shown that parameterized models of the network may be adequate
from the point of view of developing performance-conscious parallel programs. In any event, we do
not expect the performance statistics gathered for the memory hierarchy to be affected significantly
by ignoring contention since a high hit rate is expected in the private caches of a shared memory
multiprocessor implying substantially small amount of network activity.

The host machine is KSR-2 [Res92]. KSR-2 is a COMA machine with a sequentially consistent
memory model implemented using an invalidation-based cache coherence protocol. The intercon-
nection network is a hierarchy of rings with 32 processors in the lowest level ring as shown in Figure
2. Each processor node has 512 KBytes of first level cache and 32 MBytes of second level cache.
We use a 32-processor KSR-2 for our experiments. We map each node of the target machine on to

a unique node on the host machine. The input to the simulator is a parallel program meant to be

- - —
Ring O
O|Processor Processor | 1 Processor | 31
32 MB 32 MB 32 MB
Shared Memory Local Local [N N) Local
Menory Menory Menory

Figure 2: Architecture of the KSR-2

executed on the target machine. As mentioned earlier in Section 2, we use program augmentation
technique to execute the “uninteresting” non-memory reference (compute) instructions at the speed
of the native host processor. The input program is augmented (currently by hand at the source
level) with traps into the simulator for every load, store and synchronization operation.

Typically, cache simulations maintain the directory state of memory, the state of each of the
caches and a notion of (global) simulated time. The timepatch approach uses the following infor-
mation in addition to the above. We maintain a local notion of simulated time associated with
each processor of the target machine. Events executed on a processor only modify this local time.
The timing information is correct in the absence of interactions with other processors. To account
for such interactions each processor maintains a table of timestamped events (of all its memory
operations). The simulator also maintains a memory directory data structure. Each directory entry
in this data structure contains the usual information needed for protocol processing. In addition,
the memory directory also maintains a last served time which represents the completion timestamp
of the last access serviced by the memory directory.

On a trap corresponding to a load/store event, the cache directory state is updated and
(hit/miss) time is accounted for based only on the current cache state. Traditional cache sim-
ulations also check the state of the memory directory in order to determine if further coherence
actions (such as invalidations) are required. We do not perform this step at this point of access.
Instead, the processor creates an entry (see Figure 3) in its table which gives the current (local
simulated) time, the memory address accessed, the type of operation and an indication if the op-
eration was treated as a hit or a miss. Notice that this operation does not require interaction with

any other processor and can proceed independently of other processors. Note also that the possible

10

Timestamp
(Current Tine)

Type of Access Hit or Miss?

Memory Address (Load or Store) |(Based on cache state)

Figure 3: An Entry in the Timestamp Table

errors related to timing correctness are that we either treated a memory access as a cache access or
that we did not account for the overhead of coherence maintenance. Consequently the local notion
of time could be incorrect and possibly less than the “actual” value. For the compute instructions
executed on the host processor, the local simulated time is updated based on the time it would
have taken on he target processor.

As we mentioned in the previous section, to guarantee behavioral correctness it is necessary
to ensure that the synchronization accesses in the parallel program be ordered faithfully in the
simulation to correspond to their ordering on the target machine. Thus when a thread reaches a
synchronization point in its execution it is necessary to reconcile all the per-processor local notions
of simulated times to derive a correct ordering for the synchronization access. This reconcilia-
tion involves resolving inter-processor interferences that may have happened due to the load/store
memory references that this thread generated up to the synchronization point.

