G

Name:_____GT Number: gt_____

Please indicate your GT number in the grid below so we have some chance of being able to read it.

t													_												
0	1	2	З	4	5	6	7	8	9	0	е	g													
0	1	2	3	4	5	6	7	8	9	0			_												
0	1	2	3	4	5	6	7	8	9	0															
0	1	2	3	4	5	6	7	8	9	0															
a	В	С	d	е	F	G	h	i	j	k	1	m	n	0	р	q	r	S	t	u	v	w	х	У	Z

Problem	Points	Lost	Gained	Running Total	TA
1	1				
2	9				
3	10				
4	10				
5	15				
6	20				
7	10				
8	10				
9	15				
Total	100				

- You may ask for clarification but you are ultimately responsible for the answer you write on the paper.
- Illegible answers are wrong answers.
- Please look through the entire test before starting. WE MEAN IT!!!

Good luck!

1. (1 point, 1 min) (circle one - you get a point regardless of your choice) The number of delegates needed to win the presidential primary: (a) same for republican and democratic candidates, (b) different for republication and democratic candidates, (c) no idea, (d) I don't care about politics

Name:_____GT Number: gt_____

Processor design 2. (10 points, 10 mins) Given the software convention for registers: a0-a2: parameter passing s0-s2: callee saves if need be t0-t2: caller saves if need be v0: return value return address ra: at: target address sp: stack pointer

Recall that JAL instruction of LC-2200 has the following semantics: JAL at, ra; ra <- PC_{incremented} (return address)
; PC <- at (entry point of procedure)</pre>

The state of the stack is as shown below. To help you out, we have put down the action corresponding to step 6. Fill out the actions similarly for the other steps (who is responsible for the action caller/callee, and what is the action).

Your answer:

STACK

Name	GT Number: gt
3. (9 po Why does	oints, 5 mins) s an architecture provide a register called Program Counter (PC)?
Your and	swer (need three valid reasons for full credit):
1)
2)
3)
4. (10) (a) An a	points, 5 mins)(select the correct choice) activation record of a procedure
	is usually on the stack
	is usually kept in processor registers
	is usually kept in a special hardware
	is usually allocated in the heap space of the program
	is usually allocated in the static (global) data space of the program
	all of the above
	none of the above
(b) A F:	rame Pointer
	is the same as a stack pointer
	is a fixed harness into the activation record for the currently executing procedure
	is not a register at all
	is implemented in memory
	is used for parameter passing during procedure call
	all of the above
	none of the above

Name:_____GT Number: gt_____

Datapath elements

5. (15 points, 10 mins)

Shown below is a 16 element dual-ported register file (DPRF). Each register has 24 bits. $A_{address}$ and $B_{address}$ are the register addresses for reading the 24-bit register contents on to Ports A and B, respectively. $C_{address}$ is the register address for writing Data_in into a chosen register in the register file. RegWrEn is the write enable control for writing into the register file.

Name:_____GT Number: gt___

Control

6. (19 points, 15 min)

You are given below a datapath similar to what we have discussed in class.

We have decided to add a complex instruction **ADDM** to LC-2200. The semantics of this instruction is as follows:

ADDM Rx, (Ry) ; MEM[Ry] <- MEM[Ry] + Rx;

The instruction format is as shown below:

31 28	27 24	23 20	19	0
OPCODE	Rx	Ry	UNUSED	

Write the sequence for implementing the ADDM (you need to write the sequence **ONLY** for the execution macro state of the instruction). For each microstate, show the datapath action (in register transfer format such as $A \leftarrow Rx$) along with the control signals you need to enable for the datapath action (such as DrREG).

Write your answer on the next page.

Name:_____GT Number: gt_____

Name:_____GT Number: gt_____

Interrupts, exceptions, and traps

7. (10 points, 10 mins)

(a) Fill the table below (-1 point for each incorrect choice) with an "X" under the column that applies for a given row.

	Asynchronous with processor execution	Synchronous with processor execution	Internal to the processor	External to the processor
Exception				
Trap				
Interrupt				

(b) (no penalty for incorrect answer)

An example for exception:

An example for trap:

An example for interrupt:_____

Name:_____GT Number: gt_____

Performance

Two engineering teams independently design processors for the same instruction set and come out with the following designs:

Ma:						Mb:					
Clock	cycle time	= 1	ns			Clock	cycle	time	=	1.5	ns
Туре	CPI					Туре	CPI				
A	5					A	4				
В	3					В	2				
С	2					С	2				

(a) Which machine is faster?

(b) what is the speedup of the faster machine over the slower machine

(c) what is the percentage improvement in the execution time of the faster machine over the slower machine?

Name:_____GT Number: gt_____

Pipelining

9. (15 points, 10 mins)

For the LC-2200 instruction set we are considering a pipelined processor design using a 5-stage pipeline as shown below

Assume the instruction going through the pipeline is LW Rx, Ry, offset; Rx <- MEM[Ry + signed offset]

31 28	27 24	23 20	19	0
Opcode	Reg X	Reg Y	Signed offset	

Considering only the LW instruction, quantify the sizes of the various buffers between the stages of the above pipeline.

Your answer:

Name:_____GT Number: gt_____