The “timepatch” function (see Figure 4) is called by a processor to perform this reconciliation.
A counter addtime; is associated with each processor j, in which the correction that needs to
be applied to the local notion of simulated time is recorded by the timepatch function. Since
all memory accesses have to go through the memory directory, it is the central point of conflict
resolution for competing memory references from different processors. The timepatch function
determines the timing correction that needs to be made to the accesses from each processor based
on the interactions between accesses from different processors. This determination is done by
applying these accesses to the memory directory when timepatch is called. First the accesses of the
processors recorded in the respective timepatch tables have to be ordered before they can be applied
to the memory directory. Since each processor timestamps its accesses in order, the local timestamp
tables are already sorted in increasing time order. The timepatch routine has to merge all the local
timepatch tables, apply them in order to the appropriate memory directory entries, determine the
possible interactions among the accesses, and reconcile the ensuing timing inconsistencies. Before
we start applying these accesses to the memory directory, we find the timestamp ¢; of the last
entry in each of the per-processor timestamp tables. We next determine the minimum value Min
of the ¢;’s. Min represents a time up to which all processors have advanced in simulated time.
Therefore all the accesses from the processors up to this point of time will be in the timepatch
tables, and the potential interaction among these accesses can be resolved. We cannot handle

events with timestamps greater than Min at this point because it is possible that the processor

11

associated with the current minimum Min (the one lagging behind in simulated time) may make
accesses that could cause interactions with other accesses that happen in its “future”. The first
unprocessed entry is picked from each of the local timestamp tables and inserted into a sorted tree
if its timestamp is less than Min. Note that there is at most one entry per processor at a time in
this tree. The record z; with the minimum timestamp is deleted from the tree and the memory
directory entry corresponding to this operation is updated. This update will also determine the
increment (if any) that has to be applied to the counter addtime; of processor j. It should be clear
that this increment can never be negative since we process the events in time order. There will be
a non-zero increment when the interval between consecutive accesses to the same memory block
is less than the servicing time for that access, and represents the queueing delay at the memory
directory as well as the cost of consistency maintenance which were overlooked when the access was
made. The timestamp of any entry accessed henceforth from the timestamp table corresponding
to processor j is incremented by the value in addtime;. If the increment has to be applied to the
processor that determined Men originally, then Min will have to be recomputed. The next entry
(if any remaining) from this processor’s timepatch table is inserted into the tree if it is less than
the new Min. The above processing of entries from the tree continues until the tree is empty.

Upon return from the timepatch routine, all inter-processor interferences have been correctly
accounted for up to time Min. If the processor that invoked this routine (upon reaching a synchro-
nization point in its execution) still finds itself to be the least in simulated time then it can perform
the synchronization access. If not, it would have to block until all the other processors have caught
up with it in simulated time to make this determination. It should be noted that while a processor
is performing timepatch, other processors can continue with their execution.

We will use the same example used in the previous section (Figure 1) to illustrate in detail how
timepatch works. As before, we assume that Al and B1 are located on the same cache line. The
time order of the events shown in the Figure captures the order in which they should occur on the
target machine. Again, we assume that host processor 1 executes faster than host processor 0, and
gets to T15. Suppose that the only entry in the table associated with processor 0 at this point is
Tol. In the timepatch routine if we process 713 then we would not be able to consider the effect of
142 on 113 since Tp2 has not yet occurred. Thus in this case timepatch should only consider events
up to time Tyl. In the meanwhile, processor 1 has to stall until processor 0’s time is at least 7T15.
Eventually processor reaches Ty3 and timepatch is invoked again because of the synchronization
operation. Now both processors 0 and 1 are waiting for the synchronization access. The timepatch
routine determines that Tp3 is lesser than 775 and grants synchronization access to processor 0.
Observe that this is the desired behavior on the target machine.

There are certain subtle cases arising due to the semantics of synchronization events which the

implementation has to take care of. Barrier is one such. In this case, the table entries of all the

12

Begin Mutex /* only one processor can perform this action at a given instant */
(1) for each processor j initialize a counter addtime; to zero
/* this keeps track of the correction that needs to be applied
* to the local notion of that processor’s time
*/
(2) determine t;, the timestamp of the last entry in each of the
per-processor tables, and find the minimum AM3in among these.
/* timepatch can be performed only up to this time Min */
(3) pick the first unprocessed event z; from each per-processor table
(4) for each z; if (z;.timestamp < Min)
(4:1) insert z; into tree sorted by the timestamp z;.timestamp
end for /* end of (4) */
(5) while (tree not empty)
(5:1) delete a node It with lowest timestamp from the tree
(say it belongs to processor j - then It = z;)
(5.2) apply the access of It to the corresponding memory directory
and set flag if timing inconsistency detected
/* this will update the state of the memory directory entry
* and the timestamp associated with this memory directory
*/
(6:3) if (flag is set) /# implies timing inconsistency */
(56:3:1) increment the counter addtime; appropriately
(5:3:2) Recompute Min
end if /* end of (5:3) */
(6:4) pick the next unprocessed entry z; for processor j
(6:5) increment x;.timestamp by addtime;
(6:6) if (zj.timestamp < Min)
(6:6:1) insert z; into the tree
end if /* end of (5:6) */
/* continue processing until tree is empty */
end while /* end of (5) */
End Mutex

Figure 4: Pseudo-code invoked to patch time

13

processors participating in the barrier have to cleared when the last processor arrives at the barrier

irrespective of Min. The synchronization traps into the simulator handles such cases correctly.

4.2 Practical Considerations

While timepatching is strictly required only at synchronization points for the correctness of the
proposed technique, we are forced to it more often due to space constraints since it is infeasible
to maintain very large tables for the timepatch entries. The main idea behind timepatch is to
increase the window of time over which it is possible to have parallel execution of the simulated
threads of the target architecture. This window gets shrunk a little due to performing timepatch
more frequently, but it has the beneficial side effect of advancing the global simulated time, deleting
some of the entries from the local timestamp tables, and thus clearing up resources that can be

reused.

5 Preliminary Results

The are two aspects to be evaluated to appreciate the merit of our technique. The first is validation
of the technique itself to ensure that the performance statistics of the target architecture obtained
using our technique is correct. The second is the speedup that is obtained from the parallel
simulator. Ideally, we would want to see the speedup curve of the parallel simulator to track the
speedup achievable in the original application. However, this depends on how the overheads in
the simulation itsell gets apportioned among the participating processors. We first address the

validation question.

5.1 Validation

We developed a sequential simulator that models the same target machine using CSIM [Sch90],
which runs on a SPARC workstation. In order to validate our parallel simulator we used randomly
generated traces to drive the sequential and parallel simulators. The performance statistics used
to verify the parallel simulator are the simulated cycles (for performing all the memory references
in the traces) and the message counts (number of messages generated due to write invalidation).
The validation results are shown in Table 1. The traces consist of only load and store references
and different proportions of read to write ratios. One of the traces shown has 5000 references and
the other has 10000 references. The message counts for the two cases are off by at most 2% for the
traces considered. The agreement in simulated times is within 2% for one trace and varies between
7% and 12% for the other trace. CSIM is a process oriented simulation package, which schedules

the CSIM-processes in a non-preemptive fashion within a single Unix process. We do not have

14

Simulated Cycles Message Counts
Application | Processors || Sequential ‘ Parallel ‘ Difference || Sequential ‘ Parallel ‘ Difference
Trace-5K 4 671490 | 670395 0.16% 6045 6040 0.08%
Trace-5K 8 790010 | 788600 0.18% 13055 13039 0.12%
Trace-5K 16 868520 | 883835 -1.76% 27095 27087 0.02%
Trace-10K 1519895 | 1703035 -12.04% 11151 11377 -2.02%
Trace-10K 1660345 | 1781825 -7.32% 27765 27881 -0.41%
Trace-10K 16 1757455 | 1895990 -7.88% 59980 60010 -0.05%

Table 1: Validation of the Parallel Simulator

any control over the internal scheduling policy that CSIM uses for scheduling the runnable CSIM-
processes. We believe that the differences observed for the second trace are due to the effects of
this scheduling policy. Overall the validation results indicate that our parallel simulator simulates

the target machine with reasonable accuracy.

5.2 Speedup Result

Next we address the speedup question. In order to illustrate and understand the performance of
our simulation technique, we will concentrate on the matrix multiplication application. The matrix
multiplication problem can be easily parallelized without any false sharing (except for boundary
conditions). True sharing is only for read-shared data and thus there is no synchronization in the
code. As expected, the raw code we developed for the matrix multiplication application shows
linear speedup on KSR-2. Thus we expect that the parallel simulator which uses the same code
with augmentation will track the speedup of the application program and give similar speedups.
Consider the performance of our simulator when we use 64x64 matrix multiplication to drive our
simulation. These results are shown in Table 2. As seen from the Table the speedups observed
are not close to what we expect. This is because of the overheads in the simulation. In the next
section we analyze what these overheads are and what implementation techniques can be used to

reduce these overheads and thus speedup our parallel simulator.

6 The Anatomy of the Parallel Simulator

While performing an execution-driven simulation there are two costs involved - that of the actual
application and the simulation overhead (see Figure 5). Let us consider how these costs vary

as we simulate different numbers of target processors. For a given problem size, the amount of

15

Processors | Simulation Time* | Speedup
1 44.27 n-a
2 34.96 1.26
4 31.80 1.39
8 31.23 1.41
16 185.55 0.23

* Wall clock time in seconds.

Table 2: Simulation Times for 64x64 Matrix Multiplication

P ; Simulation Overhead ;
Application Time (Event Processing + Scheduling Costs) Sequentlal
P . Simulation Overhead
Application Time (Event Traps + Ti mepat ch) Parallel

Figure 5: Expected gains using parallel simulation

processor cycles used by the application (assuming a deterministic computation) in a sequential
setting is almost a constant since the problem that has to be executed has not changed, irrespective
of the number of processors simulated. However, simulating more processors adds to the simulation
overhead in the sequential setting because of additional process management and other effects such
as decreased cache locality. Now let us consider our parallel simulator. The application time is
unaffected by our simulation methodology and hence the available parallelism in the application
should be observed in our simulation method as well. The real question is how the simulation
overhead is apportioned among the processors when we simulate larger numbers of target processors.
The simulation overhead can be broken down into two components: (i) timestamping and local state
maintenance on each memory access, and (ii) timepatching at synchronization points. The first
component includes the traps incurred for loads and stores. Since these traps and ensuing state
maintenance activities are local to each processor, they are done in parallel without interfering
with other processors. Therefore assuming that the total number of loads and stores remains a
constant for a given problem size the overhead due to the first component also should exhibit the
same speedup properties as the application itself, and thus should not limit the speedup of the
simulation. The second component of the simulation overhead includes fixing timing errors as well
as waits incurred due to local timepatch tables filling up. It is the timepatch function that can be
performed only by one processor at a given instant and is the source of the sequential bottleneck

in the simulation.

16

_Time(seconds)

Load
Store
Wait for Patch due to table full
Patch

Wait for patch at synchronization

[T

Figure 6: Comparative costs in the 64x64 Matrix Multiplication

To investigate the cause for the relatively poor performance of the simulation we profiled our
simulator in order to understand where the time is spent. Figure 6 shows the per-processor
breakdown of the various costs involved for different numbers of processors. The application time
is itself negligible (less than 1 second for 16 processors). The breakdown gives the time to perform
the load traps (labeled Load in Figure 6), the store traps (labeled Store), the time to perform
the timepatch operation (labeled Patch), the wait time experienced because the timestamp table
is full (Wait for patch at table full), and the wait time for the timepatch operation to complete
at synchronization (Wait for patch at synchronization). The load and store traps are application
dependent and are inevitable. The costs associated with performing timepatch and the waits are
the simulation overheads of our technique and our aim is to make them as small as possible. From
Figure 6, we see that the costs for load/store traps decrease proportionally as we increase the
number of processors since this work gets divided among the processors. In the 4 processor case we
observe that the wait times due to the timestamp tables becoming full is a significant portion. This
preliminary implementation uses a table size of 5K entries per processor. Thus the tables get filled
up quite quickly. This forces a processor to attempt to perform a timepatch operation. But if some
other processor is already in timepatch then this processor has to wait until some space is freed up
in its local table. So reducing the wait time at timepatch is an important step for speeding up the
simulation. Another observation from the chart is that the cost to perform the timepatch operation
is a significant portion of the total time. Thus another avenue for speeding up the simulation is to

speed up the execution of the timepatch operation. The wait time for patch at synchronization is a

17

_Time(seconds)

Load
Store
Wait for Patch due to table full
Patch

Wait for patch at synchronization

Number of Processors

Figure 7: Matrix Multiplication revisited with frequent patching and large table size

subtle issue. If the application has little serial overhead and no work-imbalance, then there should
not be any significant waiting at synchronization. The waiting that we do see in Figure 6 is brought
about by a processor having to wait at a barrier for some other processor to finish timepatching.
In fact, this waiting will go away if we reduce the patch overhead.

In the following subsections, we explore methods to cut down these overheads.

6.1 Reducing the Wait Time at Patch

The processor that is ahead in simulated time will eventually be blocked at a synchronization access.
Therefore, one possibility to reduce the wait times at timepatch is to make this processor perform
the timepatch operation. Clearly, the total execution time for the simulation cannot be less than
the cumulative patch time since timepatch is essentially a sequential process. However, it can be
seen from Figure 6 that the total sum of the patch times observed on all the processors is close to
the execution time. Therefore, throttling the fastest processor is not going to help. On the other
hand, if the size of the timepatch tables are increased then that would reduce the number of trips
to timepatch that each processor would have to make and therefore reduce the amount of waiting
that each processor would have to do at timepatch. Figure 7 shows the effect of table size on the
execution time. As can be seen with a table size of 500K entries, the waiting time at patch is
almost close to zero. Also, comparing Figures 6 and 7 it can be seen that increasing the frequency

of the timepatch operation did not increase the overall work to be done by the timepatch function.

18

6.2 Distributing the Patch Work

In our current implementation, the biggest source of simulation overhead is the patching itself.
In the current setup this is done sequentially. One possibility to reduce the patch overhead is to
parallelize it. A simpler and quicker option is to do the timepatch more often so that it can be
overlapped with useful computation on other processors. One way of accomplishing this goal is by
performing timepatch periodically instead of waiting until a synchronization operation or until the
table is full. In the current implementation timepatch is called every 4096 load/store references.
This frequent timepatching in conjunction with the increased table size improves the chance of
patch overhead getting distributed among the processors and reduces the possibility of processors

waiting at patch when someone else is doing it (see Figure 7).

6.3 Reducing the Patch Time

Given that timepatch is the dominant source of overhead we turn our attention to seeing if that work
itself can be reduced. It is instructive to see the number of timepatch entries that are created and
the actual number of them that impact the simulated time. For example, in matrix multiply with
16 processors, 798,916 timepatch entries are created but only 61,742 entries (less than 7%) actually
result in change to the simulated time due to the inter-processor interferences. It turns out that it is
possible for the compiler to predict which references will result in interferences from the data layout
the compiler employs for the shared data structures in the caches. Therefore, if this knowledge is
available to the simulator then it can eliminate a sizable number of the entries from the timepatch
table. We did this optimization for the applications that are considered here. There are three kinds
of data: private, true-shared, and false-shared. It is possible for the compiler to distinguish these
categories of data, and this information can be made available to the simulator. The simulator
should create patch entries for all false-shared data since they could cause interference depending
on program dynamics. The simulator does not have to create patch entries for private data since
the data layout of the compiler ensures no interference with other processors. The true shared data
gets shared across synchronization regions in the program. Thus within a synchronization region
it is sufficient if there is at least one patch entry for the first access for each such variable in that
region by a processor.

We modified our implementation to use these optimizations. Associated with each cache block
is a timestamp that gives the last access to that cache block. We associate a sync-time with each
processor. This is the timestamp of the last synchronization operation carried out by this processor.
The augmentor which generates the load/store traps gives this additional information whether the
access is to private, false-shared, or true-share data. Upon every true shared access the timestamp

in the referenced cache block is checked against the sync-time for that processor. If the sync-time

19

Processors | Unoptimized | Optimized | Improvement over Speedup
time (Secs) | time (Secs) Unoptimized (for optimized)
1 68.20 39.28 42% 1
2 35.22 17.82 49% 2.2
4 26.65 13.85 48% 2.8
8 29.19 10.61 63% 3.7
16 160.15 56.16 65% 0.6

Table 3: Comparing the optimized and unoptimized Matrix Multiplication Simulation

Processors | Unoptimized | Optimized | Improvement over Speedup
time (Secs) | time (Secs) Unoptimized (for optimized)
1 164.20 94.01 42% n.a
2 131.18 45.53 65% 2.1
4 131.35 33.41 74% 2.8
8 241.61 52.55 78% 1.7
16 1301.11 398.21 69% 0.2

Table 4: Comparing the optimized and unoptimized Integer Sort Simulation

is greater then an entry is created for this reference in the patch table. An entry is created for
every false-shared access and none for private.

With these optimizations the number of timepatch entries that are actually processed during
the entire simulation is down from 798,916 for 16-processor matrix multiply to 267,636 (by a factor
of 3). This is still around a factor 4 more than the number of entries that actually cause timing
errors. By a more careful analysis and labeling of the accesses we expect to bring down this number
even further.

The cache statistics (such as message counts and hit rate) observed for the optimized and
unoptimized versions were the same indicating that these optimizations are indeed correct. Since
the objective here is to show the viability of our simulation technique these performance statistics
are not germane to the rest of the discussion. In the next section we present the speedup results

from the optimized simulator for two application programs: matrix multiply, and integer sort.

7 Results from the Optimized Simulator

Tables 3, and 4 show the execution times and speedups for matrix multiply and integer sort.

20

User Time Wall Clock Time
Application Processor id Load+4Store | Wait | Patch || Load+Store | Wait | Patch
16-processor Processor 0 1.51 0.47 | 7.653 | 1.82 15.26 | 37.39
Matrix Multiplication || Processors 1-15 || 1.49 1.55 | 0.002 | 1.96 53.30 | 0.05
8-processor Processor 0 10.31 1.55 | 4.06 18.21 14.86 | 48.88
Integer Sort Processors 1-8 || 9.41 1.78 | 2.54 11.57 24.82 | 3.43

Table 5: Breakdown of the user and wall clock times

As can be seen, we do get a reasonable speedup up to 8 processors for matrix multiply (3.7 for 8
processors), and up to 4 processors for integer sort (2.8 for 4 processors). Comparing the execution
times of the optimized and unoptimized versions of the simulator we can see that the optimizations
give a significant payoff (ranging from 42% to 78%). Since both versions use the same table sizes and
periodicity for timepatch, the reduction in time is entirely due to the compile time optimizations
which we discussed in Section 6.3.

Now let us try to understand the reason for slowdown beyond 8 processors for matrix multiply
and 4 processors for integer sort. Table 5 shows the breakdown of the execution times for 16
processor matrix multiply, and 8 processor integer sort. The column labeled user time is the time
spent in the simulator; the wall clock time is the elapsed time seen for the simulator. As can be
seen one processor (labeled 0 in the Table) does most of the patching in matrix multiplication.
The cumulative user time spent in patching was observed to be commensurate with that for lesser
numbers of processors. However, it is seen that the wall clock time is greater than this patch time
by 29.74 Secs. This is additional time spent by processors 1-15 waiting at the synchronization point
for the patch function on processor 0 to complete. We believe we know exactly why this behavior
is observed. KSR-2 has 32 MBytes of second level cache, and it allocates space for an entire page
(of 16 KBytes) on every second level cache miss. Each per-processor patch table is a 2 Mbyte data
structure. We believe that with 16 processors, the necessity to consult the tables of other processors
at patch time results in a considerable amount thrashing of the second level cache leading to poor
overall performance. This is the same effect which is observed in integer sort beyond 8 processors.
Needless to say, that this behavior is purely an implementation quirk and does not impact the
usefulness of the timepatch technique. In fact, we expect to be able to fix this interaction between
the simulation data structures and the paging behavior of the operating systems by careful data

partitioning.

21

8 Concluding Remarks

We developed a new method for parallel simulation of multiprocessor caches and have shown its
feasibility by implementing it on the KSR-2. The primary advantages of this scheme are that we
can obtain reasonable speedups limited primarily by the application speedups and that this method
can be used to simulate larger parallel systems (both number of target processors and problem size)
than is possible with a sequential simulator.

In the process of implementing the technique on KSR-2 we learned several lessons which are
of interest from the point of view of performance tuning parallel applications in general, parallel
simulators in particular. The first has to do with the potential for considerable speedup for parallel
simulation of multiprocessor caches by gleaning compile time information on the data layout in
the caches and passing it on to the simulator. The second is the importance of distributing the
overhead of the simulation among the processors so that useful work in other processors can be
overlapped with this overhead function. The last is the necessity to worry about the operating
system interactions in a parallel machine such as the KSR-2. In particular, one has to carefully
orchestrate the interactions between the shared data structures in the application and the paging
policies of the operating system. In fact, this last point is not resolved fully in our current imple-
mentation. But we are sure that we can get it resolved and show considerable speedups for larger
numbers of processors.

There is at least one architectural implication suggested by this parallel simulation exercise. It
is clear that the performance of our technique can benefit from a “snoopy-read” primitive. The
semantics of this primitive is to read the current value of a variable without changing the (exclusive)
state of the cache line on the processor from which the value is being read. The timepatch routine
could make heavy use of this feature. In the absence of such a primitive, the referenced cache line
thrashes between the processors and not only slows down the execution on the affected processors
but also places considerable stress on the interconnection network.

There are several directions to extend our work. One direction is to figure out a way to in-
corporate network contention of the target architecture into the simulator. This direction would
allow extending our technique to simulate both memory and /O intensive applications (which may
stress the network) in addition to the compute intensive ones we have studied so far. A possible
approach to incorporate the network would be to combine our method with an optimistic scheme
such as Time warp to simulate the network messages.

A second direction is to use this technique to compare different memory systems employing
different models of consistency and cache coherence strategies. A third direction is to simulate
larger configuration of target architectures on smaller host machines. In our implementation, we

used one host processor to simulate one target processor. The timepatch technique does not place

22

any such constraints and we could just as easily have mapped multiple nodes of the target machine

to a single processor of the host machine. We also assumed that each target processor has only one

thread of the application mapped to it. To relax this restriction we have to take into account the

scheduling strategy on the target machine so that the cache effect produced by multiple threads on

a processor can be accurately modeled.

References

[ABS6]

[ASHHSS]

[BDCW9Y1]

[Bit89]

[CKP+93]

[CMTY]

[CMM™88]
[DGHI1]

[DHN94]

[EK88]

[FHY2]
[Fuj83]
[Fuj90]

[GH93]

J. Archibald and J. L. Baer. Cache coherence protocols: Evaluation using a multiprocessor
simulation model. ACM Transactions on Computer Systems, 4(4):273-98, November 1986.

A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of directory schemes for
cache coherence. In 15th Annual International Symposium on Computer Architecture, pages

280-9, May 1988.

Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl. PROTEUS:
A high-performance parallel-architecture simulator. Technical Report MIT/LCS/TR-516, Mas-
sachusetts Institute of Technology, September 1991.

Philip Bitar. A critique of trace-driven simulation for shared-memory multiprocessors. In 16th

ISCA Workshop Presentation, May 1989.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. v. Eicken. Logp: towards a realistic model of parallel computation. In Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 1-12, July 1993.

K. M. Chandy and J. Misra. Distributed simulation: A case study in design and verification of
distributed programs. IEEE Transactions on Software Engineering, SE-5(5):440-452, September
1979.

R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair. The Rice parallel
processing testbed. Performance Evaluation Review, 16(1):4-11, May 1988.

Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multiprocessor simulation and trac-
ing using TANGO. In International Conference on Parallel Processing, pages 11-99-107, 1991.

P. M. Dickens, P. Heidelberger, and D. Nicol. A distributed memory LAPSE: Parallel simulation
of message passing programs. In 8th Workshop on Parallel and Distributed Simulation, pages
32-38, July 1994.

S. J. Eggers and R. H. Katz. A characterization of sharing in parallel programs and its applica-
tion to coherency protocol evaluation. In 15th Annual International Symposium on Computer
Architecture, pages 373-82, June 1988.

Richard M. Fujimoto and William C. Hare. On the accuracy of multiprocessor tracing techniques.
Technical Report GIT-CC-92-53, Georgia Institute of Technology, November 1992.

R. M. Fujimoto. Simon: A simulator of multicomputer networks. Technical Report UCB/CSD
83/137, ERL, University of California, Berkeley, 1983.

Richard M. Fujimoto. Parallel discrete event simulation. Communications of the ACM,
33(10):30-53, October 1990.

S. R. Goldschmidt and J. L. Hennessy. The accuracy of trace-drive simulations of multiprocessors.
In ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 146—
57, June 1993.

23

[HS90]
[Jef85]
[LHS89]
[Lig92]

[NGLR92]

[Pop90]
[Res92]
[RHL*92]
[RSRMY3]
[SAS8S]
[Sch90]

[SSRV94]

Philip Heidelberger and Harold S. Stone. Parallel trace-driven cache simulation by time parti-
tioning. In Winter Simulation Conference, pages 734-737, December 1990.

D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems,

7(3):404-425, July 1985.

Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Transac-
tions on Computer Systems, 7(4):321-359, November 1989.

Walt B. Ligon. An empirical analysis of Reconfigurable Architectures. PhD thesis, Georgia
Institute of Technology, August 1992.

David M. Nicol, Albert G. Greenberg, Boris D. Lubachevsky, and Subhas Roy. Massively par-
allel algorithms for trace-driven cache simulation. In 6th Workshop on Parallel and Distributed
Simulation, pages 3—11, January 1992.

D. A. Poplawski. Synthetic models of distributed memory parallel programs. Technical Report
ORNL/TM-11634, Michigan Technological University, September 1990.

Kendall Square Research. Technical summary, 1992.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis, and
David A. Wood. The Wisconsin Wind Tunnel: Virtual prototyping of parallel computers.
Technical report, University of Wisconsin-Madison, November 1992.

U. Ramachandran, G. Shah, S. Ravikumar, and J. Muthukumarasamy. Scalability study of the
ksr-1. In International Conference on Parallel Processing, pages 1-237-240, August 1993.

R. L. Sites and A. Agarwal. Multiprocessor cache analysis using ATUM. In 15th Annual
International Symposium on Computer Architecture, pages 186-95, June 1988.

Herb D. Schwetman. CSIM Reference Manual (Revision 14). Technical Report ACA-ST-252-87,
Microelectronics and Computer Technology Corp., Austin, TX, 1990.

A. Sivasubramaniam, A. Singla, U. Ramachandran, and H. Venkateswaran. An approach to
scalability study of shared memory parallel systems. In ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 171-180, May 1994.

24